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Abstract

The concept of submodularity plays a vital role in com-
binatorial optimization. In particular, many impor-
tant optimization problems can be cast as submodu-
lar maximization problems, including maximum cov-
erage, maximum facility location and max cut in di-
rected/undirected graphs.

In this paper we present the first known approxima-
tion algorithms for the problem of maximizing a non-
decreasing submodular set function subject to multiple
linear constraints. Given a d-dimensional budget vector
L̄, for some d ≥ 1, and an oracle for a non-decreasing
submodular set function f over a universe U , where each
element e ∈ U is associated with a d-dimensional cost
vector, we seek a subset of elements S ⊆ U whose total
cost is at most L̄, such that f(S) is maximized.

We develop a framework for maximizing submodu-
lar functions subject to d linear constraints that yields a
(1− ε)(1− e−1)-approximation to the optimum for any
ε > 0, where d > 1 is some constant. Our study is mo-
tivated by a variant of the classical maximum coverage
problem that we call maximum coverage with multiple
packing constraints. We use our framework to obtain
the same approximation ratio for this problem. To the
best of our knowledge, this is the first time the theoret-
ical bound of 1 − e−1 is (almost) matched for both of
these problems.

1 Introduction

A function f , defined over a collection of subsets of a
universe U , is called submodular if, for any S, T ⊆ U ,

f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ).

Alternatively, f is submodular if it satisfies the property
of decreasing marginal value, namely, for any A ⊆ B ⊆
U and e ∈ U \B,

f(B ∪ {e})− f(B) ≤ f(A ∪ {e})− f(A).
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The function f is non-decreasing if, for any subsets T
and S such that T ⊆ S, f(T ) ≤ f(S). The concept of
submodularity plays a vital role in combinatorial theo-
rems and algorithms, and its importance in discrete op-
timization has been well studied (see, e.g., [7] and the
references therein, and the surveys in [5, 16]). Submod-
ularity can be viewed as a discrete analog of convexity.
Many practically important optimization problems, in-
cluding maximum coverage, maximum facility location,
and max cut in directed/undirected graphs, can be cast
as submodular optimization problems (see, e.g., [5]).

This paper presents the first known approxima-
tion algorithms for the problem of maximizing a non-
decreasing submodular set function subject to multiple
linear constraints. Given a d-dimensional budget vector
L̄, for some d ≥ 1, and an oracle for a non-decreasing
submodular set function f over a universe U , where each
element i ∈ U is associated with a d-dimensional cost
vector c̄i, we seek a subset of elements S ⊆ U whose
total cost is at most L̄, such that f(S) is maximized.

There has been extensive work on maximizing sub-
modular monotone functions subject to matroid con-
straint.1 For the special case of uniform matroid, i.e.,
the problem {max f(S) : |S| ≤ k}, for some k > 1,
Nemhauser et. al showed in [11] that a Greedy algo-
rithm yields a ratio of 1 − e−1 to the optimum. Later
works presented Greedy algorithms that achieve this ra-
tio for other special matroids or for certain submodular
monotone functions (see, e.g., [1, 9, 15, 3]). For a general
matroid constraint, Calinescu et al. showed in [2] that a
scheme based on solving a continuous relaxation of the
problem followed by pipage rounding (a technique intro-
duced by Ageev and Sviridenko [1]) achieves the ratio of
1−e−1 for maximizing submodular monotone functions
that can be expressed as a sum of weighted rank func-
tions of matroids. Recently, this result was extended
by Vondrák [16] to general monotone submodular func-
tions. The bound of 1 − e−1 is the best possible for
all of the above problems; this follows from a result of
Feige [4], which holds already for the maximum coverage
problem.

1A (weighted) matroid is a system of ‘independent subsets’

of a universe, which satisfies certain hereditary and exchange

properties [12].



The techniques introduced in these previous works
are powerful and elegant, but do not seem to lead
to efficient approximation algorithms for maximizing
a submodular function subject to d linear constraints,
already for d = 2. While the Greedy algorithm is
undefined for d > 1, a major difficulty in rounding
the solution of the continuous problem (as in [2, 16])
is to preserve the approximation ratio while satisfying
the constraints. A noteworthy contribution of our
framework is in finding a way to get around this
difficulty (see Section 1.1).

Our study is motivated by the following variant of
the classical maximum coverage problem that we call
maximum coverage with multiple packing constraints
(MCMP). Given is a collection of subsets {S1, . . . , Sm}
over a ground set of elements A = {a1, . . . , an}. Each
element aj is associated with a d-dimensional size vector
s̄j = (sj,1, . . . , sj,d) and a non-negative value wj . Also,
given is a d-dimensional bin whose capacity is B̄ =
(B1, . . . , Bd), and a budget k > 1. The goal is to
select k subsets in {S1, . . . , Sm} and determine which
of the elements in these subsets are covered, such that
the overall size of covered elements is at most B̄, and
their total value is maximized. In the special case where
d = 1, we call the problem maximum coverage with
packing constraint (MCP).

