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Abstract. We study the inefficiency of equilibria of resource buying
games, i.e., congestion games with arbitrary cost-sharing. Under arbi-
trary cost-sharing, players do not only declare the resources they will
use, they also declare and submit a payment per resource. If the total
payments on a resource cover its cost, the resource is activated, oth-
erwise it remains unavailable to the players. Equilibrium existence and
inefficiency under arbitrary cost-sharing is very well understood in cer-
tain models, such as network design games, where the joint cost of every
resource (edge) is constant. In the case of congestion-dependent costs
the understanding is not yet complete. For increasing per player cost
functions, it is known that the optimal solution can be cast as a Nash
equilibrium with the appropriate selection of payments and, hence, the
price of stability is 1. In this work we initially focus on the price of
anarchy for linear congestion games and prove that (in the direct gen-
eralization of the arbitrary cost-sharing model to congestion-dependent
costs) it grows to infinity as the number of players grows large. However,
we also show that with a natural modification to the cost-sharing model,
the price of anarchy becomes 17/3. Turning our attention to strong Nash
equilibria, we show that the worst-case inefficiency of the best and worst
stable outcomes remains the same as for Nash equilibria, with the strong
price of stability staying at 1 and the strong price of anarchy staying
at 17/3. These results imply arbitrary cost-sharing is comparable to fair
cost-sharing as it has a better best-case scenario and a (slightly) worse
worst-case scenario. We also study models with restricted strategy sets
(uniform matroid congestion games) and properties of best response dy-
namics with arbitrary cost-sharing.

1 Introduction

The class of unweighted congestion games [30] includes a large collection of appli-
cations where players compete for the use of resources with congestion-dependent
costs. Players are called to select the subsets of resources they will use, with
each one of them having a strategy set of allowable such subset selections, and
these decisions induce joint costs on the resources as dictated by their respective
activation-cost functions. These joint costs are split among the users of resources
in a way specified by the cost-sharing policy of the game. Players are expected



to reach a stable outcome, such as a pure Nash equilibrium (NE), i.e., a solution
robust against unilateral deviations, or a strong Nash equilibrium (SE), i.e., a so-
lution robust against group deviations.4 Metrics of interest from the perspective
of the system designer include the price of anarchy (PoA), i.e., the worst case
ratio of the total cost in a NE divided by the optimal cost, the price of stability
(PoS), i.e., the worst case ratio of the total cost in the best NE divided by the
optimal cost, and, similarly for SE, the strong price of anarchy (SPoA) and the
strong price of stability (SPoS).

A large body of work studies the above setting under the fair cost-sharing
policy which dictates that the joint cost of a resource is split equally among
its users. Among the most fundamental classes of games in these studies one
finds network design games where a player’s strategy set consists of all possible
paths in a graph between the player’s designated endpoints and where the joint
cost of every edge is a given constant, together with linear congestion games,
where the joint cost of a resource is quadratic in the number of players using it
(with the per-player cost being linear). For network design games, [6] shows that
the PoA is equal to the number of players n, whereas the PoS is Θ(log n). For
linear congestion games, the PoA was shown to be 5/2 in [9,16] and the PoS was
shown to be 1 +

√
3/3 in [11,15]. The SPoA was shown to also be 5/2 in [14].

Generalizations of fair cost-sharing to weighted versions of congestion games are
studied in [2,10,31].

Different kinds of cost-sharing policies for congestion games have also been
studied. For example, [13,28] study various types of cost-sharing methods for
network design games (such as the class of weighted Shapley values). In the
congestion-dependent costs setting, which includes linear congestion games, [21]
shows that fair cost-sharing minimizes the PoA among all cost-sharing policies
that dictate player costs. Other literature that studies cost-sharing in congestion
games and their weighted variants includes [19,22,34].

