
Hierarchical Network Formation Games

Orna Kupferman1(B) and Tami Tamir2

1 School of Engineering and Computer Science, Hebrew University,
Jerusalem, Israel

orna@cs.huji.ac.il
2 School of Computer Science, The Interdisciplinary Center,

Herzliya, Israel
tami@idc.ac.il

Abstract. Classical network-formation games (NFGs) are played on
directed graphs, and are used in network design and analysis. Edges
in the network are associated with costs and players have reachability
objectives, which they try to fulfill at a minimal cost. When several play-
ers use the same edge, they share its cost. The theoretical and practical
aspects of NFGs have been extensively studied and are well understood.
All studies of NFGs, however, consider an explicit representation of the
network. In practice, networks are often built in a hierarchical manner.
Technically, some of the vertices in the network are boxes, associated with
nested sub-networks, where a sub-network may be “called” by several
boxes in the network. This makes hierarchical networks exponentially
more succinct than traditional “flat” networks.

We introduce hierarchical network formation games (HNFGs) and
study theoretical and practical aspects of the hierarchical setting. Differ-
ent applications call for different cost-sharing mechanisms, which define
how edge-formation costs are shared by their users. Indeed, in some appli-
cations, cost sharing should refer to the flat expansion of the network
and in some it should take into account the hierarchical structure of the
network. We study properties of HNFGs like stability and equilibrium
inefficiency in the different mechanisms. We also study computational
aspects of HNFGs, where the principal question is whether their exponen-
tial succinctness with respect to NFGs leads to an exponential increase
in the complexity of reasoning about them. This question is analogous
to research done in the formal-verification community about the ability
to model-check hierarchical systems in their succinct presentation. We
show that the picture is diverse and depends on the mechanism applied.

1 Introduction

Network design is a fundamental well-studied problem. A game-theoretic app-
roach to network design has become especially relevant with the emergence of

The research leading to this paper has received funding from the European Research
Council (FP7/2007-2013)/ERC grant agreement No. 278410, and from The Israel
Science Foundation (grant No. 1229/10). Due to lack of space, some proofs are
omitted and can be found in the full version in the authors’ URLs.

c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part I, LNCS 10205, pp. 229–246, 2017.
DOI: 10.1007/978-3-662-54577-5 13

tami@idc.ac.il

230 O. Kupferman and T. Tamir

the Internet, where different users share resources like software or communi-
cation channels [1,7,18,21]. In network-formation games (NFGs, for short) [7],
the network is modeled by a weighted directed graph. The weight of an edge
indicates the cost of activating the transition it models, which is independent of
the number of times the edge is used. Players have reachability objectives, each
given by a source and a target vertex. A strategy for a player is a path from the
source to the target. Under the common fair cost-sharing mechanism, the cost
of an edge is shared evenly by the players that use it.

Since the players attempt to minimize their own costs, rather than to optimize
some global objective, they selfishly select a path instead of being assigned one
by a central authority. The focus in game theory is on the stable outcomes of a
given setting. The most prominent stability concept is that of a Nash equilibrium
(NE): a profile (vector of strategies, one for each player) such that no player
can decrease his cost by unilaterally deviating from his current strategy; that is,
assuming that the strategies of the other players do not change.1 A best-response
(BR) for a player is a move that results in a profile with a reduced cost for the
player. Thus, an NE can be viewed as a profile in which no player has a BR
move. A social optimum (SO) is a profile that minimizes the total cost of the
edges used by all players; thus the one obtained when the players obey some
centralized authority.

Research on NFGs involves conceptual questions about them, like the exis-
tence of an NE or an analysis of equilibrium inefficiency. It is well known that
decentralized decision-making may lead to solutions that are sub-optimal from
the point of view of society as a whole. The inefficiency incurred due to selfish
behavior is reflected in the price of stability (PoS) [7], namely the ratio between
the costs of the best NE and the SO, and the price of anarchy (PoA) [26,33],
namely the ratio between the costs of the worst NE and the SO. Research also
concerns computational problems, like finding an SO, BR moves, and an NE.
In NFGs, the picture is well understood. Every NFG has an NE; In a k-player
game, the PoS and PoA are O(log k) and k, respectively; the problem of finding
an SO is NP-complete, a single best-response move can be found in polynomial
time; and the problem of finding an NE is PLS-complete [24,31,37].

To the best of our knowledge, all studies of NFGs consider an explicit repre-
sentation of the network: it is given by means of its underlying weighted graph,
and reasoning about it involves algorithms applied to explicitly-represented
graphs. In practice, however, networks are often structured and given in some
succinct presentation. This calls for a fresh examination of NFGs. First, the
source for the succinctness may require new and more suitable cost-sharing mech-
anisms. In addition, the computational aspects of NFGs should be examined in
terms of their succinct presentation.

In this paper we introduce and study hierarchical network formation games
(HNFGs). Essentially, HNFGs are NFGs in which some of the vertices in the

1 Throughout this paper, we consider pure strategies, as is the case for the vast lit-
erature on cost-sharing games. Unlike mixed strategies, pure strategies may not be
random, or drawn from a distribution.

tami@idc.ac.il

Hierarchical Network Formation Games 231

network may “call” (that is, be substituted by) nested sub-networks. Since a
sub-network may be called by several vertices in the network, an HNFG may be
exponentially more succinct than the NFG obtained by its “flattening”.

Before we describe HNFGs and the challenges they bring with them in more
detail, let us survey briefly the analogous research in model checking, where the
study of succinct presentations and symbolic algorithms is a major research area.
In model checking, we verify that a system meets its specification by translating
the system to a finite state machine (FSM), translating the specification to a
temporal-logic formula, and checking that the FSM satisfies the formula [17].
The translation of a high-level description of a system to an FSM involves a
blow-up, and the size of the FSM is typically the computational bottleneck in
model-checking algorithms. There are several sources of the blow-up that the
translation of systems to FSMs involves. One is the ability of components in
the system to work in parallel and communicate with each other, possibly using
variables [19,20,34]. Another source has to do with the ability of a high-level
description of a system to reuse the same component in different contexts (say,
by calling a procedure). Researchers have studied hierarchical FSMs, in which
some of the states of the FSM are boxes, which correspond to nested FSMs.
The naive approach to model checking such systems is to “flatten” them. This,
however, may involve an exponential blow up in the state space. In [5], it is shown
that for LTL model checking, one can avoid this blow-up altogether, whereas for
CTL, one can trade it for an exponential blow-up in the (often much smaller) size
of the formula and the maximal number of exits of sub-structures. Likewise, it is
shown in [6] that hierarchical parity games can be solved in PSPACE, also leading
to a PSPACE model checking algorithm for the μ-calculus. In other words, while
hierarchical FSMs are exponentially more succinct than flat FSMs [4], in many
cases the complexity of the model-checking problem is not exponentially higher
in the hierarchical setting. Thus, there is clear motivation not to flatten the FSM
before model checking it. The hierarchical setting is appealing in the context of
network design, as many networks are structured in a hierarchical manner.2 In
addition, understanding which types of problems can be solved in the hierarchical
setting is of general interest to the formal-verification community.