MCP is known to be APX-hard, even if all elements
have the same (unit) size and the same (unit) profit, and
each element belongs to at most four subsets [13]. Since
MCP includes as a special case the maximum coverage
problem, the best approximation ratio one can expect
is 1− e−1 [4].2

1.1 Our Results In Section 2 we develop a frame-
work for maximizing submodular functions subject to
d linear constraints, that yields a (1 − ε)(1 − e−1)-
approximation to the optimum for any ε > 0, where
d > 1 is some constant. This extends a result of [15]
(within factor 1 − ε). A key component in our frame-
work is to obtain approximate solution for a continuous
relaxation of the problem. This can be done using an
algorithm recently presented by Vondrák [16]. For some
specific submodular functions, other techniques can be
used to obtain fractional solutions with the same prop-
erties (see, e.g., [1, 2]).

In Section 3 we show that MCP can be approxi-
mated within factor 1− e−1, by applying known results
for maximizing submodular functions. Here we use the
fact that the fractional version of MCP defines a non-
decreasing submodular set function; this is not true al-

2For other known results for the maximum coverage problem,

see e.g., [9, 14, 1].

ready for d = 2. For MCMP we show (in Section 4)
that our framework yields an approximation ratio of
(1− ε)(1− e−1) when d > 1 is a constant.

Technical Contribution: The heart of our framework
is a rounding step that preserves multiple linear con-
straints. Here we use a non-trivial combination of ran-
domized rounding with two enumeration phases: one on
the most profitable elements in some optimal solution,
and the other on the ‘big’ elements (see in Section 2).
This enables to show that the rounded solution can be
converted to a feasible one with high expected profit.

Due to space constraints, some of the proofs are
omitted. The detailed results appear in [10].

2 Maximizing Submodular Functions

In this section we describe our framework for maximiz-
ing a non-decreasing submodular set function subject
to multiple constraints. For short, we call this problem
MLC.

2.1 Preliminaries Given a universe U , we call a
subset of elements S ⊆ U feasible if the total cost of
elements in S is bounded by L̄; we refer to f(S) as the
value of f .

An essential component in our framework is the
distinction between elements by their costs. We say that
an element i ∈ U is big in dimension r if ci,r ≥ ε4Lr;
element i is big if for some 1 ≤ r ≤ d, i is big in
dimension r. An element is small in dimension r if it is
not big in dimension r, and small if it is not big. Note
that the number of big elements in a feasible solution is
at most d · ε−4.

Our framework applies some preliminary steps,
after which it solves a residual problem. Given an
instance of MLC, we consider two types of residual
problems. For a subset T ⊆ U , define another instance
of MLC in which the objective function is fT (S) =
f(S ∪ T ) − f(T ) (it is easy to verify that fT is a non-
decreasing submodular set function); the cost of each
element remains as in the original instance, the budget
is L̄ − c̄(T ) where c̄(T ) =

∑
i∈T c̄i, and the universe

(which is a subset of the original universe) depends on
the type of residual problem.

• Value residual problem- the universe consists of all
elements i ∈ U \ T such that fT ({i}) ≤ f(T )

|T | .

• Cost residual problem- the universe consists of all
small elements in the original problem.

These two types of problems allow us to convert the
original problem to a problem with some desired prop-
erties, namely, either all elements are of bounded value,
or all elements are of bounded cost in each dimension.



Extension by Expectation: Given a non-
decreasing submodular function f : 2U → R+, we define
F : [0, 1]U → R+ to be the following continuous exten-
sion of f . For any ȳ ∈ [0, 1]U , let R ⊆ U be a random
variable such that i ∈ R with probability yi. Then de-
fine

F (ȳ) = E[f(R)] =
∑

R⊆U

(
f(R)

∏

i∈R

yi

∏

i/∈R

(1− yi)

)

(For the submodular function fT , the continuous ex-
tension is denoted by FT .) This extension of a sub-
modular function has been previously studied (see, e.g,
[1, 2, 16]). We consider the following continuous relax-
ation of MLC. Define the polytope of the instance

P = {ȳ ∈ [0, 1]U |
∑

i∈U

yic̄i ≤ L̄},

and the problem is to find ȳ ∈ P for which F (ȳ) is
maximized. Similar to the discrete case, ȳ ∈ [0, 1]U is
feasible if ȳ ∈ P .

For some specific submodular functions, linear pro-
gramming can be used to obtain ȳ ∈ P such that F (ȳ) ≥
(1 − e−1)O, where O is the optimal solution for MLC
(see e.g [1, 2]). Recently, Vondrák [16] gave an algorithm
that finds ȳ ∈ P ′ such that F (ȳ) ≥ (1− e−1 − o(1))Of

where Of = maxz̄∈P ′ F (z̄) ≥ O, and P ′ is a matroid
polytope.3 While the algorithm of [16] is presented in
the context of matroid polytopes, it can be easily ex-
tended to general convex polytope P with 0̄ ∈ P , as
long as the value ȳ = argmaxȳ∈P

∑
i∈U yiwi can be ef-

ficiently found for any vector w̄ ∈ RU
+. In our case,

this can be efficiently done using linear programming.
The algorithm of [16] can be used in our framework for
obtaining a fractional solution for the continuous relax-
ation of a given instance.