A different flavor of cost-sharing is given by arbitrary cost-sharing, which
induces the class of resource buying games. In contrast to the methods described
above, which prescribe player costs on a resource, arbitrary cost-sharing allows
players to declare their cost shares. Specifically, each player picks the resources
that he will use and submits a different payment for each one. If the total pay-
ments for a given resource cover the cost induced by its users, the resource is
activated. In the opposite case, the resource remains inaccessible. This setting
has been studied comprehensively for network design games. The work in [7]
shows that a NE is not guaranteed to exist under arbitrary cost-sharing and that
the PoA and PoS are large (almost equal to the number of players n). For the
special case of a common destination node, the PoS is 1 and a NE is guaranteed
to exist. An SPoA of Θ(log n) is given in [17]. Other works that study arbitrary
cost-sharing in network design games include [4,5,8,12,24,26]. Summarizing the
results and comparing against fair cost-sharing, we observe that, in the general
network design game, arbitrary costs-sharing loses the NE existence property

4 In this paper, we consider pure strategies, as is common in the study of resource
buying games.
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and increases the PoS from logarithmic to linear. The situation improves for
the common destination case where NE existence is maintained and the PoS
improves to 1. Interestingly, a special case of network design games where even
the PoA improves has been identified in the face of real-time scheduling games
[33] in which the PoA drops from Θ(

√
n) for fair cost-sharing to 2 for arbitrary

cost-sharing [20].
Less is known about resource buying games with congestion-dependent costs.

The work in [25] studies classes of games with non-decreasing per player costs.
Most closely related to our setting is the work in [23], which shows that for
increasing per player costs, a NE always exists and that, in fact, the optimal
solution can be made to be a NE with appropriate payments, thus settling the
PoS to be equal to 1. In this landscape, our work sets out to further investigate
the inefficiency of equilibria in linear congestion games and compare against fair
cost-sharing, which achieves PoA and SPoA 5/2, and PoS 1 +

√
3/3.

Other related work deals with selfish and greedy load balancing. In natural
dynamics, a player that joins a resource needs to cover the marginal change in the
resource activation cost. This property also characterizes selfish load balancing
instances [32,11]. Some of our results for matroid games generalize results from
these papers.

1.1 Our Results

We initially study the obvious generalization of arbitrary cost-sharing to linear
costs, in which players can submit any payment for a resource. We quickly ob-
serve that the PoA can be very large with a simple and somewhat uninteresting
example, the details of which are given in Section 3. The example relies on having
one player who is restricted to a single resource and multiple others who freeload
on him instead of switching to empty resources. The restricted player ends up
paying an astronomical cost of n2 even though his marginal contribution to the
joint cost is much smaller (specifically 2n − 1). Given that such an instance is
unreasonable from a practical perspective (a player would not tolerate paying
a very large part of a resource’s cost that is clearly not caused by his presence
so that others may use it), we seek a minor modification to the arbitrary cost-
sharing model that leads to more meaningful results. We choose to impose the
marginal contribution constraint, which suggests that no payment larger than
the marginal contribution of a player on a resource is accepted.

The marginal contribution constraint can be interpreted in two ways. In the
first one, the system designer closes down resources where the constraint is vi-
olated. This is a means for the designer to reduce the PoA in a manner that is
instance-oblivious, i.e., requires only local observation of the players and pay-
ments on each resource as opposed to global knowledge of the full set of players
and their available strategies. In the second interpretation, players suffer a large
cost when they pay more than their marginal contribution due to the perception
of being exploited and they themselves deviate away from such strategies.

Some of our results refer to uniform matroid resource buying game, in which
every player j is associated with a set of feasible resources, and a demand `j .
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The strategy space of a player includes all the subsets of size `j of his feasible re-
sources. A singleton game is a special case of matroid game with unit demands. A
prominent example of uniform matroid games, is preemptive real-time schedul-
ing, where every player corresponds to a job of of a specific length that should
be processed after its release- time and before its deadline. Since preemptions
are allowed, any selection of `j slots in this interval can do.

Our results on arbitrary cost-sharing with the marginal contribution con-
straint in linear congestion games are as follows:

– In Section 3 we prove that the PoA and SPoA for general games are equal
to 17/3 and the SPoS is equal to 1. We also show that a NE always exists.

– In Section 4 we prove that the PoA and SPoA for the special case of uniform
matroid games reduces to a value between 4 and 4.055. We also show that
in a singleton game, the minimal size of a coalition that may benefit from a
coordinated deviation from a NE profile is 3, thus a NE is stable against any
coordination of two players. We also show that while the worst-case PoA is
equal to the worst-case PoA, there are games for which the PoA is higher
than the SPoA.

