
This article was downloaded by: [93.173.137.17]
On: 21 April 2014, At: 01:55
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Applied Artificial Intelligence: An
International Journal
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/uaai20

Algorithms for Battery Utilization in
Electric Vehicles
Ron Adanya & Tami Tamirb

a Computer Science Department, Bar-Ilan University, Ramat-Gan,,
Israel
b School of Computer Science, The Interdisciplinary Center, Herzliya,
Israel
Published online: 14 Mar 2014.

To cite this article: Ron Adany & Tami Tamir (2014) Algorithms for Battery Utilization in
Electric Vehicles, Applied Artificial Intelligence: An International Journal, 28:3, 272-291, DOI:
10.1080/08839514.2014.883906

To link to this article: http://dx.doi.org/10.1080/08839514.2014.883906

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the
“Content”) contained in the publications on our platform. However, Taylor & Francis,
our agents, and our licensors make no representations or warranties whatsoever as to
the accuracy, completeness, or suitability for any purpose of the Content. Any opinions
and views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content
should not be relied upon and should be independently verified with primary sources
of information. Taylor and Francis shall not be liable for any losses, actions, claims,
proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or
howsoever caused arising directly or indirectly in connection with, in relation to or arising
out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &
Conditions of access and use can be found at http://www.tandfonline.com/page/terms-
and-conditions

http://www.tandfonline.com/loi/uaai20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/08839514.2014.883906
http://dx.doi.org/10.1080/08839514.2014.883906
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions

Applied Artificial Intelligence, 28:272–291, 2014
Copyright © 2014 Taylor & Francis Group, LLC
ISSN: 0883-9514 print/1087-6545 online
DOI: 10.1080/08839514.2014.883906

ALGORITHMS FOR BATTERY UTILIZATION IN ELECTRIC VEHICLES

Ron Adany1 and Tami Tamir2

1Computer Science Department, Bar-Ilan University, Ramat-Gan, Israel
2School of Computer Science, The Interdisciplinary Center, Herzliya, Israel

� We consider the problem of utilizing a pack of m batteries serving n current demands in electric
vehicles. When serving a demand, the current allocation might be split among the batteries in the
pack. A battery’s life depends on the discharge current used for supplying the requests. Any deviation
from the optimal discharge-current is associated with a penalty. Thus, the problem is to serve an
online sequence of current requests in a way that minimizes the total penalty associated with the
service.

We show that the offline problem, for which the sequence of current demands is known in
advance, is strongly NP-hard and hard to approximate within an additive gap of �(m) from the
optimum. For the online problem, we present a competitive algorithm associated with the redundant
penalty at most m. Finally, we provide a lower bound of 1.5 for the multiplicative competitive ratio
of any online algorithm.

INTRODUCTION

In the last few years, the idea of electrically powered cars has turned into
reality. This old idea, from the early years of the automobile industry in the
late 1890s, is now a real alternative to the gasoline powered vehicles (Kirsch
2000; Anderson and Anderson 2010). Electric vehicles (EVs) are currently
considered the next generation of cars in the world of automobiles.

One of the most critical components of EV is the rechargeable battery
(Affanni et al. 2005). The use of a battery as an energy source raises sev-
eral issues such as limited driving ranges and high costs. Batteries are very
expensive (Delucchi and Lipman 2001), thus, it is critically important to
extend their lifetimes as much as possible. The battery’s life is affected by
the way the current is discharged (allocated), which is the focus of this study.
It is important to distinguish between the battery’s capacity and the battery’s
life. The battery’s capacity is the amount of energy that can be stored in the

Address correspondence to Tami Tamir, School of Computer Science, The Interdisciplinary Center,
P.O.Box 167, Herzliya, Israel. E-mail: tami@idc.ac.il

D
ow

nl
oa

de
d

by
 [

93
.1

73
.1

37
.1

7]
 a

t 0
1:

55
 2

1
A

pr
il

20
14

mailto:tami@idc.ac.il

Algorithms for Battery Utilization in Electric Vehicles 273

battery (and later discharged), that is, the amount of energy of one charge–
discharge cycle. The battery’s life is the total amount of energy that can
be extracted from all charge–discharge cycles of the battery (MIT Electric
Vehicle Team 2008). In other words, the battery’s life is the total accumulated
energy extracted from a battery during its life.

The EV battery is actually a pack of cells that are connected in serial and
in parallel in order to provide the voltage and current required for propul-
sion. Cells are serially connected in order to provide the required voltage,
and the series are connected in parallel to provide the required current. Our
work considers the current allocation provided by the individual cell-series
in the batteries. For simplicity, we denote each cell-series as a battery. Hence,
in the EV pack there are several batteries connected in parallel.

The most dominant factor of an EV battery’s life is the discharge current
used. Each battery’s chemistry is designed to be discharged in a specific cur-
rent, whereas higher or lower currents have negative effects on it (Benini
et al. 2001b; Pedram and Wu 1999; Doyle and Newman 1997). Moreover,
as demonstrated in (Laman and Brandt, 1988), an optimal discharge cur-
rent exists for each battery and depends on the specific chemistry. Based
on these insights, we propose a penalty function that maps each discharge
current to a numeric value reflecting its detrimental effect on the battery’s
life.

The common discharge method in EV is very simple and naïve: each cur-
rent demand is supplied using all the batteries in the pack, and the load is
equally divided. The rationale behind this method is simplicity of implemen-
tation; keep all batteries in the same condition (balanced) assuming that the
lower the discharge current, the better. However, as described above, the
behavior and performance of a real battery is more complex.

Our Results

Motivated by the possibility of extending the EV batteries’ lives by a smart
operation, we propose an advanced online current allocation algorithm.
We also analyze the problem theoretically and provide results regarding its
complexity status under common theoretical measures.

The performance of a current allocation algorithm is evaluated accord-
ing to its gap from an optimal allocation, that is, the gap from an allocation
that serves all current demands with the minimal possible penalty. We pro-
vide hardness results for both the offline problem, for which the current
demands are known in advance, and for the online problem, for which the
sequence of current demands is unknown in advance. In practice, demands
should be served without a priori knowledge of forthcoming demands.
Therefore, the main algorithm we suggest is for the online problem. Clearly,
all hardness results we provide for the offline problem also capture the

D
ow

nl
oa

de
d

by
 [

93
.1

73
.1

37
.1

7]
 a

t 0
1:

55
 2

1
A

pr
il

20
14

274 R. Adany and T. Tamir

online one. For the online problem, we also provide a lower bound on the
competitive ratio of any deterministic algorithm.

A formal mathematical description of the problem is given in “Problem
Definition.” In “Offline Problem,” we show that the problem of serving the
requests with the minimal possible penalty is strongly NP-hard. Moreover,
the problem is difficult to approximate within an additive gap of �(m) from
the minimal possible penalty, where m is the number of batteries in the pack.

