
Race Scheduling Games

Shaul Rosner and Tami Tamir

School of Computer Science, The Interdisciplinary Center, Israel
shaul.rosner@post.idc.ac.il, tami@idc.ac.il

Abstract. Job scheduling on parallel machines is a well-studied single-
ton congestion game. We consider a variant of this game in which the
jobs are partitioned into competition sets, and the goal of every player
is to minimize the completion time of his job relative to his competitors.
Specifically, the primary goal of a player is to minimize the rank of its
completion time among his competitors, while minimizing the completion
time itself is a secondary objective. This fits environments with strong
competition among the participants, in which the relative performance
of the players determine their welfare.
We define and study the corresponding race scheduling game (RSG). We
show that RSGs are significantly different from classical job-scheduling
games, and that competition may lead to a poor outcome. In particular,
an RSG need not have a pure Nash equilibrium, and best-response dy-
namics may not converge to a NE even if one exists. We identify several
natural classes of games, on identical and on related machines, for which
a NE exists and can be computed efficiently, and we present tight bounds
on the equilibrium inefficiencies. For some classes we prove convergence
of BRD, while for others, even with very limited competition, BRD may
loop. Among classes for which a NE is not guaranteed to exist, we dis-
tinguish between classes for which, it is tractable or NP-hard to decide
if a given instance has a NE.
Striving for stability, we also study the Nashification cost of RSGs, either
by adding dummy jobs, or by compensating jobs for having high rank.
Our analysis provides insights and initial results for several other con-
gestion and cost-sharing games that have a natural ‘race’ variant.

1 Introduction

Two men are walking through a forest. Suddenly they see a bear in the distance, running
towards them. They start running away. But then one of them stops, takes some running
shoes from his bag, and starts putting them on. “What are you doing?” says the other
man. “Do you think you will run faster than the bear with those?” “I don’t have to run
faster than the bear,” he says. “I just have to run faster than you.”

In job-scheduling applications, jobs are assigned on machines to be processed.
Many interesting combinatorial optimization problems arise in this setting, which
is a major discipline in operations research. A centralized scheduler should assign
the jobs in a way that achieves load balancing, an effective use of the system’s re-
sources, or a target quality of service [20]. Many modern systems provide service

2 S. Rosner and T. Tamir

to multiple strategic users, whose individual payoff is affected by the decisions
made by others. As a result, non-cooperative game theory has become an es-
sential tool in the analysis of job-scheduling applications (see e.g., [19,10,12,3],
and a survey in [24]). Job-scheduling is a weighted congestion game [21] with
singleton strategies, that is, every player selects a single resource (machine).

In traditional analysis of congestion games, the goal of a player is to minimize
his cost. We propose a new model denoted race games that fits environments
with strong competition among the participants. Formally, the players form com-
petition sets, and a player’s main goal is to do well relative to his competitors.
The welfare of a player is not measured by a predefined cost or utility function,
but relative to the performance of his competitors. This natural objective arises
in many real-life scenarios. For example, in cryptocurrency mining, one needs to
be the first miner to build a block. It does not matter how fast a miner builds
a block, as long as she is the first to do so. Similarly, when buying event tick-
ets from online vendors, the time spent in the queue is far less important than
what tickets are available when it is your turn to buy. Participants’ ranking is
crucial in numerous additional fields, including auctions with a limited number
of winners, where, again, the participants’ rank is more important than their
actual offer, transplant queues, sport leagues, and even submission of papers to
competitive conferences.

In this paper we study the corresponding race scheduling game (RSG, for
short). We assume that the jobs are partitioned into competition sets. The pri-
mary goal of a job is to minimize the rank of its completion time among its
competitors, while minimizing the completion time itself is a secondary objec-
tive. As an example, consider a running competition. In order to be qualified
for the final, a runner should be faster than other participants in her heat. The
runners’ ranking is more important than their finish time.

Unfortunately, as we show, even very simple RSGs may not have a NE. We
therefore focus on potentially more stable instances. In many real-life scenarios,
competition is present among agents with similar properties. For example, there
is a competition among companies that offer similar services; in sport competi-
tions, the participants are categorized by their sex and age group, or by their
weight. Some of our results consider games in which competing players are ho-
mogeneous. Specifically, we assume that all the jobs in a competition set have
the same length.

Our results highlight the differences between RSGs and classical job-scheduling
games. We identify classes of instances for which a stable solution exists and can
be computed efficiently, we analyze the equilibrium inefficiency, and the conver-
gence of best-response dynamics. We distinguish between different competition
structure, and between environments of identical and related machines. In light
of our negative results regarding stability existence, we also study the problem
of Nashification. The goal of Nashification is, given an instance of RSGs, to turn
it into an instance that has a stable solution. This is done either by adding
dummy jobs, or by compensating jobs for having high rank. We believe that this

Race Scheduling Games 3

‘race’ model fits many natural scenarios, and should be analyzed for additional
congestion and cost-sharing games.

2 Model and Preliminaries

A race scheduling game (RSG) is given by G = 〈J ,M, {p(j)} ∀j ∈ J , {di} ∀i ∈
M, S〉, where J is a set of n jobs, M is a set of m machines, p(j) is the length
of job j, di is the delay of machine i, and S is a partition of the jobs into
competition sets. Specifically, S = {S1, . . . , Sc} such that c ≤ n, ∪c`=1S` = J ,
and for all `1 6= `2, we have S`1 ∩ S`2 = ∅. For every job j ∈ S`, the other jobs
in S` are denoted the competitors of j. Let n` denote the number of jobs in S`.