– In Section 5 we discuss convergence properties of best-response dynamics,
showing that convergence is typically faster than fair cost-sharing. For uni-
form matroid games we suggest a rule for selecting the deviating player in
every BR step, such that convergence is guaranteed in time lower than the
players’ total demand.

2 Model

In the linear resource buying games that we study, there is a set of n unweighted
players N and a set of m resources E. Each player j ∈ N selects a set pj ⊆ E of
resources that he will use, from a set of available such profiles Sj ⊆ 2E .

A profile pj , together with payments ξe,j for each e ∈ pj constitute the
strategy (pj , ξj) of player j. We write p for the complete profile and fe(p) for
the load on e in p, that is, the number of players using e in p. Every resource e
induces an activation cost ce(fe(p)) = fe(p)

2 (by convention, games with such
costs are called linear, given that the per player cost on a resource is linear).
The players have to cover this cost with their payments. We write (p, ξ) for the
complete strategies of all players. Each player j seeks to minimize his cost which
is:

costj(p, ξ) =

{∑
e∈pj ξe,j , if all e ∈ pj are open

+∞, otherwise.
(1)

A resource is open if its activation cost is paid for by the players, i.e., when:∑
j:e∈pj

ξe,j ≥ ce(fe(p)).

Given the cost structure defined above, we may describe the solution concepts
we study in this paper, namely the pure Nash equilibrium (NE) and the strong
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Nash equilibrium (SE). The NE condition enforces that no player should be able
to unilaterally change his declared payments and/or set of resources and reduce
his cost. Formally, in a NE (p, ξ), we have that for every player j and every
strategy (p′j , ξ

′
j) of that player:

costj(p, ξ) ≤ costj({p−j , p′j}, {ξ−j , ξ′j}).

The SE condition enforces that there should not be a set of players Γ who
can coordinate to change their strategies in a way such that every one of them
reduces his cost. Formally, for a SE (p, ξ) we have that, for every subset of
players Γ , and for every collection of strategies (p′Γ , ξ

′
Γ ) of these players, there

exists some player j ∈ Γ such that:

costj(p, ξ) ≤ costj({p−Γ , p′Γ }, {ξ−Γ , ξ′Γ }).

Best-response dynamics (BRD) is a natural method by which players proceed
toward a pure Nash equilibrium via a local search method. Player j is said to
be sub-optimal in (p, ξ) if he can reduce his cost by a unilateral deviation, i.e., if
there exists (p′j , ξ′j) such that

costj({p−j , p′j}, {ξ−j , ξ′j}) < costj(p, ξ).

In BRD, as long as the strategy profile is not a NE, a sup-optimal player is
chosen to deviate to a strategy that will minimize his cost, given the profile of
others.

Some of our results refer to uniform matroid games in which every player
j is associated with a subset Mj ⊆ E of the resources, and a demand `j . The
strategy space of player j includes all subsets of Mj of size `j . A singleton game
is a special case in which ∀j, `j = 1.

The cost of a profile (p, ξ) is the total players’ cost, that is, cost(p, ξ) =∑
j costj(p, ξ). We denote by OPT (G) the cost of a social optimal solution of a

game G.
We conclude the section by defining our performance metrics. We quantify

the inefficiency incurred due to self-interested behavior according to the price
of anarchy (PoA) [29] and price of stability (PoS) [6] measures. The PoA is the
worst-case inefficiency of a pure Nash equilibrium, while the PoS measures the
best-case inefficiency of a pure Nash equilibrium. Formally, Let G be a family of
games, and let G be a game in G. Let Υ (G) be the set of pure Nash equilibria
of the game G. Assume that Υ (G) 6= ∅.
– The price of anarchy of G is the ratio between the maximal cost of a NE and

the social optimum of G. That is, PoA(G) = maxp∈Υ (G) cost(p)/OPT (G).
The price of anarchy of the family of games G is PoA(G) = supG∈GPoA(G).

– The price of stability of G is the ratio between the minimal cost of a NE and
the social optimum of G. That is, PoS(G) = minp∈Υ (G) cost(p)/OPT (G).
The price of stability of the family of games G is PoS(G) = supG∈GPoS(G).

The strong price of anarchy (SPoA) and the strong price of stability (SPoS)
introduced in [3] are defined similarly, where Υ (G) refers to the set of strong
equilibria.
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3 General Resource Buying Games

We begin by proving that the PoA of resource buying games with linear per
player costs (i.e., resource activation costs c(x) = x2) grows to infinity with the
number of players.

