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Abstract

We consider two variants of the classical bin packing problem in which items may be frag-

mented. This can potentially reduce the total number of bins needed for packing the instance.

However, since fragmentation incurs overhead, we attempt to avoid it as much as possible.

In bin packing with size increasing fragmentation (BP-SIF), fragmenting an item increases

the input size (due to a header/footer of fixed size that is added to each fragment). In bin

packing with size preserving fragmentation (BP-SPF), there is a bound on the total number

of fragmented items. These two variants of bin packing capture many practical scenarios, in-

cluding message transmission in community TV networks, VLSI circuit design and preemptive

scheduling on parallel machines with setup times/setup costs.

While both BP-SPF and BP-SIF do not belong to the class of problems that admit a

polynomial time approximation scheme (PTAS), we show in this paper that both problems

admit a dual PTAS and an asymptotic PTAS. We also develop for each of the problems a

dual asymptotic fully polynomial time approximation scheme (AFPTAS). Our AFPTASs are

based on a non-standard transformation of the mixed packing and covering linear program

formulations of our problems into pure covering programs, which enables to efficiently solve

these programs.

Keywords: polynomial time approximation schemes, bin packing, item fragmentation, linear

programming, algorithms.

1 Introduction

In the classical bin packing (BP) problem, n items (a1, . . . , an) of sizes s(a1), . . . , s(an) ∈ (0, 1]

need to be packed in a minimal number of unit-sized bins. This problem is well known to be

NP-hard. We consider a variant of BP known as bin packing with item fragmentation (BPF), in

which items can be fragmented (into two or more pieces). Therefore, it may be possible to pack
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the items using fewer bins than in classical BP. However, since fragmentation incurs overhead,

we attempt to avoid it as much as possible. We study two variants of BPF. In both variants, the

goal is to pack all items in a minimum number of bins.

Size increasing fragmentation (BP-SIF): a header (or a footer) of a fixed size, 1 > ∆ > 0, is

attached to each (whole or fragmented) item. That is, the volume required for packing an item

of size s(ai) is s(ai) +∆. Upon fragmenting an item, each fragment gets a header; that is, if ai is

replaced by two items such that s(ai) = s(ai1)+s(ai2), then packing aij requires volume s(aij )+∆.

Assume, for example, that ∆ = 0.1, and an instance consists of 3 items of sizes {0.4, 0.5, 0.7}.
Without fragmentation, each item must be packed in a separate bin (occupying the volumes

0.5, 0.6 and 0.8, respectively), while if, e.g., the item of size 0.4 is fragmented to 0.1 and 0.3, the

resulting instance can be packed into two bins, the contents of which are (0.1+0.1, 0.7+0.1), and

(0.3 + 0.1, 0.5 + 0.1).

Size preserving fragmentation (BP-SPF): an item ai can split into two fragments: ai1 , ai2 ,

such that s (ai) = s (ai1) + s (ai2). The resulting fragments can also split in the same way. Each

split has a unit cost and the total cost cannot exceed a given budget C > 0. Note that in the

special case where C = 0 we get an instance of classic bin packing. (Most of our results can be

applied to another variant of BP-SPF in which the goal is to minimize the packing cost, and the

number of available bins, b ≥ ⌈
∑

i s(ai)⌉ is given as part of the input.)

For any ∆ > 0 (in BP-SIF) and C < ⌈
∑

i s(ai)⌉−1 (in BP-SPF), the BPF problem is NP-hard

(see Sections 1.1 and 2 for hardness results). Therefore, we present approximation algorithms.

The following applications motivate our study.

Community Antenna Television (CATV) Networks In many communication protocols,

messages of arbitrary sizes are placed in fixed sized frames before they are transmitted. Con-

sider, for example, the Data-Over-Cable Service Interface Specification (DOCSIS), defined by

the Multimedia Cable Network System standard committee [17]. When using CATV network

for communication, the upstream (data transmission from the subscribers’ cable modem to the

headend) is divided into numbered mini-slots. The DOCSIS specification allows two types of

messages: fixed location and free location. Fixed location messages are placed in fixed mini-slots,

while free location messages can be placed arbitrarily in the remaining mini-slots (each message

may need one or more mini-slots). The specification also allows to fragment the free location

messages. Since each of the original messages, as well as each of its pieces allotted to a mini-slot,

has a header (or footer) attached to it, the problem of scheduling the free location messages yields

an instance of the BP-SIF problem (see [15] for more details).

VLSI Circuit Design In high level synthesis of digital systems, when a logic unit is initialized,

values of external variables are copied into the unit’s internal variables. Each external variable

may be copied into multiple internal variables. The logical unit has a fixed number, U , of memory
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ports that it can access in each work cycle. In order to copy an external variable into n variables,

all n+1 variables need to be accessed. For example, if U = 5 and two external variables x, y need

to be copied into 6 and 5 internal variables respectively, a possible initialization process is to copy

x in the first cycle into 4 variables, then copy x into the 2 remaining variable and y into a single

variable, and in a third cycle, copy y into the 4 remaining variables. Note that all 5 ports are

used in each of these cycles. The goal is to complete the initialization process within the fewest

possible work cycles. This yields an instance of BP-SIF, where U is the bin size, ∆ = 1, and the

j-th item size is the number of internal variables that need to be assigned the value of the j-th

external variable. (For more details see in [13].)