Job j is controlled by Player j whose strategy space is the set of machines
M. A profile of an RSG is a schedule s = 〈s1, . . . , sn〉 ∈ Mn describing the
machines selected by the players1. For a machine i ∈ M, the load on i in s,
denoted Li(s), is the total length of the jobs assigned on machine i in s, that
is, Li(s) =

∑
{j|sj=i} p(j). When s is clear from the context, we omit it. It

takes p(j) · di time-units to process job j on machine i. As common in the
study of job-scheduling games, we assume that all the jobs assigned on the same
machine are processed in parallel and have the same completion time. Formally,
the completion time of job j in the profile s is Cj = Lsj (s) · dsj . Machines are
called identical if their delays are equal.

Unlike classical job-scheduling games, in which the goal of a player is to
minimize its completion time, in race games, the goal of a player is to do well
relative to its competitors. That is, every profile induces a ranking of the players
according to their completion time, and the goal of each player is to have a
lowest possible rank in its competition set. Formally, for a profile s, let CsS`

=
〈Cs`1 , . . . , C

s
`n`
〉 be a sorted vector of the completion times of the players in S`.

That is, Cs`1 ≤ . . . ≤ C
s
`n`

, where Cs`1 is the minimal completion time of a player

from S` in s, etc.. The rank of Player j ∈ S` in profile s, denoted rank j(s)
is the rank of its completion time in CsS`

. If several players in a competition
set have the same completion time, then they all have the same rank, which is
the corresponding median value. For example, if n` = 4 and CsS`

= 〈7, 8, 8, 13〉
then the players’ ranks are 〈1, 2.5, 2.5, 4〉, and if all players in S` have the same
completion time then they all have rank (n` + 1)/2. Note that, independent of
the profile,

∑
j∈S`

rank j(s) = n`(n` + 1)/2.
For a profile s and a job j ∈ S`, let Nlow(j, s) be the number of jobs from S`

whose completion time is lower than Cj(s), and let Neq(j, s) be the number of
jobs from S` whose completion time is Cj(s). We have,

Observation 1 rank j(s) = Nlow(j, s) +
1+Neq(j,s)

2 .

The primary objective of every player is to minimize its rank. The secondary
objective is to minimize its completion time. Formally, Player j prefers profile s′

over profile s if rank j(s
′) < rank j(s) or rank j(s

′) = rank j(s) and Cj(s
′) < Cj(s).

1 In this paper, we only consider pure strategies.

4 S. Rosner and T. Tamir

Note that classic job-scheduling games are a special case of RSGs in which the
competition sets are singletons; thus, for every job j, in every profile, s, we have
rank j(s) = 1, and the secondary objective, of minimizing the completion time is
the only objective.

A machine i is a best response (BR) for Player j if, given the strategies of all
other players, j’s rank is minimized if it is assigned on machine i. Best-Response
Dynamics (BRD) is a local-search method where in each step some player is
chosen and plays its best improving deviation (if one exists), given the strategies
of the other players.

The focus in game theory is on the stable outcomes of a given setting. The
most prominent stability concept is that of a Nash equilibrium (NE): a profile
such that no player can improve its objective by unilaterally deviating from its
current strategy, assuming that the strategies of the other players do not change.
Formally, a profile s is a NE if, for every j ∈ J , sj is a BR for Player j.

Some of our results consider RSGs with homogeneous competition sets. We
denote by Gh the corresponding class of games. Formally, G ∈ Gh if, for every `,
all the jobs in S` have the same length, p`. The following example summarizes
the model and demonstrates several of the challenges in analyzing RSGs.

Example: Consider a game G ∈ Gh on m = 3 identical machines, played by
n = 9 jobs in two homogeneous competition sets. S1 consists of four jobs having
length 4, and S2 consists of five jobs having length 3 (to be denoted 4-jobs and
3-jobs, respectively). All the machines have the same unit-delay. Fig. 1 presents
four profiles of this game. The completion times are given above the machines
and the jobs are labeled by their ranks. Consider the jobs of S2 in Profile (a).

Their completion times are C
(a)
S2

= (7, 12, 12, 12, 12). Thus, the 3-job on M2 has

rank 1, and the four jobs on M3 all have rank 2+3+4+5
4 = 3.5. Profile (a) is a

NE. For example, a deviation of a 4-job from M1 to M2 leads to Profile (b), and
thus involves an increase in the rank of the deviating jobs from 3 to 3.5. It can
be verified that other deviations are not beneficial either. This example demon-
strates that race games are significantly different from classical job-scheduling
games. In particular, a beneficial migration may increase the completion time
of a job. For example, the migration of a 3-job that leads from Profile (c) to
Profile (a) increases the completion time of the deviating job from 10 to 12, but
reduces its rank from 4.5 to 3.5. Moreover, simple algorithms that are known
to produce a NE schedule for job-scheduling games without competition need
not produce a NE in race games. In our example, Profile (d) is produced by the
Longest Processing Time (LPT) rule. It is not a NE since the 3-job on M1 can
reduce its rank from 5 to 4 by migration to either M2 or M3.

