
Scheduling Games with Machine-Dependent
Priority Lists

Marc Schröder1, Tami Tamir2?, and Vipin Ravindran Vijayalakshmi1??

1 Chair of Management Science, RWTH Aachen, Germany
{marc.schroeder,vipin.rv}@oms.rwth-aachen.de

2 School of Computer Science, The Interdisciplinary Center, Israel
tami@idc.ac.il

Abstract. We consider a scheduling game in which jobs try to minimize
their completion time by choosing a machine to be processed on. Each
machine uses an individual priority list to decide on the order according
to which the jobs on the machine are processed. We characterize four
classes of instances in which a pure Nash equilibrium (NE) is guaranteed
to exist, and show by means of an example, that none of these char-
acterizations can be relaxed. We then bound the performance of Nash
equilibria for each of these classes with respect to the makespan of the
schedule and the sum of completion times. We also analyze the computa-
tional complexity of several problems arising in this model. For instance,
we prove that it is NP-hard to decide whether a NE exists, and that
even for instances with identical machines, for which a NE is guaranteed
to exist, it is NP-hard to approximate the best NE within a factor of
2− 1

m
− ε for every ε > 0.

In addition, we study a generalized model in which players’ strategies
are subsets of resources, where each resource has its own priority list
over the players. We show that in this general model, even unweighted
symmetric games may not have a pure NE, and we bound the price of
anarchy with respect to the total players’ costs.

Keywords: Scheduling Games · Priority Lists · Price of Anarchy.

1 Introduction

Scheduling problems have traditionally been studied from a centralized point
of view in which the goal is to find an assignment of jobs to machines so as
to minimize some global objective function. Two of the classical results are
that Smith’s rule, i.e., schedule jobs in decreasing order according to their ratio
of weight over processing time, is optimal for single machine scheduling with
the sum of weighted completion times as the objective [23], and list schedul-
ing, i.e., greedily assign the job with the highest priority to a free machine,

? This research is supported by The Israel Science Foundation (ISF). Grant No.
1036/17.

?? This work is supported by the German research council (DFG) Research Training
Group 2236 UnRAVeL

2 M. Schröder et al.

yields a 2-approximation for identical machines with the minimum makespan
objective [14]. Many modern systems provide service to multiple strategic users,
whose individual payoff is affected by the decisions made by others. As a re-
sult, non-cooperative game theory has become an essential tool in the analysis
of job-scheduling applications. The jobs are controlled by selfish users who in-
dependently choose which resources to use. Job-scheduling games have by now
been widely studied and many results regarding the inefficiency of equilibria in
different settings are known.

A particular focus has been placed on finding coordination mechanisms [6],
i.e., local scheduling policies, that induce a good system performance. In fact,
recently Caragiannis et al. [4] proposed a framework that uses such policies
to come up with combinatorial approximation algorithms for the underlying
optimization problem. It is common to assume that ties are broken in a consistent
manner (see, e.g., Immorlica et al. [17]), or that there are no ties at all (see,
e.g., Cole et al. [7]). In practice, there is no real justification for this assumption,
except that it avoids subtle difficulties in the analysis. In this paper we relax this
restrictive assumption and consider the more general setting in which machines
have arbitrary individual priority lists. That is, each machine schedules those jobs
that have chosen it according to its priority list. The priority lists are publicly
known to the jobs.

In this paper we analyze the effect of having machine-dependent priority lists
on the corresponding job-scheduling game. We study the existence of Nash equi-
librium, the complexity of identifying whether a NE profile exists, the complexity
of calculating a NE, in particular a good one, and the equilibrium inefficiency.

1.1 The Model

An instance of a scheduling game with machine-dependent priority lists is given
by a tuple G = 〈N,M, (wi)i∈N , (cj)j∈M , (πj)j∈M 〉, where N is a finite set of n ≥
1 jobs, M is a finite set of m ≥ 1 machines, wi ∈ R+ is the weight of job i ∈ N ,
cj ∈ R+ is the processing delay of machine j ∈ M , and πj : N → {1, . . . , n} is
the priority list of machine j ∈M . In the literature, it is common to characterize
the jobs by their processing time and the machines by their speed. We prefer to
refer to weight instead of to processing time, and to delay, which is the inverse of
speed, in order to be consistent with the general definition of congestion games.

A strategy profile s = (si)i∈N assigns a machine si ∈M to every job i ∈ N .
Given a strategy profile s, the jobs are processed according to their order in the
machines’ priority lists. The set of jobs that delay job i in s is Bi(s) = {i′ ∈
N |si′ = si ∧ πsi(i′) ≤ πsi(i)}. Note that job i itself also belongs to Bi(s). Let
wi(s) =

∑
i′∈Bi(s)

wi′ . The cost of job i ∈ N is equal to its completion time in s,

given by cost i(s) = cj · wi(s).
A more general model is that of a congestion game with resource-dependent

priority lists, in which the strategy space of a player consists of subsets of re-
sources. Formally, an instance of the general game is given by a tuple G =
〈N,E, (Σi)i∈N , (wi)i∈N , (ce)e∈E , (πe)e∈E〉, where N is a finite set players, E is a

Scheduling Games with Machine-Dependent Priority Lists 3

finite set of resources, Σi ⊆ 2E is the set of feasible strategies for player i ∈ N ,
wi ∈ R+ is the weight of player i ∈ N , ce ∈ R+ is the cost coefficient of resource
e ∈ E, and πe : N → {1, . . . , n} is the priority list of resource E that defines its
preference over the players using it.

