
Fairness-Free Periodic Scheduling

Jiri Sgall ∗ Hadas Shachnai † Tami Tamir ‡

Abstract

We consider a problem of repeatedly scheduling n jobs on m parallel machines. Each
job is associated with a profit, gained each time the job is completed, and the goal is to
maximize the average profit per time unit. Unlike other periodic scheduling problems,
there is no fairness requirement. Still, it is impossible to process only the most profitable
jobs, because once the processing of a job is completed, it goes on vacation and returns
to the system, ready to be processed again, only after its vacation is over. This prob-
lem of scheduling with vacations has many applications, in production planning, machine
maintenance, media-on-demand and databases query processing, among others.

We show that the problem is NP-hard already for jobs with unit processing times and
unit profits, and develop approximation algorithms, as well as optimal algorithms for certain
subclasses of instances. In particular, we show that a preemptive greedy algorithm achieves
a ratio of 2 to the optimal for instances with arbitrary processing times and arbitrary profits.
For the special case of unit processing times, we present a 1.66-approximation algorithm
for instances with arbitrary profits, and a 1.39-approximation algorithm for instances with
the same (unit) profits. For the latter case, we also show that when the load generated by
an instance is sufficiently large (in terms of n and m), any algorithm that uses no intended
idle times yields an optimal schedule.

1 Introduction

We consider a scheduling problem in which jobs need to be scheduled repeatedly. The input
is a set of m identical parallel machines and a set of n jobs, J = {1, . . . , n}, that need to be
scheduled on the machines. All the jobs are ready at time t = 0. Each job, j, is associated
with a processing time pj ≥ 1, and a window aj ≥ pj ; once the processing of j is completed,
it goes on vacation and returns after aj − pj time units, ready to be processed again. Thus, a
feasible schedule is one where each machine processes at most one job at any time, and there is
a gap of at least aj − pj time units between two consecutive executions of job j. The jobs are
sequential, i.e.,no job can be scheduled on more than one machine at the same time. There is
also a profit, bj , associated with each execution of job j; the goal is to find a feasible schedule

∗Mathematical Institute, AS CR, Žitná 25, CZ-11567 Praha 1, The Czech Republic. Email:
sgall@math.cas.cz. Partially supported by Institutional Research Plan No. AV0Z10190503, by Inst. for Theor.
Comp. Sci., Prague (project 1M0021620808 of MŠMT ČR) and grant 201/05/0124 of GA ČR.

†Computer Science Department, The Technion, Haifa 32000, Israel. Email: hadas@cs.technion.ac.il.
‡School of Computer science, The Interdisciplinary Center, Herzliya, Israel. Email: tami@idc.ac.il.

1



that maximizes the average profit per time unit. We call this problem scheduling with vacations
(SWV). Our problem arises in many practical scenarios where tasks need to be accomplished
periodically, but due to setup times or maintenance requirements there must be some gap
between two consecutive executions of a task. The following are two of the applications that
motivate our study.

Surveillance Camera Scheduling: Consider a system of robots carrying surveillance cam-
eras, which patrol an area periodically. Each robot has a predefined path that it needs to
patrol, while recording all the events along this path. Upon completion of each patrol, the
robot returns to the controller, where the recorded data is downloaded/processed, and the
robot is prepared for its next tour. Each patrol j is associated with a profit bj , gained once
the corresponding robot completes the tour. The controller can handle at most m robots si-
multaneously, and it takes pj time units to complete the processing of robot j. The time it
takes robot j to traverse its path is `j ≥ 1. The goal of the controller is to process the robots
in a way that maximizes the profit gained from all robots, throughout the operation of the
system. This yields an instance of SWV, where job j has a processing time pj , and the window
aj = pj + `j .

Commercial Broadcast: In a broadcasting system which transmits data, e.g., commercials
on a running banner, there is a profit associated with the transmission of each commercial. This
profit is gained only if some predefined period of time elapsed since the previous transmission.
The goal is to broadcast the commercials in a way that maximizes the overall profit of the
system. Thus, we get an instance of SWV, where the window of each job corresponds to the
time interval between consecutive transmissions of each commercial.