Preemptive Scheduling with Setup Times/Costs Consider the problem of preemptively

scheduling a set of jobs on a minimal number of parallel machines; the i-th job has the length

ℓi, and all jobs should be completed by time D which is the deadline for all jobs. In the case

where starting/resuming a job incurs setup time, each preemption (split) causes additional setup

time to a new job-segment, therefore the resulting problem is BP-SIF. In the case where preempt-

ing/resuming a job incurs a setup cost, the resulting problem is BP-SPF, where each preemption

(split) causes an additional cost, and the goal is to find a schedule whose total cost (given by the

total number of preemptions) does not exceed a given bound C.

Flexible Packaging In some packaging problems, the cost of the packages is substantive. This

includes (i) storage management, where files need to be stored in a minimal number of disks, and

each file or file-segment has a header of fixed size; (ii) transportation problems, where material is

to be delivered using minimal number of vehicles. For example, trucks need to ship construction

materials, such as sand, and the sand is given in several sizes of bags. The number of trucks used

for the shipment may be reduced, by splitting the content of some bags.

1.1 Related Work

It is well known (see, e.g., [16]) that BP does not belong to the class of NP-hard problems that

admit a PTAS. In fact, BP cannot be approximated within factor 3
2 − ε, for any ε > 0, unless

P=NP [7]. However, there exists an asymptotic PTAS (APTAS) which uses, for any instance

I, (1 + ε)OPT (I) + k bins for some fixed k. Fernandez de la Vega and Lueker [5] presented an

APTAS with k = 1, and Karmarkar and Karp [10] presented an asymptotic fully PTAS (AFPTAS)

with k = 1/ε2. Alternatively, a dual PTAS, which uses OPT (I) bins of size (1 + ε) was given

by Hochbaum and Shmoys [9]. Such a dual PTAS can also be derived from the work of Epstein

and Sgall [6] on multiprocessor scheduling, since BP is dual to the minimum makespan problem.

(Comprehensive surveys on the bin packing problem appear, e.g., in [3, 24].)

Mandal et al. introduced in [13] the BP-SIF problem and showed that it is NP-hard. Menaker-

man and Rom [15] and Naaman and Rom [18] were the first to develop algorithms for bin packing
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with item fragmentation, however, the problems studied in [15] and [18] are different from our

problems. For a version of BP-SPF in which the number of bins, N , is given, and the objective is

to minimize the total cost incurred by fragmentation, the paper [15] studies the performance of

simple algorithms such as First-Fit, Next-Fit, and First-Fit-Decreasing, and shows that for any

instance which can be packed in N bins using f∗ splits of items, each of these algorithms might

end up using f∗ +N − 1 splits.

There has been some related work in the area of preemptive scheduling on parallel machines.

The paper [20] presents a tight bound on the number of preemptions required for a schedule

of minimum makespan, and a PTAS for minimizing the makespan of a schedule with job-wise

or total bound on the number of preemptions. However, the techniques used in this paper rely

strongly on the assumption that the job-wise/total bounds on the number of preemptions are some

fixed constants, while in solving our BPF variants the number of splits may depend on the input

size. For other related work on preemptive scheduling with preemption costs see, e.g., in [1, 21].

(Comprehensive surveys of known results on preemptive scheduling are given, e.g., in [2, 12].)

1.2 Our Results

In this paper, we develop approximation schemes for the two variants of bin packing with item

fragmentation. In Section 2 we give some hardness results and then analyze the performance of a

class of natural algorithms for our problems. In Section 3 we develop a dual PTAS and APTAS

for BP-SPF. The dual PTAS packs all the items in OPT (I) bins of size (1 + ε), and the APTAS

uses at most (1 + ε)OPT (I) + 1 bins. In Section 5 we show that these schemes can be modified

to apply for BP-SIF. Finally, we show that each of the problems admits a dual AFPTAS. Our

AFPTASs pack the items into OPT (I)+k bins of size (1+ ε), where k ≤ 1/ε2+3, in time that is

polynomial in n and 1/ε. For BP-SIF and BP-SPF, the existence of a polynomial time algorithm

with constant additive error is open. For the special case of BP-SPF where C = 0, i.e., classic

bin packing, this is a long standing open problem; see, e.g., in [3].

Technical Contributions The paper contains two technical contributions. (i) Our APTAS

for BP-SPF is based on a novel oblivious version of the shifting technique (see, e.g., [24]). Given

an instance of n items whose sizes are unknown, we define a set of items whose (shifted) sizes are

given as variables; the values of these variables are then revealed by solving a linear programming

relaxation of the packing problem. We expect that this non-standard use of the shifting technique

will find more applications. (ii) A crucial step in the AFPTAS that we develop for each of our

problems is a transformation of the corresponding mixed covering and packing linear program into

a pure covering program. This enables to efficiently solve the original program. Our non-standard

transformation (see in Section 4) modifies each packing constraint to a covering constraint, by

reversing the inequality. With some simple changes in the objective function, and possibly adding

some new covering constraints, we obtain a pure covering program. Such transformation may be
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useful for a certain class of mixed packing and covering programs, in which the number of packing

constraints is small. The advantage over a standard transformation (see, e.g., in [4]) is that we

do not add negative entries in the coefficient matrix.

2 Preliminaries

In this section we give some basic lemmas and properties of packing with item fragmentation.

We also present a class of natural algorithms and analyze their performance. We first show that

for both variants of BPF, there exists an optimal packing of certain structure. This allows us to

reduce the search for a good packing to this subset of packings.

