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Minimizing Makespan and Preemption Costs
on a System of Uniform Machines1

Hadas Shachnai,2 Tami Tamir,3 and Gerhard J. Woeginger4

Abstract. It is well known that for preemptive scheduling on uniform machines there exist polynomial time
exact algorithms, whereas for non-preemptive scheduling there are probably no such algorithms. However, it
is not clear how many preemptions (in total, or per job) suffice in order to guarantee an optimal polynomial
time algorithm. In this paper we investigate exactly this hardness gap, formalized as two variants of the classic
preemptive scheduling problem.

In generalized multiprocessor scheduling (GMS) we have a job-wise or total bound on the number of
preemptions throughout a feasible schedule. We need to find a schedule that satisfies the preemption constraints,
such that the maximum job completion time is minimized. In minimum preemptions scheduling (MPS) the
only feasible schedules are preemptive schedules with the smallest possible makespan. The goal is to find a
feasible schedule that minimizes the overall number of preemptions. Both problems are NP-hard, even for two
machines and zero preemptions.

For GMS, we develop polynomial time approximation schemes, distinguishing between the cases where
the number of machines is fixed, or given as part of the input. Our scheme for a fixed number of machines
has linear running time, and can be applied also for instances where jobs have release dates, and for instances
with arbitrary preemption costs. For MPS, we derive matching lower and upper bounds on the number of
preemptions required by any optimal schedule. Our results for MPS hold for any instance in which a job, Jj ,
can be processed simultaneously by ρj machines, for some ρj ≥ 1.

Key Words. Scheduling, Uniform machines, Preemption costs, Minimum makespan, Parallel processing,
Approximation algorithms.

1. Introduction. The problem of preemptive scheduling on uniform machines so as
to minimize the overall completion time (or makespan) is well known to be solvable in
polynomial time [13]. However, for some instances, any optimal schedule requires�(m)
preemptions, where m is the number of machines [8]. While in traditional multiprocessor
scheduling the cost of preemptions is relatively small, in the modern distributed comput-
ing environment, preemptions typically involve communication, and sometimes require
job migration over a network. This can significantly increase the cost of the schedule.
Therefore it is natural to seek schedules that minimize the overall completion time, while
incurring a small number of preemptions.
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We consider the resulting variants of the classic preemptive scheduling problem. For-
mally, suppose that we are given a set of jobs, J1, . . . , Jn , with processing requirements
t1, . . . , tn; that is, Jj requires tj processing units. We need to schedule the jobs on m
uniform machines, M1, . . . ,Mm ; the machine Mi has the rate ui ≥ 1. The processing
time of Jj on Mi is tj/ui .

In the generalized multiprocessor scheduling (GMS) problem, each job Jj has
an associated parameter aj , which bounds the number of times Jj can be pre-
empted throughout a feasible schedule. We need to find a schedule that satisfies
the preemption constraints, such that the maximum job completion time is min-
imized. In another variant, we are given a bound, Tot, on the total number of
preemptions.

In the minimum preemptions scheduling (MPS) problem, the only feasible schedules
are preemptive schedules with the smallest possible makespan. The goal is to find
a feasible schedule that minimizes the overall number of preemptions.

A straightforward reduction from the Partition problem [6] shows that all these prob-
lems are NP-hard, even for two machines and zero preemptions. The two classical
problems of preemptive and non-preemptive scheduling on uniform machines, which
are special cases of GMS, were extensively studied (see, e.g., [11], [8], [9], [10] and
[5]). It is well known that for preemptive scheduling there exist polynomial time exact
algorithms (e.g., [13], [11] and [8]), whereas for non-preemptive scheduling there are
no such algorithms, unless P = NP [6]. However, it is not clear how many preemptions
(in total, or per job) suffice in order to guarantee an optimal polynomial time algorithm.
In this paper we investigate exactly this hardness gap. We give proofs of hardness for
some special cases of GMS, and we develop polynomial time approximation schemes
(PTASs) for this problem.

Our results for generalized multiprocessor scheduling yield an important distinction
between the identical and uniform machine environments. For the two fundamental
scheduling problems that we generalize here, similar solvability/approximability re-
sults were obtained in these two environments. In particular, the preemptive scheduling
problem is optimally solvable on both identical and uniform machines [8], and the
non-preemptive scheduling problem is strongly NP-hard in both [6]. Yet, the two envi-
ronments already differ when we allow each of the jobs to be preempted at most once.
While on identical machines we can use McNaughton’s rule [13] to obtain in this case
the minimum makespan, on uniform machines the problem is strongly NP-hard (see
Section 2.2).

1.1. Our Results. The following are our main results for the GMS and the MPS
problems:

• We give (in Section 2) proofs of hardness for GMS in the following cases: (i) each of
the jobs can be preempted at most once throughout the schedule, and (ii) the overall
number of preemptions is bounded by k, for some 1 ≤ k ≤ 2(m − 3). This resolves
the hardness of the problem for almost all possible values of k (since for k ≥ 2(m−1)
it is known to be polynomially solvable [8]).
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• We develop (in Section 3.1) a PTAS for any instance of GMS with job-wise bounded
preemptions in which the number of machines is fixed. Our scheme, whose running
time is linear in the input size, can be applied also for instances where jobs have
release dates, and for instances with arbitrary preemption costs (see Section 3.1.1).5

• We give (in Section 3.2) PTASs for instances of GMS with an arbitrary number of
machines and a bound on the total number of preemptions.
• We derive matching lower and upper bounds for the minimum preemptions schedul-

ing problem. Our results hold for any instance in which a job Jj , 1 ≤ j ≤ n, can
be processed simultaneously by ρj machines, for some 1 ≤ ρj ≤ m. In particu-
lar, we show (in Section 4) that a lower bound for the overall number of preemp-
tions, in a schedule that yields the minimum makespan, is m + �m/b� − 2, where
b = min1≤ j≤n ρj . We give a polynomial time algorithm that achieves this bound.
For the special case where, for all j , ρj = 1, our algorithm uses 2(m − 1) preemp-
tions, as the algorithm presented in [8]; however, our algorithm and its analysis are
simpler.

Our main technical contribution is the extension of the approximation technique intro-
duced in [15] for open shop scheduling, to obtain approximation schemes for generalized
multiprocessor scheduling. We show that by appropriately selecting the parameter val-
ues, the technique can be applied to most general instances of GMS (i.e., with arbitrary
release times and arbitrary preemption costs), when either the number of machines or
the total number of preemptions is fixed.

1.2. Related Work. The GMS problem generalizes the two classical problems of sched-
uling on uniform machines to minimize the makespan. When for all j, aj is unbounded,
we get the preemptive scheduling problem, denoted in standard scheduling notation
Q|pmtn|Cmax [12]. Horvath et al. [11] gave the first optimal algorithm for this problem.
When aj = 0, ∀ j , we get the non-preemptive scheduling problem, Q||Cmax, which
is strongly NP-hard [6]. For this problem, it was shown in [7] that algorithm longest
processing time (LPT) yields a ratio of 2 to the optimal makespan. In Section 2.3 we
extend this result to the GMS and MPS problems. Hochbaum and Shmoys [9], [10],
and later Epstein and Sgall [5], developed PTASs for Q||Cmax. However, these schemes
cannot be adapted for the GMS problem, since they rely on the fact that all jobs are
independent. When we allow preemptions in the schedule, each job becomes a set of
segments, only one of which can be processed at any given time.

In a recent work, Shchepin and Vakhania [17] studied the problem of multiprocessor
scheduling with a bounded number of preemptions. They showed that GMS with the
bound of (m − 2) on the total number of preemptions is NP-hard, already on identical
machines.

The MPS problem was studied in [8], in the case where each job can be processed at
any time by at most one machine (i.e., ρj = 1 for all j). The paper shows that there are in-
stances for which any optimal algorithm uses at least 2(m−1) preemptions, and presents
an algorithm that achieves this bound. Very recently, Ebenlendr and Sgall [4] showed
that for such instances our algorithm can be modified to yield a semi-online algorithm,

5 In GMS we assume unit cost per preemption.
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which generates 2(m − 1) preemptions. The resulting algorithm can be implemented in
O(n + m log m) steps.

Other previous works on parallel jobs (see, e.g., [1] and [3]) assume an even partition
of the processing of a job Jj among machines that run Jj in parallel, while we do not
use this assumption (see Section 2.1).

2. Preliminaries

2.1. Minimum Makespan on Uniform Machines. Let I be an instance of MPS, where
job Jj has processing time tj for 1 ≤ j ≤ n. Jj can be processed simultaneously on ρj

machines; the processing of Jj can be shared arbitrarily among the machines. Our first
result shows that any optimal algorithm for preemptive scheduling with no parallelism
can be used to find the minimum makespan of I . Note that at this point we do not
attempt to minimize the number of preemptions. For an instance I , let wOPT(I ) denote
the minimum makespan for I when preemptions are allowed.