1.1 Our Results and Related Work

The problem of scheduling with vacations belongs to the class of periodic scheduling problems
where each job may be scheduled infinite number of times. Periodic scheduling is a well-studied
problem. Problems of this type arise in many areas, including production planning, machine
maintenance, telecommunication systems, media-on-demand, image and speech processing,
robot control/navigation systems, and databases query processing. In the paper [12], which
introduced the periodic scheduling problem, the goal is to schedule each of the jobs such that
the average gap between two executions of job j is aj using the minimum number of machines.
Another early example is the chairman assignment problem [13], in which the number of
executions of job j in any prefix of the schedule of length t must be at least bt/ajc and at most
dt/aje. For both problems the earliest deadline first algorithm was shown to be optimal.

Our problem is different from previously studied variants of periodic scheduling in two
major aspects. First, our goal is to maximize the total profit of the server. This may result
in lack of fairness. Indeed, in a schedule which maximizes the profit, some of jobs may be
waiting forever, while other (more profitable) jobs are repeatedly processed as soon as they
return from vacation. In other works (e.g., [12, 7, 8]), the performance of a periodic schedule
is measured by some fairness criterion, or (e.g. [2, 9]) the two objectives are combined; that
is, each job comprises a mandatory and an optional part, with which a non-decreasing reward

2



function is associated. In other variants of the periodic scheduling problem (see, e.g., in [1]),
the processing of each job incurs a service cost, depending on the time that elapsed since the
last service of this job, and the goal is to minimize the cost of the schedule, however, the cost
increases with job delays − implying that an optimal solution requires some fairness.

The other major difference from well-studied variants of periodic scheduling is that in
our problem, due to the vacation requirement, jobs cannot be processed too often. In the
windows scheduling problem [4, 5], the parameter associated with each job gives the maximal
gap between any two executions of job j, however, in any feasible schedule a job may be
processed more often. In the periodic machine scheduling problem (PMSP) [3], this parameter
specifies the exact gap between any two executions of j. To the best of our knowledge, there
is no earlier work in which only the minimal gap between any two executions of a job is given.

We first show that SWV is NP-hard already for jobs with unit length and unit profits. Since
the total number of different configurations of the system is finite, an optimal solution can be
found (inefficiently) by applying the known buffer scheme designed for the windows scheduling
problem [6]. We present several approximation algorithms for various subclasses of instances.
A simple greedy algorithm yields a 2-approximation for preemptive scheduling of jobs with
arbitrary processing times and arbitrary profits. For the special case of unit processing times,
we present a 1.66-approximation algorithm, for instances with arbitrary profits, and a 1.39-
approximation algorithm for instances with the same (unit) profits. For the latter case, we
also show that when the load generated by an instance is sufficiently large (in terms of n and
m), any algorithm that uses no intended idle times yields an optimal schedule.

Our approximation algorithms for unit length jobs apply a transformation of the instance
to an aligned instance, where all window sizes satisfy certain properties. Our approximation
technique, based on finding an optimal schedule for the resulting aligned instance, builds on
a technique of [5] for the windows scheduling problem. To obtain better approximation ratio,
we extend this technique: Our algorithm for unit processing times and unit profits applies the
best align technique, which finds an aligned instance that yields the best approximation ratio
for the original instance.

2 Preliminaries

2.1 Definitions and Notation

Denote by aj the scheduling window (for short, window) of job j. The load incurred by job
j is `(j) = pj/aj . The best service job j can receive is to be processed whenever it returns
from vacation (i.e., no waiting time). Thus, the load of job j represents the average processing
requirement of j per time unit. The total load of the input is L(J) =

∑
j∈J `(j). In the

special case of unit processing times (i.e., for all j, pj = 1), we get that `(j) = 1/aj , and
L(J) =

∑
j∈J 1/aj . Each job is associated with an additional parameter, bj , the profit gained

from each execution of job j.

We say that a job j is heavier than j′ if bj/pj > bj′/pj′ , or bj/pj = bj′/pj′ and j > j′. A
heavier job achieves larger profit per unit time of its execution; the second part of the definition

3



only breaks the ties consistently for the whole instance. Let J≥j denote the set of jobs at least
as heavy as j.