Define the bin packing graph (BP graph) of a given packing as an undirected graph where each

bin i is represented by a vertex vi; there is an edge (vi, vj) if bin i and bin j share fragments of

the same item. Note that a fragment-free packing induces a graph with no edges. A primitive

packing is a feasible packing in which (i) each bin has at most two fragments of items, (ii) each

item can be fragmented only once, and (iii) the respective BP graph is a collection of paths. Note

that the last condition implies that in any connected component of the BP graph there are two

bins including only a single fragment.

Lemma 2.1 Any instance of BP-SPF has an optimal packing that is primitive.

Proof: We show that any feasible BP-SPF packing, in particular an optimal one, can be

converted into a primitive packing with the same number of splits or fewer. Given a packing

with f splits, consider its BP graph. Let V (Ci), I(Ci) denote, respectively, the set of vertices and

the set of packed items in a connected component Ci. The connected component Ci has at least

|V (Ci)| − 1 edges. Note that for i ̸= j, I(Ci) ∩ I(Cj) = ∅. Thus, for each connected component

Ci, the items in I(Ci) can be repacked into the respective bins of V (Ci) by filling the bins one

at a time, using an arbitrary order of I(Ci), and splitting (if necessary) the last item packed into

the active bin. This results in a primitive packing with at most f splits, since every connected

component Ci is replaced by a subgraph with at most |V (Ci)|−1 edges. The resulting component

in the BP graph is a path since each of the first and last bins includes a single fragment.

Lemma 2.2 Any instance of BP-SIF has an optimal packing that is primitive.

Proof: Similar to the proof of Lemma 2.1, we show that any feasible BP-SIF packing, in

particular an optimal one, can be converted into a primitive packing using at most the same

number of bins and at most the same number of splits. A given packing is converted into a

primitive one separately for each connected component of the corresponding BP graph. Consider

a connected component Ci. The total volume allocated to headers in V (Ci) is at least ∆·(|I(Ci)|+

5



|V (Ci)| − 1). Repack the items in I(Ci) into the respective bins of V (Ci), by filling the bins one

after the other (using an arbitrary order of I(Ci)) and fragmenting the last item packed into the

bin, if necessary, and if possible − it is not possible to fragment the current item if the current

bin has less than ∆ space left. Clearly, the resulting packing is primitive. We need to show that

|V (Ci)| bins are enough. Let b1 be the number of bins in which the last item splits. These bins

are filled to their capacity. By the above transformation, each of the other bins is either the last

one or full to capacity at least 1−∆. The number of splits is therefore b1, meaning that the total

volume required for headers is ∆ · (|I(Ci)|+ b1). We know that the total size of the bins is larger

by at least ∆(|I(Ci)|+ |V (Ci)| − 1) than the total item sizes. Therefore, even if |V (Ci)| − b1 − 1

intermediate bins are full only to capacity 1−∆, there is enough space in the bins.

Hardness of BPF: Clearly, by a simple reduction from Partition, it is NP-hard to decide

whether an instance of BPF can be packed in two bins with no splits. This implies that BP-SIF is

NP-hard for any ∆ > 0. For BP-SPF, by McNaughton’s rule [14], if the bound on the number of

splits is C ≥ ⌈
∑

i s(ai)⌉ − 1, a packing that uses ⌈
∑

i s(ai)⌉ bins exists and can be found in linear

time. We prove that it is NP-hard to avoid using a large number of splits, even if the existence

of a packing that uses no splits is known a-priori. Formally,

Theorem 2.3 For any b > 1, if a BP-SPF instance can be packed into b bins with no splits, then

it is NP-hard to find a packing into b bins for any budget C < ⌈b/2⌉.

Proof: Assume first that b is even. The proof is based on defining an instance for which an

optimal packing into b bins requires no splits, while it is NP-hard to fill a bin to full capacity

with no fragments. Thus, any efficient algorithm ends up with at least one fragment in any bin,

implying at least b/2 splits.

We first prove hardness for bins with different sizes and then extend the proof to identical

bins. The reduction is from the Partition problem. Given a1, ..., an, an instance for Partition

with total size of items equals to 2S, construct an instance for BP-SPF with k = b/2 bins and k

sets of items, I0, . . . , Ik−1. Let M > (2S + 1) be an integer. The set I0 consists of items of sizes

a1, a2, ..., an; I1 consists of items of sizes a1M,a2M, ..., anM , and in general, Ij consists of items

of sizes a1M
j , a2M

j , ..., anM
j . The bin sizes are S, SM,SM2, ..., SMk−1 − two bins in each size.

If there exists a partition of the items into two sets of size S, then a packing with no splits exists,

by packing Ij into the two bins of size SM j . Consider a packing of the items into the bins.

Claim 2.4 Any full bin with no splits induces a partition.

Proof: Assume that for some z, a bin of size SM z is full. No item from a set Ij , j > z is packed

in the bin, since each item from Ij , j > z is larger than SM z (because aiM
z+1 > SM z). Also, no

item from a set Ij , j < z is packed. This is true since the total size of items from earlier sets is

2S(1 +M +M2 + ....Mz−1) = 2S(M z − 1)/(M − 1) which is less than M z for all M > 2S + 1,

therefore, no combination of items from the sets Ij , j < z, can be used.
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It follows that the full SM z bin contains only items from one set, and by scaling by M z, its

content induces a partition of the original instance.

