
DOI: 10.1007/s00453-001-0098-3

Algorithmica (2002) 32: 651–678 Algorithmica
© 2002 Springer-Verlag New York Inc.

Multiprocessor Scheduling with Machine Allotment
and Parallelism Constraints

H. Shachnai1 and T. Tamir1

Abstract. Modern computer systems distribute computation among several machines to speed up the exe-
cution of programs. Yet, setup and communication costs, as well as parallelism constraints, bound the number
of machines that can share the execution of a given application, and the number of machines by which it can
be processedsimultaneously. We study the resulting scheduling problem, stated as follows. Given a set ofn
jobs andm uniform machines, assign the jobs to the machines subject to parallelism and machine allotment
constraints, such that the overall completion time of the schedule (ormakespan) is minimized. Indeed, the
multiprocessor scheduling problem(where each job can be processed by asinglemachine) is a special case of
our problem; thus, our problem is strongly NP-hard.

We present a(1+ α)-approximation algorithm for this problem, whereα ∈ (0,1] depends on the minimal
number of machine allotments and the minimal parallelism allowed for any job. Also, we show that when the
maximal number of machines that can share the execution of a job is some fixed constant, our problem has a
polynomial time approximation scheme; for other special cases we give optimal polynomial time algorithms.
Finally, through the relation of our problem to the classicpreemptivescheduling problem on multiple machines,
we shed some fresh light on what is known in scheduling folklore as thepower of preemption.

Key Words. Multiprocessor scheduling, Makespan, Machine allotments, Parallelizable jobs.

1. Introduction. A continuing trend in modern computer systems is to distribute com-
putation among several physical processors. This enables us to speed up the execution of
heavy applications. Ideally, the work required by such applications could be shared by
anynumber of processors. However, setup and communication costs and the maximal
level of parallelism within each application, bound the number of machines to which it
can beallotted, and the number of machines by which it can be processedsimultaneously.

The resulting scheduling problem can be stated as follows. Suppose thatn jobs need
to be scheduled onm machines; each machine,Mi , 1≤ i ≤ m, runs at specific rate,ui ;
each job,Jj , 1≤ j ≤ n, is associated with a processing time,tj , anallotment parameter,
aj , and aparallelism parameter, ρj . Thus, the execution ofJj can be shared by at most
aj machines, and at mostρj machines can processJj simultaneously. Our objective is
to schedule the jobs on the machines, such that the allotment and parallelism constraints
are satisfied, and the overall completion time of all jobs (or themakespan) is minimized.
We call this problemscheduling with parallelism and machine allotment constraints
(SPAC). Indeed, themultiprocessor scheduling problem,2 where each job can run on a

1 Department of Computer Science, The Technion, Haifa 32000, Israel.{hadas,tami}@cs.technion.ac.il.
2 Throughout the paper, sometimes we call this problemnon-preemptive scheduling.

Received February 11, 2001; revised April 8, 2001. Communicated by N. Megiddo.
Online publication December 21, 2001.

652 H. Shachnai and T. Tamir

singlemachine (namely,ρj = aj = 1,∀1 ≤ j ≤ n), is a special case of our problem;
thus, our problem is strongly NP-hard.3

Note that the allotment parameter,aj , bounds also the number of machines that can
processJj simultaneously. Thus, without loss of generality, we assume that∀ j, ρj ≤ aj .
We also study in this paper the special case of SPAC in which∀ j, ρj = aj (i.e., parallelism
constraints do not affect the schedule). We refer to this case as the problem ofscheduling
with machine allotment constraints(SAC).

Denote bywOPT(I) the length of an optimal schedule of an instanceI . Note thatw∗ =∑
j tj /

∑
i ui is a lower bound forwOPT(I). When each job can be allotted (possibly, to

run in parallel) toany number of machines, this lower bound is obtained by a simple
greedy algorithm, based on McNaughton’s rule [14]: it starts by scheduling the first job
on the first machine; then it proceeds to the next job (whenever the current job,Jj , was
allocatedtj processing units), or to the next machine (when the current machine runs for
w∗ time units). The resulting schedule incurs at mostn + m− 1 allotments of jobs to
machines. However, we cannot predict how the machines will share the execution of the
jobs. Thus, even if

∑
j aj ≥ n+m− 1, we may not be able to obtain the lower bound.

The next example shows how allotment/parallelism constraints come into play in
finding a schedule which minimizes the makespan.

EXAMPLE 1.1. Consider a system with two identical machinesM1,M2, whose rates are
u1 = u2 = 1, and four jobs witht1 = t2 = 8, t3 = 4, t4 = 2, andρj = 1, ∀1 ≤ j ≤ 4.
Figure 1(a) presents the schedule produced by a greedy algorithm. The makespan of this
schedule is

∑
j tj /

∑
i ui = 22

2 = 11. Assume now thata1 = a2 = a3 = 1 anda4 = 2.
Note that the overall number of allotments allowed in the system is equal to the number
of allotments incurred by the greedy algorithm; however, since only the execution ofJ4

can be shared by two machines, the best possible schedule has the length 12 (Figure 1(b)).

Note that the problem ofpreemptivescheduling on parallel machines can also be
described as a special case of SPAC (takeρj = 1 andaj = m, ∀1 ≤ j ≤ n); while
non-preemptive scheduling is strongly NP-hard, an optimal preemptive schedule can be
found in polynomial time. We address here a natural extension of preemptive scheduling,
in which we bound the number of machines that can share the execution of each job.
Thus, for each jobJj ,ρj = 1 and 1< aj < m. To the best of our knowledge, this problem
is studied here for the first time. Though our answer is partial (namely, we consider only
instances in which either the jobs or the machines areidentical), our results show that,
in fact, the presence of machine allotment constraints alone can distinguish between in-
stances which are solvable in polynomial time, and instances which are strongly NP-hard.

Fig. 1.Scheduling with parallelism and machine allotment constraints.

3 Generally, in SPAC we allow preemptions while processing a job,Jj , on some machine. However, when
∀ j, ρj = aj = 1, such preemptions are redundant.

Multiprocessor Scheduling with Machine Allotment and Parallelism Constraints 653

We study our scheduling problem in bothuniform and identical machine environ-
ments. For many fundamental scheduling problems, similar solvability/approximability
results were obtained in these two environments (e.g., the makespan problem is optimally
solvable in both environments when preemptions are allowed [14], [13], [9] and has a
polynomial time approximation scheme(PTAS) in both environments when preemptions
are not allowed [11], [12], [6]). Interestingly, our study shows a clear distinction be-
tween these two environments, with respect to the solvability of the SPAC problem (see
Section 5).

1.1. Motivation. As mentioned earlier, the SPAC problem has important application
in scheduling on multiprocessors, and in distributed computing. In distributed systems,
load balancing and computation speedup are achieved by partitioning large applications
to run on several machines; this is done through process migration (see, e.g., [21]).
Therefore, the resources required by each job,Jj , are classified as either (i)machine
dependent(e.g., peripheral devices), which can be allocated toJj once it is scheduled
to run on aspecificmachine, or (ii)machine independent(e.g., shared data), which can
migrate with segments of the job from one machine to another, along its execution.
The limited amount of machine-dependent resources sets a bound,aj , on the number of
machines that can share the execution ofJj (i.e., the number of machines to whichJj

can be allotted throughout the schedule); the limited amount of machine-independent
resources sets a bound,ρj , on the number of machines that can runJj in parallel.

Another application is production planning. Production processes [5] typically involve
the usage of consumable resources (i.e., special materials) which cannot migrate from
one machine to another, and mobile resources (e.g., human supervision), which allow
flexibility in the choice of machines. The maximal amount of consumable resources
determines the allotment parameter of a production process; the available amount of
mobile resources determines its parallelism parameter.

1.2. Related Work. The problem of scheduling a set of jobs on parallel machines with
the objective of minimizing the makespan has been studied extensively (comprehensive
surveys appear, e.g., in [10] and [3]). The non-preemptive scheduling problem is known
to be strongly NP-hard [7], and admits a PTAS: the papers [11] and [1] give PTASs
for identical machines, and [12] and [6] give PTASs for uniform machines. When pre-
emptions are allowed, the makespan problem can be solved optimally in polynomial
time. A greedy algorithm (McNaughton’s rule [14]) is suitable for identical machines.
For uniform machines, the first optimal algorithm was presented in [13]; an optimal
algorithm which also minimizes the number of preemptions is given in [9]. When the
allotment or parallelism parameter of a job is greater than one, the job can beparallelized
to run simultaneously on several machines. Previous work on parallelizable jobs (see,
e.g., [2] and [20]) assume that the processing of a jobJj is partitionedevenlyamong
the machines which process this job. In contrast, in SPAC we allowany partition of
the processing ofJj among several machines (as long as parallelism constraints are not
violated). Recently, it was shown in [19] that for instances where each job can be alloted
to any number of machines (i.e., 1≤ ρj ≤ m andaj = m,∀ j), the SPAC problem can
be solved optimally.

Other related works deal with a special case of theclass-constrained multiple knapsack
(CCMK) problem [17], [18], in which a set of unit-sized items ofm different types(ui

654 H. Shachnai and T. Tamir

items of typei) need to be placed inn bins; each bin has a limited capacity,tj , and a
bound,aj , on the number of distinct types of items it can hold. The objective is to pack
as many items as possible in the bins. The application of this problem to data placement
on parallel disks was studied in [18] and [8]. When each knapsack is represented by a
job with lengthtj and allotment parameteraj , and the items of typei are represented
by a machine,Mi , with rateui , we get an instance of the SAC problem. Thus, some
of the results in [18] and [8] can be adapted to special cases of the SAC problem. In
particular, when the jobs are identical, and

∑
j aj ≥ m+n−1, we get from [18] that the

SAC problem can be solved optimally. The results in [8] imply that the SAC problem is
strongly NP-hard when

∑
j aj = m (i.e., each machine processes one job segment on the

average), even when all the jobs are identical; for identical jobs, themaximal utilization
problem (in which we wish to maximize the number of processing units completed within
a given time interval) admits a PTAS.

1.3. Our Results. We describe below our main results. Unless specified otherwise, all
of our results hold foruniformmachines. Note that although in the SPAC problem we
allow preemptions while processing a job on some machine, the algorithms presented in
this paper do not use such preemptions.

