
Scheduling Techniques for Media-on-Demand∗

Amotz Bar-Noy † Richard E. Ladner ‡ Tami Tamir §

March 2, 2006

Abstract

Broadcasting popular media to clients is the ultimate scalable solution for media-on-
demand. Recently, it was shown that if clients can receive data at a rate faster than
what they need for playback and if they can store later parts of the media in their buffers,
then much higher scalability may be obtained. This paper addresses scheduling problems
arising from these new systems for media-on-demand. For given amount of bandwidth, we
reduce the maximal start-up delay time for an uninterrupted playback. We achieve our
results by introducing two techniques. In the first, the media is arranged on the channels
such that clients gain from buffering later parts of the transmission before the actual start
of the playback. In the second, segments of different media may be mixed together on
the same channel. We introduce a simple class of recursive round-robin scheduling algo-
rithms that implement both techniques. Our results improve the best known asymptotic
results. Moreover, our scheduling algorithms outperform known results for practical values
for number of media and number of broadcasting channels. For some specific small values,
we present solutions that are better than those achieved by our algorithms. Finally, we
show that our techniques are useful for models in which clients may not receive data from
all the channels, and are applicable to media with different lengths and popularities.

∗A preliminary version appeared in the 14th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.

791–800, 2003.
†Computer and Information Science Department, Brooklyn College, 2900 Bedford Avenue Brooklyn,

NY 11210. E-mail: amotz@sci.brooklyn.cuny.edu.
‡Department of Computer Science and Engineering, Box 352350, University of Washington,

Seattle, WA 98195. This work was partially supported by NSF grant No. CCR-0098012.

E-mail: ladner@cs.washington.edu.
§School of Computer Science, The Interdisciplinary Center, Herzliya, Israel, E-mail: tami@idc.ac.il. Work

done while the author was at the University of Washington.



1 Introduction

Media-on-demand (MoD) is the demand by clients to read, listen, or view various types of
media. In its simplest function, the clients would like to have an uninterrupted playback with
as minimal as possible start-up delay. The subject of this paper is to reduce the maximal
start-up delay for MoD systems that support uninterrupted service. Our main objective is to
achieve the smallest maximal start-up delay for given amount of resources (bandwidth). There
are two main types of systems that support MoD: unicast systems and broadcast systems. The
former guarantees an immediate service as long as there are not too many clients. The latter
can support many clients but cannot guarantee immediate service. This paper improves the
tradeoffs between the system resources for broadcast systems and the maximal start-up delay.

In the simplest implementation of MoD systems, clients who wish to view a movie1, select
the channel that would start broadcasting this movie the earliest after their request time.
Movies are broadcast on one channel or several channels. Thus if h channels are allocated to
a movie of length L time units, the maximal start-up delay is L/h units by starting a new
transmission every L/h time units.

Viswanathan and Imielinski proposed the Pyramid Scheme that for a given amount of
bandwidth guarantees exponentially smaller start-up delay to clients that can buffer parts
of the movie and can receive data from several channels concurrently ([20]). Many variants
and generalizations of the Pyramid Scheme followed and all of them showed this dramatic
improvement by employing the following schedule design principle: Early segments should be
broadcast more frequently than later segments. We adopt the following discrete model that
is described shortly in order to demonstrate the ideas behind the Pyramid Scheme and our
techniques.

The system has h channels and broadcasts m movies. Unless specified otherwise, assume
that all the m movies have the same length, L, normalized to be one time unit (L = 1). Each
movie is partitioned into s segments of equal length. The segments are indexed 1 to s in the
order they should be viewed. The segments of the movies may be broadcast in any order on
any channel. Assume that it takes one time slot to transmit or view a segment and thus, the
length of the time slot is 1/s. Assume further that all the channels are synchronized in the
sense that the starting points for the time slots coincide in all of them. Clients may buffer
or view segments from any channel since they may receive data from all of them. Therefore,
clients buffer or view segment i the first time they can do so after their arrival time. Clients
may buffer a number of segments before the viewing process begins. We note, that most of the
previous results assumed that the buffering and the viewing processes must start together.

The problem thus becomes a scheduling problem. To guarantee a maximal start-up delay
of one time slot, segment i must appear at least once in one of the channels in any window
of i slots. This way, the client waits at most one slot to the next starting time of a slot, it
then starts viewing and buffering. Since segment i is available within the next i time slots, an
uninterrupted playback is guaranteed.

1For convenience, we use the terminology of movies in Video-on-Demand (VoD).

1



Example I: To demonstrate the usefulness of this principle consider the case of one movie of
length 1 time unit and two channels. The traditional solution of broadcasting the movie every
1/2 unit of time guarantees a maximal start-up delay of 1/2. The following cyclic schedule is
better:

[
1 1 1 1 1 1 1 1 · · ·
2 3 2 3 2 3 2 3 · · ·

]
(1)

In this schedule, the movie is partitioned into three segments each of length 1/3. The first
channel transmits the first segment every slot and the second channel transmits the second
and the third segments alternately. A client needs only to wait for a beginning of a slot. If the
client arrives before a slot in which the second segment is transmitted on the second channel,
it buffers it and at the same time it views the first segment from the first channel; then it
views the second segment from its buffer while buffering the third segment from the second
channel, and finally, it views the third segment from its buffer. If the client arrives before a
slot in which the third segment is transmitted on the second channel, it buffers it and at the
same time it views the first segment from the first channel; then it views the second segment
from the second channel, and finally it views the third segment from its buffer. Note that in
this case there is no need to buffer the third segment. In both cases the delay is bounded by
the length of a segment which is 1/3.

One of our techniques is based on the observation that if clients may start buffering segments
before they start viewing the movie then to guarantee a maximal delay of d time slots, segment
i must appear at least once in one of the channels in any window of d+ i−1 slots. Surprisingly,
as illustrated in the next example, buffering by itself is enough to reduce the start-up delay
time. That is, even if clients may receive data from only one channel.

Example II: Consider the case of one movie of length 1 and one channel. The traditional
solution broadcasts the movie repeatedly to guarantee a start-up delay of at most 1. The
following cyclic schedule, with d = 4, is better:

[
1 3 2 4 1 5 2 3 1 4 2 5 · · ·

]
(2)

In this schedule, the movie is partitioned into 5 segments each of length 1/5. The first and the
second segments are transmitted every 4 slots and each of the other 3 segments is transmitted
every 6 slots. A client waits for a starting time of a slot and then starts buffering segments it
does not have in its buffer. After 3 more slots the client starts viewing the movie. In any case,
the client waits at most 4 slots which means a maximal start-up delay of 0.8. One can verify
that the above schedule works by checking all the possible arrival times. Assume for example
that a client arrives in the middle of the slot in which the fourth segment is transmitted. This
client buffers the first, second, and fifth segments before starting the viewing process. Then
while viewing the first segment from its buffer the client buffers the third segment and while
viewing the third segment from its buffer the client buffers the fourth segment. Thus, the
client is viewing segment i on time for 1 ≤ i ≤ 5.

2



1.1 Related work and prior results.

MoD systems, and in particular the solution of broadcasting, have been studied extensively
in recent years. The paper [3] surveys broadcasting protocols and describes the development
of these protocols, starting with Staggered broadcasting protocols, in which the movies are
simply transmitted repeatedly on the channels (e.g., [4]), through Pyramid-based broadcasting
protocols, in which movies are partitioned into segments and different segments are broadcast
on different channels [20], and finally Harmonic broadcasting protocols in which segment i is
allocated bandwidth proportional to 1/i (e.g., [11]).

The papers [10, 12] present a simple schedule of one movie on h channels by partitioning
the movie into 2h− 1 segments. Their schedule implies a maximal start-up delay of 1/(2h− 1)
for a movie of length 1. The Pagoda scheme [17] is based on a schedule for 3 channels with
maximal start-up delay 1/9. It is then generalized to a schedule that asymptotically guarantees
a start-up delay of at most 1/O(2.236h). The new Pagoda scheme ([13]) deals with small
values of h. Their maximal start-up delays for h = 3, 4, 5, 6, 7 are 1/9, 1/26, 1/66, 1/172, 1/442
respectively. The Recursive Frequency-Splitting scheme ([19]) improves some of the results of
the new Pagoda scheme. In particular, this scheme guarantees maximal start-up delays for
h = 3, 4, 5, 6, 7 are 1/9, 1/26, 1/73, 1/201, 1/565 respectively. This scheme is almost equivalent
to the greedy scheme presented in [1]. The latter paper presented better results for small values
of h. Their best maximal start-up delays for h = 3, 4, 5, 6, 7 are 1/9, 1/28, 1/77, 1/211, 1/570
respectively.

The polyharmonic protocol [16] always forces the receiver to delay the same amount of time
before beginning playback. Using channels of differing bandwidth enables a worst case delay to
asymptotically approach 1/(eb − 1) for total bandwidth b. Several papers [5, 7, 9] have shown
this bound on delay to be optimal. The lower bound result has been recently extended and
asymptotically optimal protocols have be presented for the case where the receiving bandwidth
is less than the sending bandwidth [6].

Harmonic broadcasting is implemented in [1] by a reduction from the window-scheduling
problem. Specifically, the movie is partitioned into s equal-sized segments that are scheduled
on the channels such that the gap between any two consecutive appearances of segment i is at
most i. For a given number of channels, the goal is to maximize s, and as a result, minimize the
start-up delay (which is at most 1/s). A schedule based on this principle is shown to approach
the lower bound as h →∞.

The papers [14, 15] also apply the observation that clients may start buffering segments
before they start viewing the movie to achieve better results. However, they demonstrate the
usefulness of this observation only for small examples. The first paper ([14]) presents superior
results in which schedules achieve a shorter start-up delay for the same amount of bandwidth.
On the other hand, the second paper ([15]) presents simpler schedules that can be applied to
other variants such as when the receiving bandwidth is less than the sending bandwidth.