In order to extend the proof to instances with identical bins, we add to the set Ij two filler

items of size S(Mk−M j), and the 2k bins have size SMk. Note that the two smallest filler items

have total size 2S(Mk − Mk−1), which is larger than SMk for any M > 2. Therefore, there is

at most one filler item in any bin. Also, the total size of non-filler items is too small to fill a

bin, therefore a full bin must contain exactly one filler item. Assume that some bin is filled with

items, and no fragments. Let S(Mk −M z) be the size of the filler item in the bin, the rest of the

bin is filled by items of total size SM z, and the proof for the different size bins can be applied

here. It means that any efficient algorithm ends up splitting one item in each set, resulting in at

least one fragment in each bin, and therefore at least b/2 splits.

If b is odd, then by adding a single item of size SMk, and fixing k = ⌊b/2⌋, we get an instance

that can be packed into b bins with no splits, and the rest of the reduction is identical to the case

where b is even. Finally, by scaling all sizes by a factor of 1/SMk we get an equivalent problem

for unit-size bins.

Discrete Instances: An instance of BP-SPF is discrete if for some fixed positive integer U all

item sizes are taken from the sequence {δ, 2δ, ..., Uδ}, where δ = 1/U . Note that since U is integral,

there exists an optimal (primitive) solution in which any fragmented item splits into two fragments

having sizes in {δ, 2δ, ..., (U−1)δ}, thus, no new sizes are introduced in the fragmentation process.

For an instance of BP-SIF to be discrete, it is also required that ∆ is of the form iδ for some

integer i.

Given a discrete instance I, for BP-SIF or BP-SPF, define a bin configuration to be a vector

of length U , in which the j-th entry is the number of items of size jδ packed in the bin; the

configuration is valid if the total size of items (together with their headers - in BP-SIF) is at most

1. The configuration matrix, AI , is the matrix which gives all the possible bin configurations. Each

column in AI gives a bin configuration. The fragmentation matrix, BI , is the matrix which gives

all possible fragmentations of items in I. Each column in BI corresponds to a single possible split,

and represents the change in the total number of items in the instance if this split is performed.

Each column is a fragmentation vector in which all entries are 0 except for a single (+1) entry and

a single (−2), or two (−1) entries, such that the total size of the negative entries is equal to the

size of the positive entry. For example, if U = 6 then the column [0,−1,−1, 0, 1, 0] corresponds

to a single split of an item of size 5/6 into two items of sizes 2/6 and 3/6, and the column

[0,−2, 0, 1, 0, 0] corresponds to a single split of an item of size 4/6 into two items of size 2/6.

2.1 Bounds for Simple Offline and Online Algorithms

Consider the following class of algorithms (defined in [15]). An Algorithm is said to avoid unnec-

essary fragmentation if it follows the two rules:
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1. No unnecessary fragmentation: An item is fragmented only if packed in a bin that does not

have enough space for it. Upon fragmentation of an item, the first fragment must fill one

of the bins. The second fragment is packed by the packing rule of the algorithm.

2. No unnecessary bins: A new bin is opened only if even a fragment of the currently packed

item cannot fit into any of the open bins.

In particular, an algorithm that fills the bins to full capacity one after the other (in BP-SIF,

the algorithm moves to the next bin when the currently open bin is filled to capacity at least

(1−∆)) avoids unnecessary fragmentation. Note that this greedy algorithm does not assume any

order on the items and is therefore an online algorithm.

The following theorems give upper bounds on the performance of any algorithm that avoids

unnecessary fragmentation.

Denote by Nopt, Nalg the number of bins used by an optimal solution and a given algorithm

respectively.

Theorem 2.5 Any algorithm for BP-SIF that avoids unnecessary fragmentation uses at most

Nopt(1 +
∆

1−∆) + 1 bins.

Proof: In any packing achieved by an algorithm that avoids fragmentation, each bin, except

maybe for the last one, is either filled to full capacity - with the last item fragmented, or filled

up to capacity at least 1 − ∆. Denote by S+ the total size of all items and their headers if no

fragmentation is used. That is S+ =
∑

i(s(ai) + ∆). Let N1, N2 denote the number of full bins

and bins filled to capacity 1−∆ in the solution of the algorithm. Note that the number of headers

added due to fragments is at most N1, that is, S
+ ≥ N1−N1∆+N2(1−∆) = (N1+N2)(1−∆).

On the other hand, ⌈S+⌉ is a lower bound on the optimal number of bins required to pack the

whole instance. Therefore, Nalg ≤ N1 +N2 + 1 ≤ Nopt/(1−∆) + 1 = Nopt(1 +
∆

1−∆) + 1.

Theorem 2.6 Any algorithm for BP-SPF that avoids unnecessary fragmentation uses Nopt bins

for any budget C ≥ ⌈
∑

i s(ai)⌉ − 1, and at most Nopt + Z bins for budget C = ⌈
∑

i s(ai)⌉ − Z,

where Z > 1.

Proof: In any packing output by an algorithm that avoids unnecessary fragmentation, the

first C bins are full, and all other bins (except maybe for one), in which the total packed item

size is ⌈
∑

i s(ai)⌉ − C = Z, are at least half full. Therefore the maximal number of bins used is

at most C +2Z = ⌈
∑

i s(ai)⌉+Z ≤ Nopt +Z. If, after filling to full capacity the first C bins, the

remaining volume of unpacked items is less than 1, that is, C ≥ ⌈
∑

i s(ai)⌉− 1, then the (C+1)th

bin can accommodate the remaining items with no additional splits.
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3 Bin Packing with Size-Preserving Fragmentation (BP-SPF)

Recall that in BP-SPF we are given a list of n items I = (a1, a2, ..., an), each with the size

s(ai) ∈ (0, 1]. The number of splits is bounded by C. The goal is to pack all items using minimal

number of bins and at most C splits. In this section we develop a dual PTAS and an APTAS for

BP-SPF.