The social cost of a profile s, denoted cost(s) is the makespan of the cor-
responding schedule. That is, the maximal completion time of a job, given by
maxiLi(s) ·di. A social optimum of a game G is a profile that attains the lowest
possible social cost. We denote by OPT (G) the cost of a social optimum profile;
i.e., OPT (G) = minsmaxiLi(s) · di.

It is well known that decentralized decision-making may lead to sub-optimal
solutions from the point of view of the society as a whole. We quantify the

Race Scheduling Games 5

3

3

3

1

1

3.5

3.5

3.5

1.5

1.5 3.5

3.5

1

3.5

3.5

3.5

3.5

3

3

3

1

4.5

4.5

2

2

2

M1 M2 M3

7

1212 12 12

8

11

9
10

3.5

3.5

1.51.5

2.5

5

2.5

2.5

11

10

2.5

10

(a) (d)(c)(b)

M1 M2 M3 M1 M2 M3 M1 M2 M3

p1=4 p2=3

4
5

S1 S2

3.5

Fig. 1. Jobs are labeled by their ranks. (a) A NE profile. (b) and (c) Deviations from
the NE are harmful. (d) An LPT schedule.

inefficiency incurred due to self-interested behavior according to the price of
anarchy (PoA) [19] and price of stability (PoS) [2,23] measures. The PoA is the
worst-case inefficiency of a pure Nash equilibrium, while the PoS measures the
best-case inefficiency of a pure Nash equilibrium.

2.1 Related Work

There is wide literature on job scheduling on parallel machines. The minimum
makespan problem corresponds to the centralized version of our game in which all
jobs obey the decisions of one entity. This is a well-studied NP-complete problem.
For identical machines, the simple greedy List-scheduling (LS) algorithm [15]
provides a (2− 1

m)-approximation to the minimum makespan problem. A slightly
better approximation-ratio of (4

3 −
1

3m) is guaranteed by the Longest Processing
Time (LPT) algorithm [16], and A PTAS is given in [17]. For related machines,
with various speeds, LS algorithm provides a θ(m)-approximation [9], and a
PTAS is given in [18].

Congestion games [21] consist of a set of resources and a set of players who
need to use these resources. Players’ strategies are subsets of resources. Each
resource has a latency function which, given the load generated by the players
on the resource, returns the cost of the resource. In singleton congestion games
players’ strategies are single resources. In weighted congestion games, each player
j has a weight p(j), and its contribution to the load of the resources he uses as
well as its cost are multiplied by p(j) [7].

The special case of symmetric weighted singleton congestion games corre-
sponds to the setting of job-scheduling: the resources are machines and the play-
ers are jobs that need to be processed by the machines. A survey of results of
job-scheduling games appears in [24]. For identical machines, it is known that
LPT-schedules are NE schedules [14], and that the price of anarchy, which cor-
responds to the makespan approximation, is 2− 2

m+1 [13]. For uniformly related

machines, the price of anarchy is bounded by logm
log log logm [10]. For two machines,

a bound of 1+
√
5

2 is given in [19].
Other related work studies additional models in which players’ objective in-

volves social preferences. In standard game theoretic models, players’ objective

6 S. Rosner and T. Tamir

is to maximize their own utility, while in games with social preferences, players
have preferences over vectors of all players’ utilities. For example, [25] studies
a model in which the mental state of a player is a score based on all players’
utilities, and in a mental equilibrium, players can not deviate and improve this
score. The main difference from our setting is that in their model, optimizing
one’s utilization has the highest priority, thus, every NE is also a mental equilib-
rium, which is not the case in race games. Other models that capture preferences
based on emotions such as empathy, envy, or inequality aversion are presented
and studied in [4,6,11]. A lot of attention has been given to such models in behav-
ioral game theory. We are not aware of previous work that analyzes competition
in the framework of congestion games. Other social effect, such as altruism and
spite were studied, e.g., in [1,5,8].

2.2 Our Results

We show that competition dramatically impacts job-scheduling environments
that are controlled by selfish users. RSGs are significantly different from clas-
sical job-scheduling games; their analysis is unintuitive, and known tools and
techniques fail even on simple instances. We start by analyzing RSGs on identi-
cal machines. We show that an RSG need not have a NE, and deciding whether
a game instance has a NE is a NP-complete problem. This is valid even for
instances with only two pairs of competing jobs and two machines, and for in-
stances with homogeneous competition sets. Moreover, even in cases where a
NE exists, BRD may not converge. On the other hand, we identify several non-
trivial classes of instances for which a NE exists and can be calculated efficiently.
Each of these positive results is tight in a sense that a slight relaxation of the
class characterization results in a game that may not have a NE. Specifically, we
present an algorithm for calculating a NE for games with unit-length jobs, for
games in Gh with a limited number of competition sets and machines, or with
limited competition-set size, and games in Gh in which the job lengths form a
divisible sequence (e.g., powers of 2).

We then provide tight bounds on the equilibrium inefficiency with respect to
the minimum makespan objective. For classical job-scheduling, it is known that
PoS = 1 and PoA = 2− 2

m+1 [13]. We show that for RSGs on identical machines,

PoS = PoA = 3− 6
m+2 . This result demonstrates the ‘price of competition’. The

fact that PoS > 1 implies that even if the system has full control on the initial
job assignment, the best stable outcome may not be optimal. Moreover, since
PoA = PoS, in the presence of competition, having control on the initial job
assignment may not be an advantage at all.