Overview Our algorithm consists of two main
phases to which we refer as profit enumeration and
the randomized procedure. The randomized procedure
returns a feasible solution for its input instance, whose
expected value is at least (1 − Θ(ε))(1 − e−1) times
the optimal solution, minus Θ(MI), where MI is the
maximal value of a single element in this instance.
Hence, to guarantee a constant approximation ratio (by
expectation), the profit enumeration phase guesses (by
enumeration) a constant number of elements of highest
value in some optimal solution; then the algorithm
proceeds to the randomized procedure taking the value
residual problem with respect to the guessed subset.
Since the maximal value of a single element in the

3The o(1) factor can be eliminated.

value residual problem is bounded, we obtain the desired
approximation ratio.

The randomized procedure uses randomized round-
ing in order to attain an integral solution from a frac-
tional solution returned by the algorithm of [16]. How-
ever, simple randomized rounding may not guarantee a
feasible solution, as some of the linear constraints may
be violated. This is handled by the following steps.
First, the algorithm enumerates on the big elements in
an optimal solution: this enables to bound the variance
of the cost in each dimension, and the event of discard-
ing an infeasible solution occurs with small probability.
Second, we apply a fixing procedure, in which a nearly
feasible solution is converted to a feasible solution, with
small harm to the objective function.

2.2 Profit Enumeration In section 2.3 we present
algorithm MLC RRε,d(I). Given an instance I of MLC
and some ε > 0, MLC RRε,d(I) returns a feasible
solution for I whose expected value is at least (1 −
Θ(ε))(1− e−1)O − dε−3MI , where

(2.1) MI = max
i∈U

f({i})

is the maximal value of any element in I, and O is the
value of the optimal solution.

We use this algorithm as a procedure in the
following.

Approximation Algorithm for MLC (AMLC)

1. For any T ⊆ U such that |T | ≤ ded · ε−3e:
(a) S ← MLC RRε,d(IT ), where IT is the value

residual problem with respect to T .

(b) if f(S ∪ T ) > f(D) then set D = S ∪ T .

2. Return D

Theorem 2.1. Algorithm AMLC runs in polynomial
time and returns a feasible solution for the input in-
stance I, with expected approximation ratio of (1 −
Θ(ε))(1− e−1).

The above theorem implies that, for any ε̂ > 0, with
a proper choice of ε, AMLC is a polynomial time
(1− ε̂)(1− e−1)-approximation algorithm for MLC.

Proof. Let O = {i1, . . . , ik} be an optimal solution for
I (we use O to denote both an optimal sub-collection
of elements and the optimal value). Let h = ded · ε−3e,
and K` = {i1, . . . , i`} (for any ` ≥ 1), and assume that
the elements are ordered by their residual profits, i.e.,
i` = argmaxi∈OPT\K`−1

fK`−1({i}).



Clearly, if there are less than h elements in O,
then these elements are considered in some iteration
of AMLC , and the algorithm finds an optimal solution;
otherwise, consider the iteration in which T = Kh. For
any j > h, fKh−1({j}) ≤ fKh−1({h}) ≤ f(Kh)

|Kh| . Hence,
the elements ih+1, . . . , ik belong to the value residual
problem with respect to T = Kh, and the optimal
solution of the residual problem is fT (O\Kh) = fT (O).

For some α ∈ [0, 1], let f(T ) = α · O. Then the
optimal solution for the residual problem is (1 − α)O.
Hence, by Theorem 2.2 (see in Section 2.3), the expected
profit of MLC RRε,d(IT ) is at least

(1− cε)(1− e−1)(1− α) · O − dε−3MIT
,

where c > 0 is some constant, and MIT
is defined in

(2.1). By the definition of the residual problem, we get
that MIT

≤ f(T )
|T | ≤ e−1ε3

d ·αO; thus, the expected profit
from the solution is at least

αO + (1− cε)(1− e−1)(1− α)O − dε−3 · αO
h

≥ (1−Θ(ε))(1− e−1)O.

The expected profit of the returned solution is
at least the expected profit in any iteration of the
algorithm. This yields the desired approximation ratio.

For the running time of the algorithm we note that,
for fixed values of d ≥ 1 and ε > 0, the number of
iterations of the loop is polynomial in the number of
sets, and each iteration takes a polynomial number of
steps. ¤

2.3 The Randomized Procedure For the ran-
domized procedure, we use the following algorithm
which is parametrized by ε and d and accepts an input I:

Rounding Procedure for MLC (MLC RRε,d(I))

1. Enumerate on all possible sub-collections of big
elements which yield feasible solutions; denote the
chosen sub-collection by T , and let Tr ⊆ T be the
sub-collection of elements in T which are big in the
r-th dimension, r = 1, . . . , d. Denote by IT the cost
residual problem with respect to T .

(a) Find x̄ in the polytope of IT such that FT (x̄) is
at least (1−e−1−ε) times the optimal solution
of IT .

(b) Add any small element i to the solution with
probability (1−ε)xi; add any element i ∈ T to
the solution with probability (1 − ε). Denote
the selected elements by D.

(c) For any 1 ≤ r ≤ d, let Lg
r =

∑
i∈Tr

ci,r, and
L̃r = Lr − Lg

r .

(d) If for some 1 ≤ r ≤ d one of the following
holds:

• L̃r > εLr and
∑

i∈D ci,r > Lr

• L̃r ≤ εLr and
∑

i∈D\Tr
ci,r > εLr + L̃r

then select D = ∅, else

(e) For any dimension 1 ≤ r ≤ d such that
L̃r ≤ εLr, remove from D elements in Tr until∑

i∈D ci,r ≤ Lr.