We then consider the online problem. In “An Almost Optimal Online
Problem,” we suggest a competitive algorithm in which the total penalty
might be larger than the minimal possible one by at most an additive gap
of m, independent of the number of requests in the sequence and of the
initial capacity of the batteries. Our result is optimal, that is, it is associated
with the minimal possible penalty for a significant prefix of the sequence—as
long as the remaining capacity of the batteries is not below some threshold.
Thus, our algorithm is optimal in the sense that it guarantees minimal dam-
age to the batteries’ lives when drivers charge their EV frequently enough
and do not wait until the batteries are empty. Finally, in “A Lower Bound for
the Multiplicative Competitive Ratio” we provide a lower bound of 1.5 for
the competitive ratio of any online algorithm. Recall, an online algorithm
has a competitive-ratio c if, for every possible instance, its objective value is
within a factor of c from the optimum.

To the best of our knowledge, this work is the first to analyze the problem
theoretically.

Our results can be applied to other resource allocation problems in
which there are m servers (machines, batteries) that should serve n clients
(jobs, current demands). Each client is associated with a request for some
amount of resource. A request can be satisfied by several servers, in other
words, the service of a request might split. There is a penalty associated
with each allocation and the objective is to minimize the total penalty.
This general problem appears in many domains. For example, in Human
Resources (HR), it is reasonable to allocate tasks to workers such that each
worker is assigned a specific workload, and any deviation from this workload
causes some penalty, specifically, high workloads conflict with working time
regulations, and low workloads might be unprofitable.

Related Work

Battery management and current allocation has been widely studied.
Most of the previous work has been aimed at maximizing the battery’s
lifetime, that is, the time until the battery is empty and needs to be
recharged.

Algorithms for extending batteries’ lifetimes by various discharge allo-
cation schemes were discussed in Benini and coauthors (2001a) and Rao,

D
ow

nl
oa

de
d

by
 [

93
.1

73
.1

37
.1

7]
 a

t 0
1:

55
 2

1
A

pr
il

20
14

Algorithms for Battery Utilization in Electric Vehicles 275

Vrudhula, and Rakhmatov (2003). Several discharge schemes were pro-
posed, including: (1) serial—discharging of a single battery each time until
it is emptied and then discharging the next battery, (2) static switching—
discharging of a single battery for a certain amount of time, (3) dynamic
switching—discharging of each battery for a different amount of time
depending on its physical state (e.g., remaining capacity), (4) parallel—
discharging of all batteries together where the workload splits equally.
In simulations and lab experiments the static and dynamic algorithms
increased the lifetimes of the batteries significantly. In addition, the life-
time of batteries operated by both static and dynamic switching algorithms
increased with the switching frequency.

The current demands of EVs are not known in advance and may be esti-
mated using prediction methods based on driving profiles, driving stories,
and demands’ histories. In Benini and colleagues (2003), discharge meth-
ods among multiple batteries were discussed in which the current requests
and their distributions over time are known. We do not deal with this type of
problem because we propose an online algorithm.

PROBLEM DEFINITION

The system consists of m identical batteries, B1, B2, . . . , Bm , all having the
same initial capacity C . There are n current demands, that is, requests for
current, given as an online sequence d1, d2, . . . , dn, where di is the current
required to satisfy the ith request. The sequence, and in particular its length
n, is unknown in advance, but it is guaranteed that the total capacity of the
batteries can satisfy all requests, that is,

∑
i di ≤ mC .

The ith request can be satisfied in various ways. Any allocation of di from
the batteries is acceptable, and there are no constraints regarding the dis-
tribution of di among the batteries. However, there are “good” and “bad”
allocations because an optimal discharge current exists.

Based on our understanding of the electrochemical properties of the
individual cell-series (Benini et al. 2001b; Pedram and Wu 1999; Doyle and
Newman 1997), we define a penalty function that reflects the damage to
the battery’s life from the discharge current. The actual penalty function
depends on the specific chemistry of the battery. However, it is reasonable
to assume the following basic structure. Let I OPT be the optimal discharge
current whose supply results in maximization of the battery life. The penalty
function should fulfill the following conditions.

1. The penalty for no discharge is 0.
2. The penalty for supplying I OPT is 0.
3. All other discharge currents have positive penalty values, according to

their distance from I OPT.

D
ow

nl
oa

de
d

by
 [

93
.1

73
.1

37
.1

7]
 a

t 0
1:

55
 2

1
A

pr
il

20
14

276 R. Adany and T. Tamir

IOPT

0
2IOPT0

αIOPT

Discharge Current

FIGURE 1 The penalty function.

We assume the following linear penalty function, described in Figure 1.
Let x be the discharge current, then for some parameter α > 0,

Penalty(x) =
{

0, if x = 0 or x = IOPT
α|IOPT − x| otherwise (1)

By simple scaling of all demands and capacities, we assume throughout
this article, without loss of generality, that I OPT = 1 and α = 1. We denote by
Ci

j the remaining capacity of battery Bj before current demand i. The goal is
to determine the values xi

j , where xi
j is the discharge current (allocation) of

battery Bj to supply the current demand i.

THE OFFLINE PROBLEM

In this section, we consider the case in which all requests are known in
advance. Although this is not the case in practice, from the theoretical aspect
it is interesting because any hardness result for this model also captures the
online problem. The problem can be described as follows.

min
n∑

i=1

m∑
j=1

Penalty(xi
j)

subject to
n∑

i=1
xi

j ≤ C ∀j = 1 . . . m.

m∑
j=1

xi
j = di ∀i = 1 . . . n.

0 ≤ xi
j , xi

j ∈ R ∀i = 1 . . . n, j = 1 . . . m.

D
ow

nl
oa

de
d

by
 [

93
.1

73
.1

37
.1

7]
 a

t 0
1:

55
 2

1
A

pr
il

20
14

Algorithms for Battery Utilization in Electric Vehicles 277

Hardness of the Offline Problem

We first prove that the offline problem of serving all requests with the
minimal possible penalty is strongly NP-hard. Next, we show that it is NP-
hard to approximate the minimal possible penalty within an additive �(m)
factor.

Theorem 3.1. The problem of serving all requests with the minimal possible penalty
is strongly NP-hard, even if all current demands are known in advance.

Proof. We show a reduction from the 3-partition problem. The input to
3-partition is a set of n = 3m numbers, in other words, S = {d1, . . . , d3m},
such that 1

4 ≤ di ≤ 1
2 for all 1 ≤ i ≤ n, and

∑n
i=1 di = m. The goal is to divide

S into m subsets, S1, . . . , Sm , such that
∑

dk∈Sj
dk = 1 for all 1 ≤ j ≤ m. Each

such subset must consists of exactly three numbers. The 3-partition problem
is known to be strongly NP-hard (Garey and Johnson 1979).

Given S, we construct the following instance of our problem: m batteries,
each with an initial capacity of C = 1, and n = 3m current demands, where
the ith request is for di.

Claim 3.2. The set S has a 3-partition if and only if the minimum penalty for serving
the requests is 2m.