The fact that box-vertices may be “called” by several vertices in the net-
work motivates new cost-sharing mechanisms – ones that take the hierarchy into
account when defining how edge-formation costs are shared by their users. We
suggest three different cost-sharing mechanisms. In the flat mechanism, the hier-
archical structure is flattened and the costs refer to the resulting network. The
flat mechanism corresponds to the traditional setting of NFGs, and is suitable

2 We note that different types of hierarchies, mainly ones that refer to a partition
of the network to levels, have already been studied. In particular, in [35,36], it is
shown how these levels induce a hierarchical game (also termed “hierarchical NFG”,
but with the adjective “hierarchical” describing the game rather than the network),
leading to a clever decomposition of the game. Our notion of hierarchy is different
and refers to nesting of sub-networks. In particular, in earlier work there is no notion
of a flat extension, which is the key issue in our games.

tami@idc.ac.il

232 O. Kupferman and T. Tamir

in applications in which the traversal of edges corresponds to the utilization of
consumable resources. For example, when the network models a hardware design
that is built from a library of components, or when the network models a com-
munication system in which local routing is performed by local networks that
are composed into a global one. In the hierarchical approach, the cost of forming
an edge in a sub-network is charged only once, regardless of the number of times
it is used in different calls. The hierarchical approach is suitable in applications
in which the traversal of edges corresponds to the utilization of non-consumable
resources. Thus, repeated calls to a resource do not require its re-formation.
For example, when the network models a software design that is built from a
library of procedures and functions. The emergence of the OOP programming
paradigm makes the hierarchical approach common [27,30]. In this approach, we
study both a uniform hierarchical (UH) cost-sharing mechanism, where all play-
ers that use an edge share its cost evenly, and a proportional hierarchical (PH)
cost-sharing mechanism, where the cost of an edge is shared among its users in
proportion to their demand: each player may use each sub-network a different
number of times. In the PH mechanism, this number influences the cost of using
the sub-network. Note that the PH mechanism is related to a resource-allocation
game in which players’ strategies are multisets of resources [9,10].

After introducing HNFGs and the possible cost-sharing mechanisms, we
study stability and equilibrium inefficiency in the different mechanisms. In par-
ticular, we show that while in HNFGs with the flat or UH mechanism, an NE
always exists, this is not the case for the PH mechanism. Likewise, while the PoS
and PoA in HNFGs with the flat or UH mechanisms agree with these known for
NFGs, HNFGs with the PH mechanism are less stable, and we prove that their
PoS may be the number of players. Then, we study the computational aspects
of HNFG. The main questions that we answer refer to the ability to reason
about an HNFG without first flattening it, which may involve an exponential
blow-up. This question is analogous to research done in the formal-verification
community about the ability to model-check hierarchical FSMs in their suc-
cinct presentation. We observe that the challenge of efficient reasoning about
HNFGs starts already with a symbolic presentation of strategies. For the UH
and PH mechanisms, we prove that it is sound to restrict attention to homoge-
neous strategies. Intuitively, in such strategies, repeated sub-objectives defined
with respect to nested sub-networks are fulfilled in the same way. We show that
homogeneous strategies can be represented and operated efficiently. This implies
that the problems of finding an SO or a BR move in HNFGs is in NP, and we
show matching lower bounds, already for very restricted classes of HNFGs. For
the flat mechanism, we focus on HNFGs in which each sub-network has a con-
stant number of exit vertices. We show that for such HNFGs, the problems of
finding an SO or an NE are not more complex than these in the non-hierarchical
setting.

Many variants of cost-sharing games have been studied. A generalization of
the network-formation game of [7] in which players are weighted and a player’s
share in an edge cost is proportional to its weight is considered in [16], where it is

tami@idc.ac.il

Hierarchical Network Formation Games 233

shown that the weighted game does not necessarily have a pure NE. In congestion
games, sharing of a resource increases its cost. Studied variants of congestion
games include settings in which players’ payments depend on the resource they
choose to use, the set of players using this resource, or both [22,28,29,32]. In
some of these variants a pure NE is guaranteed to exist while in others it is not.
The three different ideas behind cost sharing, namely flat, UH, and PH, can be
combined with other games.

We view this work as another chain in an exciting transfer of concepts and
ideas between the areas of game theory and formal verification: logics for specify-
ing multi-agent systems [3,14], studies of equilibria in games related to synthesis
and repair problems [2,12,13,23], an extension of NFGs to objectives that are
richer than reachability [9], studies of non-zero-sum games in formal methods
[11,15], augmentation of the problem of synthesis from component libraries with
costs [8], and more.

2 Preliminaries

2.1 Hierarchical Graphs

A weighted graph is G = 〈V,E, c〉, where V is a set of vertices, E ⊆ V × V is a
set of directed edges, and c : E → IR≥0 is a cost function that maps each edge
to a non-negative cost. When c(e) = 0, we say that e is free. A path in G is a
sequence ρ = e1, e2, . . . , em of adjacent edges in G. For two vertices s, t ∈ V , we
say that ρ is an (s, t)-path if it connects s to t.

A hierarchical graph consists of a vector of subgraphs that together com-
pose a graph. A subgraph may be used several times in the composition. Tech-
nically, this is done via special vertices, called boxes, that are substituted in
the composition by other subgraphs. In order to ensure a finite nesting depth
of substitutions, the subgraphs are indexed, and a box of a graph can only
call (that is, be substituted by) subgraphs with a strictly bigger index. For-
mally, a hierarchical graph is a tuple G = 〈G1, . . . , Gn〉, where each subgraph is
Gj = 〈Vj , Bj , inj ,Exitj , τj , Ej〉, where Vj and Bj are sets of vertices and boxes,
respectively. We assume that Bn = ∅ and that V1, . . . , Vn, B1, . . . , Bn−1 are pair-
wise disjoint. Then, inj ∈ Vj is an entry vertex for Gj , and Exitj ⊆ Vj is a set of
exit vertices for Gj . The function τj : Bj → {j + 1, . . . , n} maps each box of Gj

to an index greater than j. If τj(b) = �, we say that the box b is substituted by
G� in Gj . Finally, Ej is an edge relation. Each edge in Ej is a pair 〈u, v〉 with
source u and target v. The source u is either a vertex of Gj , or a pair (b, x),
where b ∈ Bj and x ∈ Exitτj(b). That is, u may be a box b coupled with an exit
vertex of the subgraph by which b is about to be substituted. The target v is a
vertex or a box of Gj . Formally, Ej ⊆ (Vj ∪(

⋃
b∈Bj

({b}×Exitτj(b))))×(Vj ∪Bj).
The depth of G is the number n of subgraphs. A weighted hierarchical graph is
a hierarchical graph with cost functions cj : Ej → IR≥0 that map the edges in
each subgraph to costs.

tami@idc.ac.il

234 O. Kupferman and T. Tamir

A subgraph without boxes is flat. Every hierarchical graph can be trans-
formed to an equivalent flat graph, referred to as its flat expansion, by recur-
sively substituting each box by a copy of the corresponding subgraph. Formally,
given a hierarchical graph G, we inductively define for each subgraph Gj its flat
expansion Gf

j = 〈V f
j , inj ,Exitj , E

f
j 〉, where V f

j = Vj ∪ (
⋃

b∈Bj
({b} × V f

τj(b)
)).