For related machines, we start with a negative result showing that even the
seemingly trivial case of unit-length jobs is tricky, and a NE may not exist, even
if all jobs are in a single competition set. For this class of games, however, it
is possible to decide whether a game has a NE, and to calculate one if it ex-
ists. Without competition, for unit-jobs and related machines, a simple greedy
algorithm produces an optimal schedule. Moreover, PoA = PoS = 1. We show
that for RSGs with unit jobs and related machines, PoS = PoA = 2. We then

Race Scheduling Games 7

move to study games on related machines and arbitrary-length jobs. Striving
for positive results, we focus on two machines and homogeneous instances. We
present an algorithm for calculating a NE, and prove that any application of
BRD converges to a NE. We then bound the equilibrium inefficiency for ar-
bitrary competition structure. Specifically, for RSGs on two related machines,
PoS = PoA = 2. The PoS lower bound is achieved already with homogeneous
competition sets. Note that for classical job-scheduling game on two related ma-

chines, it holds that PoS = 1 and PoA = 1+
√
5

2 [19], thus, again, we witness the
harmful effects of a competition.

In light of the negative results regarding equilibrium existence, we discuss
possible strategies of the system to modify an RSG instance or the players’ uti-
lization, such that the resulting game has a NE. We consider two approaches for
Nashification. The first is addition of dummy jobs, and the second is compensa-
tion of low-rank players. Our hardness results imply that min-cost Nashification
is also hard. For both approaches, we present tight bounds on the Nashification
cost, in general and for unit-jobs on related machine.

We conclude with a discussion of additional congestion games whose ‘race’
variant is natural and interesting. We show that some of our results and tech-
niques can be adopted to other games, and suggest some directions for future
work. A full version that includes all the proofs is available in [22].

3 Identical Machines - Equilibrium Existence

In this section we assume that all the machines have the same unit-delay, that
is, for all i ∈ M, di = 1. The following example demonstrates that even very
simple RSGs may not have a NE. Consider an instance with two machines and
two competing jobs of lengths p1 < p2. If the jobs are on different machines, then
the long job has a higher completion time and can reduce its rank by joining the
short one, so they both have the same completion time and therefore the same
rank. If the jobs are on the same machine, then the short job can reduce its rank
by escaping to the empty machine. Thus, no profile is a NE.

Hoping for positive results, we turn to consider the class Gh of RSGs with
homogeneous competition sets. Recall that G ∈ Gh if, for every 1 ≤ ` ≤ c, all
the jobs in S` have the same length, p`.

Unfortunately, as demonstrated in Fig. 2, games in this class, even with only
three sets and three machines, may not admit a NE. Moreover, as demonstrated
in Fig. 3, even if a NE exists, it may be the case that a BRD does not converge.

The next natural question is whether there is an efficient way to decide, given
a game G ∈ Gh, whether G has a NE. We answer this question negatively:

Theorem 2. Given an instance of RSG with homogeneous competition sets, it
is NP-complete to decide whether the game has a NE profile.

In light of the above negative results, we would like to characterize instances
in which a NE is guaranteed to exist. One such class includes instances of unit-
length jobs and arbitrary competition sets.

8 S. Rosner and T. Tamir

1

1 7
7

M1 M2 M3

(a) (c1)(b)

2.5

(c2)

2.5
7 2.5
7 2.5
7 1

1 3
3

7.5
7.5

3 7.5
3 7.5
3

11

6

2

6
6

1

6

6

6
6

11

6
1.5

6
6

1.5

6

6

6
6

(c3)

11

1
8.5

4.5
4.5

8.5

4.5

4.5

4.5
4.5

M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3

27

15
12

14

19

15
17 16

21

14

25
21

17
19

18

S1 S2 S3

1 1

9

p1=14, p2=13, p3=3

Fig. 2. An example of an RSG with homogeneous competition sets, that has no NE.
Jobs are labeled by their ranks. Profiles (a)-(b) show that big jobs must be on different
machines. Profiles (c1)− (c2)− (c3)− (c1) loop when big jobs are on different machines.

4

4

4

2.5
2.5

M1 M2 M3

(a)

2

1
1

(b)

M1 M2 M3

4

4

4

1.5
1.5

1.5

3
1.5

M1 M2 M3

(c)

2.5

2.5
4.5

1.5
1.5
1

3
4.5

(d)

3

3 3

2
2

3

2

3

M1 M2 M3

21 1

(a) (b) (c)

1.5

21.5

M1 M2 M1 M2
M1 M2

9

p1=3 p2=1

5

3

5
4

9

2

7
6

5

7
6 6 6

S1 S2

Fig. 3. An example of an RSG with homogeneous competition sets in which c = 2,
p1|p2, and BRD may loop (profiles (a)-(b)-(c)-(a)). A NE exists (profile (d)). Jobs are
labeled by their ranks.

Theorem 3. If all jobs have the same length, then a NE exists and can be
computed efficiently.

Another class for which we have a positive result considers instances of only
two competition sets and three machines. It is tight in light of the no-NE example
given in Fig. 2, in which there are three sets on three machines.

Theorem 4. If G ∈ Gh has c = 2 and m = 3, then a NE exists and can be
computed efficiently.

Classical job-scheduling games are race games with singleton competition
sets. A NE may not exist even if there is just one pair of competing jobs. Also,
in the full version we show that it is NP-hard to decide if a NE exists even if
there are only singletons and two competing pairs. For games with homogeneous
competition sets, in which there are only singleton and pairs, we have positive
news.