3



1.2 Our contributions.

In this paper, we apply two scheduling techniques that enable us to minimize the maximal
start-up delay. These techniques yield broadcasting protocols with improved delay and can
be implemented with no need to “upgrade” the system: clients are required, like in previous
schemes, to be able to receive data from several channels concurrently, and to store the received
data in a local buffer. All the channels have the same bandwidth as the playback bandwidth.

The first technique, called shifting, is based on increasing the number of segments to which
the movie is partitioned. The client is required to buffer the segments greedily, that is, at the
earliest time a segment is transmitted on some channel, even if this occurs before the client
starts viewing the movie. By arranging the segments on the channels in a way that exploits
this greediness, we reduce the maximum start-up delay.

The second technique, called channel sharing, is based on the observation that usually
servers broadcast more than one movie at a time. Let m be the number of movies transmitted
by the server. In traditional schemes, about h/m channels are dedicated to each movie. Our
idea is to broadcast segments of distinct movies on the same channel in order to reduce the
maximum start-up delay. To analyze this technique, we extend the known lower bound for a
single movie to a lower bound that depends on the parameter ρ = h/m.

The two techniques can be combined together to yield even better broadcasting protocols.
We develop simple scheduling algorithms, called recursive round-robin, in which the two tech-
niques are implemented. We present asymptotic analysis that shows the optimality of these
algorithms. Our analysis shows that these algorithms approach the lower bound for any fixed
value of h ≥ 1. Whereas previous results approach the lower bounds for h →∞ ([1]).

Simulation results imply that these techniques and our algorithms yield good schedules for
small, practical, values of h and m. For specific small values of h, that are of much interest, we
develop specific schedules, using both techniques, that outperform the best known schedules.

Finally, we show that these techniques are useful for models in which clients may not receive
data from all the channels, and are applicable to media with different lengths and popularities.

1.3 Paper organization

Section 2 describes the model, provides lower bounds, and proves some preliminary results.
Section 3 describes the shifting and channel sharing techniques. Section 4 presents the as-
ymptotic results for one movie where the optimization goal is to minimize the delay for a
given number of channels. Section 5 presents algorithms for many movies. Both the optimiza-
tion goal of minimizing the delay for a given number of channels and the optimization goal
of minimizing the required number of channels for a desired delay are considered. Section 6
demonstrates that the greedy algorithms that are implied by the asymptotic results yield good
solutions for practical values for h and m. This section also reports some of our best results for
small values of h and m. Section 7 shows that both techniques can be applied to the receive-r
model, to systems with different length movies, and to movies with different popularities (and
therefore different priorities and desired delays). Section 8 concludes with some open problems.

4



2 Model and Preliminaries

In this section we present the model and some preliminaries. In Section 2.1 we define the
model and summarizes the notations. The known lower bound for one movie is generalized to
many movies in Section 2.2. Finally, in Section 2.3 we define the special classes of schedules
on which the asymptotic results are based.

2.1 Definitions and notations.

Assume a system with h ≥ 1 channels each can broadcast segments of m ≥ 1 movies. The
quantity ρ = h/m represents the average bandwidth per movie and can be less, equal, or
greater than one. For convenience, it is assumed that all the m movies have the same length
which is one unit of time. Clients may receive data from all the channels concurrently and store
segments in their local memory. When they view the movie, they can either view it directly
from one of the channels or from their buffers. Each movie is partitioned into s ≥ 1 segments.
The length of one segment which is the length of one time slot is 1/s time units (1/s of the
movie length). The z-segment of movie i for 1 ≤ i ≤ m and 1 ≤ z ≤ s is denoted [z]i. When
there is only one movie or when it is clear which is the movie, only z is used to denote the
z-segment. When z is a specific number, the square brackets are omitted.

Let D denote the maximal start-up delay time to get an uninterrupted playback. For a
given s, let d = s · D be the maximal slot delay. Note that D is measured by the length of
the movie which is one time unit whereas d is measured by the length of a time-slot. In the
broadcasting schemes we present, the maximum delay is given in units of time-slots, thus we
assume that D is a multiple of 1/s.

A schedule for a channel is a sequence: [[z1]i1 , . . . , [z`]i` ] such that 1 ≤ ij ≤ m and 1 ≤ zj ≤ s

for 1 ≤ j ≤ `. The sequence is viewed as a cyclic schedule that generates an infinite schedule.
That is, the segments [[z1]i1 , . . . , [z`]i` ] are broadcast repeatedly. A matrix of h rows represents
h schedules for h channels. The gap between any two consecutive appearances of segment [z]i
in the matrix is the difference between their respective column indices. Define the window size
of segment [z]i to be the maximum size of one of its gaps (with wrap-around). For example,
in the schedule from Example II of the introduction,

[
1 3 2 4 1 5 2 3 1 4 2 5 · · ·

]

segments 1 and 2 have window size of 4, while segments 3,4, and 5 have window size of 6. In
this schedule, all the gaps between consecutive appearances of a specific segment are the same.

The next theorem states a necessary and sufficient condition for a schedule to guarantee a
maximum start-up delay D for any one of the m movies.

Theorem 2.1 Let S be a schedule that broadcasts s ≥ 1 segments for each one of the m ≥ 1
movies on h ≥ 1 channels. Then S guarantees a maximum start-up delay D > 0 if and only if
the window size of segment [z]i is at most d + z − 1 for each 1 ≤ z ≤ s, and 1 ≤ i ≤ m where
d = s ·D.

5



Proof: If there is a window of size d + z that does not contain the z-segment of a particular
movie, then a client arriving after the beginning and during the slot immediately prior to the
window can not receive the beginning of the z-segment of this movie in time to view it even if
it waits d time slots to start the viewing process. This proves the only if claim.

On the other hand, if all the gaps are bounded as stated in the theorem, a client that
arrives at any time will have each segment either in its buffer or on one of the channel when
it needs to view this segment. This is because a client may receive and/or store data from all
the h channels concurrently. This proves the if claim. ¤

Objective functions: We distinguish between two types of optimization goals:

• Fix h and m and try to minimize D as a function of s. Moreover, try to approach the
lower bound on D as s grows.

• Fix D and m and try to minimize h (or equivalently ρ = h/m) as a function of s.
Moreover, try to approach the lower bound on ρ as m grows.

Indeed, both optimization goals are equivalent in the sense that an optimal algorithm for one
of them can be converted to be optimal for the other. Nevertheless, for different algorithms,
it is sometimes possible to come with a rigorous and/or elegant analysis only for one of them.
Moreover, for practical values of m, h, and D, the algorithms are modified differently depending
on the objective function, to achieve better results.

2.2 Lower bounds.

In [5], the following lower bound on the maximal start-up delay is shown for h channel and
one movie.

Theorem 2.2 ([5, 7, 9]) The start-up delay is at least D ≥ 1
eh−1

for h channels and 1 movie.

The generalization to the case of m movies is summarized in the following.

Theorem 2.3 The start-up delay for h channels and m movies is at least D ≥ 1
eh/m−1

. Equiv-
alently, ρ = h

m ≥ ln
(
1 + 1

D

)
for m movies and maximal delay D.

Proof: Assume that each movie contains B bits 1, . . . , B for some large integer B. The slot-
delay is measured by d bits and the general delay is therefore D = d/B. By Theorem 2.1, bit
z must appear at least once in any window of size d + z − 1. Hence, bit z requires at least

1
d+z−1 of the bandwidth, and all the bits of one movie require at least bandwidth

f(B, d) =
B∑

z=1

1
d + z − 1

.

It follows that

f(B, d) =
d+B−1∑

z=d

1
z
≥

∫ d+B

x=d

dx

x
= ln

(
1 +

B

d

)
= ln

(
1 +

1
D

)
.

6



For m movies, all the bits require bandwidth m · f(B, d) and therefore

h ≥ m · f(B, d) ≥ m ln
(

1 +
1
D

)
.

¤
Note that in the above proof, we made the assumption that movies are composed of bits

and that the smallest possible segment is one bit. This assumption is valid since the number
of bits B could be as large as desired.

Examples: For one channel and one movie, the lower bound for the guaranteed start-up delay
is 1/(e− 1) ≈ 0.582. For four channels and one movie, the lower bound is 1/(e4− 1) ≈ 0.0186.
If this lower bound can be achieved by a schedule, then clients will be able to view a one hour
movie without interruption with start-up delay of at most 68 seconds.

2.3 The RRR class of schedules.

A schedule is called perfect, if all the gaps between any two appearance of a segment [z]i are
equal for any segment 1 ≤ z ≤ s and movie 1 ≤ i ≤ m. The asymptotic results in this paper are
based on a class of perfect schedules that generalize the round-robin schedule denoted by RR.
These schedules apply the round-robin schedule recursively and are denoted RRR (recursive
round-robin). We give two ways to represent them using parentheses or trees (see also [2]).

An RR0-schedule, represented by a single segment z, is one where every time slot is allocated
to z. For k > 0, an RRk-schedule is either an RRk−1-schedule or the composition of ∆
RRk−1-schedules, for some ∆ > 1. In the latter case, the RRk-schedule Z is represented by
(Z1, Z2, . . . , Z∆), where Z1, Z2, . . . , Z∆ are the representations of the RRk−1-schedules. The
schedule represented by Z = (Z1, Z2, . . . , Z∆) is one where the slots are partitioned in a round-
robin fashion into ∆ sets. The slots of set i, 1 ≤ i ≤ ∆, are assigned, in a recursive manner,
to the schedule represented by Zi.

