
Theory Comput Syst (2009) 44: 67–81
DOI 10.1007/s00224-007-9029-2

Paging with Request Sets

Leah Epstein · Rob van Stee · Tami Tamir

Published online: 3 July 2007
© Springer Science+Business Media, LLC 2007

Abstract A generalized paging problem is considered. Each request is expressed as
a set of u pages. In order to satisfy the request, at least one of these pages must be
in the cache. Therefore, on a page fault, the algorithm must load into the cache at
least one page out of the u pages given in the request. The problem arises in systems
in which requests can be serviced by various utilities (e.g., a request for a data that
lies in various web-pages) and a single utility can service many requests (e.g., a web-
page containing various data). The server has the freedom to select the utility that
will service the next request and hopefully additional requests in the future.

The case u = 1 is simply the classical paging problem, which is known to be poly-
nomially solvable. We show that for any u > 1 the offline problem is NP-hard and
hard to approximate if the cache size k is part of the input, but solvable in polyno-
mial time for constant values of k. We consider mainly online algorithms, and design
competitive algorithms for arbitrary values of k, u. We study in more detail the cases
where u and k are small. We also give an algorithm which uses resource augmentation
and which is asymptotically optimal for u = 2.

Keywords Paging · Online algorithms · Competitive analysis

A preliminary version of this paper appeared in Proc. Scandinavian Workshop on Algorithm Theory
(SWAT 2006), pp. 124–135, 2006.
Research of R. van Stee supported by Alexander von Humboldt Foundation.

L. Epstein
Department of Mathematics, University of Haifa, 31905 Haifa, Israel
e-mail: lea@math.haifa.ac.il

R. van Stee
Department of Computer Science, University of Karlsruhe, 76128 Karlsruhe, Germany
e-mail: vanstee@ira.uka.de

T. Tamir (�)
School of Computer Science, The Interdisciplinary Center, Herzliya 46150, Israel
e-mail: tami@idc.ac.il

mailto:lea@math.haifa.ac.il
mailto:vanstee@ira.uka.de
mailto:tami@idc.ac.il

68 Theory Comput Syst (2009) 44: 67–81

1 Introduction

Modern operating systems have multiple memory levels. In simple structures, a mem-
ory is organized in equally sized pages. The basic paging model is defined as follows.
The system has a slow but large memory (e.g. disk) where all pages are stored. The
second level is a small, fast memory (cache) where the system brings a page in order
to use it. If a page which is not in the faster memory level is requested, a page fault
occurs, and a page must be evicted in order to make room to bring in the new page.
The processor must slow down until the page is brought into memory, and in practice,
for many applications, the performance of the system depends almost entirely on the
number of page caching (uploads to the cache). We define the cost of an algorithm as
simply the total number of page uploads.

Traditional paging problems assume that at every step of a request sequence, there
exists a unique page that can fulfill the needs of the system. This page must be loaded
into the cache if it does not reside there already. Such a situation is plausible, however,
often the need for a very specific page is not acute and the need is for a certain piece
of information rather than a certain page.

For instance, on the world wide web, information is often mirrored across many
websites (e.g. currency exchange rates). In such a situation, it makes sense to make
a list of several places where the information can be found, and allow the system to
conveniently choose from them. Another application is a media broadcasting system.
In such a system, media files, which are the smallest media units that can be loaded
into the system, are kept on disks. Media files are replicated and each is stored on
several, not necessarily uniform, disks. The content of each disk is known. A broad-
cast is defined by a list of required media in some specific order (for example, list
of songs to be transmitted). The goal is to broadcast all media while minimizing the
number of disks loadings.

Let Uj denote the j th request, that is, Uj is the set of pages containing the in-
formation required in the j th request. In order to keep the running times of paging
algorithms low, we fix the number of options given to the algorithm in every request
to be a parameter u. Formally, for all j , we assume that |Uj | = u. The size of the
cache is denoted by k. The request sequence is denoted by σ , and n denotes the to-
tal number of different pages that occur in σ . Given a set of requests {U1, . . . ,Uj },
we say that a set S covers this set of requests if for all i,1 ≤ i ≤ j , it holds that
S ∩ Ui �= ∅. In online paging problems, each element in the request sequence arrives
after the previous request was serviced (i.e. the decision on the eviction of another
page was made). The competitive ratio is the asymptotic worst case ratio between the
cost of an online algorithm and the cost of an optimal offline algorithm OPT which
knows all requests in advance.

Related Work For the classical offline problem, there exists a simple polynomial-
time optimal algorithm LFD (Longest Forward Distance) designed by Belady [2]. LFD

always evicts the page for which the time until the next request to it is maximal. Two
common paging algorithms for the classical paging problem are LRU (Least Recently
Used) and FIFO (First In First Out). LRU computes for each page which is present in
the cache the last time it was used and evicts the page for which this time is minimum.