To define the profit of a schedule formally, let complST (j) denote the number of times job j
is completed in the first T time units in schedule S. The profit of schedule S is defined as

profit(S) = lim inf
T→∞

1
T

n∑

j=1

complST (j)bj .

A schedule is periodic with period p if for any time T , the jobs scheduled at time T are the
same as the jobs scheduled at time T + p. It is easy to see that there always exists a periodic
optimal schedule: Define a configuration at time T to consist of the information of how much
of each job is currently executed, or how much time has elapsed since its last completion.
An optimal schedule can always be chosen so that for two times T and T ′ with the same
configurations, the remainder of the schedule is the same. Since the number of configurations
is finite, such a schedule is periodic.

In the remainder of paper we consider only periodic schedules. For a schedule S with
period p, in the definition of profit, lim inf can be replaced by lim which always exists and it is
actually equal to the value of the remaining expression for T = p. Similarly, it is meaningful
to speak about the load (relative frequency) of a job j in S; we denote it by `S(j). Finally,
LS(J ′) =

∑
j∈J ′ `

S(j) denotes the load of a set of jobs J ′ ⊆ J in a schedule S.

The next lemma will be useful in comparing our schedules to an optimal schedule S∗.

Lemma 2.1 Let S∗ be an arbitrary schedule for an instance J and let R ≥ 1.

(i) Suppose that for a schedule S for J , and for any job j, LS(J≥j) ≥ LS∗(J≥j)/R. Then
profit(S) ≥ profit(S∗)/R.

(ii) Suppose that for a distribution of schedules S for J , and for any job j, ExpS∈S [LS(J≥j)] ≥
LS∗(J≥j)/R. Then one of the schedules S ∈ S satisfies profit(S) ≥ profit(S∗)/R.

Proof: The lemma follows from the fact that the profit of any schedule S can be computed
as

∫∞
β=0 LS(Jβ) dβ, where Jβ = {j ∈ J | bj ≥ β}.

2.2 Hardness Results

The hardness of SWV with a single machine, unit profits, and unit processing times is shown
by a reduction from the periodic machine scheduling problem (PMSP), which is known to
be NP-hard (see in [3]). In PMSP, there is a set of n machines; the j-th machine requires
maintenance every aj time units, where

∑n
j=1 1/aj ≤ 1. The maintenance of any machine

takes one time unit, and at any time only one machine can be maintained. It is assumed that
the first maintenance of machine j can be done in any of the first aj time slots. The goal
is to find a maintenance schedule that satisfies exactly all the requirements, that is, for all j,
machine j is maintained exactly once in any window of aj time slots.

4



Theorem 2.2 SWV is NP-hard, even with a single machine, unit profits and unit processing
times.

Proof: Given an instance of PMSP with n machines in which the j-th machine requires
maintenance every aj time units, construct an instance of SWV with unit profits, unit process-
ing times, and scheduling windows aj for jobs j = 1, . . . , n. Since

∑n
j=1 1/aj ≤ 1, there is a

feasible schedule for PMSP if and only if the average profit per time-unit from job j is exactly
1/aj , that is, there is a schedule of the SWV instance with average profit

∑n
j=1 1/aj .

Remark 2.1 When L(J) ≥ 1, the problem is still NP-hard for unit profits and unit processing
times. The proof is similar to the hardness proof for the windows scheduling problem given in
[5]. Given an instance with L(J) < 1 it can be extended into a one with L(J ′) = 1 in a way
that does not affect the schedule of the original jobs. Let A = LCM(a1, a2, ..., an), that is,
each of the original windows divides A. Add to J dummy jobs each having window A, such
that the total load is 1. Then a schedule of the resulting instance with average profit 1 induces
a schedule of the original instance with average profit

∑n
j=1 1/aj , and vice versa. For arbitrary

profits a single dummy job with bj = ε and aj = 1 is sufficient.