THEOREM 2.1. Let Aopt be an algorithm that solves the minimum makespan problem
for non-parallelizable jobs, in f (n) steps. ThenAopt can be adapted to yield the optimal
makespan for any instance of MPS, in f (

∑n
j=1 min(ρj ,m)) steps.

PROOF. Given an input I for MPS, replace each job Jj , of processing requirement tj

and parallelism parameter ρj , by ρj jobs Jj1 , . . . , Jjρj
, each of processing requirement

tj/ρj and parallelism parameter 1. The resulting instance I ′ is an input for Aopt. Given
the optimal schedule of Aopt for I ′, we allocate to any job Jj in I the processing units
which were allocated to the ρj jobs Jj1 , . . . , Jjρj

. We first show that the output for I ′ is
a valid solution for I .

CLAIM 2.2. Any schedule of I ′ yields a feasible schedule of I of the same length.

PROOF. LetA1 be the optimal algorithm for Q|pmtn|Cmax used to schedule I ′. For any
1 ≤ j ≤ n, each of the jobs Jj1 , . . . , Jjρj

is scheduled by A1 on at most one machine,
at any time. Thus, Jj is processed in parallel by at most ρj machines. In addition, since
all the jobs in I ′ are completed, the total number of processing units allocated to Jj is
ρj · tj/ρj = tj .

In order to show that the makespan for I is minimal, we show that the minimal
makespan for I ′ is equal to the minimal makespan for I . This follows from the next
claim:

CLAIM 2.3. Any feasible schedule of I induces a schedule of I ′ of the same length.

PROOF. Given a schedule of I , we show that for any 1 ≤ j ≤ n, Jj can be partitioned
into ρj sub-jobs of processing requirement tj/ρj each, such that each of these ρj sub-jobs
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Fig. 1. Partition into sub-jobs.

is processed by at most one machine, at any time. In order to construct the sub-jobs of Jj ,
we scan the time interval [0, 	] (	 is the length of the schedule), and “collect” processing
units for the ρj sub-jobs, using the following rule: each interval of length y, in which
Jj is processed by h ≤ ρj machines, is partitioned into ρj equal sub-intervals, each of
length y/ρj . We schedule each of the ρj sub-jobs to run on each of the h machines, in
h different sub-intervals (see Figure 1). Each machine Mi provides ui y/ρj processing
units to each sub-job. Consequently, each of the sub-jobs collects the same number of
processing units. When we sum over all the time intervals in which Jj is processed, each
of the sub-jobs Jj1 , . . . , Jjρj

collects exactly tj/ρj processing units.

Finally, assume that the jobs are sorted such that t1/ρ1 ≥ t2/ρ2 ≥ · · · ≥ tn/ρn , and
the machines are sorted such that u1 ≥ u2 ≥ · · · ≥ um . Let

w = max

{
Tn

Um
, max

1≤ j≤m

T ′j
Uj

}
,(1)

where Uj =
∑ j

i=1 ui , Tn is the total processing requirement of the jobs in I and T ′j
is the total processing requirement of the first j jobs in I ′. It is known [11], [8] that
wOPT(I ′) = w. By Claims 2.2 and 2.3, wOPT(I ′) = wOPT(I ). Thus, we have

wOPT(I ) = w.(2)

2.2. Hardness Results. We show below the hardness of the GMS problem in the fol-
lowing special cases: (i) each of the jobs can be preempted at most once throughout the
schedule. We call this problem single preemption scheduling; (ii) the overall number
of preemptions is bounded by k, for some 1 ≤ k < 2(m − 1). Note that an algorithm
that achieves the optimal makespan and uses at most 2(m− 1) preemptions is presented
in [8].

THEOREM 2.4. The single preemption scheduling problem is strongly NP-hard.

PROOF. We use in the proof a reduction from the pair-partition problem, defined as
follows:

Input. A set A of 2k integers a1, a2, . . . , a2k , and a set B of k integers b1, b2, . . . , bk ,
such that

∑2k
j=1 aj =

∑k
i=1 bi .

Output. A partition of A into pairs such that ai1 + ai2 = bi , for all 1 ≤ i ≤ k.

LEMMA 2.5. The pair-partition problem is strongly NP-hard.
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PROOF. The proof is by reduction from numerical three-dimensional matching
(N3DM), which is strongly NP-hard [6]: Given 3k numbers x1, x2,. . . , xk, y1, y2,. . . , yk ,
and z1, z2, . . . , zk such that

∑
i (xi + yi + zi ) = kC , is there a partition of the numbers

into triples such that each triple sums up to C and contains exactly one element from
each of the sets X, Y and Z?

Given an instance for N3DM, we construct the following instance for pair-partition:
A = {x1+C, x2+C, . . . , xk+C, y1, y2, . . . , yk},B = {2C−z1, 2C−z2, . . . , 2C−zk}.
Clearly, a matching induces a pair-partition: any triplet satisfying xi + yj + z	 = C
implies that A,B contain numbers a	1 = xi + C, a	2 = yj and b	 = 2C − z	 such that
a	1 +a	2 = xi +C+ yj = 2C− z	 = b	. That is, any triple induces a pair and the whole
matching induces a pair-partition.

To see that any pair-partition induces a matching, note that any two numbers in X
contribute toA numbers whose total value is larger than 2C , thus, each of the k numbers
that originated from X must belong to a different pair in the partition. Hence, in any pair
of numbers in A whose sum equals 2C − z	, exactly one number originated from X
and one number originated from Y . That is, if ai1 + ai2 = bi then for some i, j, 	,
xi + yj + z	 = C , and a pair-partition induces a matching.

Below we call the special case of GMS in which aj ≤ 1, for all Jj , the single
preemption (SP) scheduling problem. Given an instance I = (A,B) for pair-partition,
we construct the following instance I ′ for the SP problem. There are 2k jobs, the j th
job has processing requirement pj = Waj , where W is a large constant (e.g., take
W = ∑2k

j=1 aj ), and 2k machines: k fast machines, M1, . . . ,Mk , the i th fast machine
has the rate ui = W bi − 1, and k slow machines, Mk+1, . . . ,M2k , each having the rate
ui = 1.

LEMMA 2.6. If I has a pair-partition, then there is an SP schedule of I ′ whose makespan
is equal to 1.

PROOF. For a pair ai1 , ai2 such that ai1 + ai2 = bi , we schedule the jobs Ji1 and Ji2 on
Mi and on one slow machine. Let t be the solution for the equation Wai1 = (W bi −
1)t + (1 − t). Clearly, this equation has a solution t ∈ [0, 1]. Then we schedule Ji1 on
Mi in the interval [0, t] and on the machine Mk+i in the interval [t, 1]. The job Ji2 is
scheduled on Mi in the interval [t, 1] and on Mk+i in the interval [0, t]. Similarly, any
pair such that ai1 + ai2 = bi determines the schedule of the jobs Ji1 and Ji2 on Mi , and a
pair-partition induces an SP schedule of length 1.

LEMMA 2.7. If there is an SP schedule of I ′ whose makespan equals 1, then I has a
pair-partition.

PROOF. We show that any SP schedule of I ′ whose makespan equals 1 satisfies a set
of properties, as given in the next claims.

CLAIM 2.8. No machine is idle during the schedule, and each job is scheduled during
the whole interval [0, 1].
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PROOF. Note that
∑2k

i=1 ui =
∑k

i=1(W bi − 1) +∑2k
i=k+1 1 = ∑k

i=1 W bi − k + k =∑k
i=1 W bi =

∑2k
j=1 Waj =

∑
j pj . Thus, in any schedule whose makespan is 1, no

machine is idle. Also, since the number of machines is equal to the number of jobs
(= 2k), and no parallelism is allowed, each of the jobs is processed by some machine at
any time along the schedule.

CLAIM 2.9. Each job is preempted exactly once.

PROOF. Since we deal with an SP schedule, each job is preempted at most once. In
addition, each job is preempted at least once since for all i, j , the rate ui is not a multiple
of W and the processing requirement pj is. Thus, in order to be allocated exactly pj

processing units during the interval [0, 1], the processing of Jj must be shared by more
than one machine.

CLAIM 2.10. Each machine processes exactly two jobs.

PROOF. Combining Claims 2.8 and 2.9, we conclude that each machine processes more
than one job. Assume that some machine, Mi , processes three or more jobs. Consider
the second job, Ji2 , processed by Mi . The processing of Ji2 on Mi starts after time 0
and completes before time 1. On the other hand, by Claim 2.8, Ji2 is processed dur-
ing the whole interval [0, 1]. Thus, Ji2 is preempted at least twice. A contradiction to
Claim 2.9.