Theory Comput Syst (2009) 44: 67–81 69

FIFO acts like a queue, evicting the page that has spent the longest time in the cache.
Variants of both are common in real systems. Although LRU outperforms FIFO in
practice, LRU and FIFO are known to have the same competitive ratio of k. Further
this ratio is known to be the best possible, see [10, 14]. Randomized algorithms were
studied by [1, 8, 12]. See [9] for a survey on online paging problems.

One generalization of paging was studied by Fiat and Ricklin [7]. They studied
the weighted paging problem (i.e., where each slot in the cache may have a distinct
cost of replacing the page stored in it), and gave algorithms with a doubly exponential
upper bound in k on the competitive ratio. They showed that the competitive ratio of
any algorithm for this problem is at least k �(k). For the special case where only two
weights are allowed they have a k O(k)-competitive algorithm.

As explained in Sect. 2, paging with request sets captures other well-studied prob-
lems such as set cover and hypergraph vertex cover [6]. The online problem captures
dynamic versions of the above problems such as online vertex cover. However, in
the studied version of online vertex cover (see e.g., [5]), the input graph is revealed
vertex by vertex, while our problem induces a problem in which the graph is revealed
edge after edge. Both our results and the results in [5] imply that the online problem
is significantly harder than the offline one.

The online version of our problem is a special case of metrical task systems and
specifically of their sub-class, metrical service systems (also called forcing tasks sys-
tems). For details, see [3, 4, 11].

Our Results We show that unlike the classical paging problem, paging with request
sets is NP-hard and in fact hard to approximate within a factor of �(u) unless P =
NP. If k is fixed, then the problem can be solved via dynamic programming.

We further study the online problem. We show that natural extensions of LRU and
FIFO are not competitive. We present competitive algorithms for all values of u and
k. We consider the paging model described above as well as the same paging model
with bypassing. Note that even though the competitive ratios of our algorithms are
quite high for most variants (i.e. exponential in k), we show that in many of the cases
this is unavoidable. This is similar to the generalization of paging considered in [7]
that also results in high competitive ratios.

Finally, we present a simple online algorithm which uses resource augmentation.
Here the offline algorithm that it is compared to is restricted to a cache size of h < k.
This generalization was considered already by Sleator and Tarjan in [14]. We show
that the competitive ratio of our algorithm tends to the optimal value of 2 for u = 2
and large values of k/h.

2 The Offline Problem

We begin by describing a dynamic program (DP) for the problem. For a set S of size
exactly k, let Pj,S denote the cost of servicing the first j requests of σ in a way that
the cache content after the j th request is S. Since the j th request is the last to be
serviced, Pj,S is defined only for S ∩ Uj �= ∅ (or defined to be ∞ when this does not

70 Theory Comput Syst (2009) 44: 67–81

hold). An optimal solution can be obtained using the following dynamic program.
Here we assume the optimal total cost is at least k.1

Initialization For j ≤ k, set Pj,S = k if S covers U1, . . . ,Uj . Else, set Pj,S = ∞.
In the initialization, we consider all possible ways to fill the cache. This requires k

loads and therefore has the cost k. We assume that no page replacements are done as
long as the cache has space to load pages, thus, we ignore these sets that do not cover
the first j requests (by setting their price to ∞).

Step For j > k, if S ∩ Uj = ∅, set Pj,S = ∞. Else set

Pj,S = min{Pj−1,S, 1 + min{Pj−1,S′ |S = S′ ∪ {x} \ {y} for some x ∈ Uj }}.
For j > k, when calculating Pj,S for S ∩ Uj �= ∅ there are two cases. The first

is when no upload is done for servicing the j th request, that is, the current content
of the cache covers Uj . In this case the total cost of servicing the first j requests is
equal to the cost of servicing the first j − 1 requests. The second case is when an
upload is essential. If the content of the cache, S′, does not cover Uj then some page
y ∈ S′ is removed and a page x ∈ Uj is inserted. The cost in this case is one for the
current upload plus the cost of servicing the first j − 1 requests in a way that the
cache content before the j th request is S′. Therefore, the minimal cost of servicing
the first j requests is determined by the optimal S′. To calculate Pj,S , the minimum
cost out of these two cases is considered.

The optimal cost for the whole sequence is the minimal value of P|σ |,S for some
set S. The size of the DP table is polynomial in n: there are nk possible sets S, for
each such set the value Pj,S is calculated for |σ | different values of j . Each entry is
calculated in time O(uk).

Corollary 2.1 Paging with request sets can be solved in time O(|σ |uknk).

Clearly, the above DP algorithm is polynomial only for constant k. While the
offline traditional paging problem is known to be optimally solved for arbitrary k, this
is not the case for the generalized problem. In particular, we show that our problem
is NP-hard even for request sets of size 2.

Theorem 2.2 Offline paging with request sets and an arbitrary cache size k is NP-
hard even for u = 2.