Scheduling games are symmetric singleton congestion games in which the
strategy space of each job is the set of all machines. For the general setting,
the players’ costs are defined as follows. Given a strategy profile s = (si)i∈N ∈
×i∈NΣi, for every player i ∈ N , and resource e ∈ si, let Bie(s) = {i′ ∈ N | e ∈
si′ ∧ πe(i′) ≤ πe(i)}, and define wie(s) =

∑
i′∈Bie(s)

wi′ . The cost of a player i ∈ N

is given by, cost i(s) = wi ·
∑
e∈si ce · w

i
e(s).

Notice that for general congestion games, we assume that players’ costs are
multiplied by their weight, whereas we do not make that assumption for schedul-
ing games. This has no implications for the existence of Nash equilibria, but only
affects the efficiency result.

Each job chooses a strategy so as to minimize its cost. A strategy profile
s is a pure Nash equilibrium (NE) if for all i ∈ N and all s′i ∈ Σi, we have
cost i(s) ≤ cost i(s

′
i, s−i). Let E(G) denote the set of Nash equilibria for a given

instance G. Notice that E(G) may be empty.
For a profile s, let cost(s) denote the cost of s. The cost is defined with

respect to some objective. For example, the total players’ cost or the maximum
cost of a player. It is well known that decentralized decision-making may lead
to sub-optimal solutions from the point of view of the society as a whole. For a
game G, let P (G) be the set of feasible profiles of G. We denote by OPT (G) the
cost of a social optimal (SO) solution; i.e., OPT (G) = mins∈P (G) cost(s). We
quantify the inefficiency incurred due to self-interested behavior according to the
price of anarchy (PoA) [19] and price of stability (PoS) [2] measures. The PoA
is the worst-case inefficiency of a pure Nash equilibrium, while the PoS measures
the best-case inefficiency of a pure Nash equilibrium.

Definition 1. Let G be a family of games, and let G be a game in G. Let E(G)
be the set of pure Nash equilibria of the game G. Assume that E(G) 6= ∅.

– The price of anarchy of G is the ratio between the maximal cost of a NE and
the social optimum of G. That is, PoA(G) = maxs∈E(G) cost(s)/OPT (G).
The price of anarchy of the family of games G is PoA(G) = supG∈GPoA(G).

– The price of stability of G is the ratio between the minimal cost of a NE and
the social optimum of G. That is, PoS(G) = mins∈E(G) cost(s)/OPT (G).
The price of stability of the family of games G is PoS(G) = supG∈GPoS(G).

1.2 Our Contribution

We start by studying scheduling games, i.e., each job has to choose one machine
to be processed on, and then based on the choices of the jobs, each machine
schedules the jobs according to its individual priority list. We first show that a
Nash equilibrium in general need not exist, and use this example to show that it
is NP-complete to decide whether a particular game has a Nash equilibrium. We

4 M. Schröder et al.

then extend known results in order to provide a characterization of instances in
which a pure Nash equilibrium is guaranteed to exist. Specifically, existence is
guaranteed if the game belongs to at least one of the following four classes: G1 :
all jobs have the same weight, G2 : there are two machines, G3 : all machines have
the same processing delay (shown in [9]), and G4 : all machines have the same
priority list (shown in [11]). For all four of these classes, there is a polynomial
time algorithm that computes a Nash equilibrium. In fact, if jobs are unweighted,
better-response dynamics converge to a Nash equilibrium in polynomial time.
This characterization is tight in a sense that our inexistence example disobeys
it in a minimal way: it describes a game on three machines, two of them having
the same processing delay and the same priority list.

We analyze the inefficiency of Nash equilibria by means of two different mea-
sures of efficiency: the makespan, i.e., the maximum completion time of a job,
and the sum of completion times. For all four classes of games with a guaran-
teed Nash equilibrium we provide tight bounds for the price of anarchy and the
price of stability with respect to both measures. Our results are summarized in
Table 1. For two machines with processing delays c1 = 1 and c2 = c ≥ 1, we

prove that the PoA and the PoS are at most 1 + c
c+1 if c ≤

√
5+1
2 , and 1 + 1

c if

c ≥
√
5+1
2 . Our analysis is tight for all c ≥ 1. The maximal inefficiency, listed in

Table 1, is achieved with c =
√
5+1
2 .