3.1 A Dual PTAS

Given an input I and some ε > 0, our dual PTAS for BP-SPF packs the items in an optimal

number of bins of size at most (1 + ε). The scheme proceeds in the following steps. (i) Partition

the items into two groups by their sizes: the large items have size at least ε; all other items are

small. (ii) Round up the size of each large item to the nearest integral multiple of ε2. (iii) Guess

OPT (I), the number of bins used by an optimal packing of I. (iv) Pack optimally the large

items with fragmentation, using at most C splits, into OPT (I) bins of size (1 + ε+ ε2). (v) Pack

the small items in an arbitrary order, one at a time. Each item is packed into the bin having

maximum free space.

For analyzing the scheme, we need the next two lemmas.

Lemma 3.1 It is possible to pack the rounded large items into OPT (I) bins of size (1 + ε+ ε2).

Proof: By Lemma 2.1, there is an optimal primitive packing of I. In such a packing, there are

at most 1/ε large items in each bin (since the size of a large item is at least ε). If a bin contains

less than 1/ε non-fragmented large items, it may also contain at most two fragments of large

items. Thus, each bin may contain at most 1/ε− 1+2 distinct large items/fragments. Each item

or fragment may be rounded up, and thus the total extension incurred by packing large items

into each bin is at most ε2(1 + 1/ε) = (ε+ ε2).

Lemma 3.2 The small items can be added to the OPT (I) bins of size (1+ε+ε2) without causing

additional overflow.

Proof: The small items are added greedily with no fragmentation one at a time, into the bin

having maximum free space. The size of any small item is at most ε. As guessed in step (i), all

the items − small and large − can be optimally packed in OPT (I) bins of size 1. The optimal

packing of the rounded large items uses a minimal number of fragments, thus the total size of

items and packed in step (iv) is at most their size in an optimal packing. This implies that when

a small item is packed, there exists at least one non-full bin (otherwise, the total capacity of the

bins is smaller than the total actual sizes of items in an optimal packing). When a small item is

added with no fragmentation into a non-full bin, the bin capacity is never extended beyond 1+ ε.
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Theorem 3.3 BP-SPF admits a dual PTAS.

Proof: Given an input parameter ε′ > 0, then by using Lemmas 3.1 and 3.2, and taking

ε = ε′/2, we get that the scheme packs all the items in at most OPT (I) bins, each of size at most

1+ε′. We turn to analyze the time complexity of the scheme. Steps (i) and (ii) are linear and are

done once. For Step (iii), note that ⌈s(I)⌉ ≤ OPT (I) ≤ n, therefore OPT (I) can be guessed in

O(log n) iterations; each iteration involves packing the rounded large items and adding the small

items. When packing the large items in step (iv), since there are at most 1/ε large items in a bin,

and the number of distinct item sizes is m ≤ 1/ε2, we need to consider O(nm1/ε
) = O(n(1/ε2)1/ε)

packings. Finally, the small items are added in O(n) steps.

3.2 An APTAS for BP-SPF

We describe below an asymptotic PTAS for BP-SPF. Given an ε > 0, our scheme packs any

instance I into at most OPT (I)(1 + ε) + 1 bins. Our scheme applies shifting to the item sizes,

and oblivious shifting to the (unknown) fragment sizes in some optimal solution. The latter is

crucial for efficiently finding a primitive packing that is close to the optimal.

The following is an overview of the scheme. (i) Guess OPT (I) and c ≤ C, the number of

fragmented items. (ii) Partition the instance into large and small items; any item with size at

least ε is large. (iii) Transform the instance to an instance where the number of distinct item sizes

is fixed. (iv) Guess the configuration of the i-th bin in some optimal packing (defined below). (v)

Let R ≥ 1 be the number of distinct fragment sizes in a shifted optimal solution, where R ≤ 1/ε2

is a constant. Guess the number of fragmented items of the j-th group, having fragments of types

1 ≤ r1, r2 ≤ R. (vi) Solve a linear program which gives the fragment sizes for each fragmented

item. (vii) Pack the non-fragmented items and the fragments output by the LP, using the bin

configurations. (iix) Pack the small items in an arbitrary order, one at a time, into the bin having

maximum free space.

Transformation of the Input and Guessing Bin Configurations: First, guess the values

OPT (I) and c, the number of fragmented items. Since there exists an optimal primitive packing,

1 ≤ c ≤ min(C,OPT (I) − 1). Next, transform the instance I to an instance I ′ in which there

are at most 1/ε2 item sizes. This can be done by using the shifting technique (see, e.g., in [24]).

Generally, the items are sorted in non-decreasing order by sizes, then, the ordered list is partitioned

into at most 1/ε2 subsets, each including H = ⌈nε2⌉ items. The size of each item is rounded up to

the size of the largest item in its subset. This yields an instance in which the number of distinct

item sizes is m = n/H ≤ 1/ε2. We renumber the resulting sets of items in non-decreasing order

by the (shifted) sizes.