Example: The RR3 schedule S represented by (((A,B), (C, D,E)), F ) is

[A F C F B F D F A F E F B F C F A F D F B F E F ] .

We demonstrate this by unfolding the recursion. This schedule is a composition of the two
RR2-schedules ((A,B), (C, D, E)) and F , where F appears in every other slot and the schedule
represented by ((A,B), (C,D, E)) appears in every other slot. The schedule represented by
((A,B), (C, D,E)) is an RR2-schedule which is a composition of the two RR1 schedules (A,B)
and (C, D, E). Thus, in the schedule S, the schedule represented by (A,B) appears in every
fourth slot and the schedule represented by (C,D, E) appears also in every fourth slot. The
RR3-schedule S with ∆ = 2 is therefore identical to the RR2-schedule ((A, B), F, (C, D, E), F )
with ∆ = 4. Finally, the schedule represented by (A,B) is a composition of the two schedules A

and B each appearing every 8 slots, and the schedule represented by (C,D, E) is a composition
of the three schedules C, D, and E, each appearing every 12 slots. The total length of this
schedule is 24.

7



A schedule S is called an RRR-schedule if there exists k ≥ 0 such that S is an RRk

schedule. If an RRR schedule is an RRk schedule but not an RRk−1-schedule, then the depth
of the schedule is k.

The tree representation of an RR0-schedule is a single node marked with the segment
z. The tree representation of an RRk-schedule S which is a composition of the ∆ RRk−1-
schedules S1, S2, . . . , S∆, is a tree whose root has a degree ∆, and the ∆ subtrees are the
tree representations of the schedules S1, S2, . . . , S∆. In particular, the tree representation of a
traditional round-robin schedule (RR1-schedule) is a star tree.

A B C D E

F

Figure 1: A tree representation of an RR3-schedule.

Example: The RR3 schedule S whose parenthesis representation is (((A,B), (C,D, E)), F )
can also be represented by the tree in Figure 1.

It is not hard to verify the following observations:

Observation 2.4

1. Every RRR schedule is a perfect schedule.

2. The length of an RR0-schedule is 1 and for k > 0, the length of an RRk-schedule repre-
sented by (Z1, Z2, . . . , Z∆) is ∆·LCM(`1, `2, . . . , `∆) where `i is the length of the schedule
represented by Zi.

3. In a tree representation of an RRR schedule, the window size of segment z is the product
of the degrees of all of its ancestors from the root to its parent.

Detailed proofs of these observations can be found in [1, 2].

3 Schedule Designing Techniques

This section presents our two main techniques to design near-optimal schedules. The shifting
technique is described in Section 3.1 and the channel sharing technique is described in Sec-
tion 3.2. We illustrate these techniques with examples and also show in Section 3.3 how both
techniques may be applied together.

8



3.1 The shifting technique

The shifting technique, is based on the observation that buffering may start before the actual
playback. In previous schemes it is assumed that clients start the viewing process at the same
time they start the buffering process2. As a result, the window size of the z-segment of any
movie must be at most z. In particular, m channels must be dedicated for the first segments of
the m movies. The maximum delay is the length of a segment since clients that arrived a bit
after the starting time of a segment must wait almost a whole segment to get an uninterrupted
playback.

For example, the optimal schedule for h = 2 and m = 1 is schedule (1) given in the
introduction. Its guaranteed start-up delay is 1/3 because s = 3. In general, harmonic
schedules follow the scheduling design principle and for some range [1..s], each segment, 1 ≤
z ≤ s is scheduled with window at most z. This implies a guaranteed start-up delay 1/s. When
buffering can start before the viewing process, we can do better. By Theorem 2.1, for a delay
of d slots, the window size of a z-segment could be d + z− 1. Thus, the first segment can have
window size d, and in general, the range, [d..d + s′ − 1] for s′ ≥ s number of segments can be
scheduled instead of the range [1..s]. A reduced delay occurs if d/s′ < 1/s for some d > 1.

A schedule S on the range [x..y] is valid if the window size for z is at most z for x ≤ z ≤ y.
The shifted schedule S′ of a schedule S on the range [x..y] is a schedule on the range [1..y−x+1]
in which each z in S is replaced by z − x + 1 in S′. The guaranteed start-up delay of a valid
schedule for one movie is stated in the following lemma.

Lemma 3.1 Let S be a valid schedule on the range [x..y] and let S′ be its shifted schedule on
the range [1..y − x + 1]. Then S′ guarantees a start-up delay of D ≤ x/(y − x + 1).

Proof: A client must wait x slots to get segment 1 that is segment x in the valid schedule S.
After this time, the client is guaranteed to get segment z on time for 1 ≤ z ≤ y− x + 1 due to
the validity of S in which z is z + x − 1. The lemma follows because there are s = y − x + 1
segments and therefore the length of each segment is 1/(y − x + 1). ¤

Consider for example the following 2-channel schedule for the range [2..9]:
[

2 4 2 5 2 4 2 5 2 4 2 5 · · ·
3 6 7 3 8 9 3 6 7 3 8 9 · · ·

]

which is represented by C1 : (2, (4, 5)) and C2 : (3, (6, 8), (7, 9)). This schedule is valid for the
range [2..9] because the window size of z ∈ {2, 3, 4, 6} is z and the window size of z ∈ {5, 7, 8, 9}
is less than z. The shifted schedule on the range [1..8] is:

[
1 3 1 4 1 3 1 4 1 3 1 4 · · ·
2 5 6 2 7 8 2 5 6 2 7 8 · · ·

]

which is represented by C1 : (1, (3, 4)) and C2 : (2, (5, 7), (6, 8)). In this shifted schedule the
length of a segment is 1/8 and the guaranteed start-up delay is the length of 2 segments which

2One exception is in polyharmonic broadcasting ([16]), where clients always buffer data before they start

viewing. However, unlike our scheme, their channels have different bandwidths.

9



yields a delay of 1/4. This improves the best delay of 1/3 for two channels when viewing
must begin immediately when receiving segment 1 (see Example I in the introduction). Note
that the delay time of the client is used in this scheme to buffer segments. For example, a
client arriving before the fourth slot of the above schedule, buffers segments 2 and 4 while it
is waiting for the broadcast of the first segment in the fifth slot.

Interestingly, the shifting technique can be used to reduce the maximal delay even for one
channel. Without shifting, the best that can be done with one channel is a periodic broadcast
of the whole movie. Unlucky clients, that arrive right after the beginning of the broadcast,
have to wait the whole transmission until the next transmission starts. Consider the following
valid schedule on the range [4..8]:

[
4 6 5 7 4 8 5 6 4 7 5 8 · · ·

]

which is represented by ((4, 5), (6, 7, 8)). This schedule is valid since the window size of z is
at most z for 4 ≤ z ≤ 8. This schedule implies the following shifted schedule on the segments
[1..5]: [

1 3 2 4 1 5 2 3 1 4 2 5 · · ·
]

which is represented by ((1, 2), (3, 4, 5)). By Lemma 3.1, the guaranteed start-up delay is
4/(8− 4 + 1) = 0.8 which is less than 1. This is exactly Example II of the introduction.

3.2 The channel sharing technique

In the channel sharing technique, segments of different movies may be scheduled on the same
channel. The following example demonstrates the usefulness of channel sharing for h = 6
and m = 2. When each channel broadcasts only segments of one movie, the optimal schedule
(without shifting) schedules the segments [1..9] of each movie. This implies a delay of 1/9 [13, 1].
The following schedule guarantees a delay of 1/10 by scheduling 10 segments of each movie on
the 6 channels. One could verify that indeed the window size of segment [z]i ∈ {1, . . . , 10} is
at most z for i ∈ {1, 2}.

C1 : 11; C2 : 12; C3 : (21, 22); C4 : (31, 32, (61, 62));

C5 : (41, 42, (81, 82), (91, 92)); C6 : (51, 52, 71, 72, (101, 102));

3.3 Combining both technique

The two techniques can be combined to get better schedules. We demonstrate this with an
example for h = 4 and m = 2. Without the shifting technique, the guaranteed start-up delay
is 1/3 by allocating two channels per movie (see Example I in the introduction). With the
shifting technique alone, a valid [2..9]-schedule with delay at most 1/4 exists (see the example
in Section 3.1). The following is a schedule of the range [3..17] for both movies, on 4 channels.
By Lemma 3.1, the delay is at most 3/(17− 3 + 1) = 1/5. For this ratio of ρ = h/m = 2 the
lower bound for the delay is 1/(e2 − 1) ≈ 0.156 (theorem 2.3). We can approach this bound,
but with more segments than 15.

10



Input: Integers ∆ ≥ 1 and x ≥ ∆.
Output: A two level tree T that represents a valid RR2 schedule on the range [x..y(x,∆)].
The tree structure: T1, . . . , T∆, the ∆ star subtrees of the root.
Assignment to Tree T1:

x1 = x minus the first number to be assigned to T1.
∆1 = bx1/∆c – the degree of T1.
y1 = x1 + ∆1 – the last number to be assigned to T1.

Assignment to Tree Ti for 1 < i ≤ ∆:
xi = yi−1 + 1 – the first number to be assigned to Ti.
∆i = bxi/∆c – the degree of Ti.
yi = xi + ∆i – the last number to be assigned to Ti.

Tree T∆: y(x,∆) = y∆ – the last segment assigned to the tree T .

Figure 2: algorithm RR2 for one channel and one movie.

C1 : (31, 32, (61, 62)); C2 : (41, 42, (81, 82), (121, 122, 131))

C3 : (((71, 72), 111), 51, (101, (71, 72)), 52, ((72, 71), 102));

C4 : ((112, 91, 92), (151, 152, 161, 162, 171), (132, 141, 142, 172)).