2.3 An Optimal Super-Polynomial Algorithm

The general buffer scheme [6] is a tool designed for solving optimally the windows scheduling
problem. We now explain how this tool can be adjusted to solve optimally the problem of
scheduling with vacations. We explain this adjustment for unit-length jobs and arbitrary
profit. It can be extended to handle jobs with arbitrary lengths similar to the extension for
windows scheduling shown in [6]. The buffer scheme is based on representing the system as
a nondeterministic finite state machine in which any directed cycle corresponds to a valid
periodic schedule and vice-versa. Let a∗ = maxj{aj}. The state of a job is represented using
a set of buffers, B0, B2, . . . , Ba∗−1. Each job is stored in some buffer. A job is stored in Bi

when i time slots remain to finish its vacation. Initially, all jobs are ready to be processed so
they are all stored in B0. In each iteration, the scheme selects for scheduling at most m jobs
from B0 and updates the content of the buffers:

• For all i > 0, all jobs located in Bi are moved to Bi−1 (note that none of them is
scheduled).

• Each scheduled job, j, is moved from B0 to Baj−1 (this ensures that at least aj − 1 time
slots will pass before j is selected again).

Note that the total number of buffer configurations is at most Πjaj . In the state machine,
each configuration is represented by a vertex, and there is an edge connecting configuration
a to configuration b if it is possible to move from the state corresponding to a to the state
corresponding to b in a single time slot. Each edge e = (a, b) has a weight be whose value is the
profit gained by moving from a to b, that is, the total profit of the jobs selected for execution.

5



A periodic schedule with cycle t corresponds to a cycle of length t in the state machine.
The profit of this schedule is given by the average edge weight along this cycle. Thus, an
optimal schedule corresponds to a cycle with maximal mean weight. Such a cycle can be found
by using the classic Max Cycle Mean algorithm of Karp [10]. The running time is polynomial
in the graph size, which is polynomial in Πjaj . Clearly, this algorithm is applicable only for
small instances, however, since in general the problem is NP-hard, we cannot expect efficient
optimal solutions.

3 A 2-approximation Algorithm

We describe below an algorithm for preemptive scheduling of arbitrary-length jobs. Note that
in the preemptive scheduling model, the execution of a preempted job can be resumed any
time. The vacation-constraint refers only to the gaps between different executions of a job.
Recall that m is the number of available machines.

Algorithm Greedy

At any time t, schedule for one time unit the m heaviest available jobs.

It is easy to see that Greedy always generates a periodic schedule, as the number of
different states is finite.

Theorem 3.1 Greedy is a 2-approximation algorithm.

Proof: Let S be the schedule produced by greedy and R = 2. Order the jobs from the
heaviest one, and denote them j1, j2, . . . , jn in this order.

We prove that for every i,

LS(J≥ji) ≥ min{m/2, L(J≥ji)/2}.

Since the optimal schedule S∗ satisfies LS∗(J ′) ≤ min{m, L(J ′)} for any J ′ ⊆ J , the theorem
then follows from Lemma 2.1.

To prove the claim, we distinguish between two cases.

First, assume that for some i, `S(ji) ≤ `(ji)/2. If two consecutive completion times of the
job are aji +T time units apart then between the two completion times there are at least T time
slots in which ji was available but not scheduled; by the definition of the algorithm, heavier
jobs were scheduled in these time slots on all machines. Consequently, the case assumption
implies that in half of the slots of the schedule jobs heavier than i were executed. Thus,
LS(J≥ji) ≥ m/2, and the same follows also for any i′ ≥ i.

Second, by induction on i we prove that until the first case occurs,

LS(J≥ji) ≥ L(J≥ji)/2.

6



Since the first case is excluded, we have `S(ji) > `(ji)/2 and the inductive step follows by
summing this inequality and the induction assumption for i − 1. (If i = 0 then the claim
follows trivially.)

We conjecture that our analysis of Greedy is not tight and in fact its approximation ratio
is e/(e − 1) ≈ 1.58. The following is an example of an e/(e − 1) ratio for unit-length jobs:
Let a be an integer and let A = {a + 1, a + 2, . . . , ea}. For sufficiently large a it holds that∑

i∈A 1/i = ln ea − ln a = ln e = 1. Let m = lcm{a + 1, a + 2, . . . , ea}. That is, each of the
numbers a+1, a+2, . . . , ea divides m. The instance consists of m machines, and m jobs having
vacation i for each i = a, a + 1, . . . , ea − 1, a total of (e − 1)am jobs. The profits are almost
identical with a slight preference to jobs having long vacation.