Theorem 1. The PoA of linear resource buying games is Ω(n).

Proof. Consider a game with n players and n resources. Player 1 can only pick
resource 1, i.e., S1 = {{1}}. Every other player j can pick either resource 1 or
resource j, i.e., Sj = {{1}, {j}}. Let p be the profile in which every player picks
resource 1 and let the declared payments be ξ1,1 = n2 − (n− 1) and ξ1,j = 1 for
every j > 1.

We observe that (p, ξ) is a NE as follows. The players receive service on
resource 1, since they have covered its cost. Hence, no one has an incentive to
increase the payment there. Decreasing the payment will result in losing service,
hence there is no incentive for that either. Each player j > 1 also has the option
to move to the alternative resource j. There j would have to pay 1, which offers
no improvement in cost.

The cost of profile p is n2. If we let p∗ be the assignment in which every
player j picks resource j, we get a cost of n. This proves the PoA is at least
n. ut

We observe that the high PoA is given by an unrealistic and uninteresting
instance. It assumes that there is one player who will effectively suffer a very
large cost so others can freeload on him. To correct for such degenerate outcomes,
we impose the marginal contribution constraint which enforces that no player
may declare a cost higher than ce(fe(p))− ce(fe(p)− 1), otherwise the resource
remains unavailable. Note that this expression is the highest increase that the
player can cause to the joint resource cost in any ordering of the resource’s users
and observe that such a constraint is implicit in the large literature of arbitrary
cost-sharing in network design games: when an edge has unit cost, the largest
increase a player can cause to the joint cost is 1 and that is precisely that max
payment seen in a NE.

Through the rest of the paper and for simplicity of exposition, when analyzing
equilibria we only consider outcomes in which all players are serviced and have a
finite cost, i.e., outcomes on which the payments on every used resource equal its
cost. While this is automatically true for the class of SE, some extra care needs
to be taken to ensure it is also true for the class of NE or otherwise players
can get stuck in low payment outcomes, e.g., when every player on a resource
declares a 0 payment and unilateral increases cannot cover the resource cost
without violating the marginal contribution constraint. We note that imposing
a cost structure that addresses this is easy to achieve with a tweak on handling
underpaid resources: Resources remain closed when a player is paying more than
his marginal contribution but, when players underpay, each one is charged his
bid plus twice the unpaid amount. Then each player has an incentive to increase
his payment up to the marginal contribution until the resource costs are covered.
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Hence, w.l.o.g., we may consider only outcomes in which all players are serviced.
We next present our results on the inefficiency of equilibria of arbitrary cost-
sharing with the marginal contribution constraint.

Let G be the class of linear resource buying games with the marginal contri-
bution constraint.

Theorem 2. SPoS(G) = 1 (and hence also PoS(G) = 1) and a pure NE exists
for every G ∈ G.

Proof. Let p∗ be an optimal profile. Assume that the players are ordered ar-
bitrarily and every player is added greedily to his strategy in p∗ and pays the
marginal cost. By Theorem 6.1 in [23] this payment scheme produces a NE. We
show it is also a strong NE. Assume by contradiction that p∗ is not a SE and
let Γ be a coalition. Let p′ be the profile after the deviation of Γ . Let E+, E−

denote the set of resources whose load increases and decreases respectively in
the deviation of Γ , and let ∆e denote the corresponding gap in the load on e.∑

e

fe(p
′)2 −

∑
e

fe(p
∗)2 =∑

e∈E+

((f∗e +∆e)
2 − (f∗e )

2)−
∑
e∈E−

((f∗e )
2 − (f∗e −∆e)

2) < 0.

To see why the last expression is negative, note that the first term is exactly the
added cost on E+ that the coalition Γ has to cover and the second term is the
saved cost on E−, which is at most what is saved by the coalition. Then, the
fact that the expression is negative follows from the fact that the total cost of
the coalition members strictly decreases. Hence, we get a contradiction to the
optimality of p∗. ut

We note that the above theorem easily generalizes to cost functions of the form
c(x) = xd for d > 1. Now that we have shown that the nice properties of arbitrary
cost-sharing from [23] still hold after our modification, we proceed to analyze the
PoA and SPoA. We begin with a technical lemma that captures the well known
PoA smoothness framework [31] in our model.