Note that the above schedule is not an RRR schedule since the segments 71 and 72 appear
more than once in the schedules. Moreover, it is not even a perfect schedule. The gaps for
these segments are 6, 6, and 7. However, most of the results of this paper are based on RRR

schedules.

4 Asymptotic Results for One Movie

In this section we present asymptotic results for the case of one movie. The result for one
channel (h = 1) is presented in Section 4.1 and the result for many channels (h ≥ 1) is
presented in Section 4.2. The results are based on the analysis of algorithm RR2 that is
described in this section. For h = 1 and m = 1, this algorithm guarantees a maximum delay
that asymptotically approaches the lower bound 1/(e− 1) when the number of segments tends
to infinity (s → ∞). Then by iterating the RR2 algorithm h times, the guaranteed delay
approaches the lower bound 1/(eh − 1) for any h ≥ 1 and m = 1. Our analysis shows that
algorithm RR2 approaches the lower bound for any fixed value of h ≥ 1, whereas the best
previous result approaches the lower bounds only for h →∞ ([1]).

4.1 One channel and one movie.

Algorithm RR2 (h = 1 and m = 1): Informally, the algorithm constructs a tree represen-
tation of an RR2 schedule. The root has ∆ subtrees for some ∆ ≥ 1. Then in a greedy fashion,
starting with some segment x ≥ ∆, the algorithm assigns as many as possible segments to
each one of the ∆ subtrees. More formally, the input to the algorithm is the two parameters

11



x =x x +1 xy y x
1 1 1 2 2 ∆ ∆

y

Figure 3: An illustration of how algorithm RR2 schedules segments to the ∆ subtrees.

∆ and x ≥ ∆. The root of the tree has ∆ subtrees denoted by T1, . . . , T∆. Let xi be the first
segment assigned to Ti, in particular x1 = x. Let ∆i = bxi/∆c be the degree of subtree Ti and
let yi = xi + ∆i − 1 be the last segment assigned to subtree Ti. Then the segments xi, . . . , yi

are assigned as leaves of the subtree Ti. Finally, let y(x,∆) = y∆ be the last segment assigned
to the tree. A formal description of the algorithm is described in Figure 2 and an illustrative
description appears in Figure 3.

201918171615141312111091615141312111098

(b)(a)

Figure 4: The RR2 algorithm for (a) ∆ = 3 and x = 8 and (b) ∆ = 3 and x = 9.

Figure 4 illustrates the resulting trees for two examples with ∆ = 3 and x = 8 or x = 9.
In the left side the range is [8..16] and in the right side the range is [9..20].

The following lemma asserts the validity of the schedule produced by the RR2 algorithm.

Lemma 4.1 The window size of any segment z is at most z for x ≤ z ≤ y(x,∆).

Proof: Part (3) of Observation 2.4 implies that the window size of all the segments in Ti is
∆ ·∆i. In the algorithm, ∆i is set such that xi ≥ ∆ ·∆i. The lemma follows since z ≥ xi for
all z ∈ Ti. ¤

For example, In Figure 4, the values for x and y imply delay 8/(16− 8 + 1) = 8/9 for the
shifted scheduled represented by the left tree and delay 9/(20 − 9 + 1) = 3/4 for the shifted
schedule represented by the right tree. The number of segments is 9 for the left tree and 12
for the right tree. Thus, by increasing the number of segments by 33%, the delay is improved
by more than 15%.

For some larger values of ∆ and x Algorithm RR2 performs as follows. For ∆ = 10 and
x = 100, the overall range is [100..255] which implies a guaranteed delay of 100/156 ≈ 0.641.
For ∆ = 20 and x = 400, the overall range is [400..1065] which implies a guaranteed delay
of 400/664 ≈ 0.602. We emphasize that, for a given ∆, the choice of x is very crucial. For
example, if x = 401 for ∆ = 20, then the overall range is [401..1071] which implies a better
guaranteed delay of 401/670 ≈ 0.599. Recall that the lower bound on the guaranteed delay is
1/(e − 1) ≈ 0.582. Hence, for 670 segments Algorithm RR2 generates a schedule that is only
0.284% above optimal.

12



We now analyze Algorithm RR2. The following lemma gives us a bound on the number of
scheduled segments.

Lemma 4.2 Let y(x,∆) be the last segment assigned by the RR2 algorithm on input ∆ ≥ 2
and x ≥ ∆, then

y(x,∆) ≥
(

1 +
1
∆

)∆

(x−∆) + ∆− 1 . (3)

Proof: Let y0 = x− 1. By the algorithm, y1 = x1 + bx1/∆c − 1 and to eliminate the floor,

y1 ≥ x1 + (x1/∆)− 2 = y0 + ((y0 + 1)/∆)− 1 .

More generally,

yk ≥ yk−1 +
yk−1 + 1

∆
− 1 = yk−1

(
1 +

1
∆

)
+

1
∆
− 1 .

The solution to this recursive inequality is

yk ≥
(

1 +
1
∆

)k

(x−∆) + ∆− 1 .

Since y(x,∆) = y∆, inequality (3) follows. ¤
By Lemma 3.1, it follows that the range [x..y(x,∆)] of the RR2 algorithm implies a maxi-

mum guaranteed delay x/(y(x,∆)− x + 1). Combined with Lemma 4.2, we show in the next
theorem that this delay is asymptotically optimal.

Theorem 4.3 There is a positive constant c1 such that for any ∆ ≥ 2 and x ≥ 2∆2, the RR2

algorithm guarantees a maximum delay bounded above by

(
1 +

c1

∆

)(
1

e− 1

)
. (4)

Proof: Lemmas 4.2 and 3.1 imply that the maximum delay x/(y(x,∆)− x + 1) satisfies

x

y(x,∆)− x + 1
≤ x(

1 + 1
∆

)∆ (x−∆) + ∆− 1− x + 1

=
1((

1 + 1
∆

)∆ − 1
) (

1− ∆
x

) .

By the well known fact that for ∆ ≥ 1,

e ≤
(

1 +
1
∆

)∆+1

(5)

and the hypothesis that x ≥ 2∆2, it follows that

x

y(x,∆)− x + 1
≤ 1(

e
1+ 1

∆

− 1
) (

1− 1
2∆

)

=
(
1 +

c1,∆

∆

)(
1

e− 1

)

13



where

c1,∆ =
(3e− 1)∆2 −∆

(2e− 2)∆2 − (e + 1)∆ + 1
.

This equality was derived and verified using Mathematica [21]. Since c1,∆ has a finite limit as
∆ goes to infinity there is a constant c1 ≥ c1,∆ for all ∆. This c1 satisfies the bound (4). ¤

4.2 Many channels and one movie.

Algorithm RR2 (h > 1 and m = 1): Informally, for h > 1, Algorithm RR2 for h = 1 is
iterated as follows. For the first channel, the range [x..y(x,∆)] is scheduled, for the second
channel, the range [(y(x,∆) + 1)..y(y(x,∆) + 1,∆)] is scheduled, and so on until h channels
are used. More formally, define y0(x,∆) = x− 1 and yi(x,∆) = y(yi−1(x,∆) + 1, ∆) for i > 0.
In the iterated RR2 algorithm, for each i, 1 ≤ i ≤ h, the range [(yi−1(x,∆) + 1)..yi(x,∆)] is
scheduled on channel i using Algorithm RR2 for h = 1. In total, the iterated RR2 algorithm
schedules the range [x..yh(x,∆)] on h channels.

We now analyze the iterated RR2 algorithm in a similar way we did for the basic RR2

algorithm. The following lemma gives us a bound on the number of scheduled segments.

Lemma 4.4 Let yh(x,∆) be the last segment assigned by the iterated RR2 algorithm on input
∆ ≥ 2 and x ≥ ∆ on h channels, then

yh(x,∆) ≥
(

1 +
1
∆

)h∆

(x−∆) + ∆− 1 . (6)

Proof: The proof is by induction on h. Lemma 4.2 covers the case h = 1. Assume the lemma
is true for h− 1. By Lemma 4.2 and since yh−1(x,∆) + 1 is the first segment to be scheduled
on channel h, it follows that

yh(x,∆) ≥
(

1 +
1
∆

)∆

(yh−1(x,∆) + 1−∆) + ∆− 1 .

By the induction hypotheses

yh(x,∆) ≥
(

1 +
1
∆

)∆
((

1 +
1
∆

)(h−1)∆

(x−∆) + ∆− 1 + 1−∆)

)
+ ∆− 1

=
(

1 +
1
∆

)h∆

(x−∆) + ∆− 1 .

¤
By lemma 3.1, it follows that the range [x..yh(x,∆)] of the iterated RR2 algorithm implies

a maximum delay x/(yh(x,∆) − x + 1). Combined with Lemma 4.2, we show in the next
theorem that this delay is asymptotically optimal.

Theorem 4.5 For h ≥ 1, there is a positive constant ch that depends only on h such that for
any ∆ ≥ 2 and x ≥ 2∆2, the iterated RR2 algorithm guarantees a maximum delay bounded
above by (

1 +
ch

∆

)(
1

eh − 1

)
. (7)

14



Proof: Lemmas 4.4 and 3.1 imply that the maximum delay x/(yh(x,∆)− x + 1) satisfies

x

yh(x,∆)− x + 1
≤ 1((

1 + 1
∆

)h∆ − 1
) (

1− ∆
x

)

Inequality (5) implies that

x

yh(x,∆)− x + 1
≤ 1(

eh

(1+ 1
∆)h − 1

) (
1− ∆

x

) .