The Greedy schedule: In the first slot the most profitable jobs are those with vacation
ea−1, so these m jobs are scheduled first on each of the m machines. Next (on all m machines)
are the jobs with vacation ea− 2 and so on, on each of the m machines the resulting schedule
is [ea − 1, ea − 2, ..., a, ∗, . . . , ∗] repeated infinitely, where ∗ denotes idle. Since all jobs are on
vacation there are a idle slots after each sequence of ea − a busy slots. The average profit
per slot on each of the machines is therefore ((ea − a)/ea) − ε = ((e − 1)/e) − ε where ε is a
constant depending on the (small) jobs’ profit difference.

An optimal schedule: m/ea machines schedule with no idle times all jobs having vacation
em− 1. In general, m/i machines schedule with no idle the jobs having vacation i− 1. Since∑

i∈A 1/i = 1, we have enough jobs to ‘saturate’ this way all the machines with no idle times,
and therefore the average profit per slot is 1 − ε′. The ratio between the optimal profit and
Greedy’s profit tends to e/e− 1.

4 Unit Processing Times

Call an instance aligned if there exists an integer q such that for each j, aj = q2αj for some
integer αj ≥ 0, or aj = 1. (Note that this generalizes the case when all the windows are powers
of 2.) The following result is due to [5].

Theorem 4.1 An optimal solution for an aligned instance can be computed in polynomial
time.

For the sake of completeness, we describe such an optimal solution. Schedule the jobs in
order of increasing windows, always keeping the period of the schedule to be equal to the
maximal window processed so far. The machines are utilized in an arbitrary order. When a
new job is processed, if needed, increase the period by repeated doubling and repeating the
current schedule, until the period is equal to the currently processed window. Then if possible,
schedule the current job in an empty slot on some machine. Otherwise, if the current job is
heavier than some of the scheduled jobs, put this job in a slot of the lightest scheduled job.
(This light job can still be scheduled is some of the slots, due to a possible previous doubling
of the period.) Note also that this algorithm works also if we start not with an empty schedule
but with some schedule with period q where some slots are already used to run some other
jobs.

7



An alternative view of this schedule S will be useful. Let j be the heaviest job such that
L(J≥j) ≥ m. Then the schedule above has the property that all jobs j′ heavier than j are
scheduled at their maximal rate, i.e., `S(j′) = `(j′), and no jobs lighter than j occur in the
schedule. The borderline job j has such a rate that all the rates sum to 1.

It follows that a simple 2-approximation algorithm can be achieved by rounding the window
of each job to the next higher power of 2 and using the optimal algorithm for aligned instances.
Below we give two algorithms that refine this idea and achieve a better approximation ratio.
These algorithms are deterministic: randomization is used only for their analysis.

4.1 A 1.66-approximation Algorithm for Arbitrary Profits

Algorithm SimpleAlign

Produce 2 instances J ′ and J ′′. The instance J ′ has all the windows rounded up to
the next power of 2, the instance J ′′ has all the windows rounded up to the next
number of the form 3 · 2α for some integer α ≥ 0, with the exception of jobs with
window 1 which remain unchanged. Produce optimal schedules S′ and S′′ for J ′

and J ′′ and choose the better one.

Theorem 4.2 SimpleAlign is a 5/3-approximation algorithm for unit processing times and
arbitrary profits.

Proof: Consider a distribution which chooses S′ with probability 2/5 and S′′ with probability
3/5. We prove that the condition of Lemma 2.1 is satisfied with R = 5/3. We use the following
claim, where by `J ′(j) we denote the load of a job j rounded as in the instance J ′, and similarly
for `J ′′ and J ′′.

Claim 4.3 For any job j, 2
5`J ′(j) + 3

5`J ′′(j) ≥ `(j)/R.