Instance class \ Objective
Makespan Sum of Completion Times

PoA PoS PoA PoS

G1 : Unweighted jobs 1 1 1 1

G2 : Two machines (
√

5 + 1)/2 (
√

5 + 1)/2 Θ(n) Θ(n)

G3 : Identical machines 2− 1/m 2− 1/m Θ(n/m) Θ(n/m)

G4 : Global priority list Θ(m) Θ(m) Θ(n) Θ(n)

Table 1. Our results for the equilibrium inefficiency.

In terms of computational complexity, we prove that it is NP-hard to ap-
proximate the best NE within a factor of 2 − 1

m − ε for all ε > 0, if machines
have identical processing delays and the minimum makespan objective is consid-
ered. Recall that 2− 1

m is the price of anarchy for these instances. In particular,
this implies that the simple greedy algorithm that computes a Nash equilib-
rium by letting each machine with the current least load get the most preferred
unassigned job, is the best one can hope for.

We finally generalize the model to allow for arbitrary strategy sets. We show
that in general, even with unweighted jobs, a Nash equilibrium need not exist by
making use of the famous Condorcet paradox [8]. We then use this example to
prove that the question whether a Nash equilibrium exists is NP-hard, even with
unweighted jobs. We lastly study the price of anarchy with respect to the sum
of weighted costs and show that the upper bound of 4 proven by Cole et al. [7]

Scheduling Games with Machine-Dependent Priority Lists 5

for unrelated machine scheduling with Smith’s rule also extends to congestion
games with resource-dependent priority lists. This ratio is smaller than the price
of anarchy of the atomic game with priorities defined by Farzad et al. [11].

Due to space constraints, some of the proofs are omitted. A full version of
this paper with all the proofs can be found at https://arxiv.org/abs/1909.10199.

1.3 Related Work

Scheduling games. The existence and inefficiency of Nash equilibria in schedul-
ing games gained lots of attention over the recent years. We refer to Vöcking [24]
for a recent overview. For existence, Immorlica et al. [17] proved that for unre-
lated machines, i.e., different machines can have different processing times for
jobs, and priority lists based on shortest processing time first with consistent
tie-breaking, the set of Nash equilibria is always non-empty and corresponds to
the set of solutions of the Ibarra-Kim algorithm [16].

The standard measure for the inefficiency of Nash equilibria is the price
of anarchy [19]. This measure has been widely studied for different measures
of efficiency. Most attention has been addressed on minimizing the makespan.
Czumaj and Vöcking [10] gave tight bounds for related machines that grow as
the number of machines grows, whereas Awerbuch et al. [3] and Gairing et al. [12]
provided tight bounds for restricted machine settings. An alternative measure
of efficiency is utilitarian social welfare, that is, the sum of weighted completion
times. Correa and Queyranne [9] proved a tight upper bound of 4 for restricted
related machines with priority lists derived from Smith’s rule. Cole et al. [7]
generalized the bound of 4 to unrelated machines with Smith’s rule. Hoeksma
and Uetz [15] gave a tighter bound for the more restricted setting in which jobs
have unit weights and machines are related.

Congestion games with priorities. Rosenthal [21] proved that congestion
games are potential games and thus have a pure Nash equilibrium. Ackermann
et al. [1] were the first to study a congestion game with priorities. They proposed
a model in which users with higher priority on a resource displace users with
lower priority. Similar to our model, Farzad et al. [11] studied priority based
selfish routing for non-atomic and atomic users. Gourvès et al. [13] studied ca-
pacitated congestion games to characterize the existence of pure Nash equilibria
and computation of an equilibrium when they exist. Piliouras et al. [20] assumed
that the priority lists are unknown to the players a priori and consider different
risk attitudes towards having a uniform at random ordering.

2 Equilibrium Existence and Computation

In this section we give a precise characterization of instances that are guaranteed
to have a NE. The conditions that we provide are sufficient but not necessary.
A natural question is to decide whether a given game instance that does not
fulfill any of the conditions has a NE. We show that answering this question is
a NP-complete problem.

6 M. Schröder et al.

We first show that a NE may not exist, even with only three machines, two
of which have the same delay and the same priority list.

Example 1. Consider the game G∗ with 5 jobs, N = {a, b, c, d, e}, and three ma-
chines, M = {M1,M2,M3}, with π1 = (a, b, c, d, e), and π2 = π3 = (e, d, b, c, a).
The first machine has delay c1 = 1 while the two other machines have delay
c2 = c3 = 2. The job weights are wa = 5, wb = 4, wc = 4 + 2ε, wd = 9 + ε, and
we = 2, where ε > 0 but small.

Job a is clearly on M1 in every NE. It is easy to see that in every NE at least
one of b, c and d is on M1. Therefore, job e is first on M2 or M3. Since these
two machines have the same priority list and the same delay function, we can
assume w.l.o.g., that if a NE exists, then there exists a NE in which job e is on
M3. We show that no NE exists by considering the three possible strategies of
job b.