Proof Reduction from Vertex Cover (VC). Given an instance for VC, G = (V ,E),
and the question whether G has a vertex cover of size k, construct the following
instance for paging with request sets. The sequence σ consists of |E| requests; the
j th request is Uj = {vj1, vj2}, where (vj1, vj2) is the j th edge (in arbitrary order)
of E. It is easy to verify that it is possible to service all the requests at a total cost of
k if and only if G has a vertex cover of size k. �

1This assumption can be removed by considering also sets of size smaller than k. We skip this technical
extension.

Theory Comput Syst (2009) 44: 67–81 71

This reduction can be generalized to show that for arbitrary sizes of sets the
problem is as hard as set-cover. Thus, it cannot be approximated within factor
�(logn) [13]. The reduction from vertex cover can be extended for any instance
with uniform size request sets, that is, when |Uj | = u for all u.

Theorem 2.3 Assuming P �= NP , there exists an ε > 0 such that the optimal cost of
paging with request sets for instances having request set of size u cannot be approxi-
mated in polynomial time within factor (u − 1 − ε).

Proof We show an L-reduction from hypergraph vertex cover, for which this hard-
ness result is known [6]. Let S be an instance of hypergraph vertex cover (HVC) with
k nodes, and let opt be a minimal size vertex cover of S. Build an instance σs for our
paging problem by listing the hyperedges of S in some order.

Consider a cache of size k. An optimal algorithm can service σs at cost |opt| by
placing the nodes of the vertex cover in the cache. Consider any algorithm that ser-
vices σs . The set of vertices that are inserted into the cache along the whole sequence
form an HVC. The cache size is selected to be k so no deletions are required. There-
fore, the cost of servicing σs is the size of the HVC found by the algorithm. �

3 The Online Problem

3.1 The Performance of Standard Algorithms

In this section we show that several reasonable versions of LRU and FIFO, adapted for
paging with request sets, are not competitive. To generalize the algorithms, we need
to define the behavior on a page fault. Specifically, we not only need to define the
method of page eviction but also the method of choosing a page of the new request
to be inserted to the cache.

The page eviction method of FIFO is identical to the original algorithm, that is,
remove from the cache the page that was inserted first. For LRU, we say that a page
is used if it appears in a request (but not necessarily downloaded), thus, LRU removes
from the cache a page that appeared least recently in a request. Ties are broken ar-
bitrarily. We mention that our non-competitiveness proof below is suitable also for
other eviction methods of LRU, like removing the page that was least recently “essen-
tial”, that is, loaded or serviced a request.

For analyzing the loading page method, we first consider a situation where the
choice of a new page is arbitrary. In particular, it might be that the page inserted to
the cache is the one that has been out of the cache the longest time (i.e., has never
been in the cache, or has been evicted least recently). The same example is applicable
to both LRU and FIFO.

Lemma 3.1 The above versions of LRU and FIFO are not competitive for paging with
request sets.

Proof Given k ≥ 2, and u ≥ 2, let {a0, . . . , au+k−1} denote u + k designated pages.
For convenience of notation, define aj for j ≥ u + k to be aj mod(u+k).

72 Theory Comput Syst (2009) 44: 67–81

The sequence of requests repeats the following subsequence σ0, . . . , σu+k−1. Re-
quest σi is defined to be {ai, . . . , ai+u−1}. Both LRU and FIFO have the cache contents
{ai+u, . . . , ai+u+k−1} before this request, where pages are listed in the order in which
they will be evicted. The page that has been out of the cache for the longest time is
ai = ai+u+k . Clearly each request is a fault.

However, OPT keeps in its cache the pages au·� for all � ≥ 0 such that u ·� < u+k.
The number of such pages is � k

u
� + 1. Since u ≥ 2, it is clear that this number never

exceeds k. Thus, after loading these pages in its cache, OPT never makes another
fault. This proves the lemma. �

Next, consider versions of LRU and FIFO that prefer to insert into the cache a page
that was evicted most recently. In this case we use a set of k + 1 pages {a0, . . . , ak},
and u− 1 additional pages {b1, . . . , bu−1}. Similar to the previous example, we let aj

for j ≥ k + 1 to be aj mod(k+1). The sequence repeats the sub-sequence of requests
τ0, . . . , τk where τi = {ai, b1, . . . , bu−1}. The requests bj are never inserted into the
cache. Before τi arrives, the cache contains pages {ai+1, ai+2, . . . , ai−1} (listed in the
order in which they are to be evicted). LRU and FIFO fault on every request, whereas
OPT keeps the pages {b1, a1, . . . , ak−1} in its cache. We may conclude that LRU and
FIFO are not competitive.

Since the standard algorithms fail, in the next subsections we design very different
algorithms for our problem. These algorithms try to track the configuration of OPT in
order to remain competitive.