One can verify that (1+1/∆)h ≤ 1+(2h−1)/∆. This inequality together with the assumption
x ≥ 2∆2 imply that

x

yh(x,∆)− x + 1
≤ 1(

eh

1+ 2h−1
∆

− 1
) (

1− 1
2∆

)

=
(
1 +

ch,∆

∆

)(
1

eh − 1

)

Where

ch,∆ =
((2h+1 − 1)eh − 1)∆2 − 2h∆ + ∆

2(eh − 1)∆2 − (2h+1 + eh − 3)∆ + 2h − 1
.

This equality was derived and verified using Mathematica [21]. Since ch,∆ has a finite limit as
∆ goes to infinity there is a constant ch ≥ ch,∆ for all ∆. This ch satisfies the bound (7). ¤

Theorem 4.3 and Theorem 4.5 imply that for a given h > 0, Algorithm RR2 approaches
the lower when s tends to infinity. In Section 6, we demonstrate empirically that Algorithm
RR2 yields almost optimal results for “reasonable” values of segments where x is much smaller
than 2∆2.

5 Algorithms for Many Movies

In this section we consider the general case of h ≥ 1 and m ≥ 1. In Section 5.1 we address
the first optimization goal of minimizing the maximal delay D for a given number of channels
h and in Section 5.2 we address the second optimization goal of minimizing the number of
channels h for a given maximal delay D.

5.1 Minimizing the Maximal Delay for a Given h

In this section we present two methods to generalize the asymptotic result from the previous
section. In Section 5.1.1 we describe the first method that dedicates channels to movies and
does not use channel sharing and therefore h ≥ m. In Section 5.1.2 we describe the second
method that generalizes the iterated RR2 algorithm to use the channel sharing technique as
well.

15



5.1.1 Algorithm for many movies without channel sharing

Algorithm RR2 (h ≥ m ≥ 1): Let h = bh/mcm + r where 0 ≤ r < m. Then bh/mc + 1
channels are allocated to each of some r movies and bh/mc channels are allocated to each of
the remaining m − r movies. The iterated RR2 algorithm is then applied independently for
each movie on its allocated channels.

The next theorem, which is an immediate corollary of Theorem 4.5, shows that the iterated
RR2 algorithm used without channel sharing is very close to optimal.

Theorem 5.1 For h ≥ m ≥ 1, there is a positive constant ch,m that depends only on h and
m such that for any ∆ ≥ 2 and x ≥ 2∆2, the iterated RR2 algorithm used without channel
sharing guarantees a maximum delay bounded above by

(
1 +

ch,m

∆

) (
1

ebh/mc − 1

)
. (8)

Proof: The iterated RR2 algorithm without channel sharing allocates at least one channel to
each movie since h ≥ m. It allocates at most h′ = dh/me channels to each movie due to the
almost exact partitioning. By theorem 4.5, there is a constant ch′ such that if x ≥ 2∆2 then
each movie on its allocated channels has maximum delay bounded by (1+ch/∆)(1/(ebh/mc−1)).
The theorem follows by setting ch,m = ch′ . ¤

If m divides h, then the above bound is as good as the bounds of Theorems 4.3 and 4.5.
When m does not divide h, it is tedious to compare the upper bound with the lower bound

1
eh/m−1

. In the next subsection, we get a bound without the floor when m does not divide h

and even when h < m.

5.1.2 Algorithm for many movies with channel sharing

In this subsection generalizes the iterated RR2 algorithm in a way that allows channel sharing.
Unlike the previous subsection, h can be smaller than m. In Section 6 we show that the channel
sharing method yields excellent results for small values of h and m.

We first analyze this method for a single channel. Note that the straight forward broad-
casting scheme simply schedules one entire movie after another to achieve maximum delay m,
while the lower bound stated in Theorem 2.3 is 1/(e1/m − 1).

Algorithm RR2 (h = 1 and m ≥ 1): The inputs to the algorithm are the parameters m,
∆ ≥ 2, and x ≥ ∆. The algorithm constructs a two level tree where the degree of the root is
∆. The subtrees at the first level are indicated by T1, . . . , T∆. The algorithm first assigns to
the leaves of the tree m copies of segment x, then m copies of segment x + 1, and so on, in
the same greedy fashion as in the basic RR2 algorithm. If m copies of each of the segments
x, x + 1, ..., y− 1 and 0 ≤ m′ < m copies of segment y are assigned to the subtrees T1, . . . Ti−1,
then subtree Ti has by/∆c children and a y-segment is assigned to the first children of Ti.
In the end, if m copies of each of the segments x, x + 1, ..., y − 1 and fewer than m copies of
segment y are assigned to the subtrees T1, . . . T∆, then the assigned range is [x..y − 1] and
therefore the maximum delay is x/(y − x) by Lemma 3.1.

16



(a) (b)

88 1098 9 99 9 10 1110 1313121211

Figure 5: Algorithm RR2 with channel sharing: (a) m = 2, ∆ = 3, x = 9; (b) m = 3, ∆ = 3, x = 8.

Figure 5 shows two cases of the RR2 algorithm with channel sharing. In (a), m = 2 and
the segments 9 through 13 are assigned exactly two times each, yielding a maximum delay
of 9/(14 − 9) = 9/5 < 2 (Note that 2 is the ‘obvious’ delay for h = 1 and m = 2). In (b),
m = 3 the segment 10 only occurs once so it is eliminated. Hence, the maximum delay is
8/(10− 8) = 4 which is even inferior to the straightforward solution for h = 1 and m = 3.

Theorem 5.2 For h = 1 and m ≥ 1, there is a positive constant dm that depends only on
m such that for any ∆ ≥ 2 and x ≥ 4∆2m(m + 1), the RR2 algorithm with channel sharing
guarantees a maximum delay bounded above by

(
1 +

dm

∆

) (
1

e1/m − 1

)
. (9)

Proof: Let xi, yi denote the first and last segments assigned to Ti. By definition, x1 = x. It
follows that xi ≥ yi−1 and

yi ≥ xi + bbxi/∆c /mc .

This is because Ti has bxi/∆c children and the number of children that are assigned to distinct
segments is at least the integer part of the number of children divided by the number of movies.
Hence,

yi ≥
(

1 +
1

∆m

)
xi − 1 +

1
m

.

In a proof similar to that of Lemma 4.2 the solution to this recursive inequality yields

y∆ ≥
(

1 +
1

∆m

)∆

(x−∆m−∆) + ∆m + ∆ . (10)

For all the m movies, the range [x..y∆ − 1] is scheduled. Thus, the maximum delay is at most
x

y∆ − x
≤ x(

1 + 1
∆m

)∆ (x−∆m−∆)− x

=
1((

1 + 1
∆m

)∆ − 1
)

(1− ∆m+∆
x )− ∆m+∆

x

≤ 1((
1 + 1

∆m

)∆ − 1
) (

1− 2∆m+2∆
x

) .

Using the fact that for 0 ≤ z ≤ 1, ez ≤ (1 + z/∆)∆+1 and the assumption that x ≥
4∆2m(m + 1), it follows that

x

y∆ − x
≤ 1(

e1/m

1+ 1
∆m

− 1
) (

1− 1
2∆m

)

17



=
(

1 +
dm,∆

∆

)(
1

e1/m − 1

)

where

dm,∆ =
(3e1/m − 1)∆2m−∆

(2e1/m − 2)∆2m2 − (e1/m + 1)∆m + 1

This equality was derived and verified using Mathematica [21]. Since dm,∆ has a finite limit as
∆ goes to infinity there is a constant dm ≥ dm,∆ for all ∆. This dm satisfies the bound (9). ¤

When h > 1, the RR2 algorithm with channel sharing can be iterated to utilize multiple
channels just as we did in section 4.2.

Algorithm RR2 (h ≥ 1 and m ≥ 1): The input to the algorithm are the parameters h, m,
∆ ≥ 2, and x ≥ ∆. Using the basic RR2 algorithm with channel sharing, the algorithm first
assigns to the leaves of the first tree out of the h trees m copies of segments x, x+1, . . . , y1− 1
and fewer than m copies of y1. The algorithm repeats this process on the second tree for the
remaining copies of y1 plus m copies each of y1 +1, . . . , y2− 1 and fewer than m copies each of
y2, and so on. The assignment to each of the h trees is done according the basic RR2 algorithm
with channel sharing. In the end, if m copies of each of the segments x, x + 1, ..., yh − 1 and
fewer than m copies of segment yh are assigned to the h trees, then the assigned range is
[x..yh − 1] and therefore the maximum guaranteed delay is x/(yh − x)

Theorem 5.3 For h ≥ 1 and m ≥ 1, there is a positive constant dh,m that depends only on
m and h such that for any ∆ ≥ 2 and x ≥ 4∆2m(m + 1), the iterated RR2 algorithm with
channel sharing guarantees a maximum delay bounded above by

(
1 +

dh,m

∆

)(
1

eh/m − 1

)
. (11)

Proof: Let xi and yi be the first and last segments, respectively, scheduled on the channel i.
By definition, x1 = x and xi+1 ≥ yi. Inequality (10) implies the recurrence:

yi ≥
(

1 +
1

∆m

)∆

(yi−1 −∆m−∆) + ∆m + ∆

where y0 = x. Solving this recurrence yields

yh ≥
(

1 +
1

∆m

)h∆

(x−∆m−∆) + ∆m + ∆ .

Since m copies of yh−1 are scheduled, it follows that the maximum guaranteed delay is at most
x/(yh − x). In the same fashion as the proof of theorem 4.5, the maximum delay is bounded
above by

x

yh − x
≤ 1((

1 + 1
∆m

)h∆ − 1
) (

1− ∆m+∆
x

) .

Inequality (5) implies that

x

yh − x
≤ 1(

eh/m

(1+ 1
∆m)h/m − 1

) (
1− ∆m+∆

x

) .

18



Since x ≥ 4∆2m(m + 1), it follows that

x

yh − x
≤ 1(

eh/m

(1+ 1
∆m)h/m − 1

) (
1− 1

2∆m

) .