1. b is on M1: If d is not on M2 or M3, then b prefers M2 to M1. If d is on M2,
then c is on M3 (since 12 + 4ε < 13 + 2ε). As a result, d prefers M1 (since
18 + ε < 18 + 2ε), so b prefers M2. Finally, given that e is on M3, d is not
on M3.

2. b is on M2: job c prefers M1, where it completes at time 9+2ε, while after e on
M3 it completes at time 12+4ε. Now d prefers M2, (since 18+2ε < 18+3ε).
So b prefers M1.

3. b is on M3: Being after e, job b prefers M1.

Thus, the game G∗ has no pure Nash equilibrium.

We can use the above example to show that deciding whether a game instance
has a NE is NP-complete by using a reduction from 3-bounded 3-dimensional
matching. The proof is omitted. A more involved hardness proof that uses a
similar technique is given in the proof of Theorem 12.

Theorem 1. Given an instance of a scheduling game, it is NP-complete to de-
cide whether the game has a NE.

Our next results are positive. When combined with known results regarding
equilibrium existence, and our example above, we get a tight characterization of
classes of instances with a guaranteed Nash equilibrium.

The following algorithm is intended for instances in the class G1, that is, for
all i ∈ N , wi = 1. It assigns the jobs greedily, where in each step, a job is added
on a machine on which the cost of the next job is minimal.

Algorithm 1 Calculating a NE of unit-weight jobs on related machines

1: Let `j denote the number of jobs assigned on machine j. Initially, `j = 0 for all
1 ≤ j ≤ m.

2: repeat
3: Let j? = arg minj cj · (`j + 1).
4: Assign on machine j? the first unassigned job on its priority list.
5: `j? = `j? + 1.
6: until all jobs are scheduled

Scheduling Games with Machine-Dependent Priority Lists 7

Theorem 2. If wi = 1 for all jobs i ∈ N , then Algorithm 1 calculates a NE.

In fact, for the unweighted case, every sequence of better responses converges
in polynomial time. Given a strategy profile s, a strategy s′i for job i ∈ N is a
better response if costi(s

′
i, s−i) < costi(s). The proof of the following theorem

is omitted, but analyzes a potential function that is introduced by Gourvès et
al. [13].

Theorem 3. If wi = 1 for all jobs i ∈ N , then jobs reach an equilibrium after
polynomially many better response moves.

Our next result considers the number of machines and completes the picture.
Since our inexistence example uses three machines, out of which two are identical
(in both delay and priority list), we cannot hope for a wider positive result.

Theorem 4. If m ≤ 2, then a NE exists and can be calculated efficiently.

Proof. For a single machine, the priority list defines the only feasible schedule,
which is clearly a NE. For m = 2, assume w.l.o.g., that c1 = 1 and c2 = c ≥ 1.
Consider the following algorithm, which initially assigns all the jobs on the fast
machine. Then, the jobs are considered according to their order in π2, and every
job gets an opportunity to migrate to M2.

Algorithm 2 Calculating a NE schedule on two related machines

1: Assign all the jobs on M1 (the fast machine) according to their order in π1.
2: For 1 ≤ k ≤ n, let the job i for which π2(i) = k perform a best-response move

(migrate to M2 if this reduces its completion time).

Denote by s1 the schedule after the first step of the algorithm (where all the
jobs are on M1), and let s denote the schedule after the algorithm terminates.
We show that s is a NE.

Claim. No job for which si = 1 has a beneficial migration.

Proof. Assume by contradiction that job i is assigned on M1 and has a beneficial
migration. Assume that π2(i) = k. Job i was offered to perform a migration in
the k-th iteration of step 2 of the algorithm, but chose to remain on M1. The only
migrations that took place after the k-th iteration are from M1 to M2. Thus, if
migrating is beneficial for i after the algorithm completes, it should have been
beneficial also during the algorithm, contradicting its choice to remain on M1.

Claim. No job for which si = 2 has a beneficial migration.

Proof. Assume by contradiction that the claim is false and let i be the first job
on M2 (first with respect to π2) that may benefit from returning to M1. Let
s1 denote the schedule before job i migrates to M2 - during the second step of

8 M. Schröder et al.

the algorithm. Recall that cost i(s) is the completion time of job i on M2, and
cost i(s

1) is its completion time on M1 before its migration.

Since the jobs are activated according to π2 in the 2-nd step of the algorithm,
no jobs are added before job i on M2. Job i may be interested in returning
to M1 only if some jobs that were processed before it on M1, move to M2

after its migration. Denote by ∆ the set of these jobs, and let δ be their total
weight. Let i′ be the last job from ∆ to complete its processing in s. Since
job i′ performs its migration out of M1 after job i, and jobs do not join M1

during step 2 of the algorithm, the completion time of i′ when it performs the
migration is at most cost i′(s

1). The migration from M1 to M2 is beneficial for
i′, thus, cost i′(s) < cost i′(s

1).