Theorem 5. If G ∈ Gh, and for all `, |S`| ≤ 2 then a NE exists and can be
computed efficiently.

In search of more positive results, we turn to look at games with homogeneous
competition sets with divisible lengths. Instances with divisible lengths arise
often in applications in which clients can only select several levels of service.
Moreover, naturally, in such settings, clients with similar service requirements

Race Scheduling Games 9

compete with each other. Let Gdiv be the class of RSGs with homogeneous
competition sets in which the job lengths form a divisible sequence. Formally, let
p1 > p2 > . . . > pc denote the different job lengths in J , then S` = {j|p(j) = p`},
and for every `1 > `2, it holds that p`1 |p`2 . For example, if all job lengths are
powers-of-2 and S` = {j|p(j) = 2c−`+1} then G ∈ Gdiv.

As demonstrated in Fig. 3, BRD may not converge to a NE even if G ∈ Gdiv
and c = 2. Nevertheless, we prove that a NE can be computed directly for any
game G ∈ Gdiv. In the proof we provide an algorithm for computing a NE for
instances in this class.

Theorem 6. If G ∈ Gdiv, then a NE exists and can be computed efficiently.

4 Identical Machines - Equilibrium Inefficiency

In this section we analyze the equilibrium inefficiency of RSGs with respect
to the objective of minimizing the maximal cost of a player (equivalent to the
makespan of the schedule). For the classical job-scheduling game, the Price of
Anarchy is known to be 2 − 2

m+1 for m identical machines, and the Price of
Stability is known to be 1. We show that competition causes higher inefficiency.
Specifically, both the PoA and the PoS are 3− 6

m+2 . We prove below the upper
bound for the PoA and the lower bound for the PoS. In the full version [22],
we describe, given m ≥ 3 and ε > 0, a game G, with homogeneous competition
sets, for which PoA(G) = 3 − 6

m+2 − ε. Given that we prove a matching PoS
bound, the proof in the full version is less interesting. However, it can serve as
a warm-up for the lower bound PoS proof, which is more involved.

Theorem 7. If G is an RSG on m identical machines that has a NE, then
PoA(G) ≤ 3 − 6

m+2 . For every m ≥ 3 and ε > 0, there exists an RSG G on m

identical machines such that G has a NE, and PoS(G) ≥ 3− 6
m+2 − ε.

Proof. The proof of the PoA upper bound is given in the full version [22]. We
describe the lower bound on the PoS. Given m ≥ 3 and ε > 0, we describe an
RSG G such that PoS(G) = 3− 6

m+2−ε. Let E = {δ1, δ2, δ3}∪{εi|1 ≤ i ≤ m(m−
1)} be a set of 3+m(m−1) small positive numbers such that δ1 < δ2 < δ3 ≤ εm

3 ,
δ1+δ2 > δ3,

∑
i>0 εi <

1
4 , and any subset of E with any coefficient in {−1,+1} for

each element, has a unique sum. That is, ∀A1, A2 ⊆ {δ1, δ2, δ3, ε1, . . . , εm(m−1)}
such that A1 6= A2, and any γk ∈ {−1,+1} we have

∑
k∈A1

γk ·k 6=
∑
k∈A2

γk ·k.
The set of jobs consists of 1 +m(m− 1) competition sets, S0, . . . , Sm(m−1):

1. S0 consists of three jobs, where ji0 for i = 1, 2, 3 has length m− δi.
2. For ` = 1, . . . ,m(m− 1), the set S` consists of two jobs: j1` of length 1

4 − ε`,
and j2` of length 3

4 + ε`. Note that p(j1`) + p(j2`) = 1.

The PoS analysis is based on the fact that in every NE, the three long jobs
of S0 are assigned on the same machine, while an optimal assignment is almost
balanced. We first restrict, the possible assignments of the jobs in S` for all ` ≥ 0.

10 S. Rosner and T. Tamir

Claim. In every NE, the three jobs of S0 are assigned on the same machine, and
for all ` ≥ 1, the two jobs of S` are assigned on the same machine.

By the above claim, the cost of every NE is at least the load incurred by
the three jobs in S0, that is, 3m −

∑3
i=1 δi. We show that a NE of this cost

exists. An example for m = 5 is given in Fig. 4(a). Assign the jobs of S0 on
M1. Distribute all remaining jobs such that for all ` ≥ 1 the jobs of S` are on
the same machine, and there are m such sets assigned on each machine other
than M1. For all a ≥ 2 we have La = m. This assignment is a NE since any
migration of a job j from S` with ` ≥ 1 will increase its rank from 1.5 to 2, and
any migration of a job jx0 from S0, will end up with load at least 2m− δx which
is more than 2m − δy − δz, the remaining load on M1. Thus, such a migration
increases the rank of the deviating job from 2 to 3 and is not beneficial.

m- 3

m- 2

m- 1

m- 1 m- 2 m- 3

Sl

(a) (b)

3/4 - l
1/4 + l

M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

m-

m-

m-

m- m- m-

(a) (b)

M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Fig. 4. A tight example for m = 5. (a) The only NE profile. (b) an optimal profile.

We turn to describe an optimal assignment. The total load of the jobs is
m(m−1) + 3m−

∑3
i=1 δi = m(m+ 2)−

∑3
i=1 δi. The maximal length of a job is

less than m, and there are 3 ≤ m long jobs. The remaining jobs can be arranged
in unit-length pairs. Thus, an optimal assignment is almost perfectly balanced

(up to a gap of δ3), where the most loaded machine has load m(m+2)
m = m + 2.