Proof. Given a 3-partition of S, let S1, · · · , Sm be the required partition, in
other words,

∑
dk∈Sj

dk = 1 for all 1 ≤ j ≤ m. We serve the requests as follows:
for every subset Sj, assume that Sj = {dj1 , dj2 , dj3}, then the corresponding
three requests are served from battery j. All requests are less than 1, that is,
di ≤ 1, thus the penalty from each is 1 – di. Accordingly, the total penalty
for serving requests from battery j is (1 − dj1) + (1 − dj2) + (1 − dj3), and
the total penalty for serving all 3m requests, as induced by the m sets is∑m

j=1[(1 − dj1) + (1 − dj2) + (1 − dj3)] = 3m − ∑n
i=1 di = 3m − m = 2m.

For the other direction, assume that the requests are served such that
the total penalty is 2m. Because all requests for current demand are less
than 1, the penalty for serving request i is exactly mi − di , where mi ≥ 1
is the number of batteries for which xi

j > 0 (that allocate some current
to request i). Therefore, the total penalty is

∑n
i=1(mi − di) = ∑n

i=1 mi − m.
In order for this sum to be 2m, it must hold that

∑n
i=1 mi = 3m. Because

n = 3m and mi values are nonnegative integer numbers, mi = 1 must be true
for all i. In other words, each request is supplied by only a single battery.
Also, the range of di, that is, 1

4 ≤ di ≤ 1
2 , implies that exactly three demands

are served by each battery. Because the total current demand is exactly the
total available energy, that is,

∑n
i=1 di = ∑m

j=1 C , it must be that for every
1 ≤ j ≤ m, the requests that are served by the jth battery constitute a total

D
ow

nl
oa

de
d

by
 [

93
.1

73
.1

37
.1

7]
 a

t 0
1:

55
 2

1
A

pr
il

20
14

278 R. Adany and T. Tamir

demand of exactly C = 1, and the mapping of requests to the batteries that
serve them induces a 3-partition. �

Our next hardness proof shows that the gap between the total penalty
of any efficient algorithm and the penalty of an optimal algorithm is �(m).
We use an idea suggested in a hardness proof for the problem of packing
with item fragmentation (Shachnai, Tamir and Yehezkely 2008).

Theorem 3.3. For any m > 1, a set of requests exists such that for some P ≥ 0,
the optimal serve of all the requests by m batteries constitute a total penalty P, whereas
service of all the requests by m batteries with a total penalty less than P + ⌊m

2

⌋
is

NP-hard.

Proof. Recall that mi ≥ 1 denotes the number of batteries participating in
the service of request i, in other words, mi = |{j|xj

i > 0}|.
The proof is based on defining a set of requests: an instance σ, with the

following attributes:

(A1) All the requests are small, that is, di < 1 for all i.
(A2) In the optimal solution, every request for current demand di is provided

by a single battery, or, mi = 1 for all i.
(A3) If P �= NP , then in the allocation determined by any efficient algorithm∑

i mi ≥ n + �m/2�.

The penalty for any allocation of xj
i < 1 is 1 − xj

i . Thus, the total penalty
for serving request i is mi − di . Given that σ fulfills attributes (A1) and
(A2), we conclude that the minimal penalty achieved by an optimal allo-
cation is POPT(σ) = ∑n

i=1(mi − di) = n − ∑
i di . Also, by attribute (A3), the

total penalty of any efficient algorithm is at least PALG(σ) = ∑
i(mi − di) ≥

n + �m/2� − ∑
i di . Therefore, PALG(σ) − POPT(σ) ≥ �m/2�.

We now describe the construction of an instance σ that fulfills (A1)
through (A3). For this, we assume that the batteries have different initial
capacities and that m is even. Later we explain how these assumptions can
be removed.

In order to achieve attribute (A3), we use a reduction from the Partition
problem. The input for Partition is a set U = {a1, . . . , ah} of positive integers
with a total size of 2S. The goal is to determine whether a subset U ′ ⊆ U of
a total size S exists.

For a given number of batteries m and a given instance of Partition, U =
{a1, . . . , ah}, construct an instance for the current allocation problem with
m batteries and n = h · m

2 current demands. The current demands consists
of k = m

2 sets, R0, . . . , Rk−1 each comprising h requests. Let M > (2S + 1) be
an integer. The set R0 comprises requests for current demands a1, a2, . . . , ah;

D
ow

nl
oa

de
d

by
 [

93
.1

73
.1

37
.1

7]
 a

t 0
1:

55
 2

1
A

pr
il

20
14

Algorithms for Battery Utilization in Electric Vehicles 279

R1 comprises requests for current demands a1M , a2M , . . . , ahM , and in gen-
eral, R� comprises requests for current demands a1M �, a2M �, . . . , ahM �. The
battery capacities are S, SM , SM2, . . . , SM �, . . . , SMk−1 and there are two bat-
teries of each capacity. Note that the total required energy is exactly the
total capacity of the batteries. Finally, let IOPT = SMk. For simplicity of the
description, the attributes are described assuming IOPT = 1; this is without
loss of generality, because it is possible to scale all demands and capacities by
a factor of 1/SMk.

If a partition of the items in U into two sets of size S exists, then a cur-
rent allocation fulfilling (A2) exists. Such an optimal allocation serves all the
requests of R� by the two batteries with a capacity of SM �. Because the total
demand of the requests in R� is exactly 2SM � and a partition exists, R� can
be partitioned into two sets of requests, each set with a total demand of SM �,
and it is possible to serve all the requests such that every request is served by
a single battery.

For the other direction, consider any service of the demands. Because
the total required energy is exactly the total capacity of the batteries, for
every battery j with SM � capacity,

∑
i xj

i = SM � holds.

Claim 3.4. If some battery, Bj, serves only full requests, that is, for all i either xj
i is

0 or di, then a partition of U exists.

Proof. Assume that for some 0 ≤ j ≤ k − 1, a battery Bj with capacity SM j

serves only full requests. First, note that no request from a set R� where � > j
is serviced by battery Bj. This is true because each such request is larger than
SMj (because aiMj+1 > SMj). Also, no request from a set R� where � < j
is serviced by battery Bj. This is true because the total demand of requests
from lower sets, (i.e., R0, R1, . . . , Rj−1), is 2S(1 + M + M2 + . . . + Mj−1) =
2S(Mj − 1)/(M − 1), which is less than Mj for all M > 2S + 1. Therefore,
any service of requests from previous sets would prevent battery Bj from sup-
plying all its capacity. This implies that no combination of demands from sets
R� where � < j, can be supplied in any allocation in which the total capacity
of battery Bj is used. It follows that battery Bj services only those requests
from a single set, and by scaling by M j , this service induces a partition of the
original instance. �

We conclude that if P �= NP , then in any allocation provided by an effi-
cient algorithm, every battery will serve at least one partial request. Thus,
there are at least m/2 fractions of requests and attribute (A3) holds.