3.2 A Competitive Algorithm

Our algorithm works in phases. A phase ends when it must be the case that OPT had
a fault. Consider a single phase. Let C be a collection of sets S1, S2, . . . each of size
at most k (cache size) such that each set Si covers the requests presented so far in the
phase. If C is empty then OPT must miss and a new phase begins. Otherwise, we try
to make the contents of the cache of the online algorithm equal to a set in C (ONL

can calculate the set C). This reduces the number of possible configurations that the
optimal offline algorithm can have (without making a fault) by 1, since as soon as
the configurations of the online and the offline algorithm match, the next fault for the
online algorithm will also be a fault for the offline algorithm, starting a new phase.

In the analysis we assume that each request is indeed a fault: requests which are not
faults can only increase the optimal cost. Thus we simply remove non-fault requests
from the request sequence before starting our analysis. Note that the algorithm may
replace more than one page on a fault.

Our construction will lead to the following general theorem.

Theorem 3.2 For paging with request sets of size u and a cache of size k, there exists

an algorithm ALGu(k) which has a competitive ratio of uk+1−u
u−1 .

We first describe a competitive online algorithm for the case u = k = 2. Below, we
will show how to use this algorithm as a subroutine in more general cases.

The algorithm ALG(2) works in phases. A phase is a subsequence of requests,
where it can be proved that OPT has made a fault either on one of the requests of this

Theory Comput Syst (2009) 44: 67–81 73

phase (excluding the very first one) or on the first page of the next phase. An outside
page is a page which has not yet been requested in the current phase.

Our algorithm keeps track of the number of independent (non-overlapping) sets
that have been requested in the current phase. As soon as this number reaches 3, a
new phase starts. As long as this does not happen, ALG(2) follows the following rules.
Note that our algorithm is only concerned with requests that cause faults, and this is
how the requests are numbered (there may be additional, ignored requests between
the numbered requests).

1. Let the first request of a phase be {a, b}. Load b. If request 2 contains a, go to
Step 2, else Step 3.

2. Request 2 is not independent, let it be {a, c}. Load a but keep b in the cache.
(a) Request 3 is two new pages {d, e}. Load d , evicting b. If request 4 is {e, f },

load e, evicting d . The next request starts a new phase. Else, request 4 starts a
new phase itself.

(a) Request 3 is {c, d}. Load c, evict a.
(i) Request 4 contains a. Replace b by a. If the next request after this contains

d , replace c by d and start a new phase with request 6. Else, request 5
starts a new phase.

(ii) Request 4 contains d . (If not, it is a third independent set.) Load both a

and d and start a new phase on the next request.
3. Request 2 is for an independent set {c, d}. ALG(2) loads c.

(a) Request 3 consists of one page from {a, b, c, d}, say a, and one outside page,
say e. (The case where request 3 is for a third independent set was handled
separately above.) Load a (evicting b), and do not evict it anymore in this
phase.
(i) Request 4 contains b together with an outside page, this starts a new

phase.
(ii) Request 4 contains d , together with b or an outside page. Load d and start

a new phase on the next request.
(b) Request 3 is {a, d}. Load a, evicting b.

(i) Request 4 is {b, d}, load d , evicting c. If request 5 contains b, load b,
evicting a. The next request starts a new phase. Else, request 5 already
starts a new phase.

(ii) Request 4 contains one outside page: go to Step 3(a), adding one to the
numbers of the requests. (I.e. fix the inside page in the cache and continue
with 3(a)(i) or 3(a)(ii) for request 5.)

Lemma 3.3 ALG(2) has a competitive ratio of at most 5.

Proof From the definition of ALG(2), it can be seen that it makes at most five faults
during a phase. We show that whenever ALG(2) starts a new phase, OPT must have
either had a fault during the phase (after the first request) or will have a fault on the
first request of the next phase.

First of all, if three independent sets are requested in a phase, OPT must have a
fault, since it cannot have three pages in its cache. Else, we analyze the possible

74 Theory Comput Syst (2009) 44: 67–81

holdings of OPT assuming that it does not make a fault in the current phase (except,
possibly, on the first request).

In Step 2(a), after request 3, OPT must have a as well as one page from {d, e}.
Since ALG(2) has {a, d} at this point, the only request that can cause a fault for
ALG(2) but not for OPT is of the form {e, f }, and only if OPT holds {a, e}. Since
this matches the contents of the cache of ALG(2) (because ALG(2) loads e), request 5
then starts a new phase. Any other fourth request immediately implies a fault of OPT

and starts a new phase.
In Step 2(b), OPT has {b, c}, {a, c}, or {a, d} after request 3. Since ALG(2) has

{b, c} at this point, only the last two options remain for OPT if OPT does not have a
fault on request 4. In Case (i), ALG(2) has {a, c}. So there can be at most one more
request that does not cause a fault for OPT, and that is a request which contains d . In
Case ii, OPT can only have {a, d} if it does not have a fault. Since ALG(2) loads these
two pages, the next request starts a new phase.