The resulting PoS is
3m−

∑3
i=1 δi

m+2 < 3− 6
m+2 − ε. ut

5 Related Machines

In this section we consider RSGs played on related machines. Recall that di is
the processing delay of machine Mi. Thus, it takes p(j) ·di time units to process
a job of length p(j) on Mi. For a profile s, Ci(s) = Li(s) · di is the completion
time of Mi, and the cost of every job assigned on it.

5.1 Unit-length Jobs

For classical job-scheduling games with unit-jobs and related machines the pic-
ture is simple and well understood. For a profile s, let C+

i (s) = (Li(s) + 1) · di
denote the completion time of Mi if one more job would be assigned on it. A
simple greedy algorithm that assigns the jobs sequentially, each on a machine

Race Scheduling Games 11

minimizing C+
i , is known to produce a Nash equilibrium profile that also min-

imizes the makespan. Moreover, every best-response sequence converges to an
optimal schedule, thus, without competition, PoA = PoS = 1.

Surprisingly, as we show, even this simple setting of RSGs with unit-length
jobs may not have a NE. Consider a game with n = 5 unit jobs, that form a
single competition set. Assume there are three machines with delays 1, 1 + ε and
1 + 2ε. First note that a NE profile must fulfil L1 ≥ L2 ≥ L3, as otherwise,
it is clearly beneficial to deviate from a slow machine to a less loaded faster
machine. Also note that if L1 = 4, then one of the slower machines is empty
and a deviation from M1 to the empty machine is beneficial. The remaining load
vectors are {〈3, 2, 0〉, 〈3, 1, 1〉, 〈2, 2, 1〉}. As demonstrated in Fig. 5, none of the
corresponding profiles is a NE. Profile (c) is the output of a greedy algorithm.
However, a job on M2 can reduce its rank from 4.5 to 4 by a migration to M1

(Profile (a)). Once it migrates, it is beneficial for the job on M3 to join M2

(Profile (b)), and a migration from M1 to M3 brings us back to Profile (c).

M1 M2 M3M1 M2 M3
M1 M2 M3

(a) (c)(b)

1+ϵ 1+2ϵ1 1+ϵ 1+2ϵ1 1+ϵ 1+2ϵ1

4

4

4

1 2 4

4

4

1.5

1.5

2.5

2.5

4.5

4.5

1

delay:

M1 M2 M3 M4 … Mm

0.4 10.31 0.5+mϵ0.5+4ϵ 0.4 10.31 0.5+mϵ0.5+4ϵ 0.4 10.31

(0) (k) (m-2)

M1 M2 M3 M4 … Mk+2 Mk+3 … Mm M1 M2 M3 M4 … Mm

… …

0.5+mϵ0.5+4ϵ

Fig. 5. No NE of an RSG with five competing unit-jobs on three related machines.
The profiles loop (a)-(b)-(c)-(a). Jobs are labeled by their ranks.

While a NE may not exist, this class of instances is somewhat simpler. We
show that it is possible to decide efficiently whether a given game instance has
a NE and to compute one if it exists. Recall that the same task is NP-hard for
games in Gh even on identical machines.

Theorem 8. Let G be a game with unit-jobs on related machines in which all
jobs are in the same competition set (S1 = J). It is possible to decide efficiently
whether G has a NE and to compute one if it exists.

The above positive result may lead one to expect that it would be possible
to modify an instance slightly in order to get a game in which a NE exists. In
Section 6 we discuss the Nashification of RSGs with unit-jobs by adding dummy
jobs, and show that, unfortunately, given n jobs and m related machines, there is
no constant k such that a game of n+k jobs on this set of machines is guaranteed
to have a NE.

For the equilibrium inefficiency of games with unit-jobs or related machines,
we show the following tight bounds.

12 S. Rosner and T. Tamir

Theorem 9. If G is a game on related machines and unit-jobs, for which a NE
exists, then PoA(G) < 2. Also, for every ε > 0 there exists a game for which
PoS(G) = 2− ε.

5.2 Variable-length Jobs

Our negative results for unit-jobs are clearly valid for variable-length jobs, even
with homogeneous competition sets. We are still able to come up with some good
news for two machines. We present a linear-time algorithm for calculating a NE,
show that any BRD sequence converges to a NE, and provide tight bounds on
the equilibrium inefficiency.

Theorem 10. If m = 2 and G ∈ Gh then G has a NE, and a NE can be
calculated efficiently.

Theorem 11. If m = 2 and G ∈ Gh then BRD converges to a NE.

Proof. Assume that BRD is performed starting from an arbitrary profile. It is
easy to see that a migration from Ma to Mb is never beneficial if La · da ≤ Lb · db
before the migration. Therefore, the only migrations in the BRD are from the
machine with the higher completion time. We denote by a switching migration,
a beneficial migration of a job j ∈ S` from Ma to Mb such that La · da > Lb · db
but (La − pi)·da < (Lb + pi)·db, that is, the target of the migration becomes the
machine with the higher completion time. Note that a job j ∈ S` that performs
a switching migration has the maximal rank in S` before the migration, and also
the maximal rank in S` after the migration. The migration is beneficial since the
number of jobs from S` on Mb after the migration is higher than their number
on Ma before the migration.