The jobs in ∆ are all before job i in π1 and after job i in π2. Therefore,
cost i′(s

1) < cost i(s
1), and cost i′(s) ≥ cost i(s) + cδ. Finally, we assume that s is

not stable and i would like to return to M1. By returning, its completion time
would be cost i(s

1)− δ. Given that the migration is beneficial for i, and that i is
the first job who likes to return to M2, we have that cost i(s

1)− δ < cost i(s).

Combining the above inequalities, we get

cost i(s
1) < cost i(s)+δ ≤ cost i′(s)−(c−1)δ < cost i′(s

1)−(c−1)δ < cost i(s
1)−(c−1)δ.

This contradicts the fact that c ≥ 1 and δ ≥ 0.

By combining the two claims, we conclude that s is a NE. ut

3 Equilibrium Inefficiency

Two common measures for evaluating the quality of a schedule are the makespan,
given by Cmax(s) = maxi∈N cost i(s), and the sum of completion times, given
by
∑
i∈N cost i(s). In this section we analyze the equilibrium inefficiency with

respect to each of the two objectives, for each of the four classes for which a NE
is guaranteed to exist.

We begin with G1, the class of instances with unweighted jobs. For this class
we show that allowing arbitrary priority lists does not hurt the social cost, even
on machines with different speeds.

Theorem 5. PoA(G1) = PoS(G1) = 1 for both the min-makespan and the sum
of completion times objective.

In Theorem 4 it is shown that a NE exists for any instance on two related
machines. We now analyze the equilibrium inefficiency of this class. Let Gc2 denote
the class of games played on two machines with delays c1 = 1 and c2 = c ≥ 1.

Theorem 6. For the min-makespan objective, PoA(Gc2) =PoS(Gc2) = 1 + 1
c if

c ≥
√
5+1
2 , and PoA(Gc2) =PoS(Gc2) = 1 + c

c+1 if c ≤
√
5+1
2 .

Scheduling Games with Machine-Dependent Priority Lists 9

Proof. Let G ∈ Gc2. Let W =
∑
i wi be the total weight of all jobs. Assume first

that c ≥
√
5+1
2 . For the minimum makespan objective, OPT (G) ≥W/(1 + 1/c).

Also, for any NE s, we have that Cmax(s) ≤ W , since every job can migrate to
be last on the fast machine and have completion time at most W . Thus, PoA
≤ 1 + 1/c.

Assume next that c <
√
5+1
2 . Let job a be the last job to complete in a worst

Nash equilibrium s, w1 be the total weight of all jobs different from a on machine
1, and w2 be the total weight of all jobs different from a on machine 2 in s. Then
since s is a Nash equilibrium, Cmax(s) ≤ w1 + wa and Cmax(s) ≤ c · (w2 + wa).
Combining these two inequalities yields

Cmax(s) ≤ W + wa

1 + 1
c

≤ (1 + c/(c+ 1)) ·OPT (G),

where for the inequality we use that OPT (G) ≥W/(1+1/c) and OPT (G) ≥ wa,
and thus PoA≤ 1 + c/(c+ 1).

For the PoS lower bound, assume first that c >
√
5+1
2 . Consider an instance

consisting of two jobs, a and b, where wa = 1 and wb = c. The priority lists
are π1 = π2 = (a, b). The unique NE is that both jobs are on the fast machine.

costa(s) = 1, costb(s) = c + 1. For every c >
√
5+1
2 , it holds that c + 1 < c2,

therefore, job b does not have a beneficial migration. An optimal schedule assigns
job a on the slow machine, and both jobs complete at time c. The corresponding
PoS is c+1

c = 1 + 1
c . 3

Assume now that c <
√
5+1
2 . Consider an instance consisting of three jobs,

x, y and z, where wx = 1, wy = 1+c−c2
c2 , and wz = 1+c

c . The priority lists are

π1 = π2 = (x, y, z). Note that wy ≥ 0 for every c ≤
√
5+1
2 . The unique NE is

when jobs x and z are on the fast machine, and job y on the slow machine.

Indeed, job y prefers being alone on the slow machine since 1+c
c2 > 1+c−c2

c . Job z
prefers joining x on the fast machine since 1 +wz < c(wy +wz). The makespan
is 1 +wz = 1+2c

c . In an optimal schedule, job z is alone on the fast machine, and
jobs x and y are on the slow machine. Both machines have the same completion
time 1+c

c . The PoS is 1+2c
1+c = 1 + c

c+1 . ut

Theorem 7. For the sum of completion times objective, PoA(Gc2) = Θ(n) and
PoS(Gc2) = Θ(n) for all c ≥ 1.

We turn to analyze the equilibrium inefficiency of the class G3, consisting of
games played on identical-speed machines, having machine-based priority lists.
The proof of the following theorem is based on the observation that every NE
schedule is a possible outcome of Graham’s List-scheduling (LS) algorithm [14].

Theorem 8. For the min-makespan objective, PoA(G3) =PoS (G3) = 2− 1
m .

Theorem 9. For the sum of completion times objective, PoA(G3) ≤ n−1
m + 1,

and for every ε > 0, PoS(G3) ≥ n
m − ε.