CLAIM 2.11. Each job is scheduled on exactly one fast machine and one slow machine.

PROOF. By Claim 2.9, the execution of each job consists of two segments. The slow
machines are too slow to complete a job in one time unit, so each job must have at least
one segment on a fast machine. On the other hand, since each machine processes exactly
two jobs (by Claim 2.10), there are 2k segments on the slow machines. We conclude that
each of the 2k jobs must have at least one segment on a slow machine.

Consider a fast machine Mi . By Claim 2.10, Mi processes segments of two jobs,
Ji1 , Ji2 . Let t ∈ [0, 1] be such that Mi processes Ji1 in the interval [0, t] and Ji2 in the
interval [t, 1]. By Claim 2.11, each of these two jobs also has one “slow segment” in
the complimentary intervals (not necessarily on the same slow machine). Then pi1 =
tui + (1 − t) and pi2 = (1 − t)ui + t . Thus, pi1 + pi2 = ui + 1, i.e., Wai1 + Wai2 =
W bi − 1+ 1 = W bi . It follows that ai1 and ai2 form a pair whose sum is bi .

Similarly, any other fast machine induces a pair and the complete schedule on the fast
machines induces a pair-partition.

Combining Lemma 2.5 with Lemmas 2.6 and 2.7 we get the statement of
Theorem 2.4.

THEOREM 2.12. For any k ≤ 2(m − 3), the problem of finding a minimum makespan
schedule with at most k preemptions is NP-hard.
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PROOF. We show a reduction from non-preemptive scheduling. Given an instance, I ,
for non-preemptive scheduling, with jobs of processing requirements {p1, . . . , pn}, and
machines with rates {u1, . . . , um}, we construct the following instance, I ′, for preemptive
scheduling: Let k > 1 be an even number, and let C > max{u1, . . . , um}. There are
n′ = n + k/2+ 1 jobs: the j th job 1 ≤ j ≤ n has processing requirement pj (as in I ),
each of the other k/2+1 additional jobs has processing requirement (kC2+2C)/(k+2).
There are m ′ = m + k/2 + 1 machines: the i th machine 1 ≤ i ≤ m has rate ui

(as in I ), machine Mm+1 has rate um+1 = C , and each of the other k/2 machines,
Mm+2, . . . ,Mm+k/2+1, has rate C2, these machines are denoted fast. Note that, for any
m ≥ 2, we have k ≤ 2(m ′ − 3). The proof follows from the next two claims in which
we show that OPT(I ) = 1 (with no preemptions) iff OPT(I ′) = 1 (with at most k
preemptions). We note that the construction of I ′ can be scaled such that the value 1 can
be replaced by any other value.

CLAIM 2.13. If there exists a non-preemptive schedule for I whose makespan is equal
to 1, then there exists a preemptive schedule for I ′ whose makespan is equal to 1, and
the total number of preemptions in the schedule is at most k.

PROOF. We first schedule non-preemptively the first n jobs on the first m machines.
The additional jobs are scheduled on the additional machines in the following way: each
job Jn+1, . . . , Jn+k/2+1 is scheduled for 2/(k+2) time units on Mm+1, and for k/(k+2)
time units on fast machines. Thus, the total number of processing units allocated to each
of the additional jobs is

2

k + 2
C + k

k + 2
C2 = kC2 + 2C

k + 2
.

The schedule can be done using k preemptions, as illustrated in Figure 2 (where J ′j
denotes Jn+ j ). Note that Jn+1 and Jk/2+1 are preempted once, while each of the k/2− 1
jobs Jn+2, . . . , Jn+k/2 is preempted twice. Thus, the total number of preemptions is
2+ 2(k/2− 1) = k.

.

.

.

J ′
1

J ′
1 J ′

2 J ′
3

J′
k
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2
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Fig. 2. An optimal schedule of I ′.
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CLAIM 2.14. If there exists a preemptive schedule of I ′ that uses at most k preemptions,
and whose makespan is equal to 1, then there exists a non-preemptive schedule of I whose
makespan is equal to 1.

PROOF. Consider any additional job, Jj (with pj = (kC2 + 2C)/(k + 2)). We first
show that Jj is scheduled at least k/(k + 2) time units on fast machines (with rate C2).
Let t ∈ [0, 1] be the total time that Jj is processed by fast machines. Note that any
non-fast machine has rate ui ≤ C , thus, we must have pj ≤ tC2 + (1 − t)C . That is,
kC2 + 2C ≤ (k + 2)(tC2 + C − tC). We get that k(c − 1)/(k(c − 1)+ 2(c − 1)) ≤ t
or t ≥ k/(k + 2). Summing up over all the additional jobs, we get that the total time
allocated by the fast machines to these jobs is at least (k/(k + 2))(k/2+ 1) = k/2. On
the other hand, in any schedule with makespan= 1, the total processing time of the fast
machines is k/2. We conclude that the fast machines are dedicated to the additional jobs
only, and that each additional job is executed on fast machines for exactly k/(k+2) time
units. Moreover, in order to be completed, Jj must be allocated pj − tC2 = (1 − t)C
processing units in the remaining 2/(k + 2) time units, thus, it must be processed on the
(single) machine whose rate is C . We conclude that the additional jobs are scheduled
on the machines Mm+1, . . . ,Mm+k/2+1, and that each such job is processed during the
entire interval [0, 1], and must spend some time on Mm+1. Clearly, the first and last jobs
on Mm+1 are preempted at least once. Each of the other jobs on Mm+1 is preempted
at least twice. Thus, the total number of preemptions on Mm+1, . . . ,Mm+k/2 + 1 is at
least 2 + 2(k/2 − 1) = k. Since k is the total number of preemptions in the schedule,
the schedule on M1, . . . ,Mm is non-preemptive, and induces a non-preemptive schedule
of I .

2.3. LPT and the Power of Unlimited Preemptions. Consider the LPT algorithm, which
assigns jobs to machines in order of non-increasing processing times. Each job is assigned
to the machine in which its completion time will be the earliest. Clearly, the resulting
schedule is non-preemptive and the parallelism constraints are preserved. In [7] it was
shown that LPT yields a ratio of 2m/(m + 1) to the optimal non-preemptive makespan.
A closer analysis of LPT implies the following. Let w denote the optimal preemptive
makespan (as defined in (1)).

THEOREM 2.15. For a system of m uniform machines, an LPT schedule yields a (2 −
1/m)-approximation for w.

PROOF. For the case where n > m, i.e., the number of jobs is larger than the number
of machines, the proof of Theorem 2.1 in [7] applies also for the preemptive case. The
proof uses the fact that the makespan of any optimal non-preemptive schedule is at least
Tn/Um . By (2), this bound also holds for preemptive schedules.

Below we give a proof for the case where n ≤ m. We use the following claims in our
proof.

CLAIM 2.16. When n ≤ m, there exists an optimal schedule that uses only the n fastest
machines.
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PROOF. This clearly holds when n = m. For n < m, let F denote the set of n fastest
machines. Assume that at time t some slow machine processes the job Jj . Since there
is no parallelism, Jj is not processed at time t on any fast machine. Thus, some fast
machine is idle at time t (n < m and without Jj only n− 1 jobs are available for the fast
machines). This implies that we can move Jj to that idle segment without increasing the
makespan.

CLAIM 2.17. When n ≤ m, LPT uses only the n fastest machines.

PROOF. This clearly holds when n = m. For n < m, let Jj be the next job to be
scheduled. Some fast machine is idle at that time, since at most n−1 jobs were scheduled
before Jj . Thus, LPT must select some idle fast machine for this job.

By Claim 2.16, w = Tn/Un . Let Mk ∈ F be the machine that determines the
makespan of LPT. Let tn be the processing requirement of the last job on Mk . With-
out loss of generality we assume that the shortest job (Jn) has the latest completion time;
otherwise, we can remove from the instance all the jobs that completed before Jn , with
no effect on the makespan of LPT.

Let Ai be the total processing time of the jobs scheduled on machine Mi by LPT for
i �= k, and let Ak be the total processing time of jobs scheduled on Mk before Jn . We have:

1. wLPT = (Ak + tn)/uk , since Mk determines the makespan of LPT.
2. wLPT ≤ (Ai + tn)/ui , for all i �= k, since LPT selected Mk for Jn .

We sum over the n fastest machines. By Claim 2.17, Ai = 0 for any slow machine,
therefore

∑
i∈F Ai = Tn − tn . That is, wLPT ·Un ≤ Tn + (n − 1)tn . Also, since Jn is the

shortest job, tn ≤ Tn/n. We get that

wLPT ≤ Tn

Un
+ (n − 1)Tn

nUn
= w · 2n − 1

n
≤ w · 2m − 1

m
.