Note that different boxes in Gj can be substituted by the same subgraph. This
is why we preserve b as an identifier when we substitute it by the flat expansion
of τj(b). The edge relation Ef

j includes the following edges, which we partition
into four classes.

– [Top]: 〈u, v〉 such that u, v ∈ Vj and 〈u, v〉 ∈ Ej ,
– [Call]: 〈u, (b, v)〉 such that u ∈ Vj , v = inτj(b), and 〈u, b〉 ∈ Ej ,
– [Return]: 〈(b, u), v〉 such that u ∈ Exitτj(b), v ∈ Vj , and 〈(b, u), v〉 ∈ Ej , and
– [Internal]: 〈(b, u), (b, v)〉 such that u, v ∈ V f

τj(b)
and 〈u, v〉 ∈ Ef

τj(b)
.

Note that each edge in Ef
j originates from an edge 〈u, v〉 ∈ Ej′ for some

j′ ≥ j. Indeed, in top, call, and return edges, we have that j′ = j, and in internal
edges, we have that j′ is the subgraph from which the edge 〈u, v〉 originates
(recursively) in Ef

τj(b)
. Formally, let E =

⋃
1≤j≤n Ej and Ef =

⋃
1≤j≤n Ef

j .
Then, the function orig : Ef → E is defined recursively as follows. For a top
edge e = 〈u, v〉 or a return edge e = 〈(b, u), v〉, we have orig(e) = e. For a
call edge e = 〈u, (b, v)〉, we have orig(e) = 〈u, b〉. Then, for an internal edge
e = 〈(b, u), (b, v)〉, we have orig(e) = orig(〈u, v〉). The graph Gf

1 is the flat
expansion of G, and we denote it by Gf . For an edge e in Gf , we refer to orig(e)
as the origin of e in Gf . Consider a path ρ = e1, e2, . . . , em in Gf . For a set
π ⊆ E of edges in G, we say that ρ is covered by π if for all 1 ≤ i ≤ m, we have
orig(ei) ∈ π.

A multiset over a set E of elements is a generalization of a subset of E in
which each element may appear more than once. For a multiset π over E and an
element e ∈ E, we use π(e) to denote the number of times e appears in π. For
two multisets π1 and π2, the union of π1 and π2 is the multiset π1 ∪ π2 in which
for all e ∈ E, we have (π1 ∪π2)(e) = π1(e)+π2(e). Then, the difference between
p1 and p2 is the multiset π1 \ π2 in which for all e ∈ E, we have (π1 \ π2)(e) =
max{0, π1(e) − π2(e)}. A multiset π is given as a set of its members, with each
member e followed by a binary (or decimal) encoding of π(e). Accordingly, we
define the length of π by

∑
e∈π log π(e). Consider a path ρ = e1, e2, . . . , em in

Gf and a multiset π over E; that is, π is a multiset of edges in G. We say that ρ
is covered by π if for every edge e ∈ E, the number of edges in ρ whose origin is
e is at most the number of times that e appears in π. Formally, for every e ∈ E,
we have that |{1 ≤ i ≤ m : orig(ei) = e}| ≤ π(e).

Example 1. Figure 1 presents a weighted hierarchical graph G = 〈G1, G2〉 with
τ1(b1) = τ1(b2) = G2. The flat expansion Gf of G appears on the right.

The path ρ = 〈s, (b1, u1)〉, 〈(b1, u1), (b1, u2)〉, 〈(b1, u2), (b1, u4)〉, 〈(b1, u4),
(b2, u1)〉, 〈(b2, u1),(b2, u2)〉, 〈(b2, u2), (b2, u4)〉, 〈(b2, u4), t2〉 in Gf is covered by the
set π = {〈s, b1〉, 〈(b1, u4), b2〉, 〈(b2, u4), t2〉, 〈u1, u2〉, 〈u2, u4〉}. Note that each of

tami@idc.ac.il

Hierarchical Network Formation Games 235

the edges 〈s, b1〉, 〈(b1, u4), b2〉, and 〈(b2, u4), t2〉 in π serve as the origin of a single
edge in ρ, whereas each of the edges 〈u1, u2〉 and 〈u2, u4〉 serve as the origin of two
edges in ρ. Accordingly, ρ is covered by the multiset π = {〈s, b1〉1, 〈(b1, u4), b2〉1,
〈(b2, u4), t2〉1, 〈u1, u2〉2, 〈u2, u4〉2}.

s

v

t1 t2

b1

b2

G1

u3 u4

u3 u4

2

2

4

3

7

1

22

u1

u2

u3 u4

6

4 5

G2

s

v

t1 t2

b1, u1

b1, u2

b1, u3 b1, u4

b2, u1

b2, u2

b2, u3 b2, u4

2

6

4 5

6

4 5

2
4

6

7

1

22

Fig. 1. An example of a hierarchical graph and its flat expansion.

We define the size of a hierarchical graph G by |G| =
∑n

j=1(|Vj | + |Bj |). The
size of its flat expansion, denoted |Gf |, is the number of vertices in |Gf |. Note that
|Gf | =

∑n
j=1(|Vj | +

∑
b∈Bj

|Gf
τj(b)

|). It is not hard to see that the hierarchical
setting is exponentially more succinct. Formally, we have the following.

Observation 1. Flattening a hierarchical graph may involve an exponential
blow up. That is, Gf may be exponentially larger than G. In fact, the exponential
blow-up applies already to the diameter of the graph, and applies even when all
the subgraphs in G have a single exit vertex.

2.2 Network Formation Games

For an integer k ∈ IN, let [k] = {1, . . . , k}. A network-formation game (NFG,
for short) [7] is N = 〈k,G, 〈si, ti〉i∈[k]〉, where k is the number of players, G =
〈V,E, c〉 is a weighted graph, and for each i ∈ [k], the pair 〈si, ti〉 ∈ V × V
describes the objective of Player i, namely forming a path from his source vertex
si to his target vertex ti.