In Step 3, OPT has one page from {a, b} and one page from {c, d} in its cache.
In Step 3(a), OPT has in fact a in its cache (and a page from {c, d}). Since ALG(2)

has {a, c} at this point, the only type of request that can extend the phase by one more
request is one that contains d . Then ALG(2) and OPT both have {a, d} (if OPT did not
make a fault) so the next phase starts with the next request.

In Step 3(b), we additionally find that OPT has one page from {a, d} in its cache.
If request 4 contains one outside page, we know that OPT must have the inside page
which brings us back to Step 3(a) (but with a phase length which is 1 higher). Since
ALG(2) has {a, c} at this point, the only other option for request 4 is {b, d}, which
forces OPT to have d : it cannot have c because then it must have one of a and b as
well as d (to serve requests 1, 3, and 4), so it must have d to serve request 2. If request
5 contains b, it fixes that page as well in the cache of OPT; any other request starts a
new phase. �

Generalization for Arbitrary Values of k,u We first build an algorithm for u = 2
and k > 2, using induction on k. We denote the algorithm which works on a cache of
size k by ALG(k).

For k = 3, denote the first request in a phase by {a, b} as before. Assume first that
OPT has a in its cache. Then it has two ‘free’ places in its cache. For these places
we can run the algorithm for k = 2. ALG(3) loads a in its cache and calls a modified
version of ALG(2). This modified version runs for only one phase. Moreover, it knows
that a is in the cache and thus will not fault on a request that contains a. When this
modified version of ALG(2) returns, we know that OPT has made a fault (or is going
to make a fault in the next step), or OPT did not load a after all. Now, ALG(3) loads
b and again calls ALG(2). This time when it returns, we know that OPT has made a
fault at some point, and we can start a new phase.

To improve the competitive ratio slightly, we can modify ALG(2) further so that
it indicates whether the next phase should start with the last request that it processed
(in case that this request was for a third independent set) or with the next request after
that (in case that this last request fixes the contents of the cache of ALG in the last
possible way such that OPT does not have a fault yet). We then get a phase cost of
at most 12 = 1 + 5 + 1 + 5. These costs are the cost for loading a, the first call to
ALG(2), the cost for loading b and the second call to ALG(2), respectively.

Theory Comput Syst (2009) 44: 67–81 75

Generally, we find that R(ALG(k)) = 2 + 2 · R(ALG(k − 1)), where we can take
as base case R(ALG(2)) = 5. We find that

R(ALG(k)) = 7 · 2k−2 − 2 for k ≥ 2.

Two remarks about this result:

• It is easy to give an algorithm of competitive ratio 2 for the case k = 1. This algo-
rithm also works in phases, trying to guess the choice of OPT, that can be one of
two pages in each phase. However, using k = 1 as a base case gives a ratio of 6
(instead of 5) for k = 2.

• It is vital that each (modified) algorithm ALG(i) that is called by another algorithm
ALG(i +1) knows the contents of the entire cache, in particular that part of it that it
does not control. Otherwise ALG(i) could make too many faults by loading pages
that are already in the cache elsewhere.

We can use a similar construction for u > 2. For the base case, we now do consider
k = 1. The algorithm for this case loads the first page from the first request, say a1
from request {a1, a2, . . . , au}. On each fault after this, it loads the lowest-numbered
page which is also in the new request, if possible. Note that a request which does not
contain a certain page ai immediately implies that OPT cannot have loaded ai on the
first request (unless it has a fault after this). Thus, as soon as we run out of pages from
the first request in this way, we know that OPT must make (or has made) a fault and
a new phase starts. This gives a u-competitive algorithm ALGu(1).

For the induction (on k), we call modified versions of simpler algorithms as before.
In each induction step, we need to handle one request immediately (u times) before
calling the simpler algorithm. Thus we find

R(ALGu(k)) = u + u · R(ALGu(k − 1)) = uk+1 − u

u − 1

since R(ALGu(1)) = u. This proves the first half of Theorem 3.2.

3.3 Lower Bounds

In this section, we describe three different lower bounds for online algorithms. All
lower bounds that we show use u + k different pages. The request sequence is gen-
erated such that the online algorithm has a fault for every request, i.e., each request
contains exactly the u pages that are absent from the cache of the algorithm. Our
lower bounds differ in the way that we define offline algorithms for this sequence.

Lemma 3.4 For any constant k, the competitive ratio of any online algorithm is
�(uk).

Proof For this proof we use perhaps the simplest offline algorithm, which we will
denote by OFF1. Algorithm OFF1 checks which subset of u pages is least requested
(in an arbitrarily long sequence of requests) and has the complement of this subset
fixed in its cache. Each time the subset in question is requested anyway, it generates

76 Theory Comput Syst (2009) 44: 67–81

a cost of 2 for OFF1: a cost of 1 to move to a different configuration (it is enough
to replace one page) and again 1 to move back (on the next request). Since there are
(k + u)!/(k!u!) possible subsets, this gives us a lower bound of (k + u)!/(2k!u!). If k

is constant and u grows without bound, this lower bound becomes �(uk). �

This lemma shows that our algorithm from the previous section is optimal (up
to a constant factor) for constant k. For small u however, this lower bound can be
improved.