We now show that the above bound is tight. Consider an instance with n jobs whose
processing requirements are tj = 2− 1/m, and m machines, where u1 = m and ui = 1
for i = 2, . . . ,m; then wLPT = 2− 1/m, whereas w = 1.

3. Approximation Schemes for GMS

3.1. Fixed Number of Machines. In this section we describe a PTAS for GMS, where
the number of machines, m, is a fixed constant. Note that, in this case, we may assume
that aj , the maximal number of preemptions of Jj , is fixed and bounded by 2(m − 1),
for all 1 ≤ j ≤ n.

Our scheme builds on the technique introduced in [15], for open shop scheduling.
Initially, we partition the jobs into subsets, by their processing times. We distinguish
between “big”, “small” and “tiny” jobs. The big jobs, for which the number of scheduling
possibilities is polynomial, are handled first. The scheme uses dynamic programming to
find a feasible preemptive schedule of these jobs, which is within a factor of (1+ε) from
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the optimal. Each of the big jobs, Jj , may be partitioned to at most (aj + 1) segments.
(The segment sizes are measured in processing units, and therefore can take values in
(0,maxj tj ].) In scheduling the big jobs, we impose some restrictions on the starting times
and sizes of the big job segments: these restrictions are needed to make the dynamic
programming work.

The heart of the scheme is in the way we define “small” and “tiny” jobs. The small
jobs have non-negligible processing times, yet, the number of possible schedules for
these jobs may be exponentially large. We show (in Lemma 3.1) that we can select this
set such that the total processing time of the jobs is small relative to an optimal solution
for the problem. This allows us to schedule these jobs non-preemptively on the machines
(although in any optimal schedule, some or all of these jobs must be preempted), with
only small increase in the overall completion time.

The tiny jobs are defined such that their processing times are much smaller than those
of the big jobs. We use a simple algorithm for adding to the schedule these jobs, which
are processed non-preemptively. Since the processing times of these jobs are very small,
we show that they can fit well into the “holes” generated in the schedule by the big and
the small jobs. The increase in the overall completion time will result from holes that
remained in the schedule after the tiny jobs were scheduled. We show that their total size
is at most ε times the optimal completion time.

For the scheme we need the next lemma.

LEMMA 3.1. There exists α ∈ [(ε3/(m2 · (amax + 1)2))m/ε−1, 1], such that the set S of
small jobs, selected with α, satisfies ∑

Jj∈S

tj ≤ εP.(3)

PROOF. Let αk = (ε3/(m2 · (amax + 1)2))k−1, for 1 ≤ k ≤ m/ε. Then, for each value
of k we get the corresponding set of jobs Sk . Note that the sets S1, . . . , Sm/ε are disjoint,
and since the overall processing load in the system is at most m P , there exists a set Sk ,
1 ≤ k ≤ m/ε, satisfying (3). We choose α = αk .

Our scheme proceeds in the following steps. For a given ε > 0, let δ = αε3/(m(amax+
1)2), where α is as defined in Lemma 3.1, and amax = max1≤ j≤n aj .

1. Guess the minimum makespan, TO, within factor 1+ ε.
2. Given TO, guess P , the maximal load (in processing units) on any machine.
3. Partition the jobs in the instance by their processing times to big, small and tiny, given

by the sets B, S and T ; that is, for the value ofα ∈ (0, 1] found in Lemma 3.1, we define

B = {
Jj | tj > αεP

}
,

S =
{

Jj | αε4 P

m2(amax + 1)2
< tj ≤ αεP

}
,

T =
{

Jj | tj ≤ αε4 P

m2(amax + 1)2

}
.
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4. Find an optimal schedule of all the jobs in B, such that:
(P1) Each job Jj is partitioned into at most aj + 1 segments; any segment is of

size at least αε2 P/(amax + 1)2, rounded up to the closest integral multiple of
αε4 P/((amax + 1)2 · m2).

(P2) The starting time of each segment is an integral multiple of δTO.
5. Schedule the jobs in S non-preemptively on the machines, by assigning greedily the

jobs (in arbitrary order) to holes on the machines. (The time gap between the end of
the schedule on any machine and TO is also considered a “hole”.) This is done as
follows. We say that a hole on the machine Mi is suitable for Jj if Jj can be scheduled
non-preemptively in the hole and processed to completion. For any job Jj ∈ S, we
look for the minimal suitable hole, on any machine. The jobs that are scheduled in
each hole are processed with no-idle times. If no hole fits for scheduling Jj then we
add Jj at the end of the schedule, on the machine that will complete its execution first.

6. Schedule on the machines the jobs in T . Starting with the first hole on M1, we fill
each of the holes by scheduling sequentially (in arbitrary order) jobs in T . If the hole
is too short for the next job, we move this job to the end of the schedule on the same
machine. We mark that hole as “full” and move to the next hole on the same machine.
Once all the holes on Mi are marked as “full”, we move to the first hole on Mi+1.

Analysis. We use the next two lemmas to show that the schedule generated by the
scheme is of length at most TO(1+ ε).

LEMMA 3.2. Setting the starting times of the segments of the jobs in B to be integral
multiples of δTO can increase the overall length of the schedule at most by a factor of
1+ ε.

PROOF. Recall that the size of each segment of a big job Jj is at least αε2 P/(amax+1)2.
Therefore, the number of segments of big jobs on each machine is at most (amax +
1)2/(αε2). Suppose we are given a schedule of the segments with arbitrary start times;
then, starting from i = 1, we shift sequentially each job segment on the machine Mi to
the next possible start time, i.e., an integral multiple of δTO, such that no overlap occurs
with segments of the same job processed by M1, . . . ,Mi−1. Note that by this we add
on Mi at most (i − 1) · (amax + 1)2/(αε2) idle time intervals, each of length at most
δTO = αε3TO/(m(amax + 1)2). Hence, the total increase in the length of the schedule
on each machine is bounded by

αε3TO
m(amax + 1)2

· m(amax + 1)2

αε2
= εTO.

In the discussion below, we consider only schedules in which the starting times of the
segments in B are integral multiples of δTO.

LEMMA 3.3. Any schedule of length TO of the segments of jobs in B can be transformed
into one of length at most (1+ 4ε)TO in which (i) the minimal size of any segment of Jj

is at least αε2 P/(amax + 1)2, and (ii) the size of each segment is an integral multiple of
αε4 P/((amax + 1)2 · m2).
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PROOF. To obtain a schedule that satisfies (i) and (ii), we proceed as follows. For any
1 ≤ j ≤ n, if Jj has segments whose sizes are smaller than αε2 P/(amax + 1)2 then we
group these segments into a single segment. Note that by that we have not increased the
number of preemptions of Jj . If the total size of this segment is still small, we round it
up to αε2 P/(amax + 1)2. Clearly, there is a machine Mi which processes a segment of
Jj of size tj/(aj + 1). We schedule the new segment on Mi in the first possible time, that
is, if there is a hole before TO in which we can fit the segment, we assign the segment to
this hole. (Note that a segment of Jj may not fit in a hole since another segment of Jj is
processed at the same time on another machine.) If the new segment does not fit in any
hole on Mi , we add the segment at the end of the schedule on this machine. Indeed, the
size of the new segment of Jj is at most

ajαε
2 P

(amax + 1)2
≤ ajεtj

(amax + 1)2
≤ εtj

aj + 1
.

Thus, we have increased the processing requirement of Jj on Mi at most by a factor of
(1+ ε), with no effect on the other machines.

Now, we round up the size of each large segment of Jj to the next integral multiple of
αε4 P/((amax + 1)2 · m2). To bound the overall increase in the completion time of each
machine, we first lower bound L , the minimum processing load on each machine. We may
assume that L ≥ εP/m; otherwise, we can move the corresponding job segments to the
maximally loaded machine, and increase its overall processing load by at most εP . Thus,
while rounding up the size of each segment, we add to it at most (αε3L)/(m(amax+1)2)
processing units, which require on any machine at most αε3TO/(m(amax + 1)2) time
units. Rounding up the segment sizes on some machine Mi we may cause overlaps in
the schedule on this machine. Thus, we shift the overlapping segments on each machine
to the next scheduling point. This may result in overlaps among segments of the same
job running on different machines. We fix the schedule by shifting the job segments,
as in the proof of Lemma 3.2, starting from the first job segment on M1, so that each
segment starts in the next possible scheduling point. We get that the total increase in the
completion time of any machine is at most 2εTO. Overall, in the above procedure, we
have increased the completion time of the jobs by at most 4εTO.

We summarize our analysis in the next result.

THEOREM 3.4. The above scheme yields a (1 + ε)-approximation to the minimum
makespan in O(n) steps.