Let p = dh/me. The fact that and (1 + 1/∆m)h/m ≤ 1 + (2p − 1)/(∆m) implies that

x

yh − x
≤ 1(

eh/m

1+ 2p−1
∆m

− 1
) (

1− 1
2∆m

)

=
(

1 +
dh,m,∆

∆

)(
1

eh/m − 1

)

where

dh,m,∆ =
((2p+1 − 1)eh/m − 1)∆2m− 2p∆ + ∆

2(eh/m − 1)∆2m2 − (2p+1 + eh/m − 3)∆m + 2p − 1
.

This equality was derived and verified using Mathematica [21]. Since dh,m,∆ has a finite limit
as ∆ goes to infinity there is a constant dh,m ≥ dh,m,∆ for all ∆. This dh,m satisfied the bound
(11). ¤

5.2 Minimizing the ratio ρ = h/m.

In this section we address the second objective function. Here, the maximum allowed delay D

is fixed and the goal is to minimize the number of channels h for a given number of movies m.
Equivalently, the goal is to minimize the value of ρ = h/m.

Assume first that D = 1/s and that the goal is to schedule the range [1..s] m times to get
a guaranteed delay at most D. If m = LCM(1, . . . , s), then m/z channels can be allocated
to schedule the z-segments of all the m movies for any 1 ≤ z ≤ s. As a result, the number
of required channels is h = dm∑s

z=1 1/ze and ρ ≤ ln(1/D) + 1 since the harmonic number
Hs =

∑s
z=1

1
z is less than 1 + ln s = 1 + ln(1/D) (see e.g., [8] page 264, Eq. 6.66). This is

already very close to the lower bound ρ ≥ ln (1 + 1/D) from Theorem 2.3. The problem of
course, is that m is way too large. Note that only the channel sharing technique was used in
the above analysis. Nevertheless, using the shifting technique with a similar analysis would
yield only a slight improvement and still m must be very large. The objective of the rest of
this section is to fix m as well and seek a “good” upper bound on ρ. To that end, we define
algorithm RR that is based on RR schedules.

Algorithm RR: The basic idea is similar to Algorithm RR2 with channel sharing using one
level trees (stars) that represent RR schedules (while two-level trees represent RR2 schedules).
Given a range [x..y], first schedule m copies of segment x, then m copies of segment x+1, and
so on. At any point of the process, when there is a need for a new channel (tree) and the next
segment to be scheduled is [z]i for x ≤ z ≤ y and 1 ≤ i ≤ m, then create a new tree of degree
z and schedule the next z segments. The set of h trees generated until the last segment y is
scheduled is the output of the algorithm. A more formal description of the algorithm appears
in Figure 6.

19



Input:
m – number of movies.
x – the first segment to be scheduled.
y – the last segment to be scheduled.

Output:
h RR schedules in which [z]i appears in an RR schedule whose length
is at most z, for any x ≤ z ≤ y and 1 ≤ i ≤ m.

Ordering the segments:
L = [x]1, [x]2, . . . , [x]m, [x + 1]1, . . . , [x + 1]m, . . . , [y]1, . . . , [y]m

The repeated scheduling step:
Let [z]i be the first segment in L.
Schedule the next z segments in L (or the rest of L if its length is less than z)

on an RR schedule of length z and remove these segments from L.

Figure 6: Algorithm RR

Example: Let D = 1/2 and m = 8. Algorithm RR schedules 8 times each segment in the
range [3..8]. The resulting schedule requires the following 10 channels:

C1 : (31, 32, 33); C2 : (34, 35, 36); C3 : (37, 38, 41); C4 : (42, 43, 44, 45); C5 : (46, 47, 48, 51);

C6 : (52, 53, 54, 55, 56); C7 : (57, 58, 61, 62, 63); C8 : (64, 65, 66, 67, 68, 71);

C9 : (72, 73, 74, 75, 76, 77, 78); C10 : (81, 82, 83, 84, 85, 86, 87, 88);

Indeed the delay implied by the range [3..8] is 3/(8 − 3 + 1) = 1/2 (Lemma 3.1). For this
schedule, ρ = 10/8 = 1.25 while the lower bound on ρ for this choice of D and m is ln(1+1/D) ≈
1.098.

The idea behind the analysis of Algorithm RR is that for a given m and D, the range
[x..m] that guarantees the delay D is scheduled for all the m movies. This will assure that
the window size given by the algorithm to segment x ≤ z ≤ m is no less than z − 1. The
latter property implies that the loss of bandwidth is small and therefore ρ is close to the lower
bound.

Theorem 5.4 Let m ≥ 1 and D > 0 such that m > 2 + 4/D. Let y = m and x =
⌊

(m+1)D
D+1

⌋
.

Then algorithm RR that schedules m times the range [x..y] guarantees a maximum delay D

with h channels where

ρ =
h

m
≤ ln

(
1 +

1
D

)
+

O(1/D)
m

. (12)

Proof: First, we verify that the guaranteed delay for this choice of x and y is at most D. By
Lemma 3.1, the guaranteed delay for each movie is x/(y − x + 1). Indeed,

x

y − x + 1
≤ D ⇐⇒ x ≤ (m + 1)D

D + 1
and y = m .

Next, we bound the number of channels used by Algorithm RR for m movies and the range
[x..m]. The crucial argument is that when scheduling the m z-segments for any x ≤ z ≤ m, at

20



most z − 2 z-segments are scheduled with window size z − 1 while the remaining z-segments
are scheduled with window size exactly z. To see this, note that m > z − 1 and therefore, the
(z − 1)-segments need more than one tree. In particular, the last tree that contains a (z − 1)-
segment has degree z − 1. In the worst case, this tree contains only one (z − 1)-segment and
its remaining z − 2 leaves are assigned to z-segments. However, all the remaining z-segments
are schedules on trees with degree z. This implies that the total bandwidth allocated to all the
z-segments is at most z−2

z−1 + m−(z−2)
z (where the bandwidth of each channel is 1). Finally, an

additional channel is added to the upper bound on h since the last channel might be partially
used. Thus,

h ≤ 1 +
m∑

z=x

(
z − 2
z − 1

+
m− (z − 2)

z

)

= 1 +
m∑

z=x

m(z − 1) + (z − 2)
z(z − 1)

≤ 1 +
m∑

z=x

m + 1
z

= 1 + (m + 1)
m∑

z=x

1
z

≤ 1 + (m + 1) ln
m

x− 1
.

The last inequality is true since
∑m

z=x
1
z ≤

∫ m
t=x−1

dt
t = ln m

x−1 .

Recall that x =
⌊

(m+1)D
D+1

⌋
, thus x− 1 ≥ (m+1)D

D+1 − 2 = (m−1)D−2
D+1 . Note that x− 1 > 0 since

m > 2 + 4/D implies that (m− 1)D − 2 > 0. Therefore,

m

x− 1
≤ m(D + 1)

(m− 1)D − 2
.

For c = mD
(m−1)D−2 , it follows that m

x−1 ≤ c
(
1 + 1

D

)
. Hence,

ln
m

x− 1
≤ ln

(
1 +

1
D

)
+ ln c .

Plugging this bound in the upper bound on h, it follows that

h ≤ 1 + (m + 1) ln
(

1 +
1
D

)
+ (m + 1) ln c .

Equivalently,

ρ ≤ ln
(

1 +
1
D

)
+

1 + ln c + ln(1 + 1/D)
m

+ ln c .

We now analyze c = mD
(m−1)D−2 . It follows that c = 1 + D+2

(m−1)D−2 where the second additive
term is less than 1 since m ≥ 2 + 4

D . First, this immediately implies that ln c < 1. Second,
because p

q < p+r
q+r for 0 < p < q and r > 0, this also implies that

c ≤ 1 +
2D + 4

mD
= 1 +

2 + 4/D

m
.

21



The fact that ln(1 + α) ≤ α for α > 0 implies that ln c ≤ 2+4/D
m and that ln(1 + 1/D) ≤ 1/D.

Putting all the above bounds in the upper bound on ρ yields the following bound,

ρ ≤ ln
(

1 +
1
D

)
+

4 + 5/D

m
.

The theorem follows since 4 + 5/D = O(1/D). ¤
The following Corollary is implied by the above theorem and Theorem 2.3.

Corollary 5.5 Let D > 0 and let ρopt ·m be the number of channels required by the optimal
algorithm that guarantees a delay D for m movies. Then for a large enough m, there exists a
segmentation number s ≤ m for which Algorithm RR generates a schedule that guarantees a
maximum delay D with h channels where

ρ ≤ ρopt +
O(1/D)

m
. (13)

The above corollary implies that Algorithm RR performs well when the guaranteed delay
D is fixed and the number of movies grows. In Section 6 we demonstrate that the algorithm
performs well even for smaller values for m. One of the reasons for the performance discrepancy
between the analysis and the simulations is that the analysis in the proof of Theorem 5.4 is
loose and there are many possible improvements. The following are two examples: (i) When
m is much larger than z then most of the z-segments are allocated bandwidth 1/z while in the
analysis, it was assumed that most of them get a bandwidth 1/(z−1). (ii) If many z-segments
get a 1/(z − 1)-bandwidth then many (z − 1)-segments get the optimal 1/(z − 1) bandwidth.
We believe that the result of Corollary 5.5 is sufficient to demonstrate the near-optimality of
Algorithm RR.

6 Practical Values of h,m and s

The results in Section 4 and Section 5 imply that the shifting and the channel sharing techniques
can be used to achieve nearly optimal schedules for instances with many movies and multiple
channels or when the segmentation is not limited (i.e., with very large s). In this section, we
show that these techniques yield very good schedules already for practical systems. When the
two techniques are combined, the resulting performance is close to the lower bound even for
very small values of h, m and s. To show this, we implemented Algorithms RR and RR2

that achieve our asymptotic results. We also adjusted the greedy algorithm presented in [1] to
support the two techniques.