In Section 2 we study the complexity of the SPAC problem. In particular, we show
that SPAC is already strongly NP-hard for instances with no parallelism constraints (i.e.,
the SAC problem) andweakallotment constraints. Specifically, SAC is strongly NP-hard
in the following cases:

1. On identical machines, where each job can be allotted to at leastc machines, for any
fixedc > 1

2. On identical machines, where thetotal number of allotments is unbounded.
3. For identical jobs, where the total number of allotments is at least3

2m.

These hardness results extend the hardness result in [8], which holds for identical jobs
with

∑
j aj = m.

In Section 3 we present a maxj (1+1/ρj)-approximation algorithm for the SPAC prob-
lem. Our algorithm proceeds in two steps: (i) Finding an infeasible schedule of optimal
length, where a jobJj may be processed byρj+1 processors. (ii) Transforming this sched-
ule into a feasible one. The running time of the algorithm isO(max(n lg n,m lg m)). This
algorithm improves and generalizes an algorithm presented in [18] for the CCMK prob-
lem. For identical machines we modify this algorithm to obtain a maxj (1+1/(2ρj −1))-
approximation ratio.

In Section 4 we give a PTAS for the SAC problem. Our PTAS can be used for instances
in which the maximal allotment parameter of any job is some fixed constant. First, we
show that the problem is strongly NP-hard in this case, even when the machines or the
jobs areidentical. Then we develop a PTAS which is based on the observation that the
makespan may be extended by at most a factor of 1+ ε if (i) small jobs are allotted to
a single machine, and (ii) large jobs can be partitioned only to processing segments of
certain lengths.

Section 5 explores the relation between the solvability of the classic preemptive
scheduling problem, and the amount of machine allotments/parallelism allowed in the

Multiprocessor Scheduling with Machine Allotment and Parallelism Constraints 655

schedule. We discuss instances in whichρj < aj , ∀ j . We call such instancesparallel-
dominated.

We show that the SPAC problem is strongly NP-hard for these instances, even when
the jobs are identical and∀ j,aj = ρj +1, and solvable by anO(m lg m) algorithm, when
the jobs are identical and∀ j,aj > ρj +1. This implies, for example, that the preemptive
scheduling problem (in whichρj = 1, for all 1≤ j ≤ n) becomes strongly NP-hard,
when the execution of each job can be shared by at mosttwo machines. Our results in
Section 5 yield an interesting distinction between the solvability of our problem in the
uniform and the identical machines environments. In particular, SPAC can be solved
optimally in polynomial time forparallel dominatedinstances when the machines are
identical; however, as mentioned above, on uniform machines the problem is strongly
NP-hard.

2. Hardness of the SAC Problem. In this section we derive hardness results for
the SAC problem. The case where∀ j,aj = 1 is known to be strongly NP-hard. When
∀ j,aj > 1, some preemptions are allowed for each of the jobs, and we may expect that the
problem becomes easy to solve (as the classic makespan problem with preemptions). We
show that the SAC problem is strongly NP-hard even for instances with no parallelism
constraints, “weak” allotment constraints, and with identical machines/jobs. In other
words, unlessP = NP, it cannot already admit afully polynomial time approximation
scheme(FPTAS) for these instances.

We consider three classes of instances of the SAC problem. For each, we explain why
it may seem to be “easy-to-solve” and follow this with a proof of hardness. The three
classes are:

1. Identical machines, where each job can be allotted to at leastc machines, for any
c > 1.

2. Identical machines, where thetotal number of allotments is unbounded.
3. Identical jobs, where the total number of allotments is at least3

2m.

We derive our hardness results using reductions from 3-partition, which is strongly
NP-hard [7]. An instance of 3-partition is defined as follows.

Input: A finite set A of 3q elements, a boundB ∈ Z+, and a sizes(x) for eachx ∈ A,
such that eachs(x) satisfiesB/4< s(x) < B/2 and such that

∑
x∈A s(x) = qB.

Output: Is there a partition ofA into q disjoint sets,S1, S2, . . . , Sq, such that, for 1≤
i ≤ q,

∑
x∈Si

s(x) = B? (Note that the above constraints on the element sizes imply that
every suchSi must contain exactly three elements fromA.)

2.1. Identical Machines and Any Number of Splits per Job. We first consider instances
with identical machines and any number of allotments per job. We show that there is
no constantc, such that if each job could be allotted toc identical machines, then SAC
admits an FPTAS.

THEOREM2.1. The SAC problem is strongly NP-hard, even if∀1≤ j ≤ n,aj ≥ c, for
any given c> 1 and the machines are identical.

656 H. Shachnai and T. Tamir

PROOF. Letc > 1 be an integer. Given an instance of 3-partition, we construct an input,
I , for the makespan problem with identical machines and∀1≤ j ≤ n,aj ≥ c, such that
wOPT(I) = 1 if and only if A has a 3-partition.

The input for the makespan problem consists ofm = (c− 1)3q + q machines with
the same rates:u1 = u2 = · · · = u(c−1)3q+q = B; andn = 3q jobs withtj = (c−1)B+
s(xj),aj = c,∀1 ≤ j ≤ 3q. Thus, we have that

∑
j tj =

∑
i ui = (c− 1)3qB+ qB.

Since
∑

j tj =
∑

i ui , wOPT(I) ≥ 1.
Assume thatA has a 3-partition to the setsS1, S2, . . . , Sq. This induces the following

schedule ofI , whose makespan equals 1. For all 1≤ j ≤ 3q, Jj is processed for a single
time unit on arbitrary vacantc− 1 machines out ofM1, . . . ,M(c−1)3q. That is,(c− 1)B
processing units are allocated toc− 1 segments ofJj . In addition, if xj ∈ Sk (k is the
index of the triple to whichxj belongs in the partition), then the last (cth) segment ofJj

is allocateds(xj) processing units onM(c−1)3q+k.
Thus, to each job we allocate exactlytj = (c− 1)B + s(xj) processing units onc

different machines. Since∀1 ≤ k ≤ q,
∑

j∈Sk
s(xj) = B, each of the lastq machines

allocates exactlyui = B processing units, and the makespan equals 1.
Assume that a schedule whose makespan equals 1 exists forI . We show thatA has

a 3-partition. For each machine,Mi , let ni denote the number of jobs scheduled onMi ,
and let Ji1, Ji2, . . . , Jini

be the list of these jobs, such that, without loss of generality,
i1 < i2 < · · · < i ni . The following graph,G = (V, E), is induced by the schedule:

V : there is a vertex,Jj , for each job, 1≤ j ≤ 3q.
E: each machineMi contributes toE the edges of the pathJi1, Ji2, . . . , Jini

Note that each machine contributes exactlyni − 1 edges toE. Therefore, the graph
G has

∑m
i=1 ni − m edges. Recall thatJj can be executed by at mostaj machines. In

other words,Jj can appear on at mostaj paths, meaning that
∑

i ni ≤
∑

j aj . Therefore,
the number of edges inG is at most

∑
j aj −m= 3qc− (c− 1)3q − q = 2q. Having

n = 3q vertices and at most 2q edges,G consists of at leastq connected components.
Assume thatG has̀ connected components:D1, D2, . . . , D`. Consider a component

Dk = (VDk , EDk). VDk is a set of jobs.Dk is connected, therefore, for each machine,Mi ,
the path contributed byMi is either completely contained or not contained inEDk . Thus,
EDk determines the subset of machines which process the jobs inVDk .

CLAIM 2.2. For each component Dk, ∀1 ≤ k ≤ `, there exists an integer rk > 0 such
that

∑
j∈VDk

tj = ((c− 1)|VDk | + rk)B.

PROOF. Recall that
∑

j tj =
∑

i ui ; thus, in any schedule with makespan equals 1, no
machine is idle. It means thatall the processing units ofEDk are allocated toVDk . The
rate of each machine isB. Thus, the total number of processing units allocated to the
jobs in VDk is a multiple ofB. Since∀ j, tj > (c− 1)B, there exists an integerrk > 0
such that

∑
j∈VDk

tj = ((c− 1)|VDk | + rk)B.

We now prove that̀ = q, that is,G consists of exactlyq connected components.

CLAIM 2.3. The graph G has exactly q connected components.

Multiprocessor Scheduling with Machine Allotment and Parallelism Constraints 657

PROOF. From Claim 2.2 there exist positive integersr1, . . . , r` such that((c−1)|VD1|+
r1)B + · · · + ((c− 1)|VD`

| + r`)B = ((c− 1)3q + q)B. There are 3q jobs, therefore,∑`
k=1 |VDk | = 3q, and we get that

∑`
i=1 rk = q. Since therk’s are positive integers and

` ≥ q we must havè = q andr1 = · · · = rq = 1.

Now, given thatG consists ofD1∪ D2∪ · · · ∪ Dq, define the following partition: for
all 1≤ j ≤ 3q, j ∈ Sk if and only if j ∈ VDk . By Claim 2.3,rk = 1,∀1≤ k ≤ q, thus,∑

j∈VDk
tj = ((c− 1)|VDk | + 1)B, meaning that

∑
j∈Sk

s(xj) = B for all 1≤ k ≤ q.

2.2. Identical Machines and Any Total Number of Splits. For the preemptive scheduling
problem on identical machines, an optimal schedule can be obtained using at most
m−1 preemptions (For example, the greedy algorithm “splits” only the last job on each
machine.) It means that the total number of allotments of jobs to machines is at most
n + m− 1. In our second hardness result we show that, for any givenc, even if the
machines are identical, and thetotal number of allotments may be larger thanc(m+ n),
the makespan problem is strongly NP-hard.

THEOREM2.4. The SAC problem is strongly NP-hard,even if
∑n

j=1 min(m,aj)≥ c(n+
m), and the machines are identical.4 This holds for any c≥ 1.

PROOF. For a givenc, we show a reduction from the 3-partition problem, with |A| =
3q ≥ 15c. We construct an input,I , for the makespan problem with identical machines
and

∑
j min(m,aj) ≥ c(n+m), such thatwOPT(I) = 1 if and only if A has a 3-partition.

The inputI consists ofm= q machines with the same rates:u1 = u2 = · · · = um =
q2B+ q; andn = 4q jobs:

• 3q jobs withtj = q2s(xj),aj = 1,∀1≤ j ≤ 3q. We call these jobsintegral.
• q jobs withtj = q,aj = q,∀3q < j ≤ 4q. We call these jobsadditional.