In order to extend the proof to instances with identical batteries, we
set the capacities of all 2k batteries to SMk and add two filler requests of size
S(Mk − M �) to each set of demands R�. Nonetheless, the total required
energy is still exactly the total capacity of the batteries. The two smallest

D
ow

nl
oa

de
d

by
 [

93
.1

73
.1

37
.1

7]
 a

t 0
1:

55
 2

1
A

pr
il

20
14

280 R. Adany and T. Tamir

filler requests constitute a total size of 2S(Mk − Mk−1), which is larger than
SMk for any M > 2. Therefore, in any allocation of full requests, each bat-
tery serves, at most, one filler request. Furthermore, the total demand of a
nonfiller request is too small to fully utilize any battery, therefore, any fully
utilized battery must serve exactly one filler request. Assume that some bat-
tery serves only full requests and let S(Mk − Mz) be the demand of the filler
request served by the battery. The rest of the energy is allocated to requests
of a total demand SMz and the proof for the different capacity batteries can
be applied.

If m is odd, we can add a single request for a current demand of SMk,
and setting k = �m/2�, we attain an instance to which the above reduction
can be applied. �

AN ALMOST OPTIMAL ONLINE ALGORITHM

In this section, we describe an online current allocation scheme that
is guaranteed to serve all requests in an instance σ with a penalty of at
most POPT(σ) + m. By Theorem 3.3, a lower bound of POPT(σ) + �(m) also
applies to the offline case. Therefore, our algorithm is optimal in the sense
that only the constant factor in the additive term might be reduced. Another
property of our algorithm is that for a significant prefix of the requests,
an optimal allocation is guaranteed. This property implies that our algo-
rithm guarantees minimal damage to the lifetimes of batteries of drivers who
charge their EVs frequently enough and do not wait until the batteries are
empty. The last demands (i.e., the demands when the batteries are almost
empty) turn out to be the most challenging, because the amount of energy
left in each battery may be negligable, and an optimal discharge current
might not be possible.

The proposed solution distinguishes between two possible statuses of the
batteries. As long as the status is AboveTheLine (to be defined later), the ser-
vice of all requests is associated with the minimal possible penalty. Once the
status is not AboveTheLine, our allocation might involve a redundant penalty.
However, it is possible to bound this redundant penalty by m.

Algorithm 1 describes the current allocation scheme for a single request.
Before serving request i, we sort the batteries in nonincreasing order
of remaining capacity: Ci

1 ≥ Ci
2 . . . ≥ Ci

m . Ties are broken arbitrarily. For
simplicity, because our analysis refers to a single request, di, at a time, we
drop the index i whenever it is clear from the context. Specifically, d is the
request, Cj is the remaining capacity of the battery Bj with the jth highest
remaining capacity before the request, and xj is the current allocated to the
request by battery Bj.

The algorithm considers separately different types of requests: (1) small
requests—of size d ≤ 1, (2) large requests—of size d ≥ m, and (3) midsized

D
ow

nl
oa

de
d

by
 [

93
.1

73
.1

37
.1

7]
 a

t 0
1:

55
 2

1
A

pr
il

20
14

Algorithms for Battery Utilization in Electric Vehicles 281

requests—of size 1 < d < m. We state that a midsized request for current d
has a low fraction if d − �d� < 0.5. Otherwise, the request has a high fraction.
Note that a request has a low fraction if and only if d − �d� < �d� − d. For
example, d = 2.3 has a low fraction, whereas d = 2.8 has a high fraction. For
each type of request, the algorithm first tries to fulfill the request with the
minimal possible penalty. If such an allocation is impossible, an allocation
associated with some redundant penalty is determined.

In some cases, the algorithm calls the procedure GreedyAllocation, given
in Algorithm 2. In this procedure, the allocation is done greedily from the
battery with the lowest remaining capacity, moving to the next lowest bat-
tery when the first battery is emptied. Note that the order of the batteries
is determined when Algorithm 1 is called and is not modified as a result of
allocations done before GreedyAllocation is called.

In some cases, the algorithm allocates current in a balancing way among
a selected set of batteries. That is, the current is allocated from the batteries
in the set that have the highest remaining capacity, such that x1 ≥ x2 ≥ . . .,
while trying to balance the remaining capacities in the set after the alloca-
tion. This can be done by first allocating from battery B1, until C1 = C2,
then allocating evenly from both batteries B1, B2, and so on, until the whole
demand is allocated.

The batteries’ status before request i is defined as follows. Recall that
the batteries are sorted in nonincreasing order of remaining capacity (i.e.,
Ci

1 ≥ Ci
2 . . . ≥ Ci

m).

Definition 4.1. If Ci
1 ≥ 1.5 and Ci

j ≥ 1 for every j > 1, then the batteries’ status
before request i is AboveTheLine.

The analysis of the algorithm is based on several observations. First, we
show that as long as the batteries’ status is AboveTheLine, then the service of
all requests is associated with the minimal possible penalty. Next, we bound
the total possible penalty once the batteries’ status is not AboveTheLine.

Lemma 4.1. As long as the batteries’ status is AboveTheLine, the service of all requests
is associated with the minimal possible penalty.

Proof. Consider a current demand, d, and use POPT(d) to denote the
minimal possible penalty for supplying it.

If d ≤ 1, then POPT(d) = 1 − d, achieved by allocating all current from a
single battery—as in our algorithm (line 4). If d ≥ m, then POPT(d) = d − m,
achieved by allocating at least 1 from each of the m batteries. Such an
allocation is done in our algorithm (lines 10–11). Because the status is
AboveTheLine (i.e., Ci

j ≥ 1 for every j ≥ 1), the two above allocations are
possible.

D
ow

nl
oa

de
d

by
 [

93
.1

73
.1

37
.1

7]
 a

t 0
1:

55
 2

1
A

pr
il

20
14

282 R. Adany and T. Tamir

Algorithm 1. Current Allocation for a Single Request

Input: Current demand, d, battery capacities, C1 ≥ . . . ≥ Cm .
1: Let m̂ be the number of batteries with a capacity of at least 1, i.e., m̂ = maxj Cj ≥ 1.
2: if d ≤ 1 then {small request}
3: if d ≤ C1 then
4: Allocate the demand from x1, i.e., x1 = d.
5: else
6: CALL: GreedyAllocation.
7: end if
8: else if d ≥ m then {large request}
9: if m̂ = m then

10: Determine initial allocation of xj = 1 from batteries j = 1, . . . , m.
11: Allocate the remaining demand in a balancing way among batteries

j = 1, . . . , m.
12: else {m̂ < m}
13: Determine initial allocation of xj = 1 from batteries j = 1, . . . , m̂.
14: Allocate the remaining demand, i.e., d − m̂, by GreedyAllocation.
15: end if
16: else if d − �d� < 0.5 then {midsized request: low-fraction request}
17: if m̂ ≥ �d� and d ≤ ∑�d�

j=1 Cj then
18: Determine initial allocation of xj = 1 from batteries j = 1, . . . , �d�.
19: Allocate the remaining demand, i.e., d − �d�, in a balancing way from

batteries j = 1, . . . , �d�.
20: else
21: if m̂ ≥ �d� and d >

∑�d�
j=1 Cj then

22: Determine allocation of xj = Cj for all batteries j = 1, . . . , �d�.
23: Allocate the remaining demand, i.e., d − ∑�d�

j=1 Cj , by GreedyAllocation.
24: else {m̂ < �d�}
25: Determine initial allocation of xj = 1 from batteries j = 1, . . . , m̂.
26: Allocate the remaining demand, i.e., d − m̂, by GreedyAllocation.
27: end if
28: end if
29: else {midsized request: high-fraction request}
30: if m̂ ≥ �d� then
31: Determine initial allocation of xj = 0.5 from batteries j = 1, . . . , �d�.
32: Allocate the remaining demand, i.e., d − �d� /2, in a balancing way from

batteries j = 1, . . . , �d� limiting the allocation from any single battery by 1,
i.e., xj ≤ 1 for all j.