A strategy of a player i ∈ [k] is a path from si to ti. A profile in N is a tuple
P = 〈π1, . . . , πk〉 of strategies for the players. That is, for 1 ≤ i ≤ k, we have

tami@idc.ac.il

236 O. Kupferman and T. Tamir

that πi is a path from si to ti. Consider a profile P = 〈π1, . . . , πk〉. Recall that
c maps each edge to a cost, intuitively standing for the cost of its formation.
The players aim at fulfilling their objective with minimal cost. Since all costs
are positive, we can restrict attention to strategies in which the paths chosen
by the players are simple. Then, we can also ignore the order between edges in
the paths and assume that for all i ∈ [k], we have that πi ⊆ E is a set of edges
that compose a path from si to ti. For an edge e ∈ E, we denote the number of
players that use e in P by loadP (e). Formally, loadP (e) = |{i : e ∈ πi}|. Players
that share an edge also share its formation cost. Thus, the cost of Player i in
the profile P is cost i(P) =

∑
e∈πi

c(e)
loadP (e) . Finally, the cost of a profile P is

the sum of the costs of all the players in P . Thus, cost(P) =
∑

i∈[k] cost i(P).
Note that cost(P) is equal to the sum of costs of edges that participate in some
strategy in P .

For a profile P and a strategy π of player i ∈ [k], let [P−i, π] denote the profile
obtained from P by replacing the strategy for Player i by π. For two strategies
πi and π′

i of Player i, we say that πi is dominated by π′
i, if for every profile P in

which Player i uses πi, we have that cost i([P−i, π
′
i]) ≤ cost i(P). A best response

(BR) for Player i is a strategy πi that minimizes cost i([P−i, πi]). A profile P
is said to be a (pure) Nash equilibrium (NE) if none of the players in [k] can
benefit from an unilateral deviation from his strategy in P to another strategy.
In other words, for every player i and every strategy π that Player i can deviate
to from his current strategy in P , it holds that cost i([P−i, π]) ≥ cost i(P). The
set of NEs of the game N is denoted by Γ (N).

A social optimum (SO) of a game N is a profile that attains the lowest cost.
We denote by OPT (N) the cost of an SO profile; i.e., OPT (N) = minP cost(P).
A social optimum may be achieved by a centralized authority and need not be a
NE. The following parameters measure the inefficiency caused as a result of the
selfish interests of the players. First, the price of stability (PoS) [7] of an NFG N
is the ratio between the minimal cost of an NE and the cost of a social optimum of
N . That is, PoS(N) = minP∈Γ (N) cost(P)/OPT (N). Then, the price of anarchy
(PoA) [33] of N is the ratio between the maximal cost of an NE and the cost of
the social optimum of N . That is, PoA(N) = maxP∈Γ (N) cost(P)/OPT (N).

2.3 Hierarchical Network Formation Games

A hierarchical network-formation game (HNFG, for short) N = 〈k,G, 〈si,
ti〉i∈[k]〉, is similar to an NFG, except that the underlying graph is hierarchical.
The objective of Player i is to form a path from si to ti in the flat expansion of
G. We assume that the objectives of all players are in {in1}×Exit1, for the entry
vertex in1 and the set Exit1 of exit vertices in the “outer” subgraph G1. While
this strictly restricts the class of games, it is very easy to extend our results to
a setting in which the objectives involve arbitrary vertices in G. Essentially, our
algorithms proceed from the innermost sub-graph Gn to G1. The assumption
above saves a special treatment for G1.

We introduce and study three cost-sharing mechanisms for HNFGs.
Consider an HNFG N = 〈k,G, 〈si, ti〉i∈[k]〉. Let G = 〈G1, . . . , Gn〉, with

tami@idc.ac.il

Hierarchical Network Formation Games 237

Gj = 〈Vj , Bj , inj ,Exitj , τj , Ej , cj〉. Also, let N f = 〈k,Gf , 〈si, ti〉i∈[k]〉 be the
NFG obtained from N by replacing G by its flat expansion.

The Flat Cost-Sharing Mechanism. In the flat cost-sharing mechanism
(Flat-mechanism, for short), the strategies and the costs of the players are defined
with respect to N f . Thus, the only affect of the hierarchical structure in the flat
approach is its succinctness. The flat mechanism fits settings in which the traver-
sal of edges corresponds to the formation of physical channels or the utilization
of consumable resources. For example, when the network models a hardware
design that should be built from a library of components.

Consider, for example, the graph G = 〈G1, G2〉 in Fig. 1. Let N =
〈2,G, {〈s, t1〉, 〈s, t2〉}〉. Then, the game is played on the flat graph Gf on the
right. Consider the profile P = 〈π1, π2〉 in which Player 1 takes the path that
traverses both boxes and in both calls to G2 takes the u3 exit, and Player 2
takes the path that traverses both boxes and in both calls to G2 takes the
u4 exit. Then, the players share the edges 〈s, (b1, u1)〉, 〈(b1, u1), (b1, u2)〉, and
〈(b2, u1), (b2, u2)〉. Accordingly, cost1(P) = 2

2 + 6
2 +4+4+2+ 6

2 +4+3 = 24 and
cost2(P) = 2

2 + 6
2 +5+7+ 6

2 +5+1 = 25. This is not a stable profile, as Player 1
can reduce his cost to 22 by deviating to the edge 〈s, t1〉. Also, Player 2 can join
Player 1 in the first box and reduce his cost to 2

2 + 6
2 + 4

2 + 4
2 + 2

2 + 6
2 +5+1 = 18.

Note that this deviation also reduces the cost of Player 1, to 19.

The Uniform Hierarchical Cost-Sharing Mechanism. Recall that E =⋃
1≤j≤n Ej . In the uniform hierarchical (UH) cost-sharing mechanism, a strategy

for Player i is a set πi ⊆ E of edges in the hierarchical graph G such that πi

covers a path from si to ti in Gf . Players’ costs in a profile P = 〈π1, . . . , πk〉 are
defined as follows: For a subgraph Gj and an edge e ∈ Ej , we define the load
on e, denoted loadP (e), as the number of strategies in P that include e. Thus,
loadP (e) = |{i ∈ [k] : e ∈ πi}|. The cost of an edge is shared evenly by the
players that use it. Thus, the cost of Player i in P is cost i(P) =

∑
e∈πi

c(e)
loadP (e) .

The UH mechanism corresponds to settings in which the traversal of edges
corresponds to the utilization of non-consumable resources. Thus, repeated calls
to the resource do not require its re-formation. For example, when the network
models a software design that should be build from a library of components. In
the uniform sharing rule, we care for the binary information of whether or not a
player has used the resource, and we do not distinguish between light and heavy
users of the resource.