Note that
∑

i ui = q3B+q2 =∑j tj . In addition, for this instance,
∑n

j=1 aj = q2+3q;
m+ n = q + 4q. Thus,

∑
j min(m,aj) = q2 + 3q > c(5q), for anyq ≥ 5c. Since∑

j tj =
∑

i ui , wOPT(I) ≥ 1.
We show thatA has a 3-partition if and only ifwOPT(I) = 1. Assume thatA has

a 3-partition to the setsS1, S2, . . . , Sq. The following is a schedule whose makespan
equals 1.

1. One processing unit of each machineMi ,1 ≤ i ≤ m, is allocated to each of the
additional jobs (i.e., overallMi allocatesq processing units). Thus, the execution of
each additional job is shared amongaj = q machines.

2. The remainingq2B processing units ofMi are allocated to the integral jobs{Jii , Ji2, Ji3}
such thatSi = {xii , xi2, xi3}.

Since∀i,∑j∈Si
s(xj) = B, the total number of processing units allocated byMi in the

second step isq2B. Therefore, the above is a schedule whose makespan equals 1.

4 We take the minimum betweenm andaj since we gain nothing if a job can be allotted to more thanm
machines. This makes our result stronger.

658 H. Shachnai and T. Tamir

Assume that there exists a schedule whose makespan equals 1 forI .

CLAIM 2.5. In any such schedule, exactly q processing units of each machine are
allocated toadditionaljobs.

PROOF. Let ni denote the number of processing units ofMi that are allocated to the
additional jobs. The remainingui − ni processing units are allocated to integral jobs.
The integral jobs cannot split, thus, in any such schedule,ui − ni is a multiple ofq2.
Sinceui = q2B+q and the total processing time of the additional jobs isq2 we get that
ni = q for all i .

Now, given thatq processing units of each machine are allocated to additional jobs,
we conclude that the remainingq2B processing units of each machine are allocated to
integral jobs, and a 3-partition ofA is induced by the schedule.

2.3. Identical Jobs. When
∑

j aj = m and the jobs are identical, the SAC problem is
strongly NP-hard: this can be shown by a simple reduction from 3-partition (as mentioned
in [8]). We show that SAC remains strongly NP-hard, even if the jobs are identical, and
the set of possible partitions is larger, more precisely,

∑
j aj ≥ αm, for α = 3

2.

THEOREM2.6. The SAC problem is strongly NP-hard even if the jobs are identical and∑
j aj ≥ 3

2m.

PROOF. Given an instance for 3-partition, we construct an input,I , for the makespan
problem with

∑
j aj ≥ 3

2m, such thatwOPT(I) = 1 if and only if A has a 3-partition. In
this reduction we adapt some ideas from the hardness proof given in [8].

The input I consists ofm = 4q machines with the following rates: for the first 3q
machines,ui = K − s(xi),1 ≤ i ≤ 3q, whereK > 3qB is a large constant; for the
otherq machinesui = 3K + B,3q < i ≤ 4q. There aren = 3q identical jobs with
tj = 2K ,aj = 2,∀1 ≤ j ≤ 3q. For this instance,

∑
j tj =

∑
i ui = 6qK, and, as

needed,
∑

j aj = 6q = 3
2m. Since

∑
j tj =

∑
i ui , wOPT(I) ≥ 1.

We show thatA has a 3-partition if and only ifwOPT(I) = 1. Assume thatA has
a 3-partition to the setsS1, S2, . . . , Sq. Let Sk = {xk1, xk2, xk3}, ∀1 ≤ k ≤ q. The
following is a schedule whose makespan equals 1:∀1 ≤ k ≤ q, the four machines
Mk1,Mk2,Mk3,M3q+k process the three jobsJk1, Jk2, Jk3. Specifically, Mki allocates
K − s(xki) processing units toJki ,1 ≤ i ≤ 3, and M3q+k allocatesK + s(xki) to
Jki ,1≤ i ≤ 3. Sinces(xk1)+s(xk2)+s(xk3) = B, andu3q+k = 3K +B, the completion
time equals 1. Note also that the allotment constraints are preserved: for any 1≤ j ≤ 3q,
if xj ∈ Sk, thenJj is processed by the two machinesMj andM3q+k.

Now, given a schedule whose makespan equals 1, we find a 3-partition ofA. Denote
by slowthe set of the first 3q machines{M1, . . . ,M3q}. Note that for any pair,Mi1,Mi2,
of slow machines, the total number of processing units provided byMi1 and Mi2 is
less than 2K . Sincetj = 2K , if some Jj is scheduled only on these two machines it
cannot be completed on time. Sinceaj = 2 for 1 ≤ j ≤ n, this implies that each
job, Jj , is processed by at mostoneslow machine. In addition, since there are 3q = n

Multiprocessor Scheduling with Machine Allotment and Parallelism Constraints 659

slow machines, and no idle time is possible (since
∑

i ui =
∑

j tj), each slow machine
processes exactly one job. Assume, without loss of generality, that∀1 ≤ i ≤ 3q, Mi is
the slow machine allocated toJi (for the whole duration of the schedule). For each such
job, sinceaj = 2, the remainingK + s(xi) processing units are allocated by a single
machine. Consider a machineMi , i > 3q. SinceK was selected such thatK >> s(x),
for anyx ∈ A, it follows thatMi processes exactly three jobs (sinceui = 3K + B, and
the remainders of any four jobs require more thanui processing units). LetJk1, Jk2, and
Jk3 be the three jobs scheduled onM3q+k. We get that 3K +B = 3K +(s(xk1)+s(xk2)+
s(xk3)), meaning thatxk1, xk2, andxk3 form a triple for the partition. Since all the jobs
are scheduled, the whole schedule of the jobs on the lastq machines, induces a valid 3-
partition of A.

3. Approximation Algorithm for the SPAC Problem

3.1. Uniform Machines. In this section we present an approximation algorithm for
the SPAC problem on uniform machines. Denote bywOPT(I) the length of an optimal
schedule of an instanceI . First, we show that an optimal schedule can be obtained by
relaxing the parallelism constraint5 of each job by one. Specifically, if for allj , we run
Jj in parallel onρj + 1 (instead ofρj) machines, we can obtain a schedule of length
wOPT(I). Then we transform the above infeasible optimal schedule into a feasible one,
whose makespan isw ≤ maxj (1+ 1/ρj)wOPT(I).

3.1.1. Relaxing the Parallelism Constraint

THEOREM3.1. Given an instance I of the SPAC problem, denote by I+ the instance in
which the parallelism parameter of each job is increased by one(i.e., ρ+j = ρj +1,∀ j);
then we can find in O(max(m lg m,n lg n)) steps a schedule for I+, whose makespan is
at most the minimal possible makespan for I.

Given the instanceI + derived fromI , we present a polynomial time algorithm which
finds a legal schedule ofI +. The algorithm, denoted byAr , proceeds by schedulingJj

on at mostρ+j = ρj + 1 machines,∀1 ≤ j ≤ n. The length of the schedule generated
for I + byAr is at most the length of an optimal schedule ofI .

We renumber the machines in nonincreasing order by their speeds, i.e.,u1 ≥ u2 ≥
· · · ≥ um, and the jobs in a nonincreasing order by theirprocessing ratios, i.e., t1/ρ1 ≥
t2/ρ2 ≥ · · · ≥ tn/ρn. For each 1≤ ` ≤ n, let ρ̂` =

∑`
j=1 ρj . Let

w = max

{∑n
j=1 tj∑m
i=1 ui

, max
{`|ρ̂`≤m}

∑`
j=1 tj∑ρ̂`
i=1 ui

}
.(1)

To prove the theorem, we show that the makespan of any schedule ofI is at leastw, and
thatAr generates forI + a schedule of lengthw. Note that, as illustrated in Example 1.1,
w is not tight; that is, for some instanceswOPT(I) > w.

5 Whenρj = aj , we relax at the same time the parallelism and the allotment constraint ofJj .

660 H. Shachnai and T. Tamir

We first show thatw is a lower bound on the length of any legal schedule ofI .

LEMMA 3.2. For any instance, I , wOPT(I) ≥ w.

PROOF. Consider a schedule of lengthw. When no machine is idle at any time during
the schedule, the total processing potential of the machines isw

∑
i ui . Thus,wOPT(I) is

at least the left term in the right-hand side of (1). The execution time ofJ1 is minimized
when it runs in parallel on theρ1 fastest machines for the whole duration of the schedule.
Similarly, we cannot do better than scheduling the first` jobs on theρ̂` fastest machines
for the whole duration of the schedule. Thus, the right term in (1) is a lower bound for
wOPT(I).

We now turn to describing and analyzing the algorithmAr .Ar adapts some ideas from
the approximation algorithm presented in [18] for the CCMK problem. In each stage we
represent byQi thepotentialof the machineMi , that is, the number of processing units
that Mi can still allocate. Initially,Qi = wui . Ar maintains a list,L, of the machines,
sorted by their potential in nondecreasing order. That is,QL[1] ≤ QL[2] ≤ · · · (where
L[k] denotes the machine at positionk in L). The listL is updated along the execution of
the algorithm. Specifically, whenMi allocates processing units to some job, its potential
decreases, and its position inL may be updated. OnceMi has allocateduiw processing
units, it is removed fromL. Given a pair of machinesMi1,Mi2, we say thatMi1 is weaker
(stronger) thanMi2, if Qi1 ≤ Qi2 (Qi1 ≥ Qi2).

The jobs, sorted in nonincreasing order by their processing ratios, are scheduled one
after the other. The jobJj is scheduled on the first (i.e., weakest) consecutive sequence
of ρj + 1 or less machines,L[k1], . . . , L[k2], whose total potential is at leasttj . All the
potential ofL[k1], . . . , L[k2 − 1] and some of the potential ofL[k2] is allocated toJj ,
such that the total number of processing units allocated toJj is tj . We show that such a
sequence of machines always exists. The selection of this sequence is done as follows. We
first examineL[1], which is the weakest machine. IfQL[1] ≥ tj we scheduleJj on L[1]
and update the potential of this machine; else, we test whetherQL[1]+QL[2] ≥ tj , and so
on until either we find a sequence of machines with sufficient potential (≥ tj), or the total
potential of the firstρj+1 machines is less thantj . In the latter case we proceed to examine
the nextwindowof ρj + 1 machines,L[2], . . . , L[ρj + 2], and so on, until our window
coversρj +1 machines,L[k], . . . , L[k+ ρj], such thattj > QL[k−1]+ · · ·+ QL[k+ρj−1]

andtj ≤ QL[k] + · · · + QL[k+ρj] (see Figure 2). At this stage we can clearly allocate to
Jj all the potential of the machinesL[k], . . . , L[k+ρj −1], and complete the execution
of Jj by also allocating to it some of the potential of the machineL[k+ ρj].