3 For c =
√
5+1
2

, by taking wb = c+ ε, the PoS approaches 1 + c/(c+ 1) as ε→ 0.

10 M. Schröder et al.

The last class of instances for which a NE is guaranteed to exist includes
games with a global priority list, and is denoted by G4. It is easy to verify
that for this class, the only NE profiles are those produced by List-Scheduling
algorithm, where the jobs are considered according to their order in the priority
list. Different NE may be produced by different tie-breaking rules. Thus, the
equilibrium inefficiency is identical to the approximation ratio of LS [5]. Since
the analysis of LS is tight, this is also the PoS.

Theorem 10. For the min-makespan objective, PoS(G4) =PoA(G4) = Θ(m).

For the sum of completion times objective, we note that the proof of Theorem
7 for two related machines uses a global priority list. The analysis of the PoA is
independent of the number and delays of machines.

Theorem 11. For the sum of completion times objective, PoA(G4) = Θ(n) and
PoS(G4) = Θ(n).

3.1 Hardness of Approximating the Minimum Makespan NE

Correa and Queyranne [9] showed that if all the machines have the same speeds,
but arbitrary priority lists, then a NE is guaranteed to exist, and can be calcu-
lated by a simple greedy algorithm. In Theorem 8, we have shown that the PoA
is at most 2− 1

m . In this subsection, we show that we cannot hope for a better
algorithm than the simple greedy algorithm. More formally, we prove that it is
NP-hard to approximate the best NE within a factor of 2− 1

m − ε for all ε > 0.

Theorem 12. If for all machines cj = 1, then it is NP-hard to approximate the
best NE w.r.t. the makespan objective within a factor of 2− 1

m − ε for all ε > 0.

Proof. We show that for every ε > 0, there is an instance on m identical machines
for which it is NP-hard to distinguish whether the game has a NE profile with
makespan at most m+ 2ε or at least 2m− 1.

The hardness proof is by a reduction from 3-bounded 3-dimensional matching
(3DM-3). The input to the 3DM-3 problem is a set of triplets T ⊆ X × Y × Z,
where |X| = |Y | = |Z| = n. The number of occurrences of every element of
X ∪ Y ∪ Z in T is at most 3. The number of triplets is |T | ≥ n. The goal is to
decide whether T has a 3D-matching of size n, i.e., there exists a subset T ′ ⊆ T ,
such that |T ′| = n, and every element in X ∪ Y ∪ Z appears exactly once in T ′.
3DM-3 is known to be NP-hard [18].

Given an instance of 3DM-3 and ε > 0, consider the following game on
m = |T | + 2 machines, M1,M2, . . . ,M|T |+2. The set of jobs includes job a of
weight m, job b of weight m − 1, a set D of |T | − n dummy jobs of weight 3ε,
two dummy jobs d1, d2 of weight 2ε, a set U of (m − 1)2 unit-weight jobs, and
3n jobs of weight ε - one for each element in X ∪ Y ∪ Z.

We turn to describe the priority lists. When the list includes a set, it means
that the elements can appear in an arbitrary order. For the first machine, π1 =
(d1, b, a, U,X, Y, Z,D, d2). For the second machine, π2 = (d2, X, Y, Z, b, U, a, d1).
The m − 2 right machines are triplet-machines. For every t = (xi, yj , zk) ∈ T ,

Scheduling Games with Machine-Dependent Priority Lists 11

the priority list of the triplet-machine corresponding to t is (D,xi, yj , zk, U,X \
{xj}, Y \ {yj}, Z \ {zj}, d1, d2, a, b).

The heart of the reduction lies in determining the priority lists. The idea is
that if a 3D-matching exists, then job b would prefer M2 and let job a be assigned
early on M1. However, if there is no 3D-matching, then some job originated from
the elements in X ∪Y ∪Z will precede job b on M2, and b’s best-response would
be on M1. The jobs in U have higher priority than job a on all the machines
except for M1, thus, unless job a is on M1, it is assigned after |U |/(m − 1)
unit-jobs from U , inducing a schedule with high makespan.

Observe that in any NE, the two dummy jobs of weight 2ε are assigned as the
first jobs on M1 and M2. Also, the dummy jobs in D have the highest priority on
the triplet-machines, thus, in every NE, there are |D| = |T |−n triplet-machines
on which the first job is from D.

The following two claims complete the proof. Figure 1 provides an example
for m = 5.

T={(x1,y1,z1),(x2,y2,z2),(x1,y2,z2)}
A matching exists.
NE with makespan = 5

y1
x1

z1
z2
x2

a

b
d

T={(x1,y1,z1),(x2,y1,z2),(x1,y2,z2)}
No matching. Some Y or Z completes at 4.
The problem: If we give Y Z priority on M2
in order to motivate b to move to M1, then
the left schedule is not a NE.

a

b

(b)

a b

(a)

baU bUa Uba

y2

Examples T=3

y1
x1

z1

1

a
b

2 32 y2
x2

z2

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

y1
x1

z1

a

b

2 32 y2
x2

z2

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

(a) (b)

M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Fig. 1. (a) A NE schedule for n = 2 and T = {(x1, y1, z1), (x2, y2, z2), (x1, y2, z2)}.
A matching of size 2 exists. The makespan is 5 + 3ε. (b) A NE schedule for T =
{(x1, y1, z1), (x2, y2, z1), (x1, y2, z2)}. A matching of size 2 does not exist. The makespan
is 9 + 2ε.