Lemma 3.5 For u = 2, no online algorithm has a competitive ratio below 2k.

Proof In this case, we use k + 2 pages to construct the request sequence. We use
a different offline algorithm OFF2, and define phases in such a way that OFF2 has
only one upload per phase. Given a configuration of OFF2, that it has just before a
phase starts, we now define a phase as a consecutive subsequence of requests that
fixes the configuration to which OFF2 moves in the beginning of this phase, paying
1 or 0 (in case it does not move). We make sure that OFF2 does not need to change
its configuration until the beginning of the next phase. It is possible to show that
it takes at least 2k requests before the configuration of OFF2 is fixed. At this point,
immediately after the phase, OFF2 can move to a new configuration, determined by
the requests of the next phase.

This gives a lower bound of 2k on the competitiveness of any online algorithm
(which fails on every request, by our design). �

In particular, for the case u = k = 2, we find a lower bound of 4, only 1 less than
our upper bound. For larger k, we can improve further still.

Lemma 3.6 For u = 2 and k > 2, no online algorithm has a competitive ratio below
3k − 2.

Proof We use a third type of offline algorithm OFF3. Instead of continuing a phase
until only one option for OFF3 is left, we maintain two options for OFF3 throughout
and only fix OFF3 after all phases have been defined. We define the very first phase
to have only 2k − 1 requests, so that after this, OFF3 still has (at least) two choices.
Each later phase has 3k − 2 requests. It is possible to show that we can maintain the
invariant that OFF3 has two choices.

The state to which OFF3 should move at the beginning of each phase is deter-
mined scanning the sequence of phases starting from the end, choosing each time a
configuration for OFF3 out of the two possible ones, which is a function of the next
configuration chosen for it. We find a lower bound of 3k − 2. �

We summarize some of the results obtained in the current section for u = 2 in the
following table.

Theory Comput Syst (2009) 44: 67–81 77

k 1 2 3 4 5

Lower bound 2 4 7 10 13

Upper bound 2 5 12 26 54

4 Paging with Bypassing

When bypassing is allowed, an algorithm is not forced to have in its cache a page
from a request that it is going to service. Bypassing means that a page is used without
loading it into the cache. The cost charged for this option is the same as for loading
a page. Clearly, if a page is going to be used several times, it makes sense to load it
into the cache. However, if a page is used only once, it is sometimes better to bypass
it, so that the current contents of the cache can remain there. It is well known that for
the standard problem, allowing bypassing increases the best competitive ratio by 1,
i.e. it is k + 1 for a cache of size k. Note that the best algorithms for this problem
are marking algorithms, such as LRU, and FIFO (which is not a marking algorithm),
and that their competitive ratio increases by 1. Thus the best online algorithms do not
actually make use of the bypassing option.

Consider first the first lower bound presented in Sect. 3.3. We can construct the
lower bound sequence in the same manner. This means that if an online algorithm
bypasses a certain request, that request is repeated until it is no longer bypassed.
Having the option of bypassing, OPT does not need to pay 2 each time the request is
the exact complement set, but just 1, to bypass on it (or more specifically, to bypass
one page of this request). This gives a lower bound of (k + u)!/(k!u!).

Interestingly, despite the recursive construction that we use, here it is also possible
to design an algorithm with a competitive ratio which is only 1 higher than for the
case without bypassing for any k. Here, in order to complete a phase, we must make
sure that OPT had either a fault or one bypass during this phase (the phases are not
shifted as in the proof of the algorithm without bypassing).

For some fixed value of k, consider the outer phase of the recursion. There are
three cases. If OPT bypasses the very first request, it has a fault in the current (outer)
phase and we are done for this phase. If OPT loads page i from this request (i =
1, . . . , k −1), then by construction we know that it has a fault during the ith recursive
call from the outer phase, or on the request which immediately follows it, which
is also a part of the same outer phase. Finally, if OPT loads the kth page from this
request, it can happen that it does not have a fault during the kth recursive call but
instead on the very next request.

Therefore, we now construct the outer phase as before, but add one final request
(without loading some page between the last recursive call and this request). This
ensures that OPT has a fault in every outer phase. The inner phases can remain un-
changed (we apply the old algorithm). This implies that the competitive ratio for any
value of k increases by only 1.

This gives the following results for u = 2. Thus for the case of bypassing, our
algorithm is optimal for u = k = 2.