Fig. 2.The window scanning the listL.

Multiprocessor Scheduling with Machine Allotment and Parallelism Constraints 661

In fact,Ar only determines the amount of processing units allocated to each job by
each of the machines. The order of the jobs on each machine is arbitrary. Note that
Jj is allotted to at mostρj + 1 machines. (Thus, at mostρj + 1 machines process it
simultaneously.)

Let Jb be the first job such that, whenJb is scheduled, the listL contains at mostρb

machine indices, or the total processing potential of theρb weakest machines is at least
tb. We distinguish between two phases ofAr :

1. The jobsJ1, . . . , Jb−1 are scheduled.
2. The jobsJb, . . . , Jn are scheduled.

We show that in each phase the corresponding set of jobs is scheduled legally. Note
that jobs scheduled in the first phase are scheduled using themoving-window, each on
exactlyρj + 1 machines. For this phase, we need to show that we never fail to find a
subset ofρj + 1 machines that can completeJj . Specifically, we show below that for
each j < b, whenJj is scheduled, the total potential of the strongestρj + 1 machines
in L is at leasttj . For the second phase ofAr we show that for eachb ≤ j ≤ n, Jj is
allocatedtj processing units from at mostρj + 1 machines.

For simplicity, assume that whenever we use the moving-window to schedule a job,
the listL is scanned from left to right. That is, the index of the weakest machine,L[1], is
the leftmost, and the index of the strongest machine is the rightmost inL. The window
moves from left to right until for somek (which denotes the index inL of the weakest
machine in the window), we get that theρj + 1 machinesL[k− 1], . . . , L[k+ ρj] can
complete the execution ofJj . WhenJj is scheduled, the machinesL[k], . . . , L[k+ρj−1]
are removed fromL, and the machineL[k+ ρj] is possibly moved to a new position in
the listL, according to its remaining potential. Note that this new position ofL[k+ ρj]
in L is left to its original position.

We can view the removed sequence of machines as ahole in L. Each jobJj creates
a hole ofρj machines inL, and one additional machine (the(ρj + 1)th) is moved left
to the hole. By analyzing these holes we conclude thatAr never fails to schedule jobs
during its first phase.

LEMMA 3.3. Each job, Jj , scheduled byAr during the first phase, is scheduled on
exactlyρj + 1 machines and is allocated tj processing units.

PROOF. Assume that for some jobJg, the moving window procedure fails to complete
Jg. That is, the window reaches the rightmost position inL, but the total potential of the
ρg + 1 strongest machines covered by the window is less thantg.

Let us examine the sequence of holes created inL by the timeJg is scheduled. We
first show that when we fail to scheduleJg, its partial schedule creates at the right end
of L a hole, which is the union of holes created by previously scheduled jobs.

CLAIM 3.4. There exists a set S⊆ {J1, . . . , Jg}, such that the hole created by Jg unites
the holes created by the jobs in S, into a single hole positioned at the right end of L.

PROOF. Consider the hole inL that contains theρg + 1 machines on whichJg is
scheduled and all the holes that are united when theseρg + 1 machines are removed.

662 H. Shachnai and T. Tamir

Let H denote this united hole. Since each jobJj , j < g, creates a hole ofρj consecutive
machines inL, then for each such job, eitherall ornoneof theseρj machines is contained
in H (we ignore the(ρj +1)th machine:Jj may only partially use this machine, in which
case the machine is not removed fromL).

Let S be the set of all the jobs,Jj , that contributeρj or ρj + 1 machines toH .
By definition, the holeH unites the holes created by the jobs inS into a single hole.
In addition, sinceJg is not completed,H must include the strongestρg + 1 available
machines, and in particular the rightmost one. Therefore,H is positioned at the right
end ofL.

We conclude thatAr allocates to the jobs inSat least all the potential of the
∑

Jj∈Sρj

strongest machines.

CLAIM 3.5. The total potential of the
∑

Jj∈Sρj fastest machines is at least
∑

Jj∈S tj .

PROOF. Let ρS =
∑

Jj∈Sρj . Recall that for any 1≤ ` ≤ n, ρ̂` =
∑`

j=1 ρj . Let J̀
be the job such that̂ρ`−1 < ρS ≤ ρ̂`. Note that` ≤ g sinceS ⊆ {J1, . . . , Jg}. By

the definition ofw, w ·∑ρ̂`−1
i=1 ui ≥

∑`−1
j=1 tj andw ·∑ρ̂`

i=1 ui ≥
∑`

j=1 tj . That is, the
first ρ̂`−1 machines are strong enough to complete the first` − 1 jobs, and the first̂ρ`
machines are strong enough to complete the first` jobs. Since the machines are sorted
such thatui ≥ ui+1, we conclude that for any integer 0< x ≤ ρ`, the firstρ̂`−1 + x
machines can complete the first` − 1 jobs and an(x/ρ`)-fraction from J̀ . Formally,
w ·∑ρ̂`−1+x

i=1 ui ≥
∑`−1

j=1 tj + x(t`/ρ`).
In particular, forx = ρS− ρ̂`−1, we have that

w

ρS∑
i=1

ui ≥
`−1∑
j=1

tj + (ρS− ρ̂`−1)
t`
ρ`
.(2)

For a set,Y, of jobs Ji1, Ji2, . . . , consider the vectorEvY consisting ofρi1 entries with
the valueti1/ρi1, followed byρi2 entries with the valueti2/ρi2, and so on. For the setJ
of all the jobs in our instance, consider the vectorEv1 consisting of the firstρS entries
of EvJ . Since the jobs are sorted such thattj /ρj ≥ tj+1/ρj+1, and sinceS is a subset
of J , Ev1 ≥ EvS. That is, for any indexi , vi

1 ≥ vi
S. Therefore,

∑ρS
i=1 v

i
1 ≥

∑ρS
i=1 v

i
S.

However,
∑ρS

i=1 v
i
1 =

∑`−1
j=1 tj + (ρS − ρ̂`−1)(t`/ρ`), and

∑ρS
i=1 v

i
S =

∑
Jj∈S tj . Thus,∑`−1

j=1 tj + (ρS− ρ̂`−1)(t`/ρ`) ≥
∑

Jj∈S tj .
From (2), we get that theρS strongest machines can complete the jobs inS.

This contradicts our assumption thatAr fails to scheduleJg ∈ S during the first
phase.

We turn to show that all the jobs that are scheduled during the second stage ofAr are
scheduled legally.

LEMMA 3.6. Each job, Jj , scheduled byAr during the second phase, is scheduled on
at mostρj + 1 machines and is allocated tj processing units.

Multiprocessor Scheduling with Machine Allotment and Parallelism Constraints 663

PROOF. Ar reaches the second phase if, for the next job to be scheduled,Jb, the listL
contains at mostρb machine indices, or if the total processing potential of theρb weakest
machines is at leasttb.

In the analysis of the second phase, we need to show that all the jobs are completed,
and that at mostρj + 1 machines participate in the schedule ofJj . For showing that all
jobs are completed, note that when the algorithm starts, we havew

∑m
i=1 ui ≥

∑n
j=1 tj ,

that is, the total processing potential is at least the total processing requirement of the
jobs. This is due to the fact that during the first phase no job is allocated more thantj

processing units. This guarantees that when we scheduleJj greedily, we never run out
of processing potential.

Clearly, at mostρb machines participate in the greedy schedule ofJb. The last machine
on whichJb is scheduled may have additional processing potential. This machine,M`, is
now the weakest machine (since it belonged to the set of weakest machines beforeJb was
scheduled, and all the weaker machines in this set are now omitted fromL), i.e.,L[1] = `.
We now proceed to schedule the remaining jobs. In order to show that for anyj > b, at
mostρj + 1 machines share the execution ofJj , we first prove the following claim.

CLAIM 3.7. After Jb is scheduled, for any j > b, the list L contains at mostρj machines,
or the total potential of theρj machines L[2], . . . , L[ρj + 1] is at least tj .

PROOF. Assume thatJb is scheduled onx machines. Clearly,x ≤ ρb; thus, the potential
of the strongest machine among thesex machines is at leasttb/x ≥ tb/ρb ≥ tj /ρj , for any
j > b. Following the schedule ofJb, the listL is updated, and the weakestx−1 machines
are removed; the remaining potential of the next (xth) machine becomesQL[1] . Since
the machines inL are sorted in nondecreasing order by their potential, the potential of
each of the machinesL[2], . . . , L[ρj +1] (assuming|L| > ρj) is at leasttj /ρj , meaning
that the total potential of theseρj machines is at leasttj .

Consider a jobJj , j > b. If, following the schedule ofJb, the listL contains at most
ρj machines, then, clearly,Jj will be scheduled on at mostρj machines; otherwise, note
that if theρj machinesL[2], . . . , L[ρj + 1] are strong enough to completeJj , then any
set ofρj machines, not includingL[1], is strong enough forJj .

We show thatAr never uses more thanρj + 1 machines for processingJj . OnceJb

is scheduled, we turn to scheduleJb+1. Consider the subset of theρb+1 + 1 weakest
machines. It consists ofL[1] and additionalρb+1 machines. From the above discussion,
the total potential of the additionalρb+1 machines is at leasttb+1, therefore (even ifQL[1]

is small), the total potential of the weakestρb+1 + 1 machines is at leasttb+1, and we
can allocate toJb+1 exactlytb+1 processing units, by using at mostρb+1 + 1 machines.
Again, the last machine may have remaining potential. The same argument holds for all
the remaining jobs. That is, every jobJj will be allocated exactlytj processing units,
using at mostρj + 1 machines.

Proof of Theorem3.1. From Lemmas 3.3 and 3.6 we get thatAr assigns to each of the
jobs, Jj , tj processing units, on at mostρj + 1 machines. In addition, from Lemma 3.2,
the length of the schedule isw ≤ wOPT(I).

664 H. Shachnai and T. Tamir

We now turn to compute the running time of the algorithm. We show thatAr can be
implemented inO(max(m lg m,n lg n)) steps:O(m lg m)+O(n lg n) steps are required
for sorting the lists and calculatingw. Given that the lists are sorted, the total time for
scheduling the jobs isO(m+n)+O(n lg m). The first phase of the algorithm, in which we
schedule the jobs using the moving-window, can be implemented inO(m)+ O(n lg m)
steps. The idea is to start scanning the list for each job,Jj , from a fixed point, which
depends onJj . Recall that in this phase, each jobJj , j > 1, is processed by exactlyρj +1
consecutive machines. This set of machines must contain the strongest machine among
those, whose potential is at mosttj /(ρj + 1). SinceL is sorted, finding this machine can
be done (e.g., using skip-lists [16], [15]) inO(lg m) steps. We can now find inO(ρj)

steps the set ofρj + 1 machines that will processJj . Finally, after we scheduleJj , we
need to reposition the(ρj + 1)th machine inL, according to its remaining potential.
SinceL is sorted, this can be done inO(lg m) steps.