Define an extended bin configuration to be a vector which gives the number of items of each

size-set packed in the bins, as well as at most two fragments which may be added (since we
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find a primitive packing). Each extended bin configuration consists of three parts: (i) a vector

(h1, . . . , hm) where hj , 1 ≤ j ≤ m, is the number of non-fragmented items of the j-th size-set

packed in the bin, (ii) a binary indicator vector of length m, with at most two ‘1’ entries – in the

indices of at most two size groups 1 ≤ j1, j2 ≤ m that contribute a fragment to the bin, and (iii)

a binary indicator vector of length R (to be defined), with at most two ‘1’ entries – in the indices

corresponding to at most two types of fragments 1 ≤ r1, r2 ≤ R which are packed in the bin.

Now, since both the number of size groups and the number of fragment types are fixed con-

stants, the number of bins of each configuration can be guessed in polynomial time .

Guessing the Fragment Types: The heart of the scheme is in finding how each of the c guessed

items is fragmented. This is done by using the following oblivious shifting procedure. Suppose

that in some optimal packing the (unknown) fragment sizes are y1 ≤ y2 · ·· ≤ y2c, then apply

shifting to this sorted list, by partitioning the entries into subsets of sizes at most Q = ⌈2cε2⌉,
and round up the size of each fragment to the largest entry in its subset. Now, there are R ≤ 1/ε2

distinct fragment sizes. These sizes are determined later, by solving a linear program for packing

the instance with fragmentation.

Next, find the type of fragments generated for each of the c guessed items. Note that the

number of pairs of fragment sizes are R2. Thus, guess for each size group j the number of items

in this group having a certain pair of fragment types. This can be done in polynomial time.

Solving the LP and Packing the Items: Having guessed the fragment types for each frag-

mented item, use a linear program to obtain the fragment sizes that yield a feasible packing. Let

xr denote the size of the r-th fragment in a shifted optimal sorted list. For any item in group j,

that is fragmented to the pair of type (r, s), we verify that the sum of fragment sizes is at least

sj , the size of an item in group j. Denote by ℓrij the indicator for packing a fragment of type r

contributed by size group j in bin i, 1 ≤ r ≤ R, 1 ≤ j ≤ m, 1 ≤ i ≤ OPT (I). The goal is to

find R fragment sizes, x1 ≤ · · · ≤ xR, which enable to pack all the items. That is, once a correct

guess of the fragment types is made, the total volume packed by the LP is the volume of the c

fragmented items. Let N = OPT (I). Denote the set of fragment pairs assigned to the items of

size group j Fj , 1 ≤ j ≤ m. Finally, Γi is the space left in bin i after packing the non-fragmented

items. We solve the following linear program.

(LP ) maximize
N∑
i=1

m∑
j=1

R∑
r=1

xrℓ
r
ij

subject to : xr1 + xr2 ≥ sj ∀j, (r1, r2) ∈ Fj

m∑
j=1

R−1∑
r=1

xrℓ
r
ij ≤ Γi for i = 1, . . . , N (1)

xr ≥ 0 for r = 1, . . . , R

xR = 1

11



Inequality (1) ensures that the fragment types 1, . . . , R−1 can be packed in the OPT (I) bins,

given the correct guess.

Given the solution for the LP, the fragment sizes for each of the c fragmented items are known.

Pack the non-fragmented items as given in the bin configuration and add the fragments of sizes

1, . . . , R−1 in these OPT (I) bins. Next, add H+Q ≤ 2εOPT (I) new bins. In each of the H new

bins pack separately a non-fragmented item in the largest size group generated during shifting.

In the Q new bins, pack the fragments of type R (i.e., the largest fragments) greedily. Finally,

add greedily the small items.

Lemma 3.4 For any ε, 0 < ε ≤ 1/2, adding the small items may add at most one extra bin.

Proof: Denote by N ′ the total number of bins used, after packing the small items. Since we

add extra bins only if necessary, if we added bins then at least N ′ − 1 bins are at least 1 − ε

full. Therefore, (N ′ − 1)(1− ε) ≤ OPT (I). Thus, N ′ ≤ OPT (I)/(1− ε) + 1, and since ε ≤ 1/2,

N ′ ≤ OPT (I)/(1− ε) + 1 ≤ (1 + 2ε)OPT (I) + 1.

Given an input parameter ε > 0, by taking in the scheme as an input parameter ε′ = ε/2, we

will use at most OPT (I)(1 + ε) + 1 bins.

Theorem 3.5 There is an asymptotic PTAS for BP-SPF.

4 A Dual AFPTAS for BP-SPF

We now describe an asymptotic dual FPTAS for BP-SPF, which packs the items of a given BP-

SPF instance into OPT (I) + k bins of size (1 + ε), where k ≤ 4/ε2 + 3 is some constant. Our

scheme applies some of the steps used in the dual PTAS given in Section 3.1; however, since

guessing the fragmented items results in number of iterations that is exponential in 1/ε, we use

instead a linear programming formulation of the packing problem, whose solution yields a feasible

packing of the instance.

The scheme proceeds in the following steps. Steps (i)-(iii) are the same as in the dual PTAS

described in Section 3.1. (iv) Guess c ≤ C, the number of fragmented items, and d = OPT (I), the

number of bins used in an optimal packing. (v) Define for the large items the configuration matrix,

A, and the fragmentation matrix, B, each having 1/ε2 rows. (vi) Solve within an additive factor

of 1 a linear programming formulation of the problem for packing the large items. (vii) Round

the solution of the linear program and pack accordingly the large items in at most OPT (I) + k

bins of size 1 + ε + ε2, where k ≤ 1/ε2 + 3. (viii) Add the small items in arbitrary order to the

bins (without overpacking).