78 Theory Comput Syst (2009) 44: 67–81

k 1 2 3 4 5

Lower bound 3 6 10 15 21

Upper bound 3 6 13 27 55

5 Resource Augmentation

Already in [14] the classical paging problem was studied in terms of resource aug-
mentation. That is an extension of the usual competitive analysis, which allows an
online algorithm to use greater resources than the optimal offline algorithm it is com-
pared to. In this section, let h be the size of the cache used by an optimal offline
algorithm and let k > h be the size of cache used by an online algorithm. For stan-
dard online paging, the competitive ratio becomes constant if h = αk for fixed values
of α < 1 [14]. More precisely, it was shown in [14] that the best competitive ratio for
this case is k

k−h+1 .
In this section we focus on the case u = 2. We define a very simple algorithm

which works in phases as before. The algorithm is defined for even values of k. The
first k/2 requests are inserted completely into the cache. Note that this means that
these first requests are independent. The next request starts a new phase (the cache
contents are unmarked and all pages may be deleted). Let α = k/h. We prove that for
α > 2, the algorithm has constant competitive ratio.

Theorem 5.1 The competitive ratio of the above algorithm is at most 2α
α−2 for even

values of k. The competitive ratio tends to 2 as α grows.

Proof The sequence for a phase, including the first request of the next phase but
not the first request of the current phase, contains k distinct pages. This holds since
inside the phase at least k − 2 new pages are requested and kept in the cache, and
two additional pages are the first request of the next phase. The two pages of the first
request are not equal to any of the other pages, therefore we have a total of k + 2
pages. Out of this amount, OPT can have at most h in its cache after the first request.
One spot in the cache is taken by a page of the very first request. It needs to service
k/2 additional requests upto and including the first request of the next phase. This
means that it has at least k/2 − h uploads. However, the algorithm has k uploads in
each phase. �

For odd k, we need to define the algorithm slightly more carefully. In this case
the first k−1

2 requests are inserted completely into the cache. On the request number
k+1

2 of the phase, which is denoted {a, b}, only one page a is inserted into the cache.
On the next request, if it contains page b, the algorithm evicts a and inserts b, and
starts a new phase on the next request. If b does not belong to the next request,
this request already starts a new phase. Using a proof very similar to the one above,
it can be shown that the competitive ratio of this algorithm is 2α′/(α′ − 2) where
α′ = (k + 1)/h.

Theory Comput Syst (2009) 44: 67–81 79

Proposition 5.2 No online algorithm has a competitive ratio below 2 for any k > 1,
even if h = 1.

Proof The sequence consists of requests as follows. The first request has two pages
{a, b}. If the algorithm inserts both of them into the cache, the next request consists
of two other pages. Otherwise, if only one page a is inserted into the cache, the next
request is for the other page b together with a new page. This process is repeated. In
the first option, OPT inserts one of the pages into its cache and in the second option it
inserts b. In both cases the algorithm inserts two pages. �

Next, we focus on the smallest not trivial case, h = 2, k = 3. We can show that this
algorithm improves on our algorithm for h = k = 2. We also design a lower bound.

Proposition 5.3 The competitive ratio of the above algorithm for the case h = 2, k =
3 is at most 4. Any algorithm for h = 2, k = 3 has competitive ratio at least 5/2.

Proof The number of uploads of the algorithm in one phase is at most 4. We need to
show that OPT uploads at least once, on the second or third requests in the phase, or
on the first request of the next phase. If after the second request OPT has not had a
fault yet, it should have had one page of each request in its cache. If the next request
is not a fault for OPT, it means that OPT should have b in its cache. At this time, the
cache of the algorithm is a super set of the cache of OPT, and thus the next request
must be a fault for OPT.

The lower bound sequence is constructed as before, using five distinct pages and
forming the next request from the complement of the cache contents of the algorithm.

However, we continue our analysis in a subtly different way in order to get a
better lower bound. The sequence is partitioned into sub-sequences in a way that
sub-sequences of even index have length three, and ones of odd index have length
two. We keep an invariant that inside a sub-sequence of length two, OPT has at least
two options, and there exist such two options that share a common page. Inside a
sub-sequence of length three, OPT has at least one option. The options for OPT are
designed in a way that when it needs to move to a different cache state, it only needs
to replace a single page, thus we make sure that in all sub-sequences, OPT has one
fault. Note that the state associated with a phase is one that OPT needs to move to in
the beginning of the phase.

The sequence starts with a sub-sequence of length two. We assume OPT and ALG

have the same pages in the cache. Consider first the situation for a sub-sequence of
length two. By the invariant, OPT has at least one option for the previous phase (it also
has one option if this is the very first phase), denote this option for the contents of the
cache of OPT by {a1, a2}. Among the two requests in the subsequence, if one request
contains a1 or a2, OPT can replace the other page by one of the pages of the other
request. Otherwise, since there are only three other pages used in the sequence, there
is some other page x common in the two requests, and OPT can replace either a1 or a2
with x. In both cases we get two distinct options for OPT that have one common page,
as required. It can be that one of the options we allow for OPT is simply {a1, a2}.