Let P1 denote the set of jobs scheduled in the first phase. Each of these jobs,Jj ∈ P1,
uses up the potential of a set ofρj machines (which are then omitted fromL). This
implies that

∑
Jj∈P1

ρj ≤ m, and, therefore, the total time required for positioning the
window and scheduling the jobs inP1 is O(n lg m)+ O(m).

From Claim 3.7, during the second phase of the algorithm we schedule the jobs
greedily. Hence, this phase requiresO(m+ n) steps. This completes the proof.

3.1.2. A maxj (1+ 1/ρj)-Approximation. The algorithmAr yields the following ap-
proximation algorithm,A1, for the SPAC problem. Given an instance,I :

1. UseAr to find a schedule of lengthw for I +.
2. For each job,Jj , j = 1, . . . ,n:

If Jj is scheduled onaj +1 machines or ifρj +1 machines processJj simultaneously:
• Let Ms be the machine which allocated the minimal number of processing units

to Jj .
• Omit Jj from the set of jobs scheduled onMs.
• Any other machine,Mi , which processedJj for x time units, will now processJj

for x(1+ 1/ρj) time units.

In other words, we transform the infeasible schedule into a feasible one by splitting,
for each job,Jj , the processing ofJj on the least-contributing machine among the other
ρj machines that processJj . As shown below, this extends the makespan of the schedule
by a fraction which depends on the minimal parallelism parameter of any job.

THEOREM3.8. wA1(I) ≤ maxj (1+ 1/ρj)wOPT(I).

PROOF. We first show that each job,Jj , is allocated at leasttj processing units. Clearly,
the machineMs allocated toJj at mosttj /(ρj + 1) processing units. Thus, the otherρj

machines allocate toJj at leastρj tj /(ρj + 1) processing units. The execution ofJj on
each of these machines is “stretched” by a factor 1+1/ρj . Hence, the total allocation of
processing units toJj on these machines is increased to be at least(ρj tj /(ρj + 1))(1+
1/ρj) = tj .

To bound the resulting makespan, note that, in the worst case, there exists a machine
that has to compensate for all the jobs that it executes, meaning that its processing time

Multiprocessor Scheduling with Machine Allotment and Parallelism Constraints 665

M1

Mi

Mi+�j

w

T1

T2

�j � 1

Fig. 3.The schedule ofJj .

is stretched fromw to at most maxj w(1 + 1/ρj). By Theorem 3.1,Ar generates a
schedule of lengthw ≤ wOPT(I), thus, the makespan obtained by our algorithm is at
most maxj (1+ 1/ρj)wOPT(I).

In particular, if the allotment and parallelism limits of each job are at leastb, for some
b ≥ 1, that is,ρj ≥ b for all 1 ≤ j ≤ n, the above approximation algorithm yields the
makespan(1+ 1/b)wOPT(I).

3.2. Identical Machines. We show that for the special case where the machines are
identical, the algorithmAr is a maxj (1+ 1/(2ρj − 1))-approximation to the optimal.
Assume without loss of generality that all machines have the rateu = 1. Thus,w =
max{∑j tj /m,maxj (tj /ρj)}.

WhenAr is executed on an instance with identical machines, sincet1 ≤ wρ1, we
schedule greedily all the jobs. Thus, each job,Jj , is scheduled on a set of consecutive
machines (see Figure 3). LetT1 andT2 denote the lengths of the time intervals allocated to
Jj on the “extreme” machines (e.g.,Mi andMi+ρj in Figure 3). Note that ifJj is scheduled
on ρj + 1 machines, thentj = (ρj − 1)w + T1 + T2 andT1 + T2 ≤ w (otherwise,Jj

is allocated more thanwρj ≥ tj processing units). As in the case of uniform machines,
we transform the infeasible schedule into a feasible one, by splitting, for each job,Jj ,
the processing ofJj on the least-contributing machine among the otherρj machines that
processJj . However, as we show below, the “stretching” factor of each machine can be
reduced to 1+1/(2ρj −1). Thus, the resulting algorithm,A2, has a better approximation
ratio.

THEOREM3.9. wA2(I) ≤ maxj (1+ 1/(2ρj − 1))wOPT(I).

PROOF. Assume without loss of generality thatT1 ≤ T2. SinceT1 + T2 ≤ w, we have
thatT1 ≤ w/2. In the “stretched” schedule,Jj is allocatedxj processing units.

xj = (w(ρj − 1)+ T2)

(
1+ 1

2ρj − 1

)
= w(ρj − 1)+ T2+ (w(ρj − 1)+ T2)

1

2ρj − 1
.

666 H. Shachnai and T. Tamir

Since tj = w(ρj − 1) + T2 + T1, the additional(w(ρj − 1) + T2)(1/(2ρj − 1))
processing units need to compensate for theT1 units that were omitted. Indeed,

w(ρj − 1)+ T2

2ρj − 1
− T1 = w(ρj − 1)+ T2− (2ρj − 1)T1

2ρj − 1

≥ w(ρj − 1)+ T1− (2ρj − 1)T1

2ρj − 1

= w(ρj − 1)− (2ρj − 2)T1

2ρj − 1

= ρj − 1

2ρj − 1
(w − 2T1) ≥ 0.

Thus,xj ≥ w(ρj − 1)+ T2+ T1 = tj , meaning thatJj is allocated at leasttj processing
units.

4. A PTAS for Scheduling with Allotment Constraints. In this section we present a
PTAS for the SAC problem on uniform machines. We assume that the maximal allotment
parameter of any job is some fixed constant. In Section 2 we have shown that SAC is
strongly NP-hard in this case, even for instances with identical machines (Theorem 2.1)
or identical jobs (Theorem 2.6).

Our PTAS consists of two stages. In the first stage we guess a partition of each job,Jj ,
to at mostaj segments. In the second stage we consider each job segment as a separate
job. The resulting instance has at mostnamax jobs. We run on this instance a PTAS,
P∗, for multiprocessor scheduling on uniform machines (e.g., [12] and [6]). Note that
some segments of the same job may be scheduled byP∗ on the same machine: this is
equivalent to sharing the execution ofJj among fewer machines.

An immediate problem which arises when trying to apply this, is that the number of
possible partitions isexponential. We show that it suffices to examine only a polynomial
number of possible partitions in order to approximate the optimal schedule. This subset
of partitions can be found and described efficiently.

We first show how to reduce the number of partitions that need to be considered, when
the jobs areidentical. Next, we extend this technique to instances with afixednumber
of job types. Finally, we show that anarbitrary instance can be converted into one in
which small jobs cannot split at all, and nonsmall jobs can be replaced by jobs of a fixed
number of types. Each of these steps extends the makespan by a factor of 1+ ε. An
additional(1+ ε)-extension is caused byP∗.

4.1. Identical Jobs. Assume first that all jobs have the same length,t , and the same
allotment parameter,a > 1. Thus, the execution of each job can be shared among at
mosta machines. Givenε > 0, letδ = ε/a.

LEMMA 4.1. Any schedule of I of length C can be transformed into one of length at
most(1+ ε)C, in which all job segments are larger thanδ(t/a), and their lengths are
multiples ofδ2(t/a).

Multiprocessor Scheduling with Machine Allotment and Parallelism Constraints 667

PROOF. We say that a job segment issmallif is has length smaller thanδ(t/a). We first
describe how the schedule is modified; then we show that the total load on each machine
is increased by at most a factor of 1+ ε. For each job,Jj :

1. Add all the small segments ofJj to the longest one and round up the resulting length
to the next multiple ofδ2(t/a).

2. Round the length of any other segment to the next multiple ofδ2(t/a).
3. Shorten the longest segment by a multiple ofδ2(t/a) such that the total sum of the

segment lengths is at leastt .

Clearly, in the resulting schedule all the segments are larger thanδ(t/a), their lengths
are multiples ofδ2(t/a), and the processing time of each job is at leastt . In addition,
since we only group the small segments and add them to the longest one, the allotment
constraint is preserved.

We show that for each machineMi and jobJj , if Mi processedJj for t1 time units, it
now processesJj for at most(1+ ε)t1 time units; thus, the makespan of the schedule is
at most(1+ ε)C.

For each job, each nonsmall segment, excluding the longest one, has lengthp >

δ(t/a) and its new length is at mostp+ δ2(t/a) ≤ p+ δp < p(1+ ε). The longest
segment of a job must have lengthp ≥ t/a. Even if the length of this (long) segment
is not reduced in step 3, its new length is now at mostp+ (a− 1)δ(t/a) + δ2(t/a) ≤
p+ δt ≤ p+ δap= p(1+ ε).

Recall, that our PTAS guesses the partition of then jobs, each into at mosta segments,
and usesP∗ for the guessed partitions. By Lemma 4.1 we conclude that we pay onlyε for
considering only a subset of the possible partitions. We now show that an optimal partition
can be guessed efficiently. That is, the number of possible partitions is polynomial inn.

Denote bySδ the set of partitions of a numbert into at mosta numbers which are all
larger thanδ(t/a), and their values are multiples ofδ2(t/a). In the following we compute
the size ofSδ, denoted byhδ. We use in the computation the next result, given in [4].

LEMMA 4.2. Let f be the number of g-tuples of nonnegative integers such that the sum
of tuple coordinates is equal to d, for some d≥ 1. Then f = (d+g−1

g−1

)
. If d + g ≤ αg,

for someα ≥ 1, then f = O(ααg).

Now, we boundhδ in terms ofa.

LEMMA 4.3. The size of Sδ is hδ = O((2e)a), where the symbol e denotes the base of
the natural logarithm.

PROOF. Note that we can describe a partition of a given job to at mosta segments by
an(a/δ2)-tuple: each coordinate,i , gives the number of segments of lengthi · (δ2t)/a,
1 ≤ i ≤ a/δ2; the sum of the coordinates is at mosta. By Lemma 4.2, takingd = a,
g = a/δ2 andα = 1+ δ2, we get that the number of such tuples is(

a+ a/δ2− 1

a/δ2− 1

)
= O((1+ δ2)(1+δ

2)a/δ2
) = O((2e)a).