33: else
34: Determine initial allocation of xj = 1 from batteries j = 1, . . . , m̂.
35: Allocate the remaining demand, i.e., d − m̂, by GreedyAllocation.
36: end if
37: end if
38: Update Cj = Cj − xj for all batteries j = 1, . . . , m.

If 1 < d < m, then the minimal possible penalty is the distance of d
from the nearest integer, given by POPT(d) = min{d − �d� , �d� − d}. In both
cases, this value is at most 0.5. If the request has a low fraction, then penalty
POPT(d) can be achieved by allocating at least 1 from �d� batteries. If the

D
ow

nl
oa

de
d

by
 [

93
.1

73
.1

37
.1

7]
 a

t 0
1:

55
 2

1
A

pr
il

20
14

Algorithms for Battery Utilization in Electric Vehicles 283

Algorithm 2. GreedyAllocation

Input: Current demand, d, battery capacities, C1 ≥ . . . ≥ Cm , discharge currents,
x1, . . . , xm

1: i = m
2: while d > 0 do
3: Set x′ = min{Ci − xi , d}
4: Update allocation, xi = xi + x′
5: Update remaining demand, d = d − x′
6: i = i–1
7: end while

request has a high fraction, then penalty POPT(d) can be achieved by allocat-
ing at least 0.5 and at most 1 from �d� batteries. Such allocations are done
in our algorithm (lines 18–19 and 31–32 respectively). Note that because
the status is AboveTheLine (i.e., Ci

1 ≥ 1.5 and Ci
j ≥ 1 for every j > 1), the

above allocations are possible. Therefore, if the batteries’ status before the
allocation is AboveTheLine, then it is always possible to follow the suggested
allocation, which is associated with the minimal possible penalty. �

We conclude that the algorithm might cause a redundant penalty only
when the batteries’ status is not AboveTheLine. In order to bound the total
redundant penalty, we first bound the gap between the remaining capacities
of any pair of batteries.

Claim 4.2. For any request i and two batteries, j, j’, |Ci
j − Ci

j ′ | < 1.5.

Proof. The proof is by induction on the number of requests serviced, that
is, on the value of i. Initially, before the first request (i = 1), all capacities
equal C and the claim is clearly valid. Assume that the claim holds before the
allocation of the ith request, we show it is valid also afterward. Let S denote
the set of batteries allocating current to the ith request, that is, k ∈ S if and
only if xi

k > 0.
Consider first the case that the batteries’ status is AboveTheLine, where

the only relevant allocations are in lines 4, 10–11, 18–19 and 31–32. If both
j, j ′ /∈ S, then clearly the remaining capacities do not change and the gap
between the remaining capacities remains the same. If both j, j ′ ∈ S, because
the only relevant allocations are done in a balancing way, the gap between
the remaining capacities can only decrease. If j ∈ S and j ′ /∈ S, then it must
hold that Ci

j ≥ Ci
j ′ and di < m. In this situation the maximal allocation of

each battery is less than 1.5, as can be easily verified. In addition, because
the allocations are done from batteries with high capacities, the (absolute)
gap between the remaining capacities can only decrease.

D
ow

nl
oa

de
d

by
 [

93
.1

73
.1

37
.1

7]
 a

t 0
1:

55
 2

1
A

pr
il

20
14

284 R. Adany and T. Tamir

When the batteries’ status is not AboveTheLine, either the maximal capac-
ity of a battery is less than 1.5, which clearly implies that the maximal gap is
less than 1.5, or the minimal capacity of a battery is less than 1. It is easy to
verify that, in this case, either the maximal allocation of any single battery
is 1.5 and the allocation is done from batteries with high capacities, or the
algorithm allocates at least 1 from any battery with capacity at least 1 before
allocating (greedily) current from the batteries with the low capacity. �

We are now ready to bound the total redundant penalty after the
batteries’ status is not AboveTheLine.

Theorem 4.3. The total penalty of the algorithm might be larger than the minimal
possible penalty by at most m.

Proof. Let POPT(di), PALG(di) denote the minimal possible penalty and
the penalty caused by the algorithm for servicing the ith request, respec-
tively. Let �(i) = PALG(di) − POPT(di) denote the redundant penalty, which
occurred in the service of request i, and ei denote the number of batteries
emptied as a result of servicing request i. Finally, let m′ denote the num-
ber of batteries with a positive remaining capacity after all requests are
served, in other words, m = m′ + ∑

i ei . We show that
∑

i �(i) ≤ m by show-
ing that

∑
i �(i) ≤ ∑

i ei + m′. By Lemma 4.1, as long as the batteries’ status
is AboveTheLine, �(i) = 0 holds. Therefore, we need to bound the redundant
penalty after the batteries’ status is not AboveTheLine. The batteries’ status is
not AboveTheLine if one of the two following conditions is valid (1) Ci

1 < 1.5,
(2) Ci

1 ≥ 1.5 and Ci
m < 1.

Our analysis is based on combining the following three claims, whose
proof follows.

1. Whenever condition (1) is valid, �(i) ≤ ei (Claim 4.4).
2. Condition (2) might be valid only for a single request for which �(i) > 0

and for this request, �(i) ≤ ei + 1 (Claim 4.5).
3. Either m′ > 0, or for the last request, ei > 0 and �(i) ≤ ei − 1 (Claim 4.6).

Claim 4.4. If Ci
1 < 1.5 and �(i) > 0, then �(i) ≤ ei.

Proof. Except for one case (detailed as follows), redundant penalty is caused
only when GreedyAllocation is called. Assume that GreedyAllocation allocates
current from k1 batteries for which Ci

j ≤ 1, and k2 batteries for which Ci
j > 1

(see Figure 2a). Denote by K 1, K 2 the corresponding sets of batteries; by X 1,
X 2 the total current allocated by GreedyAllocation from K 1, K 2, respectively;
and by p1, p2 the total penalty for K 1, K 2, respectively.