Consider again the HNFG N , now with the UH mechanism. Let P =
〈π1, π2〉 be the profile in which Player 1 takes the path that traverses both
boxes and in both calls to G2 takes the u3 exit, and Player 2 takes the
path that traverses both boxes and in both calls to G2 takes the u4 exit.
Thus, π1 = {〈s, b1〉, 〈(b1, u3), v〉, 〈v, b2〉, 〈(b2, u3), t1〉, 〈u1, u2〉, 〈u2, u3〉} and π2 =
{〈s, b1〉, 〈(b1, u4), b2〉, 〈(b2, u4), t2〉, 〈u1, u2〉, 〈u2, u4〉}. The load on 〈s, b1〉 and
〈u1, u2〉 is 2, and the load on all other edges used in P is 1. Accordingly,
cost1(P) = 2

2 + 4 + 2 + 3 + 6
2 + 4 = 17 and cost2(P) = 2

2 + 7 + 1 + 6
2 + 5 = 17.

tami@idc.ac.il

238 O. Kupferman and T. Tamir

Now, Player 1 has no incentive to deviate to 〈s, t1〉. However, P is not a NE
as Player 2 can join Player 1 in the first box and reduce his cost. Indeed, let
π′
2 = {〈s, b1〉, 〈(b1, u3), v〉, 〈v, b2〉, 〈(b2, u4), t2〉, 〈u1, u2〉, 〈u2, u3〉, 〈u2, u4〉}. Then,

in the profile P ′ = 〈π1, π
′
2〉, we have that cost2(P ′) = 2

2+ 4
2+ 2

2+1+ 6
2+ 4

2+5 = 15.
Note that Player 1 also benefits from this move, as cost1(P ′) = 12. This example
demonstrates that, even-though players have incentive to use an edge multiple
times, the optimal strategy of a player in a subgraph Gi need not induce a single
path from ini to some vertex in Exit i. Rather, it is sometimes beneficial for the
players to pay for accessing several exit vertices.

The Proportional Hierarchical Cost-Sharing Mechanism. Like the UH
mechanism, the proportional hierarchical (PH) cost-sharing mechanism corre-
sponds to settings in which the traversal of edges corresponds to the utilization of
a non-consumable resources. Here, however, we care for the number of times such
resources are used by the players, as their costs are proportional to the use. In the
PH mechanism, a strategy for Player i is a multiset πi of edges in the hierarchical
graph G such that πi covers a path from si to ti in Gf . Players’ costs in a profile
P = 〈π1, . . . , πk〉 are defined as follows: For a subgraph Gj and an edge e ∈ Ej ,
we define the weighted load on e, denoted wloadP (e), as the number of times e
appears in all the strategies in P . Recall that for a multiset π, we denote by π(e)
the number of times an element e appears in π. Then, wloadP (e) =

∑
i∈[k] πi(e),

and the cost of Player i in P is cost i(P) =
∑

e∈πi

πi(e)·c(e)
wloadP (e) .

Back to our example N , the profile P with the PH mechanism consists of the
strategies π1 = {〈s, b1〉1, 〈u1, u2〉2, 〈u2, u3〉2, 〈(b1, u3), v〉1, 〈v, b2〉1, 〈(b2, u3), t1〉1}
and π2 = {〈s, b1〉1, 〈u1, u2〉2, 〈u2, u4〉2, 〈(b1, u4), b2〉1, 〈(b2, u4), t2〉1}. Now,
wloadP (〈s, b1〉) = wloadP (〈u2, u3〉) = wloadP (〈u2, u4〉) = 2,wloadP (〈u1, u2〉) =
4, and the weighted load on all other edges used in P is 1. Accordingly,
every traversal of 〈u1, u2〉 costs 6

4 , and similarly for the other edges. Hence,
cost1(P) = 2

2 + 2 · 6
4 + 4 + 4 + 2 + 3 = 17 and cost2(P) = 2

2 + 2 · 6
4 + 5 +

7 + 1 = 17. While Player 1 has no incentive to deviate to 〈s, t〉, Player 2 can
reduce his cost by deviating to a path that joins Player 1 in b1. Indeed, let
π′
2 = {〈s, b1〉1, 〈u1, u2〉2, 〈u2, u3〉1, 〈(b1, u3), v〉1, 〈v, b2〉1, 〈u2, u4〉1, 〈(b2, u4), t2〉1}.

Then, in the profile P ′ = 〈π1, π
′
2〉, we have wloadP (〈v1, b1〉) = 2,wloadP (〈u1,

u2〉) = 4,wloadP (〈u2, u3〉) = 3,wloadP (〈(b1, u3), v〉) = 2,wloadP (〈v, b2〉) = 2,
and the weighted load on all other edges used in P is 1. Accordingly, cost2(P ′) =
2
2 + 2 · 6

4 + 4
3 + 4

2 + 2
2 + 5 + 1 = 141

3 . Note that Player 1 also benefits from this
move, as cost1(P ′) = 2

2 + 2 · 6
4 + 2 · 4

3 + 4
2 + 2

2 + 3 = 122
3 .

3 Stability Existence and Inefficiency

In this section we study the stability of HNFGs. We show that the cost-sharing
mechanism is crucial in this analysis. Specifically, HNFGs with the Flat or the
UH mechanism have an NE and their PoA and PoS are identical to the bounds
known for NFGs. On the other hand, we show that even simple instances of

tami@idc.ac.il

Hierarchical Network Formation Games 239

HNFGs with the PH mechanism need not have an NE, and there are games for
which the only stable profile is k times more expensive than the SO.

We start with the stability existence question. The proof of the following
theorem is based on converting every HNFG with the flat or the UH mechanism
to an equivalent resource-allocation game, which is known to have an NE. As we
show, the relation with resource-allocation games also induces potential functions
for HNFGs in the flat and UH mechanisms.

Theorem 2. Every HNFG with the flat or UH mechanism has an NE.

For the PH mechanism, we present a negative result.

Theorem 3. An HNFG with the PH mechanism need not have an NE.

Proof. Consider the hierarchical graph G = 〈G1, Ga, Gb, Gc〉 depicted in Fig. 2.
Let N = 〈2,G, {〈s, ti〉}i∈{1,2}〉. For every σ ∈ {a, b, c}, we have that τ1(bσ) = Gσ.
In the figure, edges that are not labeled are free. Thus, Player 1 needs to select
in G1 one of the two paths ρ11 = (s, ba, bc, t1) and ρ21 = (s, bb, t1), and Player 2
needs to select one of two paths ρ12 = (s, ba, ba, ba, t2) and ρ22 = (s, bc, ba, ba, t2).

We show that N with the PH mechanism does not have an NE. Recall that
a strategy for Player i is a multiset πi over edges in G such that πi covers a path
from s to ti in Gf . Since all the edges in E1 are free, we describe the players’
strategies as multisets that include only the edges in the subgraphs Ga, Gb, and
Gc. Denote by ea, eb, and ec the (only) edge in Ga, Gb and Gc respectively. Thus,
for Player 1, we have strategies π1

1 = {ea, ec} and π2
1 = {eb}, and for Player 2

we have π1
2 = {ea, ea, ea} and π2

2 = {ec, ea, ea}.
Table 1 describes the players’ costs in the four possible profiles. Note that

c(ea) = 36, c(eb) = 12 and c(ec) = 2. Consider for example the top left profile
P = 〈π1

1 , π
1
2〉. In this profile, the edge ea is traversed four times, eb is not traversed

at all, and ec is traversed once. Thus, wloadP (ea) = 4. This implies that every
traversal of ea costs c(ea)/wloadP (ea) = 36/4 = 9. Since wloadP (ec) = 1 and
ec ∈ π1

1 , Player 1 should also cover the cost of ec. Hence, cost1(P) = 9 + 2 = 11
and cost2(P) = 3 · 9 = 27. The players’ costs in all other profiles are calculated
in a similar way. The costs in the table imply that players benefit from changing
strategies in counter clockwise direction, thus no NE exists. ��

A natural question arising from the above theorem is whether we can dis-
tinguish between instances that have or do not have a stable profile. In the full
version of this paper we show that we can do it in Σ2

P , yet this is an NP-hard
task.