(f) If f(D) is larger than the value of the current
best solution, then set D to be the current best
solution

2. Return the best solution.

We now analyze algorithm AMLC . For an instance
I of MLC, let O be an optimal solution (O is used both
as the selected set of elements, and as the value of the
solution).

Theorem 2.2. Given an input I, algorithm
MLC RRε,d(I) returns a feasible subset of elements S

such that

E[f(S)] ≥ (1−Θ(ε))(1− e−1)O − dε−3MI ,

where MI is defined in (2.1).

We consider the iteration in which T contains
exactly all the big elements in O. To prove Theorem
2.2, we use the next technical lemmas. First, define
W = f(D) when D is considered after stage (1b), then

Lemma 2.1. E[W ] ≥ (1−Θ(ε))(1− e−1)O.

Proof. Let D1 be the collection of small elements in D,
and D2 = D \ D1 the collection of big elements in D.
In Step (1a) we get that FT (x̄) ≥ (1 − e−1 − ε)fT (O)
(the optimal solution for IT is fT (O), by the selection
of O \ T ). Hence, due to the convexity of F (see [16],
we have that

E[fT (D1)] = F ((1− ε)x̄) ≥ (1− ε)(1− e−1 − ε)fT (O),

and

E[f(D2)] = F ((1−ε)1T ) ≥ (1−ε)F (1T ) = (1−ε)f(T ).



( y = 1T ∈ {0, 1}U such that yi = 1 iff i ∈ T ). It follows
that

E[W ] = E[f(D)] = E[f(D1) + fD1(D2)]

≥ E[f(D2)] + E[fT (D1)]

≥ (1− ε)f(T ) + (1− ε)(1− e−1 − ε)fT (O)

≥ (1−Θ(ε))(1− e−1)O.

¤
Lemma 2.1 implies that, after the randomized

rounding of stage (1b), the integral solution D has a
high value. In the next lemma we show that the modifi-
cations applied to D in stages (1d) and (1e) may cause
only small harm to the expected value of the solution.

We say that a solution is nearly feasible in dimen-
sion r if it does not satisfy any of the conditions in (1d),
and nearly feasible, if it is nearly feasible in each dimen-
sion. Let F (Fr) be an indicator for the feasibility of D
(feasibility of D in dimension r) after stage (1b).

Lemma 2.2. Pr(F = 0) ≤ dε.

Proof. For some 1 ≤ r ≤ d, let Zr,1 be the cost of
D∩Tr in dimension r, and let Zr,2 be the cost of D\Tr

in dimension r. Clearly, Zr,1 ≤ Lg
r(≤ Lr). Let Xi be

an indicator random variable for the selection of the
element i (note that the Xi’s are independent). Let
Small(r) be the collection of all the elements which
are not big in dimension r, i.e., for any i ∈ Small(r),
ci,r < ε4Lr. Then, Zr,2 =

∑
i∈Small(r) Xici,r. It follows

that E[Zr,2] =
∑

i∈Small(r) ci,rE[Xi] ≤ (1− ε)L̃r, and

V ar[Zr,2] ≤
∑

i∈Small(r)

E[Xi]ci,r · ε4Lr ≤ ε4LrL̃r.

Recall that by the Chebyshev-Cantelli bound, for any
t > 0,

Pr(Zr,2 − E[Zr,2] ≥ t) ≤ V ar[Zr,2]
V ar[Zr,2] + t2

.

Thus, if L̃r > εLr, using the Chebyshev-Cantelli
inequality, we have

Pr(Fr = 0)Pr(Zr,2 − E[Zr,2] > εL̃r) ≤ ε4LrL̃r

ε2L̃2
r

≤ ε;

else L̃r ≤ εLr. Similarly,

Pr(Fr = 0) ≤ Pr(Zr,2 − E[Zr,2] > εLr)

≤ ε4LrL̃r

ε2Lr
2 ≤ ε3.

By the union bound, we get that Pr(F = 0) ≤ dε. ¤

For any dimension r, let Rr =
∑

i∈D ci,r

Lr
and define

R = maxr Rr, where D is considered after stage (1b).

Lemma 2.3. For any ` > 1,

Pr(R > `) <
dε4

(`− 1)2
.

Proof. For any dimension 1 ≤ r ≤ d, let Zr,1, Zr,2

be defined as in the proof of Lemma 2.2. By the
Chebyshev-Cantelli inequality, we have that

Pr(Rr > `) = Pr(Zr,2 > ` · Lr − Lg
r)

≤ Pr(Zr,2 −E[Zr,2] > (`− 1)Lr)

≤ ε4LrL̃r

(`− 1)2Lr
2 ≤

ε4

(`− 1)2
,

and by the union bound, we get that

Pr(R > `) ≤ dε4

(`− 1)2
.

¤

Lemma 2.4. For any integer ` > 1, if R ≤ ` then

f(D) ≤ 2d` · O.

Proof sketch. The set D can be partitioned to 2d`
sets D1, . . .D2d` such that each of this sets is a feasible
solution. Hence, f(Di) ≤ O, and so f(D) ≤ f(D1) +
. . . + f(D2d`) ≤ 2d`f(O). ¤

Let W ′ = f(D) when D is considered after stage (1d).