Lemma 1. Suppose λ and µ < 1 are positive real numbers such that for all
integers y ≥ 1 and x ≥ 0 it holds that

(2x+ 1)y ≤ λy2 + µx2.

Then we get that the PoA of linear resource buying games with the marginal
contribution constraint is at most λ/(1− µ).

Proof. Let p∗j be the set of resources used by player j in the optimal solution and
let pj be the set of resources used by player j in a worst case NE. Then, if ξe,j
is the payment of j for resource e, we get

∑
j

∑
e∈pj ξe,j for the total cost. Now

consider the possible deviation of each player j, in which he uses the resources
in p∗j and pays:
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– ξe,j for each resource e that is both in pj and p∗j ,
– (fe(p) + 1)2 − fe(p)2 for each resource e that is in p∗j but not in pj (where
fe(p) is the number of players on e in the NE p).

Note that this is a valid deviation from the NE, to the set of resources used
by j in the optimal solution, since all resources in p∗j will be paid for. By the
equilibrium condition, each such cost is at least

∑
e∈E ξe,j , so we get:∑

e∈E
fe(p)

2 =
∑
j

∑
e∈pj

ξe,j ≤
∑
j

∑
e∈p∗j∩pj

ξe,j +
∑

e∈p∗j \pj

(fe(p) + 1)2 − fe(p)2

≤
∑
j

∑
e∈p∗j

(fe(p) + 1)2 − fe(p)2 =
∑
j

∑
e∈p∗j

2fe(p) + 1.

Here the last inequality follows by our marginal contribution constraint. Now if
we let f∗e be the number of players using resource e in the optimal solution and
C∗ be the optimal cost, we get:∑
e∈E

fe(p)
2 ≤

∑
j

∑
e∈p∗j

2fe(p) + 1 ≤
∑
e

∑
j:e∈p∗j

2fe(p) + 1 ≤
∑
e

(2fe(p) + 1)fe(p
∗)

≤
∑
e

λfe(p
∗)

2
+ µfe(p)

2 = λ
∑
e∈E

fe(p)
2 + µ

∑
e∈E

fe(p
∗)2.

The last inequality follows by the assumption in the statement of the lemma.
Rearranging gives ∑

e∈E fe(p)
2∑

e∈E fe(p
∗)2
≤ λ

1− µ
,

which proves the lemma.

Lemma 2. PoA(G) ≤ 17/3.

Proof. Here we simply prove that values λ = 3.4 and µ = 0.4 satisfy Lemma 1.
Hence we focus on inequality:

(2x+ 1)y ≤ 3.4y2 + 0.4x2.

The inequality trivially holds for y = 0. We now focus on the case with y = 1. It
is easy to check that the inequality holds for x = 0, 1, 2, 3. It is similarly easy to
check that is holds for every real x > 3 since the derivative of (0.4x2−2x+2.4)′ =
0.8x− 2 is positive for x > 3 and hence 0.4x2 − (2x+ 1) + 3.4 remains positive
after x = 3.

We now switch to y ≥ 2. Our main inequality can be rewritten as:

3.4y2 + 0.4x2 − 2xy − y ≥ 0.

The value of x that minimizes the left hand side is 2.5y. It is enough to satisfy
the inequality with this value of x, which is:

3.4y2 + 0.4 · 2.52y2 − 5y2 − y ≥ 0⇒ 0.9y2 − y ≥ 0,

which is true since we have assumed y ≥ 2.
ut

8



Lemma 3. PoA(G) ≥ 17/3.

Proof. We construct the following instance with 7 players and 21 resources. The
players are numbered 1, 2, . . . , 7 and the resources are labeled A1, B1, C1, . . . ,
A7, B7, C7. Each player j wants to use one of two possible sets of resources.
The first one, which will be the one used by the player in the optimal solution,
is {Aj , Bj , Cj}. The second one, which will used by the player in the NE,
is {Aj+1, Aj+2, Aj+3, Bj+1, Bj+2, Cj+1, Cj+2}. When the indices overflow (by
becoming larger than 7) we assume we go back to 1 for 8, back to 2 for 9, and
back to 3 for 10. In our NE we assume the players equally split the cost on every
resource. Observe that every type A resource will have 3 players on it in the NE,
while every type B and type C resource will have two players. Since each player
uses 3 As, 2 Bs, and 2 Cs, each player’s cost is: 3 · 3 + 2 · 2 + 2 · 2 = 17.