Claim. If a 3D-matching of size n exists, then the game has a NE schedule whose
makespan is m+ 2ε.

Proof. Let T ′ be a matching of size n. Assign the jobs of X ∪ Y ∪ Z on the
triplet-machines corresponding to T ′ and the jobs of D on the remaining triplet-
machines. Also, assign d1 and d2 on M1 and M2 respectively. M1 and M2 now
have load 2ε while the triplet machines have load 3ε. Next, assign job a on M1

and job b on M2. Finally, add the unit-jobs as balanced as possible: m jobs on
each triplet-machine and a single job after job b on M2. It is easy to verify that
the resulting assignment is a NE. Its makespan is m+ 3ε.

12 M. Schröder et al.

Claim. If a 3D-matching of size n does not exist then every NE schedule has
makespan at least 2m− 1.

Proof. Let s be a NE profile of an instance for which a matching does not exist.
From the above observations, there are exactly n triplet-machines on which the
first element is not from D. Since a matching does not exist, for at least one such
machine, there are at most two jobs from X ∪ Y ∪ Z whose priority is higher
than the priority of the unit jobs. Thus, at least one job from X ∪ Y ∪Z prefers
M2, and is assigned after d2. As a result, job b prefers M1, where it can start
being processed at time 2ε. Given that job b is on M1, and that there are at
least m− 1 unit jobs on each machine, job a cannot start its processing earlier
than m− 1, implying that its completion time is at least 2m− 1.

ut

4 General Congestion Games with Priority Lists

In this last section we consider a generalization of the model that allows for
arbitrary strategy sets. First, we show that a Nash equilibrium need not exist
and in fact, the question whether a Nash equilibrium exists is NP-complete,
even for unweighted players. Recall that in our unweighted singleton game a NE
is guaranteed to exist. Second, we show a tight upper bound on the price of
anarchy for the sum of weighted costs.

4.1 Unweighted Games

In this subsection, we restrict ourselves to unweighted congestion games with
priority lists, i.e., wi = 1 for all i ∈ N . We first provide an example that shows
that a Nash equilibrium need not exist. Farzad et al. [11] give a different exam-
ple with two players for which a NE need not exist. Our example describes a
symmetric game.

Example 2. The game, G? contains 3 unweighted players, wi = 1 for all i ∈ N ,
and 6 resources. Each players i ∈ N has two pure strategies: {e1, e2, e3} and
{e4, e5, e6}. The delays are equal to 1 for all resources, and the priority lists are
πj(i) = i + j − 1 (modulo 3) for all j ∈ E and i ∈ N . Observe that there is
no Nash equilibrium if all three players choose the same three resources. Also,
due to the Condorcet paradox [8], there is no Nash equilibrium in which two
players choose one subset of resources and the other player chooses the other.
Specifically, one of these two players has cost 5 and the other has cost 4. By
deviating to the other triplet of resources, the player whose cost is 5 can reduce
its cost to 4.

A natural question is to decide whether a game instance with unweighted
players have a NE profile. Our next result shows that this is NP-complete. The
hardness proof is different from the one in Theorem 1, since this proof consid-
ers unweighted players and multiple-resources strategies, while that proof is for
weighted players and singleton strategies.

Scheduling Games with Machine-Dependent Priority Lists 13

Theorem 13. Given an instance of a congestion game with priority lists, it is
NP-complete to decide whether the game has a NE profile. This is valid also for
unweighted players.

4.2 Equilibrium Inefficiency

We consider the sum of weighted players’ costs as a measure of the quality of a
strategy profile. Our analysis below is for linear cost functions, and is trivially
extended to affine cost functions. A game G is said to be (λ, µ)-smooth if for all
strategy profiles s, s′ we have∑

i∈N
costi(s

′
i, s−i) ≤ λ · cost(s′) + µ · cost(s).

Roughgarden [22] showed that if a game G is (λ, µ)-smooth with λ > 0 and
µ < 1, then PoA(G)≤ λ

1−µ .

Theorem 14. Every congestion game with resource-specific priority lists is
(
2, 12
)
-

smooth. Hence PoA(G) ≤ 4.