PROOF. By Lemmas 3.2 and 3.3, the schedule of segments of the big jobs increases
the length of any optimal schedule by at most 5εTO. In Steps 5 and 6 we schedule non-
preemptively the jobs in S and T . Note that, by Lemma 3.1, the overall increase in the
processing time of any machine due to jobs in S is at most εTO. Now, consider the jobs
in T . Assume as before that the minimal processing load on any machine is L = εP/m.
Thus, the processing load generated by any tiny job is smaller than δL , and its running
time on any machine is at most δTO. If a job that is last in some hole on Mi moves to
the end of the schedule then, clearly, the length of the remaining hole is smaller than
δTO time units. Since after scheduling the small jobs we have at most (amax + 1)2/(αε2)
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holes on each machine, in scheduling the tiny jobs, we totally increase the length of the
schedule by at most εTO. The desired ratio of (1+ ε) is obtained by taking ε′ = ε/7.

For the complexity of the scheme, we first note that TO can be guessed in O(log(1/ε))
steps, since we have a 2-approximation from using LPT. Also, P can be guessed in
O(log(m/ε) steps, i.e., in constant time. This follows from the fact that TO yields a
bound, P̂ = min(

∑n
j=1 tj ,max1≤i≤m ui TO), on the maximum processing load of any

machine. Since P ≥ (∑n
j=1 tj )/m, we have an m-approximation for P .

Now, we turn to analyze Step 4. In this step we find an optimal schedule for the big
jobs. Since |B| ≤ m/(αε), we can enumerate efficiently all the possible schedules of the
big jobs in the 1/δ possible starting points on all the machines. More specifically, we
use for each machine, Mi , a configuration vector, ci , of length 2/δ. Let s	 = (	− 1)δTO
denote the 	th possible start-time in the schedule, 1 ≤ 	 ≤ 1/δ. We say that s	 is
the beginning of a hole, if a segment that occupied the machine in s	−1 completes in
t ∈ (s	−1, s	]. Each of the first 1/δ entries in ci indicates, for any 1 ≤ 	 ≤ 1/δ, whether s	
is a start-time for some segment (“1”), the start of a hole (“2”), or none of the two (“0”).

Each of the last 1/δ entries in ci gives the index of the job to which the segment that runs
in s	 belongs. If s	 is part of a hole, then we put n+1 (Jn+1 is a dummy job of processing
requirement 0). Given a configuration vector for Mi , we “cut” from the corresponding
jobs the largest segments that fit into the schedule, such that each segment is of size
at least αε2 P/(amax + 1)2, given as an integral multiple of αε4 P/((amax + 1)2 · m2).
The number of possible configurations for Mi is (3|B|)1/δ , and the overall number of
configurations is (3|B|)m/δ = O((1/αε)1/(αε

3)), which is a constant.
The running time of Steps 5 and 6 is O(n). Summarizing, we get that the complexity

of the scheme is

O(log(1/ε) · log(m/ε) · ((1/αε)1/(αε3) + n)) = O(n).

When we are given a bound, Tot, on the total number of preemptions in the schedule,
we can apply the above scheme, except that in (P1) (Step 4) we require that the total
number of preemptions in the schedule is at most Tot. In generating the configuration
vectors for the machines, we discard sets of vectors in which the overall number of
preemptions is larger than Tot. Hence, we get

THEOREM 3.5. The above scheme yields a (1 + ε)-approximation to the minimum
makespan, for GMS with a bound on the total number of preemptions, in O(n) steps.

3.1.1. Extensions

Jobs with release times. Suppose that each job Jj has a (known) release time, rj . We
modify our scheme as follows:

1. Guess the minimum makespan, TO, within a factor of 1+ε. This is done by obtaining
initially a 2m-approximation for TO. Consider the Greedy algorithm that schedules
each job, Jj , on machine Mi ′ on which its processing time is minimized, i.e., tji ′ =
mini tj i . Clearly, Greedy is an m-approximation algorithm for TO when all the jobs are
ready at time 0. When the jobs have release times, we apply an algorithm of Shmoys
et al. [18], in which Greedy is used as a procedure to obtain a 2m-approximation
for TO.
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2. Guess P , the maximal load (in processing units) on any machine. As before, this can
be done using the fact that (

∑
j tj )/m ≤ P ≤∑j tj .

3. Partition the jobs as before to big, small and tiny.
4. Find an optimal schedule of all the jobs in B, satisfying (P1) and (P2), such that the

start-time of any segment of Jj is at least rj .
5. Schedule the jobs in S non-preemptively on the machines. In assigning the jobs in S

to holes on the machines, for any job Jj ∈ S, we look for the minimal hole in which
Jj can be scheduled non-preemptively, without increasing the number of holes in the
schedule; if such a hole does not exist we add Jj at the end of the schedule, on the
machine that will complete its execution first.

6. Schedule the jobs in T . We keep a list of the holes on the machines sorted in non-
decreasing order by their start-times. We schedule the next job, Jj ∈ T , in the hole
with the minimal possible start-time τ ≥ rj . If Jj can complete, we modify the start-
time of the remaining hole, and update the sorted list accordingly; if the hole is too
short for Jj , we move Jj to the end of the schedule on the same machine, and mark
that hole as full.

The analysis is similar to the analysis of the original scheme, except that in Step 1
we guess TO in O(log(m/ε)) steps (which is a constant). Thus, the complexity of the
modified scheme remains O(n).

Arbitrary preemption costs. As shown in Theorem 3.5, our scheme can be applied also
in the case where we have a bound, Tot, on the total number of preemptions. Suppose
that the cost of preemption for Jj on the machine Mi is ci j , for 1 ≤ i ≤ m, 1 ≤ j ≤ n.
Given the value C > 1, we need to find a preemptive schedule in which the makespan
is minimized, and the overall preemption cost is at most C . Indeed, in Theorem 3.5
we consider a special case of this problem, where ci j = 1 for all i, j . Our scheme
can be easily extended to apply to arbitrary preemption costs. Recall that, by [8], in
any instance, we can schedule the jobs to obtain minimum makespan by using at most
2(m − 1) preemptions. The scheme proceeds as the above scheme, only that in Step 4
we allow 2(m − 1) preemptions for each job; we select a schedule whose total cost is at
most C .

We summarize our discussion in the next result.

THEOREM 3.6. For any fixed m > 1, there is a linear time approximation scheme for
GMS with release dates and arbitrary preemption costs on uniform machines.

3.2. Arbitrary Number of Machines. In this section we describe approximation
schemes for GMS where the number of machines is given as part of the input. We
refer here to the variant of GMS in which we are given a bound, Tot, on the overall num-
ber of preemptions throughout the schedule. We first consider the special case where the
machines are identical, and later discuss uniform machines.

3.2.1. Identical Machines. In any preemptive schedule, there might be preempted and
non-preempted jobs. The processing of a preempted job is split into two or more segments.
Note that for identical machines McNaughton schedule incurs at most m−1 preemptions
(of the last job on each of the first m − 1 machines).
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DEFINITION 3.1. A preemptive schedule for a GMS instance is called primitive if it
satisfies the following two conditions:

• Every preempted job is preempted exactly once. These two segments are processed
on two different machines.
• Every machine processes at most two segments of preempted jobs. These segments

are either processed first or last on the machine.

LEMMA 3.7. For every instance of GMS with an arbitrary number of identical machines
and a bound on the total number of preemptions, there exists an optimal schedule that
is primitive.

PROOF. Consider an arbitrary optimal schedule, and define an undirected graph whose
vertices are the machines. There is an edge between the machines Mi and Mk if and
only if they process a common (preempted) job. A connected component in this graph
on k vertices corresponds to k machines and jobs with at least k − 1 preemptions.
The schedule for such a connected component can be replaced by the corresponding
McNaughton schedule without increasing the makespan and without using more than
k− 1 preemptions. By repeating this procedure for every connected component, we end
up with an optimal schedule that is primitive.

We now describe a PTAS for approximating the optimal primitive schedule. Let T
denote the makespan of the LPT schedule. By Theorem 2.15, T is a 2-approximation
to the optimal makespan. Let ε > 0 be the desired precision of approximation, and let
δ = ε/10. A job is big if tj ≥ δT ; otherwise, the job is small. We introduce a rounded
instance that corresponds to instance I . For every big job Jj , we define a corresponding
rounded job whose processing time equals tj rounded up to the next integer multiple of
δ2T . Rounded big jobs can only be preempted once to form two segments, whose sizes
are integer multiples of δ2T and at least δT . Let Ps denote the total processing time of
all small jobs; then the rounded instance contains a number of small jobs of length δT ,
such that their total size equals Ps rounded down to the next integer multiple of δ2T .
These small jobs must not be preempted at all.

An optimal primitive schedule for the rounded instance can be computed in polyno-
mial time by dynamic programming or via integer programming in fixed dimension. We
skip the details of these standard methods.