Assume by contradiction that a BRD does not halt. Since the number of
profiles is finite, this implies that BRD loops. Let Cmax = Lb · db denote the
maximal cost of a machine during the BRD loop, where Mb can be either the
fast or the slow machine. Let t be the first time in which Cmax is achieved during
the BRD loop. Since a migration out of the machine with lower completion time
is never beneficial, Cmax is a result of a switching migration into Mb, say of
j ∈ S`.

Since BRD loops, a job from S` migrates back to Ma after time t. We claim
that such a migration cannot be beneficial. Before the switching migration, Cj =
(La(t) + pj) · da. The switching migration implies that jobs from S` have lower
rank when their completion time is Cmax = Lb(t) · db compared to their rank
(with fewer competitors) on Ma with load La(t) + pj . Therefore, a migration of
j′ ∈ S` to Ma after time t is beneficial only if the load on Ma is less than La(t).
However, this implies that the load on Mb is more than Lb(t), contradicting the
choice of Cmax as the maximal cost during the BRD loop. ut

Theorem 12. If G is an RSG on two related machines, for which a NE exists,
then PoA(G) < 2. Also, for every ε > 0 there exists a game G ∈ Gh for which
PoS(G) = 2− ε.

Race Scheduling Games 13

6 Nashification of Race Scheduling Games

In this section we discuss possible strategies of a centralized authority to change
the instance or compensate players such that the resulting game has a NE. The
first approach we analyze is addition of dummy jobs. The cost of such an opera-
tion is proportional to the total length of the dummy jobs, as this corresponds to
the added load on the system. By Theorem 2, it is NP-hard to identify whether
Nashification with budget 0 is possible. Thus, the min-budget problem is clearly
NP-hard. We present several tight bounds on the required budget.

Theorem 13. Let G be an RSG on m identical machines. Let pmax = maxjp(j)
be the maximal length of a job in J . It is possible to Nashificate G by adding
dummy jobs of total length at most (m − 1)pmax. Also, for every m and ε > 0
there exists a game G for which jobs of total length (m− 1)pmax− ε are required
to guarantee a NE.

For related machines and unit-jobs we showed in Section 5.1 that a game
may not have a NE even with a single competition set. It is tempting to believe
that for such simple instances, Nashification may be achieved by an addition of
a constant number of dummy jobs. Our next result shows that m− 2 dummies
may be required, and always suffice.

Theorem 14. For any RSG on m related machines and a single competition set
of unit-jobs, it is possible to achieve a NE by adding at most m− 2 dummy jobs
to the instance. Also, for every m there exists an RSG with a single competition
set of unit jobs on m machines that requires m − 2 dummy jobs to be added in
order for a NE to exist.

Proof. For the lower bound, given m, consider a game with m+ 4 unit-jobs and
m machines having the following delays: d1 = 0.31, d2 = 0.4, d3 = 1, and for all
4 ≤ i ≤ m, di = 0.5 + iε. Fig. 6 shows the behaviour of such an instance. A full
description of this game, as well as an algorithm that produces a NE by adding
at most m− 2 dummy jobs is provided in the full version [22]. ut

M1 M2 M3M1 M2 M3
M1 M2 M3

(a) (c)(b)

1+ϵ 1+2ϵ1 1+ϵ 1+2ϵ1 1+ϵ 1+2ϵ1

4

4

4

1 2 4

4

4

1.5

1.5

2.5

2.5

3.5

3.5

1

delay:

M1 M2 M3 M4 … Mm

0.4 10.31 0.5+mϵ0.5+4ϵ 0.4 10.31 0.5+mϵ0.5+4ϵ 0.4 10.31

(0) (k) (m-2)

M1 M2 M3 M4 … Mk+2 Mk+3 … Mm M1 M2 M3 M4 … Mm

… …

0.5+mϵ0.5+4ϵ

Fig. 6. A game for which an addition of m − 2 jobs is inevitable for Nashification. A
BRD loop exists on the starred machines. Profile (0) is a dummy-free profile fulfilling
simple stability constrains. Profile (k) fulfills the simple stability constraints after k
dummy jobs are added. Profile (m− 2) is a NE with m− 2 dummy jobs.

14 S. Rosner and T. Tamir

A different approach to achieve a NE, is Nashification by payments. The cost
of a job is Cj − γj where γj is a compensation given to the job by the system. A
deviating job, will lose the compensation currently suggested to it. The goal is
to achieve a NE, while minimizing

∑
j γj . For example, with two competing jobs

of length 1 and 1 + ε on two identical machines, by setting γ2 = ε, the optimal
schedule is a NE.

Theorem 15. For any RSG G on identical machines, it is possible to achieve a
NE with total compensation less than P , where P =

∑
j∈J p(j). Also, for every

m and ε > 0 there is a game G for which total compensation P − ε is required
to achieve a NE.

7 Conclusions and Directions for Future Work

Our paper suggests a new model for analyzing environments with strong com-
petition. Race games are congestion games in which players’ welfare depends on
their relative performance. The main objective of a player is to perform well rel-
ative to his competitors, while minimizing his cost is a minor objective. A profile
is a NE if no player can improve her rank, or reduce her cost while keeping her
rank.