Lemma 2.5. E[W ′] ≥ (1−Θ(ε))(1− e−1)O.

Proof. By Lemmas 2.2 and 2.3, it holds that

E[W ] = E [W |F = 1] · Pr(F = 1) +

E [W |F = 0 ∧R < 2] · Pr(F = 0 ∧ (R < 2))

+
∞∑

`=1

E
[
W |F = 0 ∧ (2` ≤ R ≤ 2`+1)

]

· Pr(F = 0 ∧ (2` ≤ R ≤ 2`+1))

≤ E[W |F = 1] · Pr(F = 1) + 4d2ε̂ · O

+ d2ε̂4 · O ·
∞∑

`=1

2`+2

(2`−1)2
.

Since the last summation is a constant, using Lemma
2.1, we have that:

E[W |F = 1] · Pr(F = 1) ≥ (1− cε̂)(1− e−1)O,



where c is some constant. Also, since W ′ = W if F = 1
and W ′ = 0; otherwise, we have that

E[W ′] = E[W |F ] · Pr(F ) ≥ (1− cε̂)(1− e−1)O.

¤

Lemma 2.6. Let P = f(D) when D is considered after
stage (1f). Then D is a feasible solution, and

E[P ] ≥ (1−Θ(ε))(1− e−1)O − dε−3 ·MI .

Proof. In stage (1e), for each dimension 1 ≤ r ≤ d,
if L̃r > εLr then no elements are removed from the
solution (and, clearly, the solution is feasible in this
dimension). If L̃r ≤ εLr then, if all big elements in
the r-th dimension are removed, the solution becomes
feasible in this dimension, since

∑

i∈D\Tr

ci,r ≤ L̃r + εLr ≤ 2εLr ≤ Lr

(for ε < 1/2). This implies that it is possible to
convert the solution to a feasible solution in the r-th
dimension by removing only elements which are big
in this dimension. At most ε−3 elements need to be
removed due to each dimension r (since ci,r ≥ ε4Lr

when i is big in the rth dimension). Hence, in stage
(1e) at most dε−3 elements are removed. Then the
expected value of the solution after this stage satisfies
E[P ] ≥ E[W ′] − dε−3MI (since the profit is a non-
decreasing submodular function) and, by Lemma 2.5,

E[P ] ≥ (1−Θ(ε))(1− e−1)O − dε−3 ·MI .

¤

Proof of Theorem 2.2. Since any non-feasible solution
is converted to a feasible one, the algorithm returns a
feasible solution.

By Lemma 2.6, the expected value of the returned
solution is at least (1 − Θ(ε))(1 − e−1)O − dε−3 · MI .
For the running time of the algorithm, we note that
each iteration of the loop runs in polynomial time; the
number of iterations of the main loop is also polynomial,
as the number of sets in T is bounded by dε−4, which
is a constant for fixed values of d ≥ 1, ε > 0. ¤

3 Approximation Algorithm for MCP

The MCMP problem in single dimension can be formu-
lated as follows. Given is a ground set A = {a1, ..., an},
where each element aj has a weight wj ≥ 0 and size

sj ≥ 0. Also, given are a size limit B, a collection of
subsets S = {S1, ..., Sm}, and an integer k > 1.

Let s(E) =
∑

aj∈E sj for all E ⊆ A, and w(E) =∑
aj∈E wj . The goal is to select a sub-collection of sets

S′, such that |S′| ≤ k, and a set of elements E ⊆⋃
Si∈S′ Si, such that s(E) ≤ B and w(E) is maximized.

Let O be an optimal solution for MCP (we use O
also as the weight of the solution). Our approxima-
tion algorithm for MCP combines an enumeration stage,
which involves guessing the ` = 3 elements with highest
weights in O and sets that cover them, with maximiza-
tion of a submodular function.

More specifically, we arbitrarily associate each ele-
ment aj in O with a set Si in O which contains aj ; we
then consider them as a pair (aj , Si). The first stage
of our algorithm is to guess T , a collection of ` pairs
(aj , Si), such that aj ∈ Si. The elements in T are the `
elements with highest weights in O. Let TE be the col-
lection of elements in T , and let TS be the collection of
sets in T . Also, let k′ = k−|TS | and wT = minaj∈TE wj .
We denote by O′ the weight of the solution O excluding
the elements in TE ; then, w(TE) = O −O′.

We use our guess of T to define a non-decreasing
submodular set-function over S \ TS . Let B′ = B −
s(TE). We first define a function g : 2A → R:

g(E) = max
n∑

j=1

xjwj

subject to: 0 ≤ xj ≤ 1 ∀ aj ∈ E
xj = 0 ∀ aj /∈ E

n∑

j=1

xjsj ≤ B′

Note that while g is formulated as a linear program,
given a collection of elements E , the value of g(E) can
be easily evaluated by a simple greedy algorithm, and
the vector x̄ for which the value of g(E) is attained has
a single fractional entry.

For any S′ ⊆ S \ TS define

C(S′) = {aj | aj ∈
⋃

Si∈S′∪TS
Si, aj /∈ TE , wj ≤ wT }.