If a player j wishes to move to his other possible set of resources, he will have
to cover the marginal increase to the costs there. He will be increasing the cost
on resource Aj from 9 to 16, the cost on resource Bj from 4 to 9, and similarly
the cost on resource Cj from 4 to 9. These give a total marginal payment of 17,
which proves our assignment is indeed a NE. It is not hard to check that the
total cost in the NE is 119 whereas the total cost in the optimal solution is 21.
Taking the ratio completes the proof. ut

Theorem 3. PoA(G) = 17/3.

Proof. Follows from Lemma 2 and Lemma 3. ut

Lemma 4. For every ε > 0, there exists a game G ∈ G, such that SPoA(G) ≥
17/3− ε.

Proof. We construct a game G, with n players and 3(n + 3) + 18 resources as
follows. The players are numbered 1, 2, . . . , n, the first 3(n + 3) resources are
labeled A1, B1, C1, A2, B2,
C2, . . . , An+3, Bn+3, Cn+3, and the final 18 resources are labeledD1, D2, . . . , D18.
Each player j has two strategies:

• The first one, which will be used by the player in the optimal solution, is
p∗j = {Aj , Bj , Cj}, for j ∈ {4, 5, . . . , n}, p∗1 = {A1, B1, C1, D1, D2, . . . , D9},
p∗2 = {A2, B2, C2, D10, D11, . . . , D16}, and p∗3 = {A3, B3, C3, D17, D18}.

• The second one, p′j = {Aj+1, Aj+2, Aj+3, Bj+1, Bj+2, Cj+1, Cj+2}, will be
used by the player in the SE.

Consider the profile (p′, ξ) in which every player selects his second strategy,
and the players equally split the cost on every resource. We first show that p′ is
a NE by examining each player separately:

- Player 1 is alone in {A2, B2, C2}, shares {A3, B3, C3} with player 2, and
shares {A4} with players 2 and 3. So cost1(p′, ξ) = 1 · 3 + 2 · 3 + 3 · 1 = 12.
If he switches to p∗1, he would also be paying 12, since he would be alone on
all 12 resources.
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- Player 2 shares {A3, B3, C3} with player 1, two other A-resources with two
other players, one B-resource with one other player and one C-resource with
one other player. So cost2(p′, ξ) = 2 ·3+3 ·2+2 ·1+2 ·1 = 16. If he switches
to p∗2, he would be paying (22 − 1) · 3 + 1 · 7 = 16.

- Player 3 shares three A-resources with two other players, two B-resources
and two C-resources with one other player. So cost3(p′, ξ) = 3·3+2·2+2·2 =
17. If he switches to p∗3, he would be paying (32 − 22) · 3 + 2 = 17.

- A player j ∈ {4, 5, . . . , n−2} shares three A-resources with two other players,
two B-resources and two C-resources with one other player. So costj(p′, ξ) =
3 · 3 + 2 · 2 + 2 · 2 = 17. A player that switches to p∗j , he would be paying
(42 − 32) + (32 − 22) · 2 = 17.

- Player n− 1 shares two A-resources with two other players, one A-resource,
twoB-resources and two C-resources with one other player. So costn−1(p′, ξ) =
3 · 2 + 2 · 1 + 2 · 2 + 2 · 2 = 16. If he switches to p∗n−1, he would be paying
(42 − 32) + (32 − 22) · 2 = 17.

- Player n shares one A-resource with two other players, one A-resource, one
B-resource and one C-resource with one other player, and is alone on one
A-resource, one B-resource and one C-resource. So costn(p′, ξ) = 3 · 1 + 2 ·
1 + 2 · 1 + 2 · 1 + 1 · 1 + 1 · 1 + 1 · 1 = 12. If he switches to p∗n, he would be
paying (42 − 32) + (32 − 22) · 2 = 17.

To see that (p′, ξ) is a SE, suppose that an arbitrary subset of the players
switch to their other strategy. Then the lowest-numbered player j in the sub-
set experiences no improvement, since the resources that j would occupy if he
switches are still occupied by the same players as in p′.