We describe below how our scheme finds a good packing of the large items.
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Constructing the Configuration and Fragmentation Matrices: Recall that, for the

rounded large items, a bin configuration is a vector of size m ≤ 1/ε2, in which the j-th entry gives

hj , the number of items of size group j packed in the bin. The configuration matrix A consists of

the set of all possible bin configurations, where each configuration is a column in A; therefore, the

number of columns in A is q ≤ (1/ε)1/ε
2
. The fragmentation matrix, B, consists of all possible

fragmentation vectors for the given set of large items; the k-th vector is the k-th column in B,

and the number of columns is p ≤ 1/ε4.

Solving the Linear Program: We now formulate the problem of packing the rounded large

items in a minimum number of bins as a linear program. Let nj denote the number of items in

the j-th size group. Denote by xi the number of bins having the i-th configuration, 1 ≤ i ≤ q.

Let zk, 1 ≤ k ≤ p denote the number of items that are split according to the k-th fragmentation

vector. A natural linear programming relaxation of our problem is the following.

(P1) minimize
q∑

i=1

xi

subject to :
q∑

i=1

Aijxi +
p∑

k=1

zkBkj ≥ nj for j = 1, . . . ,m (2)

p∑
k=1

zk ≤ c (3)

xi ≥ 0 for i = 1, . . . , q

zk ≥ 0 for k = 1, . . . , p

The constraints (2) reflect the coverage requirement for the nj items of size group j; the constraint

(3) guarantees that at most c items split.

Note that the above is a mixed covering and packing program, in which some of the coefficients

may be negative. We now show that by modifying the objective function and by adding a con-

straint on the total number of bins used, (P1) can be transformed to a pure covering program, for

which a basic feasible solution can be obtained in time that is polynomial in n and 1/ε. Consider

the following program.

(P ) minimize
q∑

i=1

xi +
p∑

k=1

zk

subject to :
q∑

i=1

Ajixi +
p∑

k=1

Bjkzk ≥ nj for j = 1, . . . ,m

q∑
i=1

xi ≥ d (4)
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p∑
k=1

zk ≥ c (5)

xi ≥ 0 for i = 1, . . . , q

zk ≥ 0 for k = 1, . . . , p

In the program (P), we minimize the total number of bins plus the number of splits, and

require that the solution uses at least d bins and c splits. Indeed, having guessed correctly d and

c, the solution will use exactly d bins and c splits.

In the dual of the program (P) there is a variable yj for each constraint.

(D) maximize
m∑
j=1

njyj + dym+1 + cym+2

subject to :
m∑
j=1

Ajiyj + ym+1 ≤ 1 for i = 1, . . . , q (6)

m∑
j=1

Bjkyj + ym+2 ≤ 1 for k = 1, . . . , p (7)

yj ≥ 0 for j = 1, . . . ,m+ 2

The dual program (D) is a fractional packing linear program, in which some coefficients may

be negative. Note that the number of constraints in (D) is exponential in 1/ε; however, it is

possible to solve (D) using the modified ellipsoid method, as described in [10]; The differences

between (D) and the dual of the classical bin packing LP are: (i) The addition of ym+1 and

ym+2 to the target function. (ii) The addition of ym+1 to constraints of type 6 (see in [10]). (iii)

The addition of type 7 constraints (There are less than m2 = ε−4 restrictions of this type). All

These additions can be handled with ease by simple modifications to the ”separating hyperplane

oracle” provided by [10]. This will result in a reduction of the number of constraints in (D) to

O(m2log(ε−1n)). Then, solving the dual of this reduced LP yields a solution that is within an

additive of 1 from the optimal for (P ). Next, transform the solution of (P ) into a basic solution,

in which at most m + 2 variables have positive values. The scheme uses this basic solution for

packing the large items.

Packing the Items: For packing the large items, round down the xi and the zk values in the

(fractional) basic solution for (P ). Consequently, some of the items cannot be packed/fragmented.

We add new bins, in which these remaining items are packed according to the configurations

corresponding to the rounded xi values; for rounded zk values, pack the item in the corresponding

fragmentation vector in a separate bin. Overall, at most m+ 2 additional bins may be used.
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Finally, the small items are added in an arbitrary order with no fragmentation; each of the

small items can be added to any bin with remaining capacity larger than ε.

4.1 Analysis of the Scheme

In the following, we show that our scheme packs all the items in at most OPT (I) + k bins of size

(1+ ε+ ε2), where k ≤ 1/ε2+3 is some constant. We distinguish between the large and the small

items.

Lemma 4.1 For some k ≤ 1/ε2 + 3, the scheme packs the large items in at most OPT (I) + k

bins of size 1 + ε+ ε2 .

Proof: Given a (fractional) solution for (P) that is within an additive factor of 1 to the optimal,

by Lemma 3.1, after rounding down the xi values, it is possible to pack the large items in at most

OPT (I) + 1 bins of size 1 + ε+ ε2. Also, in the basic solution for (P), at most m+ 2 ≤ 1/ε2 + 2

variables get strictly positive values; therefore, while packing the remaining items, at most this

number of new bins may be added.

Lemma 4.2 Adding the small items requires no additional bins.

Proof: Assuming that OPT (I) is correctly guessed, the total size of the items is at most

OPT (I). In addition, since each small item has size smaller than ε, if the scheme needs to add

bins, it already packed items of total size at least OPT (I) + k > OPT (I). A contradiction.

Theorem 4.3 For any ε ∈ (0, 1), there is a dual AFPTAS for BP-SPF which packs the items in

at most OPT (I) + 4/ε2 + 3 bins of sizes 1 + ε.