We analyzed job-scheduling race games on parallel machines. Having an ad-
ditional constraint for stability, race games are less stable than classical load-
balancing games, thus our results for general games are mostly negative. In par-
ticular, for all the classes of instances we considered, we showed that PoS = PoA,
while the same competition-free game has a lower PoA and PoS = 1. Practi-
cally, it means that competition may lead to a poor outcome even if the system
can control the initial players’ strategies. Striving for stability, we also studied
the cost of Nashification, by either adding dummy jobs to the instance, or com-
pensating jobs for having high rank. While in the general case, Nashification
may involve balancing all the machines or jobs’ cost, in some natural classes it
can be achieved in cheaper ways. Min-cost Nashification of a given instance is
NP-complete. We leave open the corresponding approximation problem.

Race games can be studied in various additional settings. In fact, every con-
gestion game in which players are associated with a utility has its ‘race’ variant.
In the full version we list several examples. Additional questions may refer to the
structure of the competition-sets, for example, competition sets may overlap, or
may be defined according to the players’ strategy space (symmetric competition
sets). The study of coordinated deviations is another intriguing direction. In the
presence of competition, coalitions may be limited to include only members of
different competition sets. On the other hand, temporal collaboration may be
fruitful even for competing players. Thus, there are many different interesting
variants of coordinated deviations in race games.

References

1. A. Anagnostopoulos, L. Becchetti, B. Keijzer, and G. Schäfer. Inefficiency of Games
with Social Context. Theor. Comp. Sys. 57(3):782 —804, 2015.

Race Scheduling Games 15

2. E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos, T. Wexler, and T. Rough-
garden. The price of stability for network design with fair cost allocation. SIAM
Journal on Computing, 38(4):1602–1623, 2008.

3. G. Avni and T. Tamir. Cost-sharing scheduling games on restricted unrelated
machines. Theoretical Computer Science, 646:26 – 39, 2016.

4. R. J. Aumann. Rule-Rationality versus Act-Rationality. Discussion Paper Series
DP497, The Hebrew University’s Center for the Study of Rationality, 2008.

5. V. Bilò, A. Celi, M. Flammini, and V. Gallotti. Social Context Congestion Games.
In Proc. 18th SIROCCO, pages 282-–293, 2011.

6. G. E. Bolton and A. Ockenfels. Erc: A theory of equity, reciprocity, and competi-
tion. The American Economic Review, 90(1):166–193, 2000.

7. K. Bhawalkar, M. Gairing, and T. Roughgarden. Weighted Congestion Games: The
Price of Anarchy, Universal Worst-Case Examples, and Tightness. ACM Trans.
Econ. Comput. 2(4), Article 14, 2014.

8. P.A. Chen, B. de Keijzer, D. Kempe, and G. Schäfer. The robust price of anarchy
of altruistic games. In Proc. 7th WINE, pages 383-–390, 2011.

9. Y. Cho and S. Sahni. Bounds for list schedules on uniform processors. SIAM
Journal on Computing, 9(1):91–103, 1980.

10. A. Czumaj and B. Vöcking. Tight bounds for worst-case equilibria. ACM Trans.
Algorithms, 3(1):4:1–4:17, 2007.

11. E. Fehr and K. M. Schmidt. A theory of fairness, competition, and cooperation.
The Quarterly Journal of Economics, 114(3):817–868, 1999.

12. A. Fiat, H. Kaplan, M. Levi, and S. Olonetsky. Strong price of anarchy for machine
load balancing. In Proc. 34th ICALP, 2007.

13. G. Finn and E. Horowitz. A linear time approximation algorithm for multiprocessor
scheduling. BIT Numerical Mathematics, 19(3):312–320, 1979.

14. D. Fotakis, S. Kontogiannis, E. Koutsoupias, M. Mavronicolas, and P. Spiraklis.
The Structure and Complexity of Nash Equilibria for a Selfish Routing Game. In
Proc. 29th ICALP, pages 510–519, 2002.

15. R.L. Graham. Bounds for certain multiprocessing anomalies. Bell Systems Tech-
nical Journal, 45:1563–1581, 1966.

16. R.L. Graham. Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math.,
17:263–269, 1969.

17. D.S. Hochbaum and D.B. Shmoys. Using dual approximation algorithms for
scheduling problems: Practical and theoretical results. Journal of the ACM,
34(1):144–162, 1987.

18. K. Jansen, K. M. Klein, , and J. Verschae. Closing the gap for makespan scheduling
via sparsification techniques. In Proc. 43rd ICALP, pages 1–13, 2016.

19. E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. Computer Science
Review, 3(2):65–69, 2009.

20. M. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer, 2008.
21. R. W. Rosenthal. A class of games possessing pure-strategy nash equilibria. In-

ternational Journal of Game Theory, 2:65–67, 1973.
22. S. Rosner and T. Tamir. Race Scheduling Games. https://cs.idc.ac.il/∼tami/

Papers/RSG-full.pdf
23. A. S. Schulz and N. Stier Moses. On the performance of user equilibria in traffic

networks. In Proc. 43rd SODA, pages 86–87, 2003.
24. B. Vöcking. Algorithmic Game Theory, chapter 20: Selfish Load Balancing. Cam-

bridge University Press, 2007.
25. E. Winter, L. Méndez-Naya, and I. Garćıa-Jurado. Mental equilibrium and strate-

gic emotions. Management Science, 63(5):1302–1317, 2017.

https://cs.idc.ac.il/~tami/Papers/RSG-full.pdf
https://cs.idc.ac.il/~tami/Papers/RSG-full.pdf

	Race Scheduling Games