D
ow

nl
oa

de
d

by
 [

93
.1

73
.1

37
.1

7]
 a

t 0
1:

55
 2

1
A

pr
il

20
14

Algorithms for Battery Utilization in Electric Vehicles 285

1
1

k2 batteries k1 batteries k2 batteries k1 batteries

1.5

X1

p1

X2 = p2

0.5

(a) Ci
1 < 1.5 (b) Ci

m < 1

1
1

1.5 + β

βX2 = p2

X1

p1

FIGURE 2 Cases when the batteries’ status is not AboveTheLine.

Our analysis distinguishes between different possible values of di. If di ≤
1, then POPT(di) = 1 − di . Note that k2 > 0 is impossible in this case, because
a small request will be serviced optimally if some battery has remaining
capacity of at least 1. Thus, the algorithm allocates di greedily from K 1, of
which at least k1 – 1 batteries are emptied. Thus, X 1 = di and PALG(di) =
k1 − di . We find that �(i) = (k1 − di) − (1 − di) = k1 − 1, or, �(i) ≤ ei .

If 1 < di < m and di has a low fraction, let w = di − �di�. It holds that
POPT(di) = w. The algorithm might have a redundant penalty in two cases:

1. If m̂ ≥ �di� and di >
∑�di�

j=1 Cj (line 21). In this case, �di� batteries are
emptied before GreedyAllocation is called (line 22) and the remaining
demand of gi = di − ∑�di�

j=1 Cj is allocated greedily (line 23). The penalty

for the �di� batteries is p0 = ∑�di�
j=1 Cj − �di�. Note that POPT(di) > p0

because di >
∑�di�

j=1 Cj and POPT(di) = di − �di�. If k2 = 0, then the whole
allocation is from K 1, of which at least k1 – 1 batteries are emptied.
It holds that PALG(di) = p0 + p1 = p0 + k1 − X1 < p0 + k1. Thus, �(i) ≤
(p0 + k1) − (p0) = k1. Because di > 1 and �di� batteries are emptied
before the greedy allocation, we have ei ≥ k1, thus, �(i) ≤ ei . If k2 = 1,
then because the remaining demand gi ≤ 0.5, the single battery in K 2
allocates at most 0.5, and has penalty at most 1. At least one battery is
emptied before the greedy allocation and at least k1 batteries are emp-
tied by GreedyAllocation, thus ei > k1. We have PALG(di) = p0 + p1 + p2 ≤
p0 + (k1 − X1) + 1 < p0 + k1 + 1. Because POPT(di) ≥ p0, we get �(i) ≤
k1 + 1 ≤ ei . Note that k2 > 1 is impossible in this case, because every K 2
battery has remaining capacity of at least 1 when GreedyAllocation is called
and gi ≤ 0.5, thus, a single k2 battery can supply the whole greedy request.

2. If m̂ < �di�, then the algorithm allocates gi = di − m̂ greedily, where gi
is the remaining current demand from line 26, and it holds that gi ≥

D
ow

nl
oa

de
d

by
 [

93
.1

73
.1

37
.1

7]
 a

t 0
1:

55
 2

1
A

pr
il

20
14

286 R. Adany and T. Tamir

1 + w. If k2 = 0, then the whole allocation is from K 1, of which at
least k1 – 1 batteries are emptied. It holds that PALG(di) = k1 − X1 =
k1 − gi . We find that �(i) = (k1 − gi) − (w) < k1 − 1, that is, �(i) < ei If
k2 ≥ 1, then by the algorithm, an initial allocation of 1 is determined
for each of the k2 batteries before GreedyAllocation is called (line 25).
Because Ci

1 < 1.5, each such battery allocates in the greedy phase at
most 0.5. Thus, the allocation is from k1 batteries, that are all emptied,
and k2 batteries, each allocating in the greedy phase at most 0.5. Thus,
gi = X1 + X2 ≤ X1 + 0.5k2, implying X1 ≥ gi − 0.5k2. Also, because all K 2
batteries allocate 1 before GreedyAllocation is called, we have p2 = X2 <

0.5k2. Thus PALG(di) = p1 + p2 ≤ (k1 − gi + 0.5k2) + 0.5k2, and �(i) ≤
(k1 − gi + k2) − (w) ≤ k1 − 1 − w + k2 − w < k1 + k2 − 1, or, �(i) ≤ ei .

If 1 < di < m and di has a high fraction, let w = �di� − di . It holds that
POPT(di) = w. If k2 = 0, then the algorithm allocates gi = di − m̂ greed-
ily from K 1, of which at least k1 – 1 are emptied. Note that gi ≥ 1 − w.
Thus, PALG(di) = k1 − X1 = k1 − gi . We find that �(i) = (k1 − gi) − (w) <

k1 − 1, that is, �(i) < ei . If k2 ≥ 1, then, as explained in the low-fraction
case, PALG(di) ≤ k1 − gi + 0.5k2 + 0.5k2, thus, �(i) ≤ (k1 − gi + k2) − w ≤
k1 − 1 + w + k2 − w = k1 + k2 − 1, in other words, �(i) ≤ ei .

If di ≥ m, then, by definition of the penalty function, we have p1 =∑
j∈K1

(1 − Ci
j) = k1 − X1 < k1. It must hold that k2 > 0 because some bat-

tery must allocate more than 1 in order to fulfill a large request. By the
algorithm, an initial allocation of 1 is determined for each of the k2 batteries
before GreedyAllocation is called (in line 13). Because Ci

1 < 1.5, each such bat-
tery allocates in the greedy phase at most 0.5. The total penalty is, therefore,
PALG(di) < k1 + 0.5k2. All batteries participating in GreedyAllocation, except
perhaps the last one, are emptied, thus, ei = k1 + k2 − 1. If k2 ≥ 2, then
PALG(di) < k1 + 0.5k2 ≤ k1 + k2 − 1 ≤ ei , and we are done.

If k2 = 1, then it must be that no battery was emptied before request i is
serviced, in other words, Ci

m > 0, as otherwise the remaining m – 1 (or fewer)
batteries have total remaining capacity at most m − 1 + 0.5 < m and cannot
fulfill a large request. This implies that m̂ = m − k1 and m − k1 batteries allo-
cates 1 to di before GreedyAllocation is called (in line 13). Thus, di ≥ m −
k1 + X1 + X2. Also, POPT(di) = di − m = X1 + X2 − k1. Finally, because the
single battery in K 2 allocates at most 0.5 in the greedy allocation, X2 < 0.5.
Together with the fact that di ≥ m, we get m − k1 + X1 + 0.5 > m, implying
k1 − X1 < 0.5. Combining the above, PALG(di) = k1 − X1 + X2, and �(i) =
(k1 − X1 + X2) − (X1 + X2 − k1) = 2(k1 − X1) < 1 ≤ k1 ≤ ei . Note that k1 ≥
1 as otherwise m̂ = m and the allocation is optimal. �

Next, we consider the case in which the batteries’ status is not
AboveTheLine when Ci

1 > 1.5 and Ci
m < 1. We bound the redundant penalty

D
ow

nl
oa

de
d

by
 [

93
.1

73
.1

37
.1

7]
 a

t 0
1:

55
 2

1
A

pr
il

20
14

Algorithms for Battery Utilization in Electric Vehicles 287

in this case and also show that the algorithm might accumulate a redundant
penalty at most once before the condition Ci

1 < 1.5 holds.