We use g and C(S′) to define f : 2S\TS → R by
f(S′) = g(C(S′)).

Consider the problem

(3.2) max f(S′) subject to: |S′| ≤ k′.

By taking S′ to be all the sets in O excluding TS , we
get that |S′| ≤ k′ and f(S′) ≥ O′. This gives a lower
bound for the value of the problem. To find a collection



of subsets S′ such that f(S′) is an approximation for
the problem (3.2), we use the following property of f :

Lemma 3.1. The function f is a non-decreasing sub-
modular set function.

This means that we can find a (1−e−1) approxima-
tion for the problem (3.2) by using a greedy algorithm
[11]. Let S′ be the collections of subsets obtained by
this algorithm. Since it is a (1−e−1)-approximation for
(3.2), we have that g(C(S′)) = f(S′) ≥ (1 − e−1)O′.
Consider the vector x̄ which maximizes g(C(S′)), such
that x̄ has at most one fractional entry. (As men-
tion above, such x̄ can be found using a simple greedy
algorithm.) Consider the collection of elements C =
{aj |xj = 1}. Since there is at most one fractional
entry in x̄, by the definition of C(S′) we have that
w(C) ≥ g(C(S′)) − wT . Now consider the collection
of sets S′∪TS , along with the elements C∪TE . This is a
feasible solution for MCP whose total weight is at least

w(TE) + g(C(S′))− wT ≥ (1− 1
`
)w(TE) + (1− e−1)O′

= (1− 1
`
)(O −O′) + (1− e−1)O′ ≥ (1− e−1)O.

The last inequality follows from the fact that ` = 3,
therefore (1 − 1

l ) ≥ 1 − e−1. We now summarize the
steps of our approximation algorithm.

Approximation Algorithm For MCP

1. Enumerate on all the possible sets T of pairs
(aj , Si), such that aj ∈ Si and |T | ≤ `:

(a) Find a (1 − e−1)-approximation S′ for the
problem (3.2), using the greedy algorithm [11].

(b) Let x̄ be the vector that maximizes g(C(S′)),
such that x̄ has at most one fractional entry.
Define C = {aj |xj = 1}

(c) Consider the collection of sets S′ ∪ TS , along
with the elements C ∪TE . If the weight of this
solution is higher than the best solution found
so far, select it as the best solution.

2. Return the best solution found.

By the above discussion, we have

Theorem 3.1. The approximation algorithm for MCP
achieves a ratio of 1 − e−1 to the optimal and has a
polynomial running time.

The result in this section can be easily extended
to solve a generalization of MCP where each set has

a cost ci, and there is a budget L for the sets, by
using an algorithm of [15]. In contrast, there is no
immediate extension of the above result to MCMP. A
main obstacle is the fact that when attempting to define
a function g (and accordingly f) that involves more than
a single linear constraint, the resulting function is not
submodular.

4 A Randomized Approximation Algorithm for
MCMP

The problem of maximum coverage with multiple pack-
ing constraint is the following variant of the maxi-
mum coverage problem. Given is a collection of sets
S = {S1, ..., Sm} over a ground set A = {a1, ..., an},
where each element aj has a weight wj ≥ 0 and a d-
dimensional size vector s̄j = (sj,1, . . . , sj,d), such that
sj,r ≥ 0 for all 1 ≤ r ≤ d. Also, given is an integer
k > 1, and a bin whose capacity is given by the d-dim
vector B̄ = (B1, . . . , Bd). A collection of elements E is
feasible if for any 1 ≤ r ≤ d,

∑
aj∈E si,r ≤ Br ; the

weight of E is w(E) =
∑

aj∈E wj . The goal is to select
a sub-collection of sets S′ ⊆ S of size at most k and
a feasible collection of elements E ⊆ A, such that each
element in E is an element in some Si ∈ S′ and w(E) is
maximized.

An important observation when attempting to solve
this problem is that given the selected sub-collection
of sets S′, choosing the sub-set of elements E (which
are covered by S′) yields an instance of the classic
Multidimensional Knapsack Problem (MKP) It is well
known that MKP admits a PTAS [6], and that the
existence of an FPTAS for the problem would imply
that P = NP (see, e.g., [8]). Our algorithm makes use
of the two main building blocks of the PTAS for MKP
as presented in [8], namely, an exhaustive enumeration
stage, combined with certain properties of the linear
programing relaxation of the problem.

Let O be an optimal solution for the given instance
for MCMP. We arbitrarily associated each element aj

selected in O with some selected subset Si in O such
that aj ∈ Si. For the use of our algorithm, we guess a
collection T of ` pairs (aj , Si) of an element aj and a set
Si with which it is associated, such that the collection of
elements in T forms the ` elements with highest weight
inO. Let TE be the collection of elements in T and TS be
the collection of sets in T . Also, let wT = minaj∈TE wj .

After guessing the pairs in T and taking them as
the initial solution for the problem, we use the following
notation, which reflects the problem that now needs to
be solved. Define the capacity vector B̄′ = (B′

1, . . . , B
′
d)

where B′
r = Br −

∑
aj∈TE sj,r for 1 ≤ r ≤ d. We reduce



the collection of elements to

A′ = {aj ∈ A \ TE |wj ≤ wT and s̄j ≤ B̄′}

(A′ consists of all the elements whose weight is not
greater than the smallest weight of an element in T , and
fit into the new capacity-vector). Define the subsets to
be S′i = Si ∩ A′. Also, let O′ = O −∑

aj∈TE wj be the
total weight in the optimal solution from elements not
in T .