668 H. Shachnai and T. Tamir

The last equality follows from the standard bound(1+ x)1/x ≤ e, for 0 < x < 1, and
the assumption that(1+ δ2) ≤ 2.

Each item inSδ describes a partition of a single job. To describe a partition of then jobs
we use a vector of lengthhδ, whosei th entry specifies for how many jobs we adapt the
i th partition vector. The number of possible vectors is less thannhδ .

4.2. Fixed Number of Job Types. Assume that there areT different job types, where
T ≥ 1 is some constant. All thenk jobs of thekth type, 1≤ k ≤ T , have lengthtk
and allotment parameterak. Note that the proof of Lemma 4.1 considers the extension
of each segment on each machineseparately. Thus, choosingδk = ε/ak, we can extend
Lemma 4.1 as follows:

LEMMA 4.4. Any schedule of I of length C can be transformed into one of length at
most(1+ ε)C, in which all the segments of jobs of the kth type are larger thanδ(tk/ak)

and their lengths are multiples ofδ2(tk/ak).

Lethδk be theconstantnumber of possible partitions of one job of thekth type. In order
to describe a possible partition of then jobs we use a vector of lengthhδ1+hδ2+· · ·+hδT ,
whose entries specify how many jobs of each type are partitioned in a certain way. The

number of possible vectors is less than
∏T

k=1 n
hδk
k = O(n6

T
i=1hδk).

4.3. Arbitrary Jobs. Given an arbitrary instance, our idea is to distinguish between
small and large jobs. For the subset of large jobs we payε in order to convert it into one
with a fixed number of job types—for which, as we showed in Section 4.2, we need to
examine only a polynomial number of possible partitions. For the small jobs we show
that we may pay at most a factorε from reducing all their allotment parameters to one.
Any job, Jj , for whichaj = 1 need not participate in the “guessing partition” process,
i.e., Jj is given toP∗ as a single segment.

Let tmax be the maximal length of any job inI . Let a1 be the minimal allotment
parameter among the jobs with lengthtmax. For a givenε, we say that a job issmallif its
length is less thanε(tmax/a1).

LEMMA 4.5. Any schedule of I of length C can be transformed into one of length at
most(1+ε)C, in which all the small jobs are not partitioned at all(that is, have aj = 1).

PROOF. Given a schedule ofI , let Wsi be the total number of processing units allocated
to segments of small jobs onMi . We reallocateWs1,Ws2, . . . to the small jobs sequentially,
starting from the first small job on the first machine. When a small job is completed we
move to the next small job; when all theWsi processing units are allocated, we complete
the active small job and move to the next machine and to the next small job. Clearly,
since we allocate at least

∑
i Wsi processing units, all the small jobs are completed. Also,

since we always complete a job on the machine on which its processing starts, we do not
split small jobs. Finally, the makespan can increase at most by a factor of 1+ ε: in the

Multiprocessor Scheduling with Machine Allotment and Parallelism Constraints 669

original schedule, some machine must have load at leasttmax/a1. Thus,C ≥ tmax/a1. The
total load on each machine is extended by at mostε(tmax/a1). Therefore, the resulting
makespan is at mostC + ε(tmax/a1) ≤ C + εC = (1+ ε)C.

From Lemma 4.5, for the purpose of guessing a partition of jobs to segments, we
may assume that our instance consists oflarge jobs. Letamax be the maximal allotment
parameter of any job inI . We replace the large jobs byT = amax(a1/ε

2 − 1/ε) sets of
jobs such that the jobs in each set are identical. For 1≤ a ≤ amax,1/ε < ` ≤ a1/ε

2, let
Na,` be the number of jobs withaj = a andtj ∈ ((`− 1)ε2(tmax/a1), `ε

2(tmax/a1)].
Our new instance,I ′, consists ofNa,` jobs withaj = a andtj = `ε2(tmax/a1). As in

other PTASs that use interval partition (e.g., [12], [6], and [1]), we have

LEMMA 4.6. Any schedule of I of length C can be replaced by a schedule of I′ of length
(1+ ε)C

PROOF. Each long job fromI with aj = a andtj ∈ ((`− 1)ε2(tmax/a1), `ε
2(tmax/a1)],

contributes toI ′ a job with the same allotment parameter and of lengthtj + 1,1 ≤
ε2(tmax/a1). This extension of1 can split among the segments ofJj as follows. For
each machineMi and jobJj , if Mi processes a fractionα of Jj ,0 ≤ α ≤ 1, Mi will
now process a fractionα of the extended job. Summing over all the segments ofJj , we
get that the extended job is fully processed. The jobJj is long, thus,tj ≥ ε(tmax/a1).
Therefore,α(tj + 1) ≤ α(tj + ε2(tmax/a1)) ≤ α(tj + εtj) ≤ αtj (1+ ε), and the total
processing time of each job on each machine is extended by at most a factor of 1+ ε.

We summarize in the next result.

THEOREM4.7. The SAC problem with fixed allotment parameters admits a PTAS,whose
running time is O(n(amaxa1/ε

2)(2e)amax
).

PROOF. The PTAS described above consists of four steps:

1. Distinguishing between small and large jobs.
2. Replacing the large jobs by jobs ofT ≤ amax(a1/ε

2) sets of identical jobs, as described
in Section 4.3.

3. Guessing a partition of the resulting jobs to segments.
4. Running the PTASP∗ on the resulting sets of segments and small jobs.

By Lemmas 4.4–4.6, and sinceP∗ is a PTAS for the multiprocessing scheduling problem,
we get that each stage may extend the makespan by a factor of 1+ ε. Without loss of
generality we assume thatε < 1; thus, by running these steps withε̂ = ε/9 we get
a total extension of factor 1+ ε. As discussed in Section 4.2, in the third step we
examineO(n6

T
i=1hδk) = O(namax(a1/ε

2)(2e)amax
) partitions. Finally,P∗ can be implemented

in O(n1/ε2
) (see [6]).

Thus, we get that the overall running time is at mostO(n(amaxa1/ε
2)(2e)amax+1/ε2

) which
yields the statement of the theorem.

670 H. Shachnai and T. Tamir

5. Solving SPAC for Parallel-Dominated Instances. In this section we consider in-
stances in which∀ j , ρj < aj . We call such instancesparallel-dominated. We show that
for these instances the SPAC problem is optimally solvable on identical machines. For
uniform machines the solvability of our problem depends on the differences(aj − ρj).
Recall that preemptive scheduling on multiple machines can be viewed as the SPAC
problem on parallel-dominated instances, whereρj = 1 andaj = m, ∀1 ≤ j ≤ n. Our
results imply that when we bound the number of machines that can share the execution
of each job, the preemptive scheduling problem is:

1. Solvable on identical machines with any allotment constraints.
2. Strongly NP-hard on uniform machines and identical jobs, where each job can run

on at most two machines.
3. Solvable on uniform machines where the jobs are identical, and each job can run on

at least three machines.

5.1. An Optimal Algorithm for Identical Machines. We now show that SPAC is poly-
nomially solvable on identical machines, for any parallel-dominated instance.

THEOREM5.1. The SPAC problem is solvable in O(n+m) steps on identical machines,
for instances whereρj < aj , ∀ j .

PROOF. Assume without loss of generality that all the machines have the same rate
u = 1. Recall thatw = max{∑j tj /m,maxj (tj /ρj)} is a lower bound on the length of
an optimal schedule.

Consider the simple greedy algorithm,Au, based on McNaughton rule [14].Au

proceeds by scheduling the jobs one after the other on the machines. It uses each machine,
Mi , for w time units, and then moves toMi+1; it moves to the next job,Jj+1, once the
job Jj is allocatedtj processing units. Thus, each jobJj is scheduled on a consecutive
set of machines.

We first show that the parallelism constraints are preserved. Assume by contradiction
that there exists a jobJj such that at timet0 ∈ [0, w], at leastρj + 1 machines process
Jj (see Figure 4).

M1

Mi

Mi+�j

t0 w

T1

T2

�j � 1

Fig. 4.The schedule ofJj .

Multiprocessor Scheduling with Machine Allotment and Parallelism Constraints 671

Suppose that the first machine used for processingJj is Mi . At time t0, the machines
Mi , . . . ,Mi+ρj processJj ; each of the machinesMi+1, . . . ,Mi+ρj−1 allocates toJj , w
processing units;Mi allocatesT1 units andMi+ρj allocatesT2 units. Since bothMi and
Mi+ρj processJj at time t0, we get thatT1 + T2 > w. Consequently,Jj is allocated
(ρj − 1)w + T1 + T2 > ρjw processing units. Sincew ≥ tj /ρj , we get thatJj was
allocated more thantj processing units, in contradiction to the wayAu proceeds.

To see that all the jobs are scheduled within an interval of lengthw, note thatAu

proceeds to the next machine only when the current machine is “saturated.” Thus, it can
allocatemwprocessing units. By definition,w ≥∑j tj /m. That is,mw≥∑j tj .

Note that in the schedule produced byAu, each job is processed by at mostρj + 1
machines. Thus, since∀ j, ρj < aj , the allotment constraints are preserved.

5.2. Parallel-Dominated Instances and Uniform Machines. We now show that when
the machines may have different speeds, the SPAC problem is strongly NP-hard on
parallel-dominated instances, even if all jobs are identical.

THEOREM5.2. The SPAC problem is strongly NP-hard even if all jobs are identical
and∀ j, ρj < aj .

PROOF. Given an instance of 3-partition, we construct an input,I , for the makespan
problem with∀ j, ρj = 1,aj = 2, such thatwOPT(I) = 1 if and only if A has a 3-
partition. Note that this is an instance of the preemption problem in which the execution
of each job can be shared by at most two machines.

The input I consists ofm = 4q machines with the following rates: for the first
3q machines,ui = (K + s(xi))(1− (K − s(xi))/(3K − B))−1,1 ≤ i ≤ 3q, where
K > 3qB is a large constant. These machines are denotedslow. The otherq machines
are fast with ui = 3K − B,3q < i ≤ 4q. There aren = 3q identical jobs with
tj = 2K , ρj = 1,aj = 2,∀1≤ j ≤ 3q.

CLAIM 5.3. For any slow machine, Mi , 1≤ i ≤ 3q, 1
2ui < K .