CLAIM 3.8. An optimal primitive schedule for the rounded instance can be translated
into a primitive schedule for the original instance that is a (1+ ε)-approximation of the
optimal primitive schedule for the original instance.

PROOF. Since the rounded jobs are larger than the original jobs, we can process each
job in the time interval in which its rounded job is scheduled. On each machine there are
at most 1/δ big jobs and at most two (the first and last) additional segments of big jobs.
For each job or segment, the rounding causes an extension of at most T δ2. Thus, the total
extension in the makespan due to rounding of big jobs is at most δT +2δ2T . In addition,
we round (to δT ) at most one group of small jobs, and we may need to compensate for
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rounding down the total size of the small jobs (Ps) to the nearest multiple of δ2T . Thus,
the extension due to rounding of small jobs is at most δT + δ2T . Overall, we get that
the makespan may be extended by 2δT + 3δ2T ≤ 5δT . Finally, recall that T ≤ 2Topt,
therefore we get that the extension due to rounding is at most 10δTopt = εTopt.

Hence, the above scheme is a PTAS for GMS on identical machines.

THEOREM 3.9. For any m > 1, Tot > 1, there is a PTAS for GMS on identical machines,
with at most Tot preemptions.

3.2.2. Uniform Machines. Assume now that the machines are uniform, and Tot ≥ 1 is
some constant. If Tot ≥ 2(m − 1) then, by [8], the problem can be solved in polynomial
time. For the case where Tot ≤ 2m − 3, we show that the scheme given in Section 3.1
can be extended to yield (1+ ε)-approximation for this problem. As before, we initially
guess the optimal completion time, TO. Then we guess the set of machines, Mp, on
which we may use preemptions throughout the schedule. Let m ′ = |Mp| denote the
size of this set of machines; then 1 ≤ m ′ ≤ Tot + 1. The jobs that are scheduled on the
remaining set of machines,Mnp, will run non-preemptively.

We first find the set of jobs that will be processed onMnp. We renumber the machines
inMnp by 1, . . . , (m − m ′). We define an instance of the multiple knapsack problem,
with N = m −m ′ bins; bin i represents the machine Mi ∈Mnp. Given a good guess of
TO, the capacity of bin i is the maximum number of processing units allocated to Mi in
an optimal schedule, given by ui TO.

We have a set of n items; item j , 1 ≤ j ≤ n, has the size tj , and the same value. We
need to pack a subset of the items of maximal value in the (m −m ′) bins. Using scaling
and rounding of the item sizes and values (see, e.g., [2]), we can guess in polynomial
time the subset of items that is packed in the bins in an optimal solution. Then we can
use, e.g., the scheme of Epstein and Sgall [5] to pack these items with an overflow of
(1+ ε). Thus, for a “good” guess of TO and of the subset of jobs to be scheduled on the
machines inMnp, we find a schedule whose makespan is at most TO(1+ ε).

Now, we have a smaller instance, I ′, of the jobs that need to be scheduled on the
machines inMp, using at most Tot preemptions. Since m ′ is a constant, we can use the
scheme in Section 3.1 to obtain a feasible schedule of I ′, whose makespan is at most
TO(1+ ε).

We now analyze the complexity of the scheme. The optimal makespan, TO, can be
guessed, as before, in O(log(1/ε)) steps. We then guess in O(m(T ot+1) steps the set
Mp. Using the technique of [2] (see also [16]), the set of jobs (= items) that will be
scheduled (= packed) on the machines inMnp can be guessed in O(nO(1/ε ln(1/ε))) steps.
A non-preemptive schedule of the jobs with overall completion time at most (1+ ε)TO
can be found in O(n1/ε2

) steps [5]. Finally, we apply the scheme in Section 3.1 to the
instance I ′. Hence, we get

THEOREM 3.10. For any m > 1, there is a PTAS for GMS on uniform machines with
a fixed bound, Tot, on the number of preemptions. The running time of the scheme is
O(mT ot+1 · log(1/ε) · nO(1/ε ln(1/ε)) · (n1/ε2 + n)) = O(n1/ε2+1/ε ln(1/ε)).
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4. Minimizing the Number of Preemptions. In this section we consider the MPS
problem. For convenience, we refer below to the number of segments, Ns(I ), generated
for the instance I . (The number of segments of Jj is the number of preemptions incurred
plus one.) Recall that we now allow each job Jj to be processed in parallel byρj machines,
for some 1 ≤ ρj ≤ m. Theorem 2.1 implies that we can find efficiently a schedule that
minimizes the makespan for a given instance of MPS. However, the schedules generated
by adopting an optimal algorithm for Q|pmtn|Cmax may have an excessive number
of job segments. In fact, we may get

∑
j (ρj − 1) extra job-segments in the schedule

of I (since the sub-jobs composing Jj are not necessarily scheduled adjacent to each
other).

We consider the number of job-segments generated by algorithms that achieve the
minimal makespan. We first derive a lower bound for Ns(I ); then we present an algorithm,
Ap, that achieves this bound.

THEOREM 4.1. For any m, b, 1 ≤ b ≤ m, there exists an instance, I , in which ρj ≥ b,
for all j , and in any optimal schedule of I , Ns(I ) ≥ m + n + �m/b� − 2.

PROOF. Let m = bn + y. Consider an instance with n = �m/b� jobs. For any integer
k > 1, an instance that achieves the lower bound consists of one job, J1, with t1 = (b+
y)+(k−1)/n andρ1 = b+y, and n−1 identical jobs, J2, . . . , Jn , with tj = b+(k−1)/n
and ρj = b, ∀2 ≤ j ≤ n. There is one fast machine, M1, with the rate u1 = k, and m−1
identical slow machines, M2, . . . ,Mm , with the rate ui = 1, ∀2 ≤ i ≤ m. By (1), the
minimal makespan for this system is (

∑
j tj/

∑
i ui ) = 1. Since

∑
j tj =

∑
i ui , none

of the machines is idle in the interval [0, 1]. In addition, m = bn + y =∑j ρj , thus, in
order to have a schedule with no idle times, each job j must be processed by ρj machines
at any time during the schedule. Also, since for all the jobs tj = ρj + (k−1)/n, each job
must spend 1/n of the time on the fast machine M1 (see Figure 3 for n = 5,m = 11).
It follows that the first and last jobs on M1 are partitioned into at least ρj + 1 segments,
and each of the other n − 2 jobs is partitioned into at least ρj + 2 segments. Thus,
Ns(I ) ≥

∑n
j=1(ρj + 2)− 2 = nb + y + 2n − 2 = m + n + �m/b� − 2.
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Fig. 3. An example of the lower bound (m = 11, n = 5, b = 2).
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τ0 = 0 τr = wτh−1 τh

MhM1D : Mh+1

τh+1

Fig. 4. A DPS Dk .

4.1. An Upper Bound on Ns(I ). Let w be the length of an optimal schedule for I .
Recall that, by (2), w can be calculated efficiently using (1). We now describe algorithm
Ap, which achieves the makespan w and also minimizes Ns(I ). Assume that the jobs
are sorted such that t1/ρ1 ≥ · · · ≥ tn/ρn , and the machines are sorted such that u1 ≤
· · · ≤ um .

As in [8], we define a disjoint processor system (DPS) to be a union of disjoint
idle-segments of r machines with non-decreasing rates, such that the union of the idle-
segments is the interval [0, w]. Formally, let M1, . . . ,Mr be a set of r machines with
non-decreasing rates. Then these r machines form a DPS if Mh is idle exactly from τ h−1

to τ h , where τ 0 = 0, τ r = w and τ h−1 < τ h , for all 1 ≤ h ≤ r (see Figure 4). Note that
a DPS is defined relative to a given (partial) schedule.

For each DPS, Dk , let Q Dk denote the potential of Dk , that is, the number of processing
units that Dk can allocate. Initially, each of the m machines forms a DPS with r = 1 and
Q Dk = wuk . In general, Q Dk is the weighted-average of the processing potential of the
machines that form Dk . Formally, let rk denote the number of machines that compose
Dk , and let uh

k denote the rate of the machine Mh
k , then Q Dk =

∑rk
h=1 uh

k (τ
h
k − τ h−1

k ).
AlgorithmAp maintains a list, L , of the DPSs, sorted by their potential in non-decreasing
order. That is, QL[1] ≤ QL[2] ≤ · · ·, where L[i] is the DPS at position i in L . The list L
is updated during execution of the algorithm, according to the current available DPSs.
Given a pair of DPSs Da, Db, we say that Da is weaker (stronger) than Db, if Q Da ≤ Q Db

(Q Da ≥ Q Db ).
The jobs, sorted by their processing ratios, are scheduled one after the other.Ap uses

two scheduling procedures:

Greedy-schedule. The greedy-schedule procedure schedules a job, Jj , on the machines
that form the DPSs, one after the other, starting from the first machine in the weakest
DPS, until Jj is allocated exactly tj processing units.