Proof: We consider two cases:

(i) If for some integer α, 2α+1 ≤ aj ≤ 3 · 2α, then

2
5
`J ′(j) +

3
5
`J ′′(j) ≥ 2

5
· 1
2α+2

+
3
5
· 1
3 · 2α

=
3

5 · 2α+1
≥ `(j)

R
.

(ii) Otherwise, for some integer α, 3 · 2α < aj < 2α+2, in which case

2
5
`J ′(j) +

3
5
`J ′′(j) ≥ 2

5
· 1
2α+2

+
3
5
· 1
3 · 2α+1

=
1

5 · 2α
≥ `(j)

R
.

Now, given an optimal schedule S∗ and a job j, we prove the assumption of Lemma 2.1.
We distinguish between two cases.

(a) First, assume that both LS′(J≥j) < m and LS′′(J≥j) < m. Then LS′(J≥j) =
∑

j∈J≥j
`J ′(j),

by the construction of an optimal schedule for aligned instances, and similarly for S′′.
From Claim 4.3, we obtain Exp[LS(J≥j)] ≥ L(J≥j)/R ≥ LS∗(J≥j)/R.

8



(b) Otherwise it must be the case that LS′(J≥j) = m or LS′′(J≥j) = m (note that the load
in a schedule cannot be larger than m). Either way, it implies that L(J≥j) ≥ m in
the original instance. In both J ′ and J ′′, the size of each window is at most doubled,
therefore LS′(J≥j) ≥ m/2 and LS′′(J≥j) ≥ m/2. Then the average load is bounded by
Exp[LS(J≥j)] ≥ 2/5 + 3/5 ·m/2 = 7m/10 ≥ m/R ≥ LS∗(J≥j)/R.

The proof is completed by an application of Lemma 2.1.

4.2 A 1.39-approximation Algorithm for Unit Profits

Now we focus on the special case where for each job bj = 1. Thus, the average profit is equal
to the load of the schedule. In particular, if the schedule has no idle time, it is optimal.

Instead of using two schedules with periods 2 and 3 times a power of 2, the next algorithm
uses one of k schedules with periods q = k + 1, k + 2, . . . , 2k times a power of 2. For a large
but constant k, the approximation ratio approaches 2 ln 2 ≈ 1.39.

The jobs with large windows are rounded similarly as in the previous proof. The jobs with
small windows are handled separately. Given a constant q and a set of jobs with windows at
most q, we find an optimal schedule with period q. If a number of machines is constant, then
the number of such schedules is constant and we can find an optimal one simply by exhaustive
search. For m arbitrary, we use Lenstra’s polynomial algorithm for integer programming in
fixed dimension, see [11], similarly as in its other applications in scheduling. Since q is a
constant, we have a constant number of job types specified by their windows, and for each
type of jobs we have a constant number of patterns specifying in which time slots it is run.
The variables of the integer program correspond to the number of jobs of each type following
each pattern; the number of these variables is a constant exponential in q. The constraints
specify that (i) the number of scheduled jobs of each type equals the number of such jobs in the
instance and that (ii) the number of jobs scheduled in a given time unit is at most m. Feasible
integral solutions then correspond to schedules in a straightforward way. Given an instance,
the integer program can be produced in linear time, and solved in time polylogarithmic in n
and m (with a multiplicative constant doubly exponential in q).

Algorithm BestAlign
Let K = d1/εe. For all values k ∈ {K, 4K, . . . , 4xK, . . . , 4KK} and for all values

q = {k + 1, k + 2, . . . , 2k} generate a schedule as follows.
Let J ′ be the set of jobs with windows at most k/4. Let J ′′ be an instance of

jobs with windows larger than k. (Note that J ′ and J ′′ depend only on k.) Let J ′′′

be an aligned instance obtained from J ′′ so that the window of each job is rounded
up to the next higher number of the form q2α for integer α ≥ 0.

Find the best schedule with period q for J ′; since q is a constant, this can be
done as described in the previous paragraph. Then schedule J ′′′ in the remaining
slots using the optimal algorithm for aligned instances.

Output the best schedule over all values of k and q.