From the latter and from the fact that no resources are being shared in the
optimal solution, we get that

SPoA(G) ≥ 17n− 12

3n+ 18
→ 17

3
, as n→∞

This means that for every ε > 0, the exists a game such that SPoA(G) ≥
17/3− ε, which completes the proof. ut

Theorem 4. SPoA(G) = 17/3.

Proof. Follows from Lemma 2 and Lemma 4. ut

4 Uniform Matroid Resource Buying Games

In a uniform matroid resource buying game, every player j is associated with a
subsetMj ⊆ E of the resources, and a demand `j . The strategy space of player j
includes all subsets ofMj of size `j . A singleton game is a special case of matroid
games in which ∀j, `j = 1. Let GUM be the class of resource buying games with
the marginal contribution constraint, and uniform matroid strategies.

For any resource buying game instance, a possible algorithm for computing
a NE is to index the players arbitrarily, and then assign them in that order. If a
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player is added to a resource e with current load fe, then ξe,j = 2fe + 1. Every
player selects a strategy that minimizes his total payment. It is easy to verify
that the resulting profile is a NE, as the load on the resources can only increase
after a player j is assigned, and every profitable deviation of j contradicts his
greedy choice at the assignment time.

By the above, for the case of singleton games, we conclude that the PoA of
our game is at least the approximation ratio of greedy load balancing with the
objective of minimizing the loads’ L2-norm. This problem is studied in [32,11]. In
fact, the lower bound of 4−ε presented in [11], can be adapted for our game. We
present a simpler lower bound that exploits the payment distribution flexibility
in our game, and also handles coordinated deviations.

Theorem 5. For every ε > 0, there exists a game G ∈ GUM , with SPoA(G) ≥
4− ε. The lower bound is achieved already by a singleton game.

We defer the proof to our full version. For the upper bound, we show that
the elegant analysis in [11] for bounding the approximation ratio of greedy load
balancing, can also be used for our game. The main challenge is to show that the
2-neighborhood property they define for the load balancing problem, is also valid
in games with arbitrary payment distribution and uniform matroid strategies.

Theorem 6. PoA(GUM ) ≤ 2
√
21/3 + 1 ≈ 4.055.

Proof. Let G be a uniform matroid game achieving the highest PoA, let (p, ξ)
be a NE of G, and let p∗ be an optimal solution such that the ratio of the total
cost in p to the total cost in p∗ is maximal. As shown in the proof of Lemma 2,
for every profile (p, ξ) where ξ obeys the marginal contribution constraint, the
total cost of p is at most

∑
e(2fe+1)f∗e . In addition, in every matroid game, the

total load on the resources is fixed. Specifically,
∑
e∈E fe =

∑
e∈E f

∗
e =

∑
j `j .

We can assume that the strategy space of player j is exactly pj ∪p∗j . That is,
player j needs to select `j resources from pj ∪ p∗j . If the set of feasible resources
for j includes more resources, then they can be removed without hurting the
stability of p.

Define a directed graph ∆ as follows. The vertex set of ∆ consists of one
vertex for every resource. The edge set reflects the difference between p and p∗
and is defined in the following way. For every player j, since G is a matroid game,
|pj | = |p∗j |. Define a mapping Hj : p

∗
j → pj . If e ∈ pj ∩ p∗j then Hj(e) = e, else,

the mapping is arbitrary as long as it is 1-to-1 and onto. Player j contributes `j
edges to ∆, one edge for every pair (e,Hj(e)). Thus, a directed edge may be a
self loop (e, e) if player j uses e in both p and p∗, or an edge (e1, e2) if j uses
resource e1 only in the optimal solution, and resource e2 only in the NE. We say
that resource e is of type fe/f∗e . Note that fe and f∗e correspond, respectively,
to the in-degree and out-degree of e in the graph ∆. We show that for any game
instance we can construct another game instance that has at least the same PoA
and satisfies the following 2-neighborhood property, defined in [11]: the incoming
edge of any resource of type 1/1 originates from a resource of type 0/1. Formally
(an extension of the definition in [11]),

11



Claim. Let j be a resource for which fe = f∗e = 1. Assume e ∈ pa and e ∈ p∗b .
That is, player a is the only player using e in p, and player b is the only player
using e in p∗. Then, (i) a 6= b, (ii) Let e′ be the resource such that Ha(e) = e′,
then fe′ = 0 and f∗e′ = 1.