Moving-window. The moving-window procedure schedules a job, Jj , on ρj DPSs
whose total potential is exactly tj . This set of ρj DPSs consists of ρj − 1 DPSs from
L and one DPS that is formed from two DPSs in L . To find this set, we scan the list
using a window of size ρj + 1. Initially, the window covers the set of the weakest ρj + 1
DPSs (given by L[1], . . . , L[ρj + 1]). In each iteration we replace the weakest DPS in
the window by the next DPS in L , until the total potential of the ρj strongest DPSs in
the window is large enough to complete Jj . Let Dk1 , . . . , Dkρj+1 be the set of ρj + 1
DPSs in the window. We first allocate to Jj all the potential of the DPSs Dk2 , . . . , Dkρj

(if ρj = 1 this is an empty set), and complete Jj by also allocating to it some of the
potential of Dk1 , Dkρj+1 ; this allocation is done such that the length of the schedule of
Jj on these two DPSs is exactly w, and the non-used intervals of Dk1 , Dkρj+1 form a
new DPS.
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Fig. 5. The schedule of Jj on consecutive DPSs.

Figure 5 demonstrates a schedule on two consecutive DPSs: the shaded intervals are
allocated to Jj . The non-used intervals of Da, Db form a new DPS, D′, with potential Q′

which is the weighted-average of the non-used intervals. The DPSs Da, Db are removed
from L and D′ is added to L . Since Q Db ≤ Q′ ≤ Q Da , D′ is positioned in L in place of
Da and Db.

We now give a formal description of the algorithm.

ALGORITHM Ap. The jobs, sorted by their tj/ρj ratio, are scheduled sequentially. The
following rules are used when Ap schedules a job Jj :

• If there are at most ρj DPSs in L , or if the total potential of the ρj weakest DPSs
in L is at least tj , schedule sequentially Jj and all the remaining jobs, using the
greedy-schedule procedure.
• Otherwise (the total potential of the ρj weakest DPSs in L is less than tj ), schedule Jj

using the moving-window procedure.

We first show that Ap generates a feasible schedule of length w for I ; then we
compute the resulting number of job-segments. We distinguish between two phases of
Ap: (i) Jobs are scheduled using the moving-window procedure. (ii) Jobs are scheduled
using the greedy-schedule procedure.

Before we give the formal proof, we list some properties of L , the list of DPSs. These
properties will be used to show that the parallelism constraint of each job is preserved,
and that no machine processes more than one job any time.

• Initially, the list consists of m machines.
• Each time the moving window procedure is used, two DPSs are merged into a single

one, and therefore the list L becomes shorter by one DPS.
• DPSs do not split. Therefore, at any moment, each machine is contained in at most

one DPS.
• At any moment, the DPSs cover exactly all the idle times of all the machines.

For simplicity, we analyze Ap assuming that for all j, ρj = 1. In what follows, we
explain how the analysis can be applied for arbitrary ρj ’s. We first show that during
the first phase we can always schedule Jj on two consecutive DPSs, such that the idle-
segments of these DPSs that remained unused, form a DPS. Next, we show that when we
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move to the greedy-schedule stage, we can complete the execution of all the remaining
jobs. Finally, we show that the total number of segments is at most n+ 2(m− 1) (which
matches the lower bound of Theorem 4.1). Recall that the list L of the DPSs is sorted such
that L[1] is the weakest DPS. Note that L becomes shorter as the number of available
DPSs decreases.

CLAIM 4.2. If QL[1] < tj then there exist two consecutive DPSs DL[i], DL[i+1] such
that QL[i] ≤ tj and QL[i+1] ≥ tj .

PROOF. From (1), for any j , w ≥ ∑ j
k=1 tk/

∑ j
k=1 uk . In particular, the longest j − 1

jobs scheduled so far were allocated at most the processing potential of the strongest
j − 1 DPSs, and Jj can be processed on the strongest available DPS. This is true since
the value of w considers (see (1)) the total processing requirement of the longest j jobs
for any j . In other words, we have that QL[len] ≥ tj , where len is the current number
of DPSs in L . Since the DPSs are sorted in non-decreasing order by their potential and
QL[1] < tj , there must be an index i for which QL[i] ≤ tj and QL[i+1] ≥ tj .

CLAIM 4.3. Given two DPSs Da, Db from L , such that Q Da ≤ tj and Q Db ≥ tj , it is
always possible to schedule Jj on Da, Db such that the length of the schedule of Jj is
exactly w.

PROOF. We show that for some t ∈ [0, w], we can schedule Jj to run on the stronger
DPS (Db) at the time interval [0, t], and on the weaker DPS (Da) at the time interval
[t, w] (see Figure 5, the shaded intervals are allocated to Jj ). The value of t can be found
as follows:

1. Initially, we allocate to Jj the ra idle-segments composing Da .
2. As long as Jj is allocated less than tj processing units, schedule Jj on the first idle-

segment of Db in which it is not scheduled; remove Jj for the same time interval from
Da .

3. Since Q Da ≤ Q Db and Q Db ≥ tj , at some point, Jj is allocated at least tj processing
units.

4. Suppose that Jj is allocated at least tj processing units after it is scheduled on the
idle-segment Mh

b on Db, for some 1 ≤ h ≤ rb. That is, Jj is now scheduled to run on
the machines M0

b , . . . ,Mh
b and in the complimentary interval, [τ h

b , w], on Da .
5. Clearly, t ∈ (τ h−1

b , τ h
b ]. Note that the rate of Db in this interval is uniform (equals

uh
b). The rate of Da in this interval may not be uniform, since Da may include in this

interval idle-segments of more than one machine. To find the value of t , we proceed
as follows. We find an interval I ⊆ (τ h−1

b , τ h
b ] such that t ∈ I and the rate of Da in I

is uniform (that is, the interval I is contained in an idle-segment of a single machine
in Da). Once we have such an interval, we can find t by solving a simple equation
that considers the rates of the idle segments of Da, Db in this interval.

To find the interval I , we initially set I = (τ h−1
b , τ h

b ]. As long as I “covers” in Da

more than one machine, let M	
a be the rightmost machine in Da included (possibly

partly) in the interval. We allocate to Jj the idle-segment of M	
a , and remove Jj from

the complimentary interval in Db. If, as a result of that allocation, Jj is allocated less
than tj processing units, then t ≥ τ 	−1

a and a required interval, in which the rate of
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Da is uniform, is detected ((τ 	−1
a ,min(τ 	a , τ

h
b )]). Otherwise, I = (τ h−1

b , τ 	−1
a ), and

we continue to allocate to Jj the next rightmost machine in Da . We iterate until we
find a required interval (this will surely happen when I includes a single machine
from Da).

In the simplest case, when ra = rb = 1, t is the solution of the equation (w− t)ua +
tub = tj . Since wua = Q Da ≤ tj and wub = Q Db ≥ tj , this equation always has
a solution t ∈ [0, w]. When rb > 1, we iterate, as described in Step 2 above, to find
an interval that contains t , and in which the rate of Db is uniform. Then we iterate, as
described in Step 5 above, to find an interval that contains t , and in which the rate of Da

is also uniform. Now we can find t by solving an equation which considers the rates of
Da and Db in this interval.

In order to identify the interval in which t lies, we keep for each DPS the processing
potential of any prefix and for any suffix of intervals. As described in Step 5, the prefix
values enable us to find the interval I . The suffix (and prefix) values are then used to
calculate the prefix–suffix values of the resulting merged DPS.

Note that the total number of iterations in Step 2 is bounded by the number of machines
from Db that are allocated to Jj . Also, the total number of iterations in Step 5 is bounded
by the number of machines from Da that are allocated to Jj . Thus, the total number of
iterations when scheduling Jj is bounded by the number of segments in its schedule. As
we show below, the total number of segments in the whole schedule, which bounds the
total number of iterations in Steps 2 and 5 required by all the jobs, is O(m + n). When
merging two DPSs, after scheduling a job Jj , we need to calculate the prefix–suffix
values of the new DPS. This may require O(n) steps, and a total of O(n2) for scheduling
all jobs. Thus, the overall time complexity of the algorithm is O(m + n2).

The next claim implies that greedy is suitable for the second phase.

CLAIM 4.4. If QL[1] ≥ tj then we can complete the schedule of the remaining jobs
greedily.

PROOF. The length, w, of the schedule was selected such that w ≥∑n
j=1 tj/

∑m
1=1 ui ;

thus, the total available processing potential is at least the total processing request. It
means that we only need to show that any Jk, j ≤ k ≤ n, can be completed on a
single DPS, and thus the parallelism constraint is kept. Since the jobs are sorted in non-
increasing order by their processing requirements, and since we schedule greedily on
the slowest available DPSs, it is clear that for each Jk , for all j < k ≤ n, whenAp needs
to schedule Jk , the processing potential of the weakest DPS in the next w time units is
at least tk .