PROOF. By definition of the 3-partition problem,∀x ∈ A, B/4< s(x) < B/2. Thus,

1
2ui <

1

2

(
K + B

2

)(
1− K − B/4

3K − B

)−1

<
1

2

(
K + B

2

)
5

3
= 5

6 K + 5
12B < K .

The last inequality follows from fact thatK was selected such that 3B < K , therefore,
5
12B < 1

2 B < 1
6 K .

Assume thatA has a 3-partition to the setsS1, S2, . . . , Sq. ∀1 ≤ k ≤ q, let Sk =
{xk1, xk2, xk3}. The following is a schedule whose makespan equals 1:∀1 ≤ k ≤ q, the
four machinesMk1,Mk2,Mk3,M3q+k process the three jobsJk1, Jk2, Jk3. Specifically, as
illustrated in Figure 5,Mki executesJki ,1 ≤ i ≤ 3, for 1− (K − s(xki))/(3K − B)
time units and thus allocates to itK + s(xki) processing units. The fast machineM3q+k

executesJki ,1 ≤ i ≤ 3, for (K − s(xki))/(3K − B) time units and thus allocates to it
K − s(xki) processing units. Sinces(xk1)+ s(xk2)+ s(xk3) = B, andu3q+k = 3K − B,

672 H. Shachnai and T. Tamir

.

.

idle

idle

idleMk1

Mk2

Mk3

M3q+k

Jk1

Jk1

Jk2
Jk2

Jk3

Jk2
Jk3

Fig. 5.The schedule ofJk1, Jk2, Jk3.

the completion time equals 1. Note that the allotment constraints are preserved: the
execution ofJj is shared by the two machinesMj andM3q+k such thatxj ∈ Sk. Also, the
parallelism constraints are satisfied:Mki is idle while Jki is executed onM3q+k. Finally,
Jki is allocated exactlytki processing units, since(3K − B)(K − s(xki))/(3K − B) +
uki (1− (K − s(xki))/(3K − B)) = 2K .

Now, suppose that we have a schedule ofI whose makespan equals 1. We show
that A has a 3-partition. First, note that any job,Jj , has to be scheduled on at least one
fast machine. This is due to the fact thatρj = 1 and, by Claim 5.3,ui < tj for any
slow machine; thus, any combination of slow machines can provide toJj less thantj

processing units. SinceJj is scheduled on at least one fast machine andaj = 2, Jj is
scheduled on at most one slow machine. Lett f j be the total time allocated toJj on fast
machines, and letti j be the time allocated toJj on (at most one) slow machine. Denote
by Mi j the slow machine processingJj (if Jj is processed only by fast machines, then
ti j = 0 andMi j is undefined). Letxi j be the item with the indexi j in the input for the
3-partition problem.

LEMMA 5.4. For any job, Jj , the processing of Jj is shared by one fast machine and
one slow machine, Mi j such that tfj = (K − s(xi j))/(3K − B) and ti j = 1− (K −
s(xi j))/(3K − B).

PROOF. By definitions oft f j , ti j , andMi j ,
t f j + ti j ≤ 1,

(3K − B)t f j + (K + s(xi j))

(
1− K − s(xi j)

3K − B

)−1

ti j = 2K .
(3)

CLAIM 5.5. For any job, Jj , t f j ≥ (K − s(xi j))/(3K − B).

PROOF. Sinceρj = 1, ∀ j , for anyε > 0, if t f j = (K − s(xi j))/(3K − B) − ε, then
from (3) we get thatti j ≤ 1− (K − s(xi j))/(3K − B) + ε, and the overall number of
processing units allocated toJj is less than 2K .

Recall that there are 3q jobs and 3q slow machines. We show now that each job is
processed by exactly one slow machine, and that each slow machine processes exactly
one job. This is proved by the following claim:

Multiprocessor Scheduling with Machine Allotment and Parallelism Constraints 673

CLAIM 5.6. For all j , ti j >
1
2.

PROOF. Assume by contradiction thatti j ≤ 1
2 for y > 0 jobs. Denote byS1 the set of

3q−y remaining jobs, i.e.,S1 = { j | ti j >
1
2}. Then the jobs inS1 are scheduled on exactly

3q− y slow machines, each running a single job in this set. Since∀x ∈ A, s(x) > B/4,
we have

∑
j∈S1

s(xi j) < Bq− y(B/4). From (3), for any job,(3K − B)t f j +ui j ti j = 2K ;

thus, for each of they jobs not inS1, t f j ≥ (2K − 1
2ui j)/(3K − B). Also, by Claim 5.5

for each of the 3q − y jobs inS1, t f j ≥ (K − s(xi j))/(3K − B).
Summing up the time intervals allocated to all jobs on the fast machines, we get that

3q∑
j=1

t f j ≥
∑
j∈S1

K − s(xi j)

3K − B
+
∑
j 6∈S1

2K − 1
2ui j

3K − B

≥ 1

3K − B

(
(3q − y)K − Bq+ y

B

4
+ 2Ky−

∑
j 6∈S1

1
2ui j

)

= 1

3K − B

(
3Kq− Bq− Ky+ y

B

4
+ 2Ky−

∑
j 6∈S1

1
2ui j

)

= q + 1

3K − B

(
y

(
K + B

4

)
−
∑
j 6∈S1

1
2ui j

)
> q.

The last inequality follows from Claim 5.3 and from the assumption that there are
y > 0 jobs for whichti j ≤ 1

2. However, since the makespan is 1, the total execution time
on the fastq machines cannot exceedq. Thus,y equals zero and∀ j, ti j >

1
2.

It follows that each slow machine processes a different job. Hence,
∑3q

j=1 s(xi j) =∑3q
i=1 s(xi) = qB. Assume by contradiction that for somej , t f j > (K−s(xi j))/(3K−B).

Summing up the time intervals allocated on the fast machines, we get that

3q∑
j=1

t f j >
3qK−∑j s(xi j)

3K − B
= 3qK− qB

3K − B
= q,

which is, again, a contradiction to the length of the schedule.
Assigning t f j = (K − s(xi j))/(3K − B) in (3), we get that∀ j, ti j = 1 − (K −

s(xi j))/(3K − B).

Thus, in any schedule whose makespan equals 1,Jj is allocated exactlyK + s(xi j)

processing units on some slow machine,Mi j , and exactlyK − s(xi j) on some fast
machine. Given that each slow machine processes exactly one job, assume without
loss of generality that∀1 ≤ i ≤ 3q,Mi processes onlyJi . Also, note that each fast
machine must have load 3K − B since the total load on theq identical fast machines is∑3q

i=1 K − s(xi) = (3K − B)q.

674 H. Shachnai and T. Tamir

Denote byfast-segmentthe part of a job that is processed on a fast machine. Consider
a fast machineMi , i > 3q. SinceK was selected such thatK >> s(x),∀x ∈ A, Mi

has to process exactly three fast-segments (Otherwise, there exists a fast machine,Mi ,
which processes at least four fast-segments, but any four fast-segments require more
thanui = 3K − B processing units). For each 3q < k ≤ 4q, let Jk1, Jk2, and Jk3 be
the three jobs whose fast-segments are scheduled onM3q+k. It follows that 3K − B =
3K − (s(xk1) + s(xk2) + s(xk3)), meaning thatxk1, xk2, and xk3 form a triple for the
partition. Since all the jobs are scheduled, the schedule of the fast-segments on the fast
machines induces a valid 3-partition ofA.

In the case where the jobs are identical, and∀ j , ρj < aj − 1, an optimal algorithm
exists.

THEOREM5.7. The SPAC problem has an O(m lg m) optimal algorithm when the jobs
are identical and∀ j, ρj < aj − 1.

PROOF. Assume that for all jobstj = t, ρj = ρ,aj = a, wherea ≥ ρ + 2. Let
w = nt/

∑m
i=1 ui . By Lemma 3.2,w is a lower bound forwOPT(I). We give an algorithm,

Ad, which outputs a schedule ofI of lengthw; each job is scheduled on at mostρ + 2
machines.

For each machine,Mi , let QMi denote thepotentialof Mi , that is, the number of
processing units thatMi can still allocate. Initially, for each of them machinesQMi =
uiw. Generally,QMi = uiw

′, wherew′ is the total length of intervals in [0, w] in which
Mi is idle. Given a pair of machinesM1,M2, we say thatM1 is weaker (stronger) than
M2, if QM1 ≤ QM2 (QM1 ≥ QM2).

DEFINITION 5.1. A merged machine, M ′, is a pair of machinesMi1,Mi2 such that
i1 < i2, and the machineMi1 is idle exactly from 0 tow0, Mi2 is idle exactly fromw0 tow,
for somew0 ∈ [0, w]. The potential of a merged machine isQM ′ = ui1w0+ui2(w−w0).

Similar to the algorithmAr , described in Section 3.1, the algorithmAd maintains
a list, L, of the machines, sorted by their potential in nondecreasing order. That is,
QL[1] ≤ QL[2] ≤ · · · (L[k] denotes the machine at positionk in L). The listL is updated
along the algorithm, according to the current available machines.

The jobs are scheduled one after the other. We first describe the schedule ofJ1,
and then the schedule ofJj , j > 1. The jobJ1 is scheduled on a consecutive set of
machines, selected as follows. First, we examineL[1], which is the weakest machine.
If QL[1] ≥ t we scheduleJ1 on L[1] and update the potential of this machine; else,
we check whetherQL[1] + QL[2] ≥ t , and so on until either we find a sequence of
at mostρ machines with sufficient potential (≥ t), or the total potential of the firstρ
machines is less thant . In the former case, we scheduleJ1 greedily on the weakest
machines until it is completed. In the latter case, we proceed to examine the nextwindow
of ρ machines,L[2], . . . , L[ρ + 1], and so on, until our window coversρ machines,
L[k], . . . , L[k + ρ − 1], such thatQL[k−1] + · · · + QL[k+ρ−2] < t and QL[k] + · · · +
QL[k+ρ−1] ≥ t (see Figure 6). At this stage, we allocate toJ1 all the potential of the

Multiprocessor Scheduling with Machine Allotment and Parallelism Constraints 675

Fig. 6.Scheduling the first job.

machinesL[k], . . . , L[k + ρ − 2], and complete the execution ofJ1 by also allocating
to it some of the potential of the machinesL[k− 1] andL[k+ ρ − 1] in the following
way. Note that we havew(

∑
k−1≤i≤k+ρ−2 uL[i]) < t andw(

∑
k≤i≤k+ρ−1 uL[i]) ≥ t ; thus,

wuL[k−1] < t/ρ andwuL[k+ρ−1] ≥ t/ρ, and there exists somew0 ∈ [0, w] such that the
execution ofJ1 can be completed if it is scheduled onL[k − 1] in the interval [w0, w]
and onL[k+ ρ − 1] in the interval [0, w0] (see Figure 6). Therefore,J1 is scheduled on
ρ + 1 machines, and, in each moment, at mostρ machines process it simultaneously.