We define the size of a subset S′i to be the total
size of elements associated with S′i (i.e., the elements
associated with Si, excluding elements in TE), and
denote it by ˆ̄si = (ŝi,1, . . . , ŝi,d). We say the a subset
is big in dimension r if ŝi,r > ε4B′

r, and small in
dimension r otherwise. Since there are up to ε−4 subsets
that are big in dimension r in O, we can guess which
sets are big in each dimension in the solution O. Let Gr

be the collection of big sets in dimension r in our guess.
Also, let xi ∈ {0, 1} be an indicator for the selection of
S′i, 1 ≤ i ≤ m; yi,j ∈ {0, 1} indicates whether aj ∈ A′

is associated with S′i, 1 ≤ i ≤ m. Using the guess of
T and our guess of the big sets, we define the following
linear programing relaxation for the problem.

(4.3)

maximize
m∑

i=1

∑

j|aj∈S′i

yi,jwj

subject to:
∀i, j s.t. aj ∈ S′i : yi,j ≤ xi

∀aj ∈ A′ :
∑

i|aj∈S′i

yi,j ≤ 1

m∑

i=1

xi ≤ k

∀1 ≤ r ≤ d :
m∑

i=1

∑

j|aj∈S′i

yi,jsj,r ≤ B′
r

∀Si ∈ TS : xi = 1
∀1 ≤ r ≤ d ∧ S′i ∈ Gr : xi = 1,

∑

aj∈S′i

yi,jsj,r ≥ ε4B′
r

∀1 ≤ r ≤ d ∧ S′i /∈ Gr :
∑

aj∈S′i

yi,jsj,r ≤ ε4B′
rxi

It is important to note that, given the current guess
of T and Gr for every 1 ≤ r ≤ d, the value of the
optimal solution for (4.3) is at least O′. The guessed
sets Gr were involved in the last two constraints of
the system. All sets in Gr were added to the solution
(xi = 1), and are ‘forced’ to be big. In contrast,
sets which are not in Gr have to satisfy the constraint∑

aj∈S′i
yi,jsj,r ≤ ε4B′

rxi. Therefore, these sets remain
small even after scaling the values of yi,j by x−1

i .

The solution of the linear program (4.3) is used to
randomly determine the sets selected for our solution.
For any set Si, 1 ≤ i ≤ m, if Si ∈ TS then add it
to the solution. Otherwise, add Si to the solution with
probability (1−ε)xi. If the resulting solution D contains
more than k subsets, then return an empty solution;
otherwise, define C =

⋃
Si∈D S′i and solve the following

linear program:

(4.4)

maximize:
∑

aj∈C
yjwj

subject to: ∀ 1 ≤ r ≤ d :
∑

aj∈C
yjsj,r ≤ B′

r

∀ aj ∈ C : 0 ≤ yj ≤ 1

A basic solution for the above linear program has at
most d fractional entries. Let A be the collection of
elements aj ∈ C for which yj = 1; then, clearly, A ∪ TE
along with the collection of subsets D forms a feasible
solution for the problem.

We now summarize the steps of our algorithm,
which gets as input the parameters ` ≥ 1 and ε > 0.

Approximation Algorithm for MCMP

1. If k ≤ ε−3 + ` enumerate on the subsets in the
optimal solution, and run the PTAS for MKP
for selecting the elements. (this guaranties an
approximation ratio of (1− ε))

2. For each collection T of pairs (aj , Si) (where aj ∈
Si) of size at most `, and any Gr ⊆ {1, . . . , m} of
size at most ε−4 do the following:

(a) Solve (4.3) with respect to T ,Gr. Let x̄ =
(x1, . . . , xm) be the (partial) solution.

(b) Initially, let D = ∅. For any Si ∈ S, if Si ∈ TS

add Si to D; otherwise, add Si to D with
probability (1− ε)xi.

(c) If the number of sets in D is greater than k,
continue to the next iteration of the loop

(d) Solve the linear program (4.4). Let ȳ be the
solution. Set A to be all the element aj such
that yj = 1.

(e) If the weight of elements in A ∪ TE is greater
than the weight of the current best solution,
choose A ∪ TE with D as the current best
solution.

3. Return the best solution found

It is easy to verify that the running time of the
algorithm is polynomial (for fixed ` and ε) since the
number of iterations of the main loop is polynomial.



Also, clearly, the solution returned by the algorithm is
always feasible. It remains to show that the algorithm
admits the desired approximation ratio of αf = 1 −
(1 − 1

f )f > (1 − e−1), where f is the maximal number
of subsets in which a single element appears. For the
case where k ≤ ε−3 + `, the claim is trivial. Hence, we
assume below that k > ε−3 + `.