Proof. Given a strategy profile s, define we(s) =
∑

i′∈N :e∈si′
wi′ . For all s, s′,

∑
i∈N

costi(s
′
i, s−i)

≤
∑
i∈N

∑
e∈s′i

wi · ce · (we(s) + wi) =
∑
e∈E

ce ·

we(s′) · we(s) +
∑

i∈N :e∈s′i

w2
i

≤
∑
e∈E

ce ·

we(s′)2 +
1

4
· we(s)2 +

∑
i∈N :e∈s′i

w2
i

 ≤ 2 · cost(s′) +
1

2
· cost(s),

where the second inequality follows from
(
we(s

′)− 1
2 · we(s)

)2 ≥ 0 and the third

inequality from cost(s) =
∑
e∈E

1
2 · ce ·

(
we(s)

2 +
∑
i∈N :e∈si w

2
i

)
for all s. ut

Correa and Queyranne [9] give an example that shows that the bound of 4
is tight for restricted singleton congestion games with priority lists derived from
Smith’s rule.

References

1. Ackermann, H., Goldberg, P., Mirrokni, V.S., Röglin, H., Vöcking, B.: A unified
approach to congestion games and two-sided markets. Internet Mathematics 5(4),
439–457 (2008)

2. Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, E., Wexler, T., Roughgarden,
T.: The price of stability for network design with fair cost allocation. SIAM Journal
on Computing 38(4), 1602–1623 (2008)

14 M. Schröder et al.

3. Awerbuch, B., Azar, Y., Richter, Y., Tsur, D.: Tradeoffs in worst-case equilibria.
Theoretical Computer Science 361(2-3), 200–209 (2006)

4. Caragiannis, I., Gkatzelis, V., Vinci, C.: Coordination mechanisms, cost-sharing,
and approximation algorithms for scheduling. In: International Conference on Web
and Internet Economics. pp. 74–87. Springer (2017)

5. Cho, Y., Sahni, S.: Bounds for list schedules on uniform processors. SIAM Journal
on Computing 9(1), 91–103 (1980). https://doi.org/10.1137/0209007

6. Christodoulou, G., Koutsoupias, E., Nanavati, A.: Coordination mechanisms. In:
International Colloquium on Automata, Languages, and Programming. pp. 345–
357. Springer (2004)

7. Cole, R., Correa, J., Gkatzelis, V., Mirrokni, V., Olver, N.: Decentralized utilitarian
mechanisms for scheduling games. Games and Economic Behavior 92, 306–326
(2015)

8. Marquis de Condorcet, M.J.A.: Essai sur l’application de l’analyse a la probabilite
des decisions: rendues a la pluralite de voix. De l’Imprimerie royale (1785)

9. Correa, J., Queyranne, M.: Efficiency of equilibria in restricted uniform machine
scheduling with total weighted completion time as social cost. Naval Research
Logistics 59(5), 384–395 (2012)

10. Czumaj, A., Vöcking, B.: Tight bounds for worst-case equilibria. ACM Transac-
tions on Algorithms 3(1), 4 (2007)

11. Farzad, B., Olver, N., Vetta, A.: A priority-based model of routing. Chicago Journal
of Theoretical Computer Science 1 (2008)

12. Gairing, M., Lücking, T., Mavronicolas, M., Monien, B.: Computing nash equilibria
for scheduling on restricted parallel links. Theory of Computing Systems 47(2),
405–432 (2010)

13. Gourvès, L., Monnot, J., Moretti, S., Thang, N.K.: Congestion games with capac-
itated resources. Theory of Computing Systems 57(3), 598–616 (2015)

14. Graham, R.: Bounds for certain multiprocessing anomalies. Bell System Technical
Journal 45(9), 1563–1581 (1966)

15. Hoeksma, R., Uetz, M.: The price of anarchy for utilitarian scheduling games on
related machines. Discrete optimization 31, 29–39 (2019)

16. Ibarra, O.H., Kim, C.E.: Heuristic algorithms for scheduling independent tasks on
nonidentical processors. Journal of the ACM (JACM) 24(2), 280–289 (1977)

17. Immorlica, N., Li, L.E., Mirrokni, V., Schulz, A.: Coordination mechanisms for
selfish scheduling. Theoretical computer science 410(17), 1589–1598 (2009)

18. Kann, V.: Maximum bounded 3-dimensional matching is max snp-complete. Infor-
mation Processing Letters 37(1), 27–35 (1991)

19. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Annual Symposium
on Theoretical Aspects of Computer Science. pp. 404–413. Springer (1999)

20. Piliouras, G., Nikolova, E., Shamma, J.S.: Risk sensitivity of price of anarchy under
uncertainty. ACM Trans. Economics and Comput. 5, 5:1–5:27 (2016)

21. Rosenthal, R.: A class of games possessing pure-strategy nash equilibria. Interna-
tional Journal of Game Theory 2(1), 65–67 (1973)

22. Roughgarden, T.: Intrinsic robustness of the price of anarchy. Journal of the ACM
62(5), 32 (2015)

23. Smith, W.E.: Various optimizers for single-stage production. Naval Research Lo-
gistics Quarterly 3(1-2), 59–66 (1956)

24. Vöcking, B.: Algorithmic Game Theory, chap. 20: Selfish Load Balancing. Cam-
bridge University Press (2007)