The machinesQL[k], . . . , QL[k+ρ−2] are removed fromL. The two machinesL[k−1]
andL[k+ ρ − 1] are partially used and form together onemerged machine, M ′, which
is idle in [0, w] and whose potential isQM ′ = uL[k−1]w0 + uL[k+ρ−1](w − w0). This
merged machine replacesL[k− 1] andL[k+ ρ − 1] in L.

For any jobJj , j > 1: if the total potential of the weakestρ machines is at least
t , then Jj and all the remaining jobs are scheduled greedily starting from the weakest
machine; otherwise, as in the schedule ofJ1, we scan the listL using a moving-window
that coversρ machines, until we find the weakest consecutive set ofρ machines that can
complete the execution ofJj (the merged machine is considered as a single machine in
L). We show that at any stage of the algorithm, the listL contains at most one merged
machine.

Let Jb be the first job such that, whenJb is scheduled, the total potential of the weakest
ρ machines is at leastt (that is, Jb, . . . , Jn are scheduled greedily). We distinguish
between two phases ofAd:

1. The jobsJ1, . . . , Jb−1 are scheduled.
2. The jobsJb, . . . , Jn are scheduled.

CLAIM 5.8. For all 1 < j ≤ b, before Jj is scheduled, the list L contains at most one
merged machine composed of idle-segments of two machines, Mi1 and Mi2, such that
wui1 < t/ρ and wui2 ≥ t/ρ.

676 H. Shachnai and T. Tamir

Fig. 7.Scheduling a jobJj , j > 1.

PROOF. The proof is by induction onj . For j = 2, we showed that the claim holds after
J1 is scheduled. For the induction step, assume that the claim holds for allj ≤ k. Let Mi1
and Mi2 be the two machines composing the merged machine beforeJk is scheduled.
We show that the schedule ofJk must include some intervals on bothMi1 andMi2. As
illustrated in Figure 7(a),(b), the only possible way to scheduleJk is to select a set of
machines that encircle the “hole” created by the machines that were previously used,
and omitted fromL (the hole is shaded with lines). This follows from the fact thatJk

is scheduled on the first possible consecutive set of machines inL. Assume thatJk is
scheduled only on machines that are weaker thanMi1 (Figure 7(c)). By the induction
hypothesiswui1 < t/ρ and thus the execution ofJk is done solely on machines whose
rates are less thant/ρ. Clearly, no combination of suchρ machines can completeJk in
w time units. Similarly, the schedule ofJk cannot be done solely on machines which are
stronger thanMi2 (Figure 7(d)), sincewui2 ≥ t/ρ. We note that ifwui2 = t/ρ and theρ
machines followingMi2 in L have the ratet/wρ, then we may not scheduleJj onMi1, but
in this case the schedule ofJk will be concatenated to that ofJk−1 and the claim holds.

Given that the window contains bothMi1 andMi2, we get that the new merged machine
must replace the old one. The new merged machine is composed of two machines, such
that the slower one has rate at mostui1 and the faster one has rate at leastui2, therefore
the claim holds also before the schedule ofJk+1.

We turn now to consider the number of machine allotments of a jobJj , j > 1. If Jj is
scheduled greedily, then at mostρ machines inL share its execution. By Claim 5.8, at
most one of these machines may be a merged machine; hence, we get thatJj is scheduled
on at mostρ + 1 machines (no merged machines are composed during the second
phase). Assume thatJj is scheduled in the first phase, using the moving-window. Let
L[k], . . . , L[k+ρ−1] be the set ofρ machines such thatQL[k−1]+· · ·+QL[k+ρ−2] < t
andQL[k] + · · · + QL[k+ρ−1] ≥ t . As in the schedule ofJ1, we now allocate toJj all the
potential of the machinesL[k], . . . , L[k + ρ − 2], and complete its execution by also
allocating to it some of the potential of the machinesL[k − 1] andL[k + ρ − 1]. This
allocation is done such that the idle intervals ofL[k−1] andL[k+ρ−1] form a merged

Multiprocessor Scheduling with Machine Allotment and Parallelism Constraints 677

machine. Overall, at mostρ + 1 machines fromL participate in the execution ofJj . By
Claim 5.8 at most one of these machines may be a merged one, thusJj is scheduled on
at mostρ + 2 machines.

Also, the parallelism constraint ofJj is preserved: ifJj is scheduled in the first phase,
then it runs onρ − 1 machinesL[k], . . . , L[k+ ρ − 2] in the interval [0, w]; also,Jj is
scheduled onL[k−1] andL[k+ρ−1] in non-overlapping time intervals. Finally, if one
of the machines is “merged,” thenJj is scheduled on the corresponding two machines
in two distinct time intervals. It follows that at any time,Jj is processed in parallel by at
mostρ machines. The argument is similar for jobsJj that were scheduled greedily.

Finally, we show that we never fail to schedule a job, that is, the set of strongestρ

machines inL can always complete the execution of a job. Recall thatw = nt/
∑m

i=1 ui .
Therefore, for each 1≤ j ≤ n, w ≥ j t /

∑ jρ
i=1 ui (assuming thatu1 ≥ u2 ≥ · · · ≥ um).

This implies that for anyj , the set of firstj jobs can be completed by thejρ fastest
machines. In terms ofAd, the window never has to move beyond theρ fastest available
machines.

The algorithmAd can be implemented in timeO(max(m lg m,n)). O(m lg m) steps
are needed for sorting the machines. Next, the total time for scheduling the jobs is
O(m+ n). Recall that the schedule of each jobJj is done on machines that encircle in
L the hole created by the machines that processJj−1. Hence, we do not need to scan
the list L from the beginning for each job. Also, when the window covers theρj + 1
machines that will share the execution ofJj , the calculation of the new merged machine
and the updates inL takeO(1).

CONCLUDING REMARK. Determining the minimal difference(aj −ρj) required by any
efficient algorithm forgeneral instances remains an open question. In particular, can
we optimally solve the classic preemptive scheduling problem when∀ j,aj = 3 and for
largerconstantvalues ofaj ?

Acknowledgment. We thank an anonymous referee, whose careful reading of the
manuscript has led to significant improvements in the accuracy and clarity of the pre-
sentation.

References

[1] N. Alon, Y. Azar, G. J. Woeginger and T. Yadid. Approximation schemes for scheduling. InProc. of
the10th ACM–SIAM Symposium on Discrete Algorithms(SODA), pp. 493–500, 1997.

[2] J. Blazewick, M. Drabowski, and J. Weglarz. Scheduling multiprocessor tasks to minimize schedule
length.IEEE Transactions on Computers, 35(C):389–393, 1986.

[3] P. Brucker and S. Knust. Complexity results of scheduling problems. http://www.mathematik.uni-
osnabrueck.de/research/OR/class/.

[4] C. Chekuri and S. Khanna. A PTAS for the multiple knapsack problem. InProc. of the11th ACM–SIAM
Symposium on Discrete Algorithms(SODA), pp. 213–222, 2000.

[5] W.J. Davis, D.L. Setterdahl, J.G. Macro, V. Izokaitis and B. Bauman. Recent Advances in the Modeling,
Scheduling and Control of Flexible Automation. InProc. of the1993Winter Simulation Conference,
San Diego, CA, pp. 143–155, 1993.

678 H. Shachnai and T. Tamir

[6] L. Epstein and J. Sgall. Approximation schemes for scheduling on uniformly related and identical
parallel machines. InProc. of the7th European Symposium on Algorithms, LNCS 1643, pp. 151–162.
Springer-Verlag, Berlin, 1999.

[7] M.R. Garey and D.S. Johnson.Computers and Intractability: A Guide to the Theory of NP-Completeness.
Freeman, San Francisco, CA, 1979.

[8] L. Golubchik, S. Khanna, S. Khuller, R. Thurimella, and A. Zhu. Approximation algorithms for data
placement on parallel disks. InProc.of the11th ACM–SIAM Symposium on Discrete Algorithms(SODA),
pp. 223–232, 2000.

[9] T. Gonzalez and S. Sahni. Preemptive scheduling of uniform processor systems.Journal of the ACM,
25:92–101, 1978.

[10] L.A. Hall. Approximation algorithms for scheduling. InApproximation Algorithms for NP-Hard Prob-
lems(D.S. Hochbaum, ed.), chapter 1, pp. 1–45. PWS, Boston, MA, 1995.

[11] D.S. Hochbaum and D.B. Shmoys. Using dual approximation algorithms for scheduling problems:
practical and theoretical results.Journal of the ACM, 34(1):144–162, 1987.

[12] D.S. Hochbaum and D.B. Shmoys. A polynomial approximation scheme for scheduling on uniform
processors: using the dual approximation approach.SIAM Journal of Computing, 17(3):539–551, 1988.

[13] E.G. Horvath, S. Lam, and R. Sethi. A level algorithm for preemptive scheduling.Journal of the ACM,
24:32–43, 1977.

[14] R. McNaughton. Scheduling with deadlines and loss functions.Management Science, 6:1–12, 1959.
[15] J.I. Munro, T. Papadakis, and R. Sedgewick, Deterministic skip lists. InProc. of the Third ACM–SIAM

Symposium on Discrete Algorithms, pp. 367–375, 1992.
[16] W. Pugh. Skip lists: a probabilistic alternative to balanced trees.Communications of the ACM, 33(6):668–

676, 1990.
[17] H. Shachnai and T. Tamir. Polynomial time approximation schemes for class-constrained packing

problems. InProc. of the Third International Workshop on Approximation Algorithms, pp. 238–249,
2000.

[18] H. Shachnai and T. Tamir. On two class-constrained versions of the multiple knapsack problem.Algo-
rithmica, 29:442–467, 2001.

[19] H. Shachnai and T. Tamir. Preemptive scheduling of parallelizable jobs. Manuscript, 2001.
[20] H. Shachnai and J. Turek. Multiresource malleable task scheduling.Information Processing Letters,

70:47–52, 1999.
[21] A. Silberschatz and P. Galvin.Operating System Concepts, 5th edn. Addison-Wesley, Reading, MA,

1998.