We turn to analyze the equilibrium inefficiency. Once again, the fact that
each HNFG with the flat or the UH mechanism has an equivalent resource-
allocation cost-sharing game enables us to adopt the upper bounds known for
resource-allocation games to our setting. Matching lower bounds then follow
from the known bounds on NFGs and the fact that every NFG can be viewed
as an HNFG with no nesting of subgraphs.

tami@idc.ac.il

240 O. Kupferman and T. Tamir

s

t1

t2

ba

bc ba

bb ba bc

G1

36

Ga

12

Gb

2

Gc

Fig. 2. An HNFG N that has no NE with
the PH mechanism.

Table 1. Players’ costs in
N with the PH mechanism.
Each entry describes the cost of
Player 1 followed by the cost of
Player 2.

{ea, ec} {eb}
{ea, ea, ea} 11, 27 12, 36

{ec, ea, ea} 13, 25 12, 38

Theorem 4. The PoS and PoA of k-player HNFGs with the flat or the UH
mechanism are O(log k) and k, respectively.

For the PH mechanism, we show that stability may came with a high cost,
strictly higher than the one known for NFGs.

Theorem 5. The PoS and PoA of k-player HNFGs with the PH mechanism
are k.

Proof. Similar to the analysis of many other cost-sharing games, PoA ≤ k as
otherwise, some player in some NE profile P is paying more than the SO, and can
benefit from deviating to his strategy in the SO, whose cost is not larger than the
cost of the whole SO profile. This contradicts the stability of P . Combining the
fact that PoA ≥ PoS, it is sufficient to show that PoS ≥ k in order to establish
the tight bounds.

For every k > 1, we describe a k-player HNFG Nk such that the cost of the
only NE in Nk is kM , for some large constant M , whereas the SO is M + ε′′, for
a small constant ε′′. Assume first that k is even. Partition the set [k] of players
into pairs 〈2� − 1, 2�〉 for 1 ≤ � ≤ k

2 . Let N � be a 2-player HNFG with no NE,
with the costs of its edges multiplied by a small constant ε. In particular, we
refer to the HNFG described in the proof of Theorem3.

The HNFG Nk is played on the hierarchical graph G = 〈G0, {G�
1, G

�
a, G�

b,
G�

c}1≤�≤k/2〉, where G0 is depicted in Fig. 3, and the other components consists
of k/2 copies of the graphs G1, Ga, Gb, and Gc, described in Fig. 2, with all costs
multiplied by ε. The graph G0 includes an edge 〈s, t〉 of cost kM , an edge 〈s, v〉
of cost M , and k/2 free edges 〈v, s�〉 leading the copies G�

1 for 1 ≤ � ≤ k
2 .

For simplicity, we assume that each player can choose between one of two
targets. It is easy to see that this assumption can be removed by adding a new
target connected from the two targets by free edges. Consider the �-th pair of
players. The target vertices of the first player in the pair are t and t�1. The
target vertices of the second player are t and t�2. Thus, every player has three
strategies: the path consisting of the edge 〈s, t〉 and the paths starting with
s, v, s� and continuing with one of the two strategies in G�

1, as detailed in the
proof of Theorem 3.

tami@idc.ac.il

Hierarchical Network Formation Games 241

The SO of Nk consists of edges from the right side of the network: the edges
〈s, v〉, {〈v, s�〉1≤�≤k/2}, and edges forming an SO for each of the disjoint k

2 games
(the latter consists of the edges e�

a, e�
c, and additional free edges from G�

1). The
cost of the SO is then M + ε′k

2 , for ε′ = 38ε.
We show that the only NE in Nk is the profile in which all the players share

the edge 〈s, t〉. This profile is indeed an NE, as the cost of every player is exactly
M , and by deviating to the right side of the network, a player must pay the cost
of 〈s, v〉 plus the cost of his chosen path in some G�

1, which together exceeds
M . Moreover, this is the only NE since in every other profile, players would
benefit from leaving the edge 〈s, t〉 and reaching N � – our familiar no-NE game
described in the proof of Theorem3. The cost of this NE profile is kM , implying
that the PoS is Mk

M+19kε , which tends to k.
Finally, if the number k of players is odd, we define for the unpaired player

two strategies: one is the path 〈s, t〉, and the other is a path s, v, u for a new
vertex u. By setting to ε the cost of 〈u, v〉, it still holds that 〈s, t〉 is the only NE
profile. The PoS for an odd k is therefore Mk

M+(19k+1)ε , which tends to k. ��

s
t v

G1
1 G2

1
. . . G

k
2
1

k · M M

Fig. 3. An HNFG Nk for which PoS = k. Every G�
1 is a copy of G1 depicted in Fig. 2.

4 Computational Complexity

In this section we study the complexity of reasoning about HNFGs in the differ-
ent cost-sharing mechanisms. The principal question is whether the exponential
succinctness of HNFGs leads to an exponential increase in the complexity of
reasoning about them.

4.1 The UH and PH Mechanisms

Recall that a strategy for Player i in the UH or PH mechanism is a set or
a multiset πi over E. A strategy is feasible if there is a path ρ from si to ti
in Gf such that ρ is covered by πi. In traditional NFGs, it is easy to check in
polynomial time whether a given set of edges is a feasible strategy. Indeed, there,
the underlying graph is given explicitly. This is not the case in HNFGs: given
πi, a naive check that πi indeed covers a path from si to ti in Gf involves a
construction of Gf , which may be exponential in G. An efficient checking that a
given strategy πi is feasible requires a clever encoding of πi, involving a restriction
to a subset of all possible strategies. We first define this subset and prove that it
is dominating, that is, every Player has a best-response move to a homogeneous
strategy.