In Section 6.1 we discuss the simulation results for the following important and interesting
cases: (i) The case of h = 1 and m = 1, in which clients receive data only from one channel.
This case studies the performance of the shifting technique alone. (ii) The case of ρ = 1 in
which there is one channel per movie. (iii) The cases of ρ = 2 and ρ = 1/2. In all cases,
a better guaranteed delay is gained when the number of segments increases. Then another
interesting study is reported in this section. The goal of this study is to minimize h for a given
maximum delay guaranteed D, m movies, and limited segmentation number s. For this study,
we simulated Algorithm RR2 for D = 3/4, 1/2, and 1/3.

22



Finally, for specific small values of h and m, we designed schedules that beat the currently
best known schedules. In Section 6.2 we present some of these new records.

6.1 Simulating RR, RR2, and the greedy algorithms.

Algorithm RR simply assigns the segments to the channels sequentially. For a given x, it first
schedules m segments with window x, then m segments with window x + 1 and so on until it
runs out of channels. When implementing algorithm RR2, all the possible values for ∆ in the
range 2, . . . , x/2 were checked. This process was repeated for h channels. Different channels
may have different number of subtrees. For each channel, the optimal ∆ is selected according
to the value, z ≥ x, of the first segment to be assigned to this channel.

The greedy algorithm is based on the one presented in [1] for the harmonic window schedul-
ing problem. The key ideas are:

1. The segments are scheduled sequentially, that is, for a given x first schedule m segments
with window x, then m segments with window x+1 and so on until there is no room for
additional segments.

2. Unlike Algorithms RR and RR2, the greedy algorithm does not fill the channels sequen-
tially. For each segment, it selects the channel that is the “best fit”. This channel
is selected such that the lost bandwidth (which is the difference between the granted
bandwidth and the required bandwidth) is minimized.

The simulation results for the case m = 1 and h = 1 are given in Figure 7. As expected
in this case, Algorithm RR gains nothing from shifting. However, both RR2 and Greedy are
within 1.3-ratio from the lower bound already for s = 8. With 120 segments (which is one
minute per segment for a typical movie) the ratio of both is about 1.13.

Figure 8 gives the simulation results for the case ρ = 1, in which the number of channels is
equal to the number of movies. Recall that in traditional broadcasting protocols, the maximum
guaranteed delay is 1 since the system cannot do better than broadcasting repeatedly each
movie on the single channel dedicated to it. For 5 or fewer segments, the delay is reduced by
both RR2 and Greedy to 0.8 and 0.75 for 2 and 3 movies, respectively. When compared with
the lower bound, the delay guaranteed of algorithm RR2 for two movies and 9 segments is
within 1.3-ratio from the lower bound. The same ratio is achieved by Greedy already with 4
segments3. We note that the results of Algorithm RR2 are compared well with the results of
Algorithm Greedy even though Algorithm RR2 is much simpler. For large number of segments
(40 or more) Algorithm RR2 is even slightly better.

The case ρ = 2 is studied in Figure 9. For this case Algorithm Greedy approaches the lower
bound already for very small m and s. For example, it is within 1.28 ratio from the lower
bound for m = 3 and s = 5 and within 1.12 ratio from the lower bound for m = 5 and s = 40.
The results for ρ = 1/2 are given in Figure 10. Note that in this case there is a single channel
per two movies. Thus, in naive scheduling schemes, the maximum guaranteed delay is 2. Both

3These results are not reflected in Figure 8.

23



Figure 7: Simulation results for m = h = 1. The lower bound is D ≥ 0.582.

Figure 8: Simulation results for ρ = 1. The lower bound is D ≥ 0.582.

24



delay = 3/4 delay = 1/2 delay = 1/3
m s ≤ 5 s ≤ 15 s ≤ 40 s ≤ 5 s ≤ 15 s ≤ 40 s ≤ 5 s ≤ 15 s ≤ 40
1 2.000 1.000 1.000 2.000 2.000 2.000 2.000 2.000 2.000
2 1.500 1.000 1.000 1.500 1.500 2.000 2.000 2.000 2.000
3 1.000 1.000 1.000 1.667 1.333 1.333 2.000 1.667 1.667
5 1.000 1.000 1.000 1.400 1.400 1.200 2.000 1.600 1.600
8 1.000 0.875 0.875 1.375 1.250 1.250 1.875 1.625 1.500
10 1.000 1.000 0.900 1.300 1.200 1.200 1.900 1.600 1.500
15 1.000 0.933 0.933 1.333 1.200 1.200 1.867 1.533 1.467
20 1.000 0.900 0.900 1.300 1.200 1.150 1.850 1.500 1.450
30 0.967 0.900 0.900 1.300 1.167 1.133 1.833 1.500 1.467

Table 1: ρ as a function of m, s for some fix delays (RR2 Algorithm)

Algorithm RR2 and Algorithm Greedy achieve delay 5/3 already for h = 5 and s = 6. This is
within 1.08-ratio from the lower bound.

Figure 9: Simulation results for ρ = 2. The lower bound is D ≥ 0.1574.

For the objective function of minimizing h (or ρ) for a given D, Algorithm RR2 was analyzed
for delays 3/4, 1/2, and 1/3. Without the shifting technique, the required number of channels
per movie to achieve these delays are ρ = 2, 2 and 3 respectively. The required ρ = h/m ratios
for Algorithm RR2 for some values of m and limited s are given in Table 6.1.

Some concluding remarks: The simulations reveal that both techniques, alone or com-
bined, can be applied by very simple algorithms. These algorithms produce good schedules
already for small values of s and m. Even the simplest algorithm, RR, can be used to achieve

25



Figure 10: Simulation results for ρ = 1/2. The lower bound is D ≥ 1.542.

good schedules. In fact, as m grows, the performance of the schedules produced by RR and
RR2 are similar. Independent of ρ, the delay approaches the lower bound as the number of
segments, or the number of sharing movies increases.

6.2 Some records for small values of h and m.

h = 1, D ≥ 0.582
x..y range 1..1 4..8 6..13 10..23 12..28 16..38 24..59 36..91 48..122 75..194

s 1 5 8 14 17 23 36 56 75 120
delay 1 0.8 0.75 0.715 0.707 0.696 0.667 0.643 0.64 0.625

h = 2, D ≥ 0.157 h = 3, D ≥ 0.0524
x..y range 4..22 5..29 10..63 15..98 24..160 2..28 3..45 4..63 8..134

s 19 25 54 84 137 27 43 60 127
delay 0.211 0.2 0.185 0.179 0.175 0.074 0.07 0.067 0.063

Table 2: Some records for small values of h and m = 1

In Table 2 we present the best schedules we found using the shifting technique for a single
movie. Most of our results were obtained using the tree representation for recursive round-
robin (RRR) schedules which proved to be an efficient tool in designing schedules (see [1]).
We note that all of these schedules outperform those created by Algorithms RR, RR2, and
Greedy. We do not present the schedules themselves, only the resulting guaranteed maximum
delays.

Table 3 presents the best schedules we found by combining the shifting technique and the

26



ρ 1/2 1 2
m,h 2, 1 2, 2 2, 4 3, 6

s : x..y range 5 : 9..13 4 : 3..6 9 : 2..10 15 : 3..17
previous record 2 1 0.333

our delay 1.8 0.75 0.222 0.2
lower bound 1.542 0.582 0.157

Table 3: Some records for small values of h and m

channel sharing technique. As can be seen, even for two or three movies and small number of
segments, the resulting guaranteed delays are reduced significantly compared to the currently
best known schedules.

7 Additional Models

This section shows how the shifting and the channel sharing techniques can be applied to
obtain better results in some variants model on the basic model considered in this paper. We
shortly discuss these models and demonstrate for each variant separately the usefulness of the
techniques for some small values of h and m. We remark that improvements exist for some
combinations of these models.

7.1 The receive-r model

In the receive-r model, clients can buffer data from channels but there is a limit, r ≤ h on the
number of channels from which a client can receive data simultaneously. All the results in this
paper assumed that r = h. A more realistic assumption is that r is fixed while h grows. The
case for which r = 1 is the tradition model. In this subsection, we show by example how our
technique could be applied for the case r < h as well. In our schedules a stronger assumption
on the model is taken (see [18]) in which a client is forced to receive the data from the channels
in order. That is, a client first listens to channels 1 to r; once it has received all it needs from
channel i for 1 ≤ i ≤ h− r, it listens to channel r + i until it listens to the last r channels.

Assume a system with the parameters m = 1, h = 3, and r = 2. The following is the best
known schedule without shifting that guarantees a delay of 1/7 ≈ 0.1429.

C1 : 1; C2 : (2, (4, 5)); C3 : (3, (6, 7)) .

Note that since a client listens to channel C3 only after it receives the first segment from
channel C1, the window size of a segment z in C3 must be at most z − 1. Indeed, the window
sizes of segments 3, 6, 7 are 2, 4, 4 respectively. With the shifting technique, we designed a
schedule that guarantees a delay of 2/17 ≈ 0.1176 with s = 17 segments, and another schedule
that guarantees a delay of 3/27 ≈ 0.1111 with s = 27 segments. These results indicate that
similar tradeoffs exist for the receive-r model. The following is the latter schedule for the range
[3..29].