To show the approximation ratio of αf , we refer to
the iteration in which we use the correct guess for T
and Gr. We define a slightly more complex randomized
process. For any Si such that Si /∈ TS , let Xi be an
indicator random variable, where Xi = 1 if Si ∈ D and
Xi = 0 otherwise. For any Si ∈ TS , let Xi = 1 with
probability (1− ε) and Xi = 0 with probability ε. This
defines the distribution of Xi, 1 ≤ i ≤ m: Xi = 1 with
probability (1 − ε)xi, and Xi = 0 otherwise. We note
that the Xi’s are independent random variables.

Let {yi,j} be the solution obtained for (4.3) in line
(2a). The values of Xi’s, are used to determine the value
of the random variable Yj , for any aj ∈ A′, namely,

Yj = min



1,

∑

i|aj∈Si

yi,j

xi
Xi



 .

Our goal is to show that (a slight modification of)
Y1, . . . , Yn forms a solution for (4.4) with high value.
Define yj =

∑
i|aj∈Si

yi,j , then the following holds.

Lemma 4.1. For any aj ∈ A′,

E[Yj ] ≥ (1− ε) · αf · yj .

We use another random variable, Y =∑
aj∈A′ Yjwj ; Y can be viewed as the value of

{Yj} when used as a solution for (4.4). Let OPT be
the value of the optimal solution for the linear program
(4.3). By Lemma 4.1, we have that

E[Y ] = E


 ∑

j∈A′
Yjwj


 ≥ (1− ε) · αf ·OPT

≥ (1− ε) · αf · O′.

Define the size of the set Si to be ˆ̄si =
(ŝi,1, . . . , ŝi,d), where ŝi,r =

∑
aj∈S′i

yi,j

xi
. For any di-

mension r, let Bg
r =

∑
i∈Gr

ŝi,r, and B̃r = B′
r − Bg

r .
Also, we use the notation

Zr,1 =
∑

i∈Gr

Xiŝi,r , Zr,2 =
m∑

i=1,i/∈Gr

Xi · ŝi,r,

and Zr = Zr,1 + Zr,2 (the total size of selected big
subsets, not-big subsets, and all subsets in dimension r).

We say that the solution (the result of the randomized
process) is nearly feasible in dimension r (1 ≤ r ≤ d) if
one of the following holds:

1. B̃r > εB′
r and Zr ≤ B′

r

2. B̃r ≤ εB′
r and Zr,2 ≤ εB′

r + B̃r

We use an indicator random variable Fr such that Fr =
1 if the solution is feasible in dimension r and Fr = 0
otherwise. Though we cannot bound the probability
for Zr > B′

r, we are able to bound the probability for
Fr = 0.

Lemma 4.2. For any dimension 1 ≤ r ≤ d,

Pr[Fr = 0] ≤ ε.

The above lemma bounds the probability for a
small deviation of Zr. Larger deviations can be easily
bounded. Let Rr = Zr

B′r
, then

Lemma 4.3. For any dimension 1 ≤ r ≤ d and t > 1,

Pr(Rr > t) ≤ ε4

(t− 1)2
.

Next, we bound the probability that more than k

sets are selected for the solution. We use the assumption
that k > ε−3 + `.

Lemma 4.4. For any t > 1,

Pr(||D|| > t · k) ≤ ε

t2
.

Let R = max{maxr Rr,
|D|
k }. The following claim

is a direct conclusion from the two last lemmas, by
applying the union bound.

Claim 4.1. For any t > 1,

Pr(R > t) ≤ dε

(t− 1)2
+

ε

t2
.

Let F be a random variable such that F = 1 if
|D| ≤ k and the solution is nearly feasible in dimension
r, for any 1 ≤ r ≤ d, and F = 0 otherwise. The
next claim also follows from the previous lemmas, using
union bound.

Claim 4.2. Pr[F = 0] ≤ (d + 1) · ε
Now, we bound the value of Y as a function of R.

Lemma 4.5. For any integer t > 1, if R ≤ t then
Y ≤ t · cd · O′, where cd is constant for fixed d.



Combining the results of the above lemmas, we
obtain the following.

Lemma 4.6. For some c′′d ,

E[Y |F = 1]Pr[F = 1] ≥ (1− c′′dε) · αf · O′.

Let W to be (1 − ε)Y if F = 1 and W = 0
otherwise (F = 1 if the solution is nearly feasible in
every dimension and |D| ≤ k). The value of W is a
lower bound for the value of the solution for the linear
program in line (2d) (in case this line was not reached
by the algorithm, we consider its value as zero). This
follows from the fact that we can consider the values
of (1 − ε)Yj as solutions for the linear program, and
in case they form a nearly feasible solution, the scaling
by (1 − ε) makes them feasible. The requirement that
|D| ≤ k guarantees that the linear program would be
solved. By Lemma 4.6, we get that

E[W ] ≥ (1− ε) · (1− c′′dε) · αf · O′.

Finally, we consider Q as the weight of the solution
considered in line (2e). In case this line is not performed
by the algorithm, we take Q = 0.

Lemma 4.7. Assuming ` ≥ ε−1,

E[Q] ≥ (1− ε) · (1− c′′dε) · αf · O′.

Since the expected value of the solution returned
by the algorithm is at least the expected value of the
solution in any iteration, we summarize in the next
theorem.

Theorem 4.1. For any fixed d and ε̂ > 0, by properly
setting the values of ε and `, the algorithm achieves
approximation ratio of (1− ε̂)αf and runs in polynomial
time.
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