tami@idc.ac.il

242 O. Kupferman and T. Tamir

Recall that πi is feasible if there is a path ρ from si to ti in Gf such that
ρ is covered by πi. The path ρ may traverse subgraphs Gj of G several times
(in fact, per Observation 1, even exponentially many times). In each traversal,
the path ρ may exit Gj through different exit vertices. For example, in the
HNFGs described in Sect. 2.3, we showed that the players benefit from taking
a strategy that exits G2 from both u3 and u4. Thus, restricting attention to
strategies in which all the traversals of Gj use the same exit vertex is not sound
(and in fact may affect not only the cost of Player i but also cause ti not to be
reachable from si). Consider now two traversals of the subgraph Gj in which
Player i chooses to exit Gj through the same exit vertex u ∈ Exitj . Here too,
Player i may choose to fulfill this repeated “nested sub-objective” in different
ways. We say that a strategy for Player i is homogeneous if for every j ∈ [n] and
every u ∈ Exitj , whenever Player i traverses the subgraph Gj through exit u it
uses the same 〈inj , u〉-path. We claim that restricting attention to homogeneous
strategies is sound, and also leads to an efficient feasibility check. Intuitively, in
the UH mechanism, the proof of the dominance is easy, as by repeating the same
path a player can only reduce the set of edges in his strategy, which results in
reduced payment. Thus, in the UH mechanism, the used 〈inj , u〉-path can be
chosen arbitrarily. In the PH mechanism, the proof is more involved, as moving
to the chosen 〈inj , u〉-path may increase the payment for other uses of this path.
Accordingly, not all choices of a 〈inj , u〉-path are beneficial. We show, however,
that at least one choice is beneficial. In addition, checking the feasibility of
homogeneous strategies requires only one check for each subgraph Gj and exit
vertex u ∈ Exitj , which can be done in polynomial time. Hence we have the
following:

Lemma 1. Consider an HNFG N with the UH or PH mechanism, and a player
i ∈ [k].

1. Every non-homogeneous strategy for Player i is dominated by a homogeneous
one.

2. Checking that a homogeneous strategy of Player i is feasible can be done in
polynomial time.

We proceed to study the complexity of finding a BR and an SO in HNFGs with
the UH or PH mechanism. For NFGs, a BR move can be found in polynomial
time, and the problem of finding an SO is NP-complete [31]. For the lower bound,
we show two reductions, both with a single-player HNFG. One, for the case the
depth of the HNFG is a constant, is from the directed Steiner tree problem; and
one, for the case the number of exit vertices is a constant, is from the hitting-set
problem.

Theorem 6. The problem of finding a BR move for a HFNG with the UH or PH
mechanism is NP-complete. NP-hardness holds already for single-player HNFGs
of a constant depth or with a constant number of exit vertices.

Thus, the exponential succinctness of HNFGs makes the BR problem for the
UH and PH mechanisms exponentially more complex than the one for NFGs.

tami@idc.ac.il

Hierarchical Network Formation Games 243

Since the BR problem in single-player HNFGs coincides with the SO problem,
Theorem 6 immediately implies the lower bound in the following theorem. The
upper bound follows from the fact that a witness to the SO consists of listing
the set of edges purchased in every subgraph. It is easy to see that there exists
an SO in which every player is assigned a homogeneous strategy, therefore, the
SO’s feasibility is tractable.

Theorem 7. The problem of finding an SO for an HNFG with the UH or PH
mechanism is NP-complete. NP-hardness holds already for single-player HNFGs
of a constant depth or with a constant number of exit vertices.

4.2 The Flat Mechanism with a Constant Number of Exit Vertices

Consider an HNFG played over a hierarchical graph G. Recall that in the flat
mechanism, costs are calculated with respect to Gf , which is exponentially larger
than G. While the exponential blow-up applies already for hierarchical graphs
in which the number of exit vertices in each subgraph is a constant (in fact,
per Observation 1, is 1), experience in formal verification of hierarchical sys-
tems shows that reasoning about hierarchical-FSMs in which each subgraph has
a constant number of exit vertices does make verification easier [5,6]. In this
section we consider HNFGs that are played over hierarchical graphs in which
each subgraph has a constant number of exit vertices. We denote this class by
CE-HNFGs. We note that CE-HNFGs are common in practice: in software, pro-
cedures typically have a constant number of returns, and in hardware, nested
boxes are plugged in via a constant number of connections.

Before we describe our results for CE-HNFGs, let us point out that there
are additional aspects in which the flat mechanism is computationally easier
than the UH and PH mechanisms. For example, while the problem of finding an
SO in HNFGs in the UH or PH mechanism is NP-complete already for single-
player CE-HNFGs (as we proved in Theorem 7), for the flat mechanism, the
single-player instance is easy even without restricting to CE-HNFGs. Indeed,
let N = 〈1,G, 〈s, t〉〉, with G = 〈G1, . . . , Gn〉. Starting with Gn, we recursively
replace each box that calls a subgraph Gj by a tree of depth 1 with root inj

and edges to all exit vertices t ∈ Exitj . The cost of such an edge is the cost of
the shortest path from inj to t, which we need to calculate only once (and after
boxes in Gj have been recursively replaced by trees of depth 1). Thus, we have,

Theorem 8. The problem of finding an SO in a single-player HNFG with the
flat mechanism can be solved in polynomial time.

For k > 1 players, finding an SO is still tractable, but the algorithm is more
involved:

Theorem 9. The problem of finding an SO in CE-HNFGs with the flat mech-
anism can be solved in polynomial time.

tami@idc.ac.il

244 O. Kupferman and T. Tamir

Proof. Let N be a CE-HNFG with G = 〈G1, . . . , Gn〉, where Gj =
〈Vj , Bj , inj ,Exitj , τj , Ej , cj〉. A profile of N utilizes a subset of the edges in
G. In fact, for every box in G that calls a subgraph Gj , the utilized edges form
a Steiner tree connecting inj with a set T ⊆ Exitj of exit vertices. Our algo-
rithm is based on the fact that these Steiner trees can be enumerated, and that
the minimum Steiner tree problem can be solved efficiently when the number of
terminals is a constant [25].

For j ∈ [n] and a set T ⊆ Exitj , we define the HNFG Nj,T =
〈|T |,Gj , 〈inj , t〉t∈T 〉, where Gj = 〈Gj , Gj+1, . . . , Gn〉. That is, Nj,T is a |T |-player
game, where each player tries to reach from inj to a different exit vertex t ∈ T .
Note that an SO in Nj,T is a profile that minimizes the cost required for forming
paths from inj to all vertices in T in the flat expansion of Gj . Now, let G′

j be
a weighted tree of depth 1 with root inj and leaves in 2Exitj , where the cost of
an edge 〈inj , T 〉, for T ⊆ Exitj , is the SO in Nj,T . Thus, G′

j describes, for every
subset T ⊆ Exitj , the cost of covering paths from inj to all vertices in T in the
flat expansion of Gj . Note that since |Exitj | is constant, so is the size of G′

j .
We argue that for all j ∈ [n] and T ⊆ Exitj , there is an algorithm that finds

an SO in Nj,T and constructs G′
j in polynomial time. In particular, taking j = 1

and T = ∪i∈[k]{ti}, we can find the SO of N in polynomial time. The algorithm
is omitted from this extended abstract. ��

We turn to the problem of calculating an NE. A well-known approach for
calculating an NE in NFGs is best-response dynamics (BRD): starting with
an arbitrary profile, we let players perform BR moves until an NE is reached.
The complexity class PLS contains local search problems with polynomial time
searchable neighborhoods [24]. Essentially, a problem is in PLS if there is a set
of feasible solutions for it such that it is possible to find, in polynomial time, an
initial feasible solution and then iteratively improve it, with each improvement
being performed in polynomial time, until a local optimum is reached. While
every iteration of BRD takes polynomial time, the number of iterations needs
not be polynomial. The problem of finding an NE in NFGs is known to be PLS-
complete. We show how to implement BRD in CE-HNFGs in a way that keeps
the polynomial time-complexity for each improvement step. The idea is to use a
succinct representation of a profile in a CE-HNFG, and to restrict attention to
a limited class of profiles that are guaranteed to include an NE.