Proof: The bound of 1 + ε on the bin sizes follows from Lemma 4.1, by taking in the scheme

as an input parameter ε′ = ε/2.

For the running time of the scheme, we note that the program (D) has the same structure as

the dual program of the classic bin packing problem given in [10]. It is easy to verify that the

constraints added to the BP program, and the changes applied to the original constraints, can be

handled by simple modifications to the “separating hyperplane oracle” proposed in [10]. In fact,

since the number of constraints added to the program is at most ε−4, it is possible to verify that

none of them is violated by checking each of the constraints separately. Once a solution for (D) is

obtained, the dual of the resulting reduced program, which has polynomial number of variables,

can be solved using an algorithm for fractional covering (see, e.g., [11, 22], and a comprehensive

survey in [23]). Finally, a basic solution for the reduced primal program can be obtained using,

e.g., the algorithm of [19],whose running time is polynomial in the reduced size of (P). It follows

that the resulting approximation scheme is fully polynomial.
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5 Bin Packing with Size-Increasing Fragmentation (BP-SIF)

Recall that, in BP-SIF, the input is a list of n items, I = (a1, a2, ..., an), each has the size

s(ai) ∈ (0, 1]. The number of splits is unbounded, but since there is a header of size ∆ attached

to each item or fragment, each fragmentation increases the input size by ∆, the size of an extra

header. The goal is to pack all items using minimal number of bins. In this section we show

how the approximation schemes developed for BP-SPF can be slightly modified to yield approx-

imation schemes for BP-SIF. Note that bin configuration, the configuration matrix A, and the

fragmentation matrix B are all well-defined for BP-SIF.

By Theorem 2.5, any algorithm that avoids unnecessary fragmentation uses at most Nopt/(1−
∆) + 1 bins. Let ε > 0 be the parameter of the scheme. For any ∆ ≤ ε/(1 + ε) it holds that

1/(1−∆) ≤ (1 + ε). Therefore,

Corollary 5.1 If ∆ ≤ ε/(1 + ε) then there is a linear time AFPTAS for BP-SIF.

We note that when ∆ > ε/(1 + ε) the number of items or fragments packed in each bin does

not exceed 1/∆ < (1+ε)/ε, which is a constant. This fact seems to simplify the problem; however,

since small items are treated easily anyway, we are left with the challenge of packing the large

items. The schemes for BP-SIF can be slightly simplified by taking ε′ = ε/(1 + ε), which implies

that there are no small items, and therefore the steps involving the small items can be skipped.

For an item ai, the actual size of ai, denoted by s+(ai), is the volume required for packing ai

with no fragmentation; that is, s+(ai) = s(ai) + ∆.

5.1 A Dual PTAS

The scheme described in Section 3.1 can be applied for BP-SIF with the following changes. When

partitioning the items by sizes, the large items have size at least ε−∆; all other items are small.

(Note that if ∆ ≥ ε then all items are large.) Also, we round up the actual size, s+(ai), of each

large item to the nearest integral multiple of ε2.

Lemmas 3.1 and 3.2 hold, and the scheme has the same running time. Hence, we have

Theorem 5.2 BP-SIF admits a dual PTAS.

5.2 An APTAS for BP-SIF

We distinguish between two cases:

1. ∆ ≤ ε/(1 + ε): In this case by simply filling each bin with items in arbitrary order and

splitting the last item if needed (and possible) we will always get a (1 + ε)Nopt + 1 approx-

imation. This is due to the fact that we will use at most ⌈(1 + ε)
∑n

i=1(ai +∆)⌉ bins while
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∑n
i=1(ai+∆) is a lower bound on the number of bins needed. In this case the running time

of the scheme is O(n).

2. ∆ > ε/(1 + ε): In this case all of the items can be considered as large, since for each item,

ai, its actual size is s(ai)+∆ > ε/(1+ε). This implies that each bin can only hold less than

(1 + ε)/ε = 1/ε+ 1 distinct items/fragments (or in other words, each bin can hold at most

1/ε distinct items/fragments). We can now implement the scheme as described in Section

3.2, without the need to partition the input into large and small items - as all of our items

are large. When using the scheme for BP-SIF, the only change is in the LP: the constraints

(8), which guarantee that the fragments can be packed in the remaining capacity, in each

bin, consider now the actual sizes of the fragments (see the details in Section 3.2).

(LP − SIF ) maximize
N∑
i=1

m∑
j=1

R∑
r=1

(xr +∆)ℓrij

subject to : xr1 + xr2 ≥ sj ∀j, (r1, r2) ∈ Fj

m∑
j=1

R−1∑
r=1

(xr +∆)ℓrij ≤ Γi for i = 1, . . . , N (8)

xr ≥ 0 for r = 1, . . . , R

Theorem 5.3 BP-SIF admits an APTAS.

5.3 An AFPTAS for BP-SIF

The scheme described in Section 4 can be applied for BP-SIF with the following modifications. (i)

We start by adding ∆ to the size of each item. (ii) In the fragmentation matrix B, each column

now reflects a feasible fragmentation under BP-SIF; that is, if item ai split into two fragments

j and k, then s(j) + s(k) equals to the sum s(ai) + ∆ rounded up to the nearest multiple of ε2.

In addition, s(j) > ∆ and s(k) > ∆. The analysis of the scheme is similar to analysis given in

Section 4.

Theorem 5.4 BP-SIF admits a dual AFPTAS.
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