Claim 4.5. If Ci
1 ≥ 1.5, Ci

m < 1 and �(i) > 0, then �(i) ≤ ei + 1 and
Ci+1

1 < 1.5.

Proof. First note that when Ci
1 ≥ 1.5, the condition in line 21 is not valid and

redundant penalty might be caused only by GreedyAllocation. By Claim 4.2, if
Ci

m < 1, then Ci
1 < 2.5. Assume that GreedyAllocation is called. According to

the algorithm, this happens only after we set to 1 the allocation of each
of the m̂ batteries with Ci

j ≥ 1 (lines 13, 25, 34). Thus, as a result of such
an allocation, the remaining capacity of all batteries is less than 1.5, and in
particular Ci+1

1 < 1.5.
Claim 4.2 also implies that because Ci

1 ≥ 1.5, no battery was emptied
before request i is serviced, that is Ci

m > 0. Let β = Ci
m . By Claim 4.2, Ci

1 ≤
1.5 + β (see Figure 2b). We have X1 ≥ βk1, thus, p1 ≤ k1 − X1 ≤ k1(1 − β).
Each K 2 battery has capacity at most Ci

1 ≤ 1.5 + β and allocates an initial
allocation of 1 before GreedyAllocation is called. Thus, the maximal penalty
for each battery in K 2 is (0.5 + β) and p2 = X2 ≤ k2(0.5 + β). Summing up,
PALG(di) = p1 + p2 ≤ k1(1 − β) + k2(0.5 + β). The number of emptied bat-
teries is at least k1 + k2 − 1. If β ≤ 0.5 or k2 = 0, then �(i) ≤ PALG(di) ≤
k1 + k2 ≤ ei + 1.

If β > 0.5 and k2 > 0, we analyze separately different values of di. Because
GreedyAllocation is called after allocating 1 from each of the m̂ batteries with
Ci

j ≥ 1, we have di = m̂ + X1 + X2. Moreover, because no battery is empty
and k2 > 0 we have that m̂ = m − k1. Therefore,

di = m − k1 + X1 + X2. (2)

If di > m, let di = m + D. POPT(di) = D. By Equation (2), we have D =
X1 + X2 − k1 = di − m. Thus, POPT(di) = D = X1 + X2 − k1. Also, PALG(di) =
p1 + p2 = k1 − X1 + X2. We conclude that �(i) ≤ (k1 − X1 + X2) − (X1 +
X2 − k1) = 2(k1 − X1). Because β > 0.5, it holds that X1 > k1/2, thus, 2(k1 −
X1) < k1, implying �(i) < k1 < ei + 1.

If 1 < di < m, then by Equation (2), m − k1 + X1 + X2 = di < m, imply-
ing X2 < k1 − X1. We have PALG(di) = k1 − X1 + X2 < 2(k1 − X1). Because
β > 0.5, it holds that X1 > k1/2, thus, 2(k1 − X1) < k1 implying �(i) <

PALG(di) < k1 < ei + 1.
Finally, note that if di < 1, then because Ci

1 ≥ 1.5, the algorithm is
optimal. �

D
ow

nl
oa

de
d

by
 [

93
.1

73
.1

37
.1

7]
 a

t 0
1:

55
 2

1
A

pr
il

20
14

288 R. Adany and T. Tamir

Combining Claims 4.4 and 4.5, we find that for all requests for which ei >

0, except perhaps for one, it holds that �(i) ≤ ei . In addition, we have that
for a single request, the one for which GreedyAllocation is called when Ci

m < 1,
it might be that ei < �(i) ≤ ei + 1. To complete our analysis, we show that
this gap of 1 is closed by the last request. In the proof below we assume that
when the last request is supplied Cn

1 < 1.5, because otherwise, the scenario
handled in Claim 4.5 never happens and there is no gap to bridge, that is,
before the last request

∑
i �(i) ≤ ∑

i ei .

Claim 4.6. Either m′ > 0, or for the last request, ei > 0 and �(i) ≤ ei − 1.

Proof. If all batteries are emptied, then the last request empties the last
battery. Assume that greedy empties k1 batteries for which Ci

j ≤ 1, and k2

batteries for which Ci
j > 1. The proof is identical to the proof of Claim 4.4—

recall that Cn
1 < 1.5. The analysis in the proof of Claim 4.4 refers to ei =

k1 + k2 − 1. Formally, it is shown that when Cn
1 < 1.5, it holds that �(i) ≤

k1 + k2 − 1. When batteries are emptied, ei = k1 + k2, therefore, for the last
request, �(i) ≤ k1 + k2 − 1 = ei − 1. �

We conclude that either the last battery is not emptied, or, if it is emp-
tied, for at least one request (the last one), at least one battery is emptied
with no redundant penalty. This compensates for the additional penalty the
algorithm might have accumulated when Ci

1 ≥ 1.5 (discussed in Claim 4.5).
Summing up, the total redundant penalty of the algorithm is, at most, m. �

A LOWER BOUND FOR THE MULTIPLICATIVE COMPETITIVE

RATIO

A more common performance measure of the online algorithm’s qual-
ity is its competitive ratio, defined as the maximal possible ratio between the
algorithm’s objective value and an optimal one. In this section, we show that,
according to this measure, no algorithm can be better than 1.5 competitive.
Formally,

Theorem 5.1. For every online algorithm, ALG, a sequence of requests σ such that
PALG(σ) ≥ 1.5POPT(σ) exists.

Proof. Consider an instance with m = 2 batteries with an initial capacity
C = 1. The sequence σ is constructed by the adversary as a response to the
behavior of the algorithm. The possible sequences, provided by the adver-
sary, and the possible allocations of the algorithm are described in Figure 3.
Every node corresponds to a possible configuration of the batteries and is
described as a vector of the remaining capacities.

D
ow

nl
oa

de
d

by
 [

93
.1

73
.1

37
.1

7]
 a

t 0
1:

55
 2

1
A

pr
il

20
14

Algorithms for Battery Utilization in Electric Vehicles 289

(1, 1)

(½+ε, 1)

d1 = ½-ε

d2 = ½-ε

d3 = ½+ε

d4 = ½+ε

D: (½+ε, ½+ε)C: (2ε, 1)(½+ε-x,
½+ε+x)

(2ε-x, ½-ε+x)

d3
’ = 1

A: (½+ε+x, 1-x)

(2ε, ½-ε)

F: (0, 0)

E: (ε+x, ε-x)

B:

FIGURE 3 Possible behavior of an online algorithm and the adversary.

The first request presented by the adversary is for d1 = 0.5 − ε. If the
algorithm splits the service between the two batteries (configuration A in the
figure), then PALG(σ) = 2 − d1 = 1.5 + ε, whereas POPT(σ) = 1 − d1 = 0.5 +
ε. In this case, the adversary halts; the whole sequence is a single request,
and the competitive ratio is arbitrarily close to 3 (by fixing ε → 0).