27



C1 : (3, (6, 7), (9, 10, 11))

C2 : ((4, 5), ((8, (16, 17)), (12, 13, 14, 15)))

C3 : ((18, 19, 20), (21, 22, 23, 29), (24, 25, 26, 27, 28))

Note that the schedule of channel C1 has a cycle of length 9. Thus, only after 9 slots clients
may receive segments from channel C3. As a result, in a valid schedule for r = 2, the window
size of any segment z in C3 must be no more than z − 9. Indeed, this is the case in the above
example.

Unfortunately, we have no lower bounds on the guaranteed delay for the receive r model
when r < h. The lower bound for m = 1 movies and r = h = 2 is ≈ 0.1565 and for r = h = 3
the lower bound is ≈ 0.0524. The delay guaranteed by the above schedule outperforms the
case r = h = 2 since the system has one additional channels but is substantially inferior to
the schedule of the range [2..28] that guarantees a delay of ≈ 0.074 for the case r = h = 3 (see
Table 2).

7.2 Different length movies

So far it was assumed that all the m movies have the same length normalized to 1. Clearly,
by adding idle time at the end of the shorter movies, the schedules can be applied for different
length movies as long as their lengths do not differ by much. Here, we show an example that
demonstrate a gain in the guaranteed delay from sharing channels by movies of distinct length.
In this example, the shifting technique is not used.

Consider a system with h = 6 channels and m = 2 movies: M1 whose length is L1 and M2

whose length is L2 where L2 = 11L1/10. Without channel sharing, a solution that dedicated
3 channels per movie guarantees a delay of L1/9 for the first movie and delay of L2/9 for M2

by scheduling the range [1..9] of each movie on 3 channels.

C1 : 11; C2 : (21, (41, 51)); C3 : (31, (61, 71), (81, 91));

C4 : 12; C5 : (22, (42, 52)); C6 : (32, (62, 72), (82, 92));

With channel sharing, the schedule from Section 3.2

C1 : 11; C2 : 12; C3 : (21, 22); C4 : (31, 32, (61, 62));

C5 : (41, 42, (81, 82), (91, 92)); C6 : (51, 52, 71, 72, (101, 102));

guarantees a delay of L2/10 for M2 and L2/10 = 11L1/100 < L1/9 for M1 by adding idle time
to M1 so its length is also L2. The following schedule has a better performance. It partitions
M1 into 10 segments and partitions M2 into 11 segments. It follows that all the 21 segments
have the same size since L2 = 11L1/10. The first 5 channels have the same schedules as above.
The schedule for channel C6 is:

C6 : (((71, 72), 112), 51, (101, (71, 72)), 52, ((72, 71), 102))

This is a valid schedule but not an RRR schedule (as some segments appear more than once).

28



Its cycle is of length 20:

[71 51 101 52 72 112 51 71 52 102 72 51 101 52 71 112 51 72 52 102]

This schedule guarantees a delay of L1/10 = L2/11 for both movies which is in improvement
for both.

7.3 Movies with different popularities

All the schedules based on the shifting technique presented in this paper yield the same guar-
anteed delay for all the m movies because the scheduled range was the same for all of them.
In fact, a different shifting can be applied to each movie as long as the segmentation number
s is the same since the length of a slot (1/s) must be fixed. That is, if the scheduled range for
movie i is [xi..yi] and s = yi + 1 − xi for 1 ≤ i ≤ m, then the guaranteed delay for movie i

is xi/s. These delays do not have to be the same and if some of the movies are more popular
they may be granted with a smaller guaranteed delay.

More formally, associate with each movie a parameter pi such that
∑m

i=1 pi = 1. The
parameter pi can be interpreted as the popularity of movie i which is an independent probability
that the next client wishes to view this movie. The goal is to minimize the weighted average
guaranteed delay. That is, let Di denote the granted guaranteed delay for movie i, then the
goal is to minimize

∑m
i=1 piDi.

C1 : (31, (111, 91, 92), (61, 62))

C2 : (41, 42, (81, 82), (121, 122, 132))

C3 : (((71, 72), 112), 51, (101, (71, 72)), 52, ((72, 71), 102))

The above example for 3 channels and 2 movies demonstrates a possible gain from having
different ranges when the movies have different popularities. This schedule is a valid schedule
with 10 segments for both movies. The scheduled range for the first movie is [3..12] implying
a guaranteed delay 3/10 and the scheduled range for the second movie is [4..13] implying
a guaranteed delay 4/10. For p1 = p2 = 1/2, the weighted average guaranteed delay is
(1/2)(3/10 + 4/10) = 7/20 = 0.35. This is already a very good delay for s = 10 and ρ = 1.5
for which the lower bound is ≈ 0.287. However, for p1 > p2 the advantage of this schedule
is more apparent. For p1 = 3/4 and p2 = 1/4, the weighted average guaranteed delay is
(3/4)(3/10) + (1/4)(4/10) = 13/40 = 0.325 and for p1 = 9/10 and p2 = 1/10 the weighted
average guaranteed delay is (9/10)(3/10) + (1/10)(4/10) = 31/100 = 0.31.

8 Open Problems

This paper presented two simple techniques for broadcast schedules that can improve the
system performance without any required enhancement. The performances of these techniques
approach the known lower bounds for the guaranteed delay and yield schedules with almost
optimal delay for practical systems. We conclude with some open problems.

29



• We are still looking for the best results for some practical values of h and m and s.
We believe that there exist better algorithms that would outperform our algorithms for
small values. For example, schedules do not have to be RRR schedules and segments
may appear in more than one channel.

• For all the variants from Section 7: the receive-r model, different length movies, and
different popularity movies, we do not have asymptotic upper bounds and lower bounds.

• We have examples showing that the shifting technique can be used to reduce the average
delay. We omit them since the details are too long. We also developed additional
technique for this model.

References

[1] A. Bar-Noy and R. E. Ladner. Windows Scheduling Problems for Broadcast Systems.
SIAM Journal on Computing (SICOMP), 32(4):1091–1113, 2003.

[2] A. Bar-Noy, A. Nisgav, and B. Patt-Shamir. Nearly Optimal Perfectly-Periodic Schedules.
Distributed Computing, 15(4):207–220, 2002.

[3] S. W. Carter, D. D. E. Long, and J. Pâris. Video-on-Demand Broadcasting Protocols.
In Multimedia Communications: Directions and Innovations (J. D. Gibson, Editors),
Academic Press, San Diego, 179–189, 2000.

[4] A. Dan, D. Sitaram, and P. Shahabuddin. Dynamic Batching Policies for an On-Demand
Video Server. ACM Multimedia Systems Journal, 4(3):112–121, 1996.

[5] L. Engebretsen and M. Sudan. Harmonic Broadcasting is Optimal. In Proceedings of the
13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 431–432, 2002.

[6] W. Evans and D. G .Kirkpatrick. Optimally Scheduling Video-on-Demand to Minimize
Delay shen Server and Receiver Bandwidth may Differ. In Proceedings of the 15th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), 1041–1049, 2004.

[7] L. Gao, J. Kurose, and D. Towsley. Efficient Schemes for roadcasting Popular Videos. In
Multimedia Systems 8(4): 284–294, 2002.

[8] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics a Foundation for
Computer Science. Addison-Wesley.

[9] A. Hu. Video-on-Demand Broadcasting Protocols: A Comprehensive Study. In Proceed-
ings of IEEE INFOCOM, 508–517, 2001.

[10] K. A. Hua, Y. Cai, and S. Sheu Exploiting Client Bandwidth for More Efficient Video
Broadcast. In Proceedings of the 7th International Conference on Computer Communica-
tion and Networks (ICCCN), 848–856, 1998.

30



[11] L. Juhn and L. Tseng. Harmonic Broadcasting for Video-on-Demand Service. IEEE
Transactions on Broadcasting, 43(3):268–271, 1997.

[12] L. Juhn and L. Tseng. Fast Data Broadcasting and Receiving Scheme for Popular Video
Service. IEEE Transactions on Broadcasting, 44(1):100–105, 1998.

[13] J. Pâris. A Simple Low-Bandwidth Broadcasting Protocol for Video-on-Demand. In Pro-
ceedings of the 8th International Conference on Computer Communications and Networks
(IC3N), 118–123, 1999.

[14] J. Pâris. A Fixed-Delay Broadcasting Protocol for Video-on-Demand. In Proceedings of
the 10th International Conference on Computer Communications and Networks (IC3N),
418–423, 2001.

[15] J. Pâris. A Simple but Efficient Broadcasting Protocol for Video-on-Demand. In Proceed-
ings of the 24th International Performance of Computers and Communication Conference
(IPCCC 2005), Phoenix, 167-174, 2005.

[16] J. Pâris, S. W. Carter, and D. D. E. Long. A Low Bandwidth Broadcasting Protocol
for Video on Demand. In Proceedings of the 7th International Conference on Computer
Communications and Networks (IC3N), 690–697, 1998.

[17] J. Pâris, S. W. Carter, and D. D. E. Long. A Hybrid Broadcasting Protocol for Video
on Demand. In Proceedings of the IS&T/SPIE Conference on Multimedia Computing and
Networking (MMCN), 317–326, 1999.

[18] J. Pâris and D. D. E. Long. Limiting the Receiving Bandwidth of Broadcasting Protocols
for Video-on-Demand. In Proceedings of the Euromedia Conference, 107-111, 2000.

[19] Y. C. Tseng, M. H. Yang, and C. H. Chang. A Recursive Frequency-Splitting Scheme
for Broadcasting Hot Video in VOD Service. IEEE Transactions on Communications,
50(8):1348–1355, 2002.

[20] S. Viswanathan and T. Imielinski. Metropolitan Area Video-on-Demand Service Using
Pyramid Broadcasting. ACM Multimedia Systems, 4(3):197–208, 1996.

[21] S. Wolfram. Mathematica a System for Doing Mathematics by Computers. Addison-
Wesley Publishing Company.

31