We now turn to consider the number of job segments generated by Ap.

LEMMA 4.5. The total number of segments is at most n + 2(m − 1).

PROOF. For a given schedule, define a busy-segment as a maximal time interval in which
one machine is processing one job without preemptions. Throughout the algorithm, for
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each machine, Mi , thew-interval of Mi may consist of busy-segments, that were already
allocated to some jobs, and of one idle-segment, which belongs to some DPS. Recall that
that Mi belongs to at most one DPS. Each idle-segment may be partitioned into many
busy-segments by the end of the schedule.

Denote by X0 the initial number of idle or busy segments. Clearly, we start with
one idle-segment of length w on each machine, and no busy-segments. Thus, X0 = m.
Denote by X j the total number of segments of both types, after the job Jj was scheduled,
and by XB

n the total number of busy-segments after the last job, Jn , was scheduled. That
is, XB

n = Ns(I ).
We show that in any schedule that uses the moving-window procedure, the total

number of segments may increase at most by two, and in any greedy-schedule the total
number of segments may increase at most by one. Then we bound the number of moving-
window schedules, in order to bound the maximal possible number of segments by the
end of the schedule. We use the following claims.

CLAIM 4.6. If Jj is scheduled in the first phase then X j ≤ X j−1 + 2.

PROOF. Assume that Jj is scheduled on the two DPSs Da, Db, consisting of r1, r2

idle-segments, respectively. Let c1, c2 denote the number of idle-segments in Da, Db,
allocated to Jj (for example, in Figure 5, c1 = 3, c2 = 2). As a result of this schedule,
a new DPS, D′, with at most (r1 − c1 + 1 + r2 − c2 + 1) idle-segments is generated,
and the DPSs Da, Db are removed from L . The number of idle-segments is therefore
decreased by c1 + c2 − 2, while the number of busy-segments is increased by c1 + c2,
which are allocated to Jj . Overall, we get that X j = X j−1+ (c1+ c2)− (c1+ c2− 2) =
X j−1 + 2.

CLAIM 4.7. If Jj , j < n, is scheduled in the second phase then X j ≤ X j−1 + 1.

PROOF. When Jj is scheduled greedily, we assign to Jj a consecutive set of idle-
segments, until it is allocated tj processing units. The last segment in which Jj is sched-
uled may split: to one busy-segment—allocated to Jj —and one idle-segment—on which
the schedule of Jj+1 will start. Thus, the total number of segments is increased by one.

CLAIM 4.8. XB
n ≤ Xn−1.

PROOF. When the last job, Jn , is scheduled, there are two possible scenarios:

1. Jn fits exactly into the remaining idle-segments. In this case these idle-segments
become busy-segments, and XB

n = Xn = Xn−1.
2. The total size of the available idle-segments is larger than tn . In this case Jn will only

partially use the last idle-segment, in which it is scheduled; thus, Xn = Xn−1 + 1.
However, since we are left with at least one idle-segment, XB

n < Xn , which means
that XB

n ≤ Xn−1.

In both cases, XB
n ≤ Xn−1.
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Denote by nw, ng the number of jobs scheduled during the first and the second phases,
respectively. Clearly, ng = n − nw. Combining Claims 4.6–4.8, we get

XB
n ≤ Xn−1 ≤ X0 + 2nw + ng − 1 = m + 2nw + ng − 1 = m + n + nw − 1.(4)

To bound XB
n , we bound nw. Note that each job scheduled during the first phase

reduces by one the size of the list of DPSs. Thus, after we schedule at most m − 1
jobs, we schedule greedily the remaining jobs. Thus, nw ≤ m − 1. From (4), XB

n ≤
m + n + nw − 1 ≤ n + 2(m − 1). This completes the proof of the lemma.

The analysis of Ap for instances with arbitrary ρj ’s is similar. Note that when we
schedule a job Jj with ρj > 1, using the moving-window procedure, Jj runs on ρj + 1
DPSs Dk1 , . . . , Dkρj+1 . All the potential of the DPSs Dk2 , . . . , Dkρj

is allocated to Jj ,
and Claim 4.3 holds for Dk1 and Dkρj+1 . The extension of Claims 4.2 and 4.4 is straight-
forward: we consider the set of ρj weakest DPSs instead of the weakest one. Finally,
Claims 4.6–4.8 are also valid for the general case: in any moving-window schedule,
independent of ρj , only the first and last DPSs in the window are united, and in any
greedy schedule only the last busy-segment may split (thus adding a single idle-segment).
Hence, as in the case where for all j, ρj = 1, the resulting number of segments satisfies
XB

n ≤ m + n + nw − 1. However, nw can be bounded by the minimal k for which∑k
j=1 ρj ≥ m − minj ρj . Note that now, in any moving-window schedule, we remove

ρj DPSs from the DPS list, and in the worst case we move to the greedy phase when we
are left with minj ρj DPSs.

Indeed, sorting the jobs by the ratios tj/ρj may not provide the minimal k. However,
it guarantees that once Ap reaches the greedy phase, all the remaining jobs can be
completed. Thus, for some instances, a different order of the jobs may result with fewer
preemptions.

Given that there exists b such that for all j, ρj ≥ b, we get that nw ≤ �(m − b)/b�,
thus, Ns(I ) = XB

n ≤ m + n + �(m − b)/b� − 1 = m + n + �m/b� − 2. This matches
the lower bound, as given in Theorem 4.1.

We now turn to compute the running time of Ap. First, O(m log m) + O(n log n)
steps are required for sorting the lists and calculating w.

Given that the lists are sorted, the total time for scheduling the jobs is O(m + n2 +
n log m). The first phase of the algorithm, in which we schedule the jobs by scanning the
list L with the moving-window, can be implemented in O(m+n2+n log m) steps. Recall
that the jobs are sorted by their processing ratios, and each job is scheduled on exactly
ρj + 1 DPSs from L . The idea is to start scanning the list for each job, Jj , from a fixed
point, which depends on Jj . Recall that in this phase, each job Jj , j > 1, is scheduled
on exactly ρj + 1 consecutive DPSs. This set of DPSs must contain the strongest DPS
among those whose potential is at most tj/ρj . Since L is sorted, finding this machine
can be done (e.g., using skip-lists [14]) in O(log m) steps. We can now find in O(ρj )

steps the set of ρj + 1 DPSs that will process Jj .
To find the exact schedule of Jj on the weakest and strongest DPSs contained in the

window (that is, to find the time t ∈ [0, w] as described in Claim 4.3), we may perform
some iterations until we detect an interval I , in which t can be found by solving an
equation. As detailed in the proof of Claim 4.3, the total time for this step is at most
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O(m + n2). Finally, after we schedule Jj , we need to reposition in L the new DPS,
D′, composed from the remainders of the first and last DPSs in the window. Since L is
sorted, this can be done in O(log m) steps.

Let P1 denote the set of jobs scheduled in the first phase. We now bound
∑

Jj∈P1
ρj .

Each of these jobs, Jj ∈ P1, uses up the potential of a set of ρj + 1 DPSs, which are
then omitted from L , and one DPS is added to L . This implies that

∑
Jj∈P1

ρj ≤ m, and,
therefore, the total time required for positioning the window and scheduling the jobs in
P1 is O(n log m)+ O(n2 + m).

During the second phase of the algorithm we schedule the jobs greedily. Hence, this
phase requires O(m + n) steps.

We summarize our discussion of algorithm Ap in the next theorem.

THEOREM 4.9. For any m, b, and any instance I in which ρj ≥ b holds for all j ,
algorithm Ap finds in O(max(m log m, n log n) + n2) steps an optimal schedule of I
with Ns(I ) ≤ m + n + �m/b� − 2.

5. Open Problems. Our study of GMS leaves several questions open for future work.
In particular, for instances with job-wise bounds on the number of preemptions, is there
a value 2 < d < 2m − 1 such that GMS is solvable in polynomial time, if aj ≤ d, ∀ j?

Concerning approximation results, we have resolved the approximability of GMS
instances in which the number of machines is fixed. In the case where the number of
machines can be part of the input, we considered GMS instances in which we have a
bound on the total number of preemptions. While our scheme for identical machines
(in Section 3.2.1) can be modified to handle also instances with (arbitrary) job-wise
bounds on the number of preemptions, the existence of a PTAS for uniform machines
(and job-wise bounds) is still open, even if for all j , aj is a fixed constant.

Finally, our scheme (as given in Section 3.1) has linear running time; yet, the additive
constants make it impractical. We expect that with some optimization steps (which were
not considered in this paper), these constants can be reduced.
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