If the algorithm supplies the whole first request from a single battery,
without loss of generality, from B1, then the adversary proceeds with d2 =
0.5 − ε. The algorithm can choose one of three options: split the service
(configuration B), provide the whole request from battery B1 (configuration
C), or provide the whole request from battery B2 (configuration D).

If the algorithm chooses to move to configuration B, the adversary halts.
The penalty for the second request is 2 − d2 = 1.5 + ε. In addition to the
penalty for the first request, the total penalty is PALG(σ) = (0.5 + ε) + (1.5 +
ε) = 2 + 2ε, whereas an optimal service has penalty POPT(σ) = 2(0.5 + ε) =
1 + 2ε. The competitive ratio is arbitrarily close to 2.

If the algorithm chooses to move to configuration D, then the adver-
sary proceeds with d ′

3 = 1. The algorithm must serve the request d ′
3 from

both batteries (configuration E) with total penalty for the whole sequence
PALG(σ) = (0.5 + ε) + (0.5 + ε) + 1 = 2(1 + ε). An optimal service for this
sequence (reaching configuration C and providing the whole request d ′

3
from battery B2) would incur a penalty of POPT(σ) = 1 + 2ε. The resulting
competitive ratio is arbitrarily close to 2.

We are left with the case in which the algorithm chooses to move to
configuration C . The adversary proceeds with d3 = 0.5 + ε. If the algorithm
splits the service (left node of C), the penalty for the last request is 1.5 – ε

and the total penalty for the whole sequence is PALG(σ) = 2.5 + ε, whereas
an optimal service for this sequence (providing the whole request d3 from

D
ow

nl
oa

de
d

by
 [

93
.1

73
.1

37
.1

7]
 a

t 0
1:

55
 2

1
A

pr
il

20
14

290 R. Adany and T. Tamir

battery B2) would incur a penalty of POPT(σ) = 1.5 + ε. The resulting com-
petitive ratio is arbitrarily close to 2.5, and larger than 1.5 for any ε ≤ 0.5.
Otherwise (right node of C), the adversary proceeds with a final request
d4 = 0.5 + ε. The algorithm must move to configuration F . For the whole
sequence the penalty is PALG(σ) = (0.5 + ε) + (0.5 + ε) + (0.5 − ε) + (1.5 −
ε) = 3, whereas an optimal service of this sequence (through configuration
D) would incur a penalty of POPT(σ) = 2. Thus, the competitive ratio for this
scenario is 1.5.

We conclude that for any behavior of the algorithm, the adversary can
proceed in a way that guarantees PALG(σ) ≥ 1.5POPT(σ). �

DISCUSSION AND OPEN PROBLEMS

This article presented studied the problem of utilizing the pack of batter-
ies serving current demands in Electric Vehicles. We formulated the problem
as a combinatorial optimization problem, provided hardness results that are
valid even for the offline scenario, and suggested an efficient, almost optimal
online algorithm. Several important problems remain open:

1. Consider additional penalty functions. In particular, nonlinear penalty
functions as well as penalty functions that are not symmetric around the
optimal discharge current.

2. Our algorithm (“An Almost Optimal Online Algorithm”) is guaranteed to
have a redundant penalty of, at most, m. On the other hand, it is NP-hard
to guarantee a redundant penalty lower than 0.5m, even in the offline
case (Theorem 3.3). Can this gap be closed?

3. Consider the combination of several different battery packs in a single
EV, each having its own optimal discharge current.

Additional problems arise when the model is extended to consider addi-
tional parameters such as battery temperature and other environmental
effects. A totally different direction is to study adaptive switching algorithms
that are based on learning the driver’s driving pattern.

REFERENCES

Affanni, A., A. Bellini, G. Franceschini, P. Guglielmi, and C. Tassoni. 2005. Battery choice and
management for new-generation electric vehicles. IEEE Transactions on Industrial Electronics
52(5):1343–1349.

Anderson, C., and J. Anderson. 2010. Electric and hybrid cars: A history. Jefferson, NC, USA: McFarland.
Benini, L., D. Bruni, A. Macii, E. Macii, and M. Poncino. 2003. Discharge current steering for battery

lifetime optimization. IEEE Transactions on Computers 52(2):985–995.

D
ow

nl
oa

de
d

by
 [

93
.1

73
.1

37
.1

7]
 a

t 0
1:

55
 2

1
A

pr
il

20
14

Algorithms for Battery Utilization in Electric Vehicles 291

Benini, L., G. Castelli, A. Macii, E. Macii, M. Poncino, and R. Scarsi. 2001a. Extending lifetime of portable
systems by battery scheduling. In Proceedings of the conference on design, automation and test in Europe,
197–203. Piscataway, NJ, USA: IEEE Press.

Benini, L., G. Castelli, A. Macii, and R. Scarsi. 2001b. Battery-driven dynamic power management. IEEE
Design & Test of Computers 18(2):53–60.

Delucchi, M., and T. Lipman. 2001. An analysis of the retail and lifecycle cost of battery-powered electric
vehicles. Transportation Research Part D: Transport and Environment 6(6):371–404.

Doyle, M., and J. Newman 1997. Analysis of capacity–rate data for lithium batteries using simplified
models of the discharge process. Journal of Applied Electrochemistry 27(7):846–856.

Garey, M. R., and D. S. Johnson. 1979. Computers and intractability. A guide to the theory of np-completeness.
New York, NY, USA: W.H. Freeman.

Kirsch, D. 2000. The electric vehicle and the burden of history. New Brunswick, NJ, USA: Rutgers University
Press.

Laman, F., and K. Brandt. 1988. Effect of discharge current on cycle life of a rechargeable lithium battery.
Journal of Power Sources 24(3):195–206.

MIT Electric Vehicle Team 2008. A guide to understanding battery specifications. http://mit.edu/evt.
Pedram, M., and Q. Wu. 1999. Design considerations for battery-powered electronics. In Proceedings

of the 36th annual conference on design automation (DAC’99), 861–866. Washington, DC, USA: IEEE
Computer Society.

Rao, R., S. Vrudhula, and D. Rakhmatov. 2003. Analysis of discharge techniques for multiple battery
systems. In Proceedings of the 2003 international symposium on low power electronics and design, 44–47.
New York, NY, USA: ACM.

Shachnai, H., T. Tamir, and O. Yehezkely. 2008. Approximation schemes for packing with item
fragmentation. Theory of Computing Systems 43(1):81–98.

D
ow

nl
oa

de
d

by
 [

93
.1

73
.1

37
.1

7]
 a

t 0
1:

55
 2

1
A

pr
il

20
14

http://mit.edu/evt

	ABSTRACT
	INTRODUCTION
	Our Results
	Related Work

	Problem Definition
	The Offline Problem
	Hardness of the Offline Problem

	An Almost Optimal Online Algorithm
	A Lower Bound for the Multiplicative Competitive Ratio
	Discussion and Open Problems
	REFERENCES