9



Theorem 4.4 BestAlign is (2 ln 2 + O(ε))-approximation algorithm for the jobs with unit
processing times and unit profits. Thus there exist an R-approximation algorithm for any
R > 2 ln 2 ≈ 1.386.

Proof: Let S∗ be an optimal schedule for a given instance.

For the proof, fix a value of k among those used in the algorithm so that the contribution
of the jobs with windows between k/4 and k to L(S∗) is at most ε · L(S∗). Since there are
d1/εe choices of k, one of them has a sufficiently small contribution. This defines the sets of
jobs J ′ and J ′′. Let S′ and S′′ denote the schedule S∗ restricted to J ′ and J ′′, respectively,
i.e., all the other jobs are simply removed from the schedule.

For any q, let Sq be the schedule produced by the algorithm for this choice of q and for k
fixed as above. If any of Sq has load m, it is optimal for J and the theorem follows. Thus,
for the remaining proof we can assume that Sq always schedules all the jobs in J ′′′ with their
maximal load, i.e., LSq(J ′′′) = L(J ′′′).

We prove that one of the schedules Sq has load at least 3/4 ·LS′(J ′)+L(J ′′)/(2 ln 2+O(ε)).
The theorem then follows since by the choice of k, LS∗(J) ≤ (1 + O(ε))(LS′(J ′) + LS′′(J ′′),
furthermore LS′′(J ′′) ≤ L(J ′′), and 2 ln 2 > 4/3.

The schedule produced by BestAlign for J ′ has load at least 3/4 of L(S′): If in S′ we
take a segment of length q− k/4 with the maximal load and append to it k/4 empty slots, we
get a schedule with period q and load at least 3/4 of L(S′). The optimal schedule for J ′ with
period q chosen by BestAlign has at least the same load.

Now we complete the proof of theorem by showing that for some distribution over schedules
Sq, Exp[LSq(J ′′′)] ≥ L(J ′′)/(2 ln 2 + O(ε)). Define the probability distribution so that the
probability of choosing Sq is

πq =
X

q − 1
. (1)

where X is chosen so that the sum of the probabilities is 1, i.e.,
(

1
k

+ . . . +
1

2k − 1

)
X = 1. (2)

We proceed with the proof job by job, similarly as in Theorem 4.2. Since Sq schedules
all the jobs with maximal rate, it is sufficient to prove for each job j that its expected load
in J ′′′ (i.e., after rounding) is at least `(j)/(2 ln 2 + O(ε)). Assume that integers α ≥ 0 and
t ∈ {k, . . . , 2k − 1} satisfy t2α < aj ≤ (t + 1)2α (for each j, there exist unique values of t and
α). Then the average load of j in J ′′′ is

t∑

q=k+1

πq · 1
q2α+1

+
2k∑

q=t+1

πq · 1
q2α

= t




t∑

q=k+1

πq · 1
2q

+
2k∑

q=t+1

πq · 1
q


 1

t2α

≥ t




t∑

q=k+1

πq · 1
2q

+
2k∑

q=t+1

πq · 1
q


 `(j).

10



It remains to bound the coefficient on the right-hand side. From (1), we have

πq

q
=

X

(q − 1)q
=

(
1

q − 1
− 1

q

)
X,

and substituting this and telescoping the sums we have

t




t∑

q=k+1

πq · 1
2q

+
2k∑

q=t+1

πq · 1
q


 = tX

(
1
2k
− 1

2t
+

1
t
− 1

2k

)
=

X

2
.

Using (2), we have

2
X

= 2
(

1
k

+ . . . +
1

2k − 1

)
.

≤ 2
∫ 2k

k

dx

x
+

2
k

= 2(ln(2k)− ln k) +
2
k
≤ 2 ln 2 + O(ε).

This completes the proof of the theorem.

4.3 Instances with a Large Load

In the case where pj = bj = 1, the goal is to maximize the utilization of the machine. A simple
observation is that the best schedule one can expect is one in which the machines are busy all
the time. In this subsection we focus on two cases where such a schedule can be generated.