Now, consider the situation for a sub-sequence of length three. OPT has at least
two options for the previous phase by the invariant. Moreover, there exist such two

80 Theory Comput Syst (2009) 44: 67–81

options that have one page in common. Consider such two options. There are exactly
three pages that participate in these two options and can be in the current cache of
OPT, denote these three pages by a1, a2, a3. Since the three requests in the next sub-
sequence consist of six pages, there must be at least one page which is common in
two requests (since the total number of distinct pages used for the sequence is five).
Denote one of these pages by y.

Consider the case y �= ai for i = 1,2,3. If y belongs to all three requests, this
means that any state out of {{y, ai}|i = 1,2,3} is valid as a next state for OPT, and
the invariant holds. If y belongs to only two requests, consider the third request which
does not contain y. There is only one possible page except a1, a2, a3, y, and thus this
third request must contain one of a1, a2, a3 (since it does not contain y and it contains
two distinct pages). Let � be the index of a page a� (1 ≤ � ≤ 3) that appears in the
third request. Therefore, a valid next state for OPT is simply y, a�.

Finally, if the page in common in two requests is as for some 1 ≤ s ≤ 3, and denote
the third request by b1, b2, then OPT can move to either as , b1 or as , b2.

We now need to show that it is indeed always possible for OPT to choose a state it
can move to in a beginning of a phase. Thus, OPT changes its state in the beginning
of the sequence, and then after every phase.

We first compute the possible states for every phase. This computation is made
from the beginning of the sequence forward towards the end. Using the construction
above, we make a list of possible states of the cache of OPT for each phase.

Next, we compute the actual states to which OPT needs to move (i.e., we choose
one state from the list per each phase). The computation is made backwards this time,
starting from the end of the sequence. If there is more than one possible state for the
very last phase, we choose one such state arbitrarily. OPT should move to this chosen
state at the beginning of the last phase. Note that each state s in a list of a phase has
an allowed state s′ for the previous phase such that s′ leads to s, i.e. an algorithm can
move from s′ to s using at most one fault. Therefore, we can each time choose such
a valid state from the list arbitrarily, until we reach the beginning of the sequence. As
defined above, the states we allow for the very first phase are both reachable from the
initial phase using at most one fault.

We therefore proved the proposition. �

References

1. Achlioptas, D., Chrobak, M., Noga, J.: Competitive analysis of randomized paging algorithms. Theor.
Comput. Sci. 234(1–2), 203–218 (2000)

2. Belady, L.A.: A study of replacement algorithms for virtual storage computers. IBM Syst. J. 5, 78–101
(1966)

3. Borodin, A., Linial, N., Saks, M.: An optimal online algorithm for metrical task systems. J. ACM 39,
745–763 (1992)

4. Chrobak, M., Larmore, L.L.: The Server Problem and On-line Games. DIMACS Series in Discrete
Math. and Theoretical Comput. Science, vol. 7 (1992)

5. Demange, M., Paschos, V.T.: On-line vertex-covering. Theor. Comput. Sci. 332, 83–108 (2005)
6. Dinur, I., Guruswami, V., Khot, S., Regev, O.: A new multilayered PCP and the hardness of hyper-

graph vertex cover. SIAM J. Comput. 34(5), 1129–1146 (2005)
7. Fiat, A., Ricklin, M.: Competitive algorithms for the weighted server problem. Theor. Comput. Sci.

130, 85–99 (1994)

Theory Comput Syst (2009) 44: 67–81 81

8. Fiat, A., Karp, R., Luby, M., McGeoch, L.A., Sleator, D., Young, N.E.: Competitive paging algo-
rithms. J. Algorithms 12, 685–699 (1991)

9. Irani, S.: Competitive analysis of paging. In: Fiat, A., Woeginger, G. (eds.) Online Algorithms: The
State of Art, pp. 52–73. Springer, New York (1998)

10. Karlin, A., Manasse, M., Rudolph, L., Sleator, D.: Competitive snoopy caching. Algorithmica 3, 79–
119 (1988)

11. Manasse, M., McGeoch, L.A., Sleator, D.: Competitive algorithms for server problems. J. Algorithms
11, 208–230 (1990)

12. McGeoch, L., Sleator, D.: A strongly competitive randomized paging algorithm. Algorithmica 6(6),
816–825 (1991)

13. Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and sub-constant error-probability
PCP characterization of NP. In: Proc. 29th ACM Symp. on Theory of Comp., pp. 475–484 (1997)

14. Sleator, D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Commun. ACM 28,
202–208 (1985)

	Paging with Request Sets
	Abstract
	Introduction
	Related Work
	Our Results

	The Offline Problem
	Initialization
	Step

	The Online Problem
	The Performance of Standard Algorithms
	A Competitive Algorithm
	Generalization for Arbitrary Values of k, u

	Lower Bounds

	Paging with Bypassing
	Resource Augmentation
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