Theorem 10. The problem of finding an NE in CE-HNFGs with the flat mech-
anism is PLS-complete.

References

1. Albers, S., Elits, S., Even-Dar, E., Mansour, Y., Roditty, L.: On Nash equilibria
for a network creation game. In: Proceedings of 7th SODA, pp. 89–98 (2006)

2. Almagor, S., Avni, G., Kupferman, O.: Repairing multi-player games. In: Proceed-
ings of 26th CONCUR, pp. 325–339 (2015)

3. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM 49(5), 672–713 (2002)

tami@idc.ac.il

Hierarchical Network Formation Games 245

4. Alur, R., Kannan, S., Yannakakis, M.: Communicating hierarchical state machines.
In: Wiedermann, J., Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol.
1644, pp. 169–178. Springer, Heidelberg (1999). doi:10.1007/3-540-48523-6 14

5. Alur, R., Yannakakis, M.: Model checking of hierarchical state machines. ACM
TOPLAS 23(3), 273–303 (2001)

6. Aminof, B., Kupferman, O., Murano, A.: Improved model checking of hierarchical
systems. J. Inf. Comput. 210, 68–86 (2012)

7. Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, E., Wexler, T., Roughgarden,
T.: The price of stability for network design with fair cost allocation. SIAM J.
Comput. 38(4), 1602–1623 (2008)

8. Avni, G., Kupferman, O.: Synthesis from component libraries with costs. In: Bal-
dan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 156–172. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-44584-6 12

9. Avni, G., Kupferman, O., Tamir, T.: Network-formation games with regular objec-
tives. Inf. Comput. 251, 165–178 (2016)

10. Avni, G., Kupferman, O., Tamir, T.: Congestion games with multisets of resources
and applications in synthesis. In: Proceedings of 35th FST and TCS. LIPIcs, pp.
365–379 (2015)

11. Brihaye, T., Bruyère, V., De Pril, J., Gimbert, H.: On subgame perfection in quan-
titative reachability games. LMCS 9(1), 1–32 (2012)

12. Chatterjee, K.: Nash equilibrium for upward-closed objectives. In: Ésik, Z. (ed.)
CSL 2006. LNCS, vol. 4207, pp. 271–286. Springer, Heidelberg (2006). doi:10.1007/
11874683 18

13. Chatterjee, K., Henzinger, T.A., Jurdzinski, M.: Games with secure equilibria.
Theoret. Comput. Sci. 365(1–2), 67–82 (2006)

14. Chatterjee, K., Henzinger, T.A., Piterman, N.: Strategy logic. In: Caires, L., Vas-
concelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 59–73. Springer, Hei-
delberg (2007). doi:10.1007/978-3-540-74407-8 5

15. Chatterjee, K., Majumdar, R., Jurdziński, M.: On Nash equilibria in stochastic
games. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp.
26–40. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30124-0 6

16. Chen, H., Roughgarden, T.: Network design with weighted players. Theor. Comput.
Syst. 45(2), 302–324 (2009)

17. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

18. Correa, J.R., Schulz, A.S., Stier-Moses, N.E.: Selfish routing in capacitated net-
works. Math. Oper. Res. 29, 961–976 (2004)

19. de Roever, W.-P., Langmaack, H., Pnueli, A. (eds.): COMPOS 1997. LNCS, vol.
1536. Springer, Heidelberg (1998). doi:10.1007/3-540-49213-5

20. Drusinsky, D., Harel, D.: On the power of bounded concurrency I: finite automata.
J. ACM 41(3), 517–539 (1994)

21. Fabrikant, A., Luthra, A., Maneva, E., Papadimitriou, C., Shenker, S.: On a net-
work creation game. In: ACM PODC, pp. 347–351 (2003)

22. Feldman, M., Tamir, T.: Conflicting congestion effects in resource allocation games.
J. Oper. Res. 60(3), 529–540 (2012)

23. Fisman, D., Kupferman, O., Lustig, Y.: Rational synthesis. In: Esparza, J., Majum-
dar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 190–204. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-12002-2 16

24. Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: How easy is local search? J.
Comput. Syst. Sci. 37, 79–100 (1988)

tami@idc.ac.il

246 O. Kupferman and T. Tamir

25. Kimelfeld, B., Sagiv, Y.: New algorithms for computing Steiner trees for a fixed
number of terminals (2006). http://www.cs.huji.ac.il/bennyk/papers/steiner06.
pdf

26. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. Comput. Sci. Rev. 3(2),
65–69 (2009)

27. Lustig, Y., Vardi, M.Y.: Synthesis from component libraries. STTT 15(5–6), 603–
618 (2013)

28. Mavronicolas, M., Milchtaich, I., Monien, B., Tiemann, K.: Congestion games with
player-specific constants. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol.
4708, pp. 633–644. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74456-6 56

29. Milchtaich, I.: Weighted congestion games with separable preferences. Games Econ.
Behav. 67, 750–757 (2009)

30. Mitchell, J.C.: Concepts in Programming Languages. Cambridge University Press,
Cambridge (2003)

31. Meyers, C.A., Schulz, A.S.: The complexity of welfare maximization in congestion
games. Networks 59(2), 252–260 (2012)

32. Monderer, D., Shapley, L.: Potential games. Games Econ. Behav. 14, 124–143
(1996)

33. Papadimitriou, C.H.: Algorithms, games, and the internet. In: Proceedings of
STOC, pp. 749–753 (2001)

34. Pnueli, A.: In transition from global to modular temporal reasoning about pro-
grams. In: Apt, K.R. (ed.) Logics and Models of Concurrent Systems. NATO
Advanced Science Institutes, vol. 13, pp. 123–144. Springer, Heidelberg (1985).
doi:10.1007/978-3-642-82453-1 5

35. Rose, L., Belmega, E.V., Saad, W., Debbah, M.: Pricing in heterogeneous wireless
networks: hierarchical games and dynamics. IEEE Trans. Wireless Commun. 13(9),
4985–5001 (2014)

36. Saad, W., Zhu, Q., Basar, T., Han, Z., Hjørungnes, A.: Hierarchical network for-
mation games in the uplink of multi-hop wireless networks. In: Proceedings of
GLOBECOM, pp. 1–6. IEEE (2009)

37. Tardos, E., Wexler, T.: Network formation games and the potential function
method. In: Algorithmic Game Theory. Cambridge University Press (2007)

tami@idc.ac.il