Our analysis of SimpleAlign shows that if L(J) ≥ 5m/3, then SimpleAlign produces a
schedule with load m: One of the schedules S′ and S′′ is guaranteed to have at least this load,
and no larger load is possible.

The next theorem gives a guarantee when even any greedy algorithm produces a schedule
with full utilization of all machines. In other words, no machine is never idle, regardless of the
jobs selected to be scheduled at any time slots.

Theorem 4.5 Suppose that n = km+r for some r < m. (I.e., k = bn/mc and r = n mod m.)

If L(J) > mHk − 1 + r+1
k+1 then any algorithm with no intended idle times achieves the

optimal profit. In particular, for m = 1, the condition is L(J) > Hn+1 − 1.

Proof: We show that if a machine is idle, L(J) must be small. Assume that some machine
is idle for the first time at time t. Thus, none of the n jobs is available, meaning that all jobs
are processed on the other machines or on vacation. Order the jobs in the order of the last
execution up to time t, including possible executions on the other m − 1 machines at time t.
The last m − 1 jobs in this order are possibly executed at time t, we have no bound on their
vacation, so each can contribute as much as 1 to L(J). The previous m jobs in this order are
scheduled no later than at time t − 1, they are on vacation at time t, thus they have aj ≥ 2
and contribute at most 1/2 each to L(J). Similarly, the previous m jobs are scheduled no later

11



than at time t − 2 and contribute at most 1/3 each to L(J), and so on. The last r + 1 jobs
contribute at most 1/(k + 1) each. The total load of the input is at most

L(J) ≤ m− 1 + m

(
1
2

+
1
3

+ . . . +
1
k

)
+

r + 1
k + 1

= mHk − 1 +
r + 1
k + 1

.

Thus L(J) > mHk − 1 + r+1
k+1 implies that there is no idle time.

Acknowledgment We thank Gerhard Woeginger for stimulating discussions on this paper.

References

[1] S. Anily, J. Bramel, Periodic scheduling with service constraints. Operations Research, Vol. 48, pp.
635-645, 2000.

[2] H. Aydin, R. Melhem, D. Mosse, P. Mejia-Alvarez, Optimal Reward-Based Scheduling of Periodic
Real-Time Tasks. In 20th IEEE Real-Time Systems Symposium, 1999.

[3] A. Bar-Noy, R. Bhatia, J. Naor and B. Schieber, Minimizing Service and Operation Costs of Periodic
Scheduling. In Proc. of SODA, 1998.

[4] A. Bar-Noy and R. E. Ladner. Windows Scheduling Problems for Broadcast Systems. In Proc. of
SODA, 2002.

[5] A. Bar-Noy, R. E. Ladner and T. Tamir. Windows Scheduling as a Restricted Version of Bin Packing.
In Proc. of SODA, 2004.

[6] A. Bar-Noy, R. E. Ladner and T. Tamir. A General Buffer Scheme for the Windows Scheduling
Problem. In Proc. of WEA, 2005.

[7] S.K. Baruah, N.K. Cohen, C.G. Plaxton, D.A. Varvel, Proportionate Progress: A Notion of Fairness
in Resource Allocation. Algorithmica, vol.15 (6), pages 600 –625, 1996.

[8] S. K. Baruah, S-S. Lin. Pfair Scheduling of Generalized Pinwheel Task Systems. IEEE Trans. on
Comp., Vol. 47, 812–816, 1998.

[9] J. Chung, J.W.S. Liu, K. Lin. Scheduling Periodic Jobs that Allow Imprecise Results. IEEE Trans.
on Comp., Vol. 39 (9),pp. 1156–1174, 1990.

[10] R. M. Karp. A Characterization of the Minimum Cycle Mean in a Digraph. Discrete Math., 23:309-
311, 1978.

[11] H.W. Lenstra. Integer programming with a fixed number of variables. Mathematics of Operations
Research, Vol. 8, 538–548, 1983.

[12] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard-real-time
environment. Journal of the ACM, Vol. 20, No. 1, 46-61, 1973.

[13] R. Tijdeman. The Chairman assignment Problem. Discrete Mathematics, Vol. 32, 323-330, 1980.

12