Proof. (i) Assume by contradiction that a = b, that is, the same player is the only
player that uses e in both profiles. Construct a new game instance by excluding
resource e and reducing by one the demand of player a. If `j = 1 in G, then
player a is totally excluded from G. In the resulting game, both the optimal cost
and the cost of p are decreased by 1, and, therefore, the PoA increases.

(ii) Given that a 6= b, the two players define a path 〈e′ − e− e′′〉 in ∆, such
that Ha(e

′) = e and Hb(e) = e′′. That is, e′ ∈ p∗a, e ∈ pa, e ∈ p∗b and e′′ ∈ pb.
Assume by contradiction that fe′ > 0, that is, e′ is not empty in p. Construct a
new game instance by (i) excluding resource e and reducing by one `a and `b.
If a demand is reduced to 0, then exclude the corresponding player from G, (ii)
introducing a new player c whose demand is `c = 1 and whose strategy space is
{e′, e′′}. Set f∗c = {e′} and fc = {e′′}. Also, set ξe′′,c = ξe′′,b, that is, the payment
of the new player for using e′′ is exactly the payment of b for using e′′. We show
that the resulting game has a higher PoA, by showing that the resulting profile
is a NE. Since p is a NE, we know that b cannot benefit from replacing e′′ by
e. Since fe = 1, this implies that ξe′′,b ≤ 3. In the new instance, the cost of c
for using e′′ is therefore at most 3. Our assumption that fe′ > 0 implies that
replacing e′′ by e′ would result in cost at least 3 for c, thus, it is not beneficial,
and the strategy of c is stable. No other player can benefit from changing his
strategy, since all the loads are as in p. In the modified game, both the optimal
cost and the cost of p are decreased by 1, and therefore the PoA increases.

We turn to show that f∗e′ = 1, that is, a is the only player that uses e′ in p∗.
Assume by contradiction that f∗e′ > 1. Thus, some other player, c, is together
with a on e′ in p∗. Construct a new game by introducing a new resource that is
only feasible for a. In an optimal solution of the modified instance, a is the only
player on the new resource, thus, the optimal cost is reduced by at least 3. On
the other hand, p remains a NE, as also in p, a is using a resource with load 1.
Again, we get a modified game with an increased PoA.

Summing up, the following three conditions hold:
∑
e f

2
e ≤

∑
e(2fe + 1)f∗e ,∑

e∈E fe =
∑
e∈E f

∗
e , and the 2-neighborhood property is valid. Therefore, we

have the three building blocks required for the analysis of [11] to get the PoA
bound. ut

In our full version, we also prove the following results on coordinated deviations
in uniform matroid games.

Theorem 7. The minimal size of a coalition that has a profitable deviation from
a NE profile of a singleton game is 3.

Theorem 8. There exists a symmetric singleton game G and a NE profile (p, ξ)
such that (p, ξ) is a NE, and there exists a set of 3 players that have a profitable
coordinated deviation from (p, ξ).

12



5 Convergence Rate of BRD

Given a strategy profile, the best-response (BR) of player j is the set of strate-
gies that minimize his cost after fixing the strategies and payments of all other
players. A player is sub-optimal in (p, ξ) if his current strategy is not in his BR
set. If no player is sub-optimal, then (p, ξ) is a NE.

We analyze the convergence time of BRD by letting a player deviate to his
BR and updating the payments of resources that the player departs from. We
assume that these updates are not counted as a change of strategy and that only
a change in the set of resources selected by a player counts as such. This fits
analysis of BR convergence in other models – in which players costs are modified
when other players change strategies.

It is well known that BRD converges to a NE in congestion games with
fair cost-sharing. However, the BR-sequence may be exponentially long [18,1].
We first bound the number of steps in every BR sequence in a general resource
buying game. The bound we achieve is identical to the bound for singleton games
with fair cost-sharing [27].

Theorem 9. For every resource buying game, and every initial profile (p0, ξ0),
every BRD staring from (p0, ξ0) converges to a NE within less than n2m steps.

We defer the proof to our full version. For uniform matroid games, we suggest
a rule for selecting in every BR step the deviating sub-optimal player, such that,
if the initial profile is based on fair cost-sharing, then BRD converges within
less than

∑
j `j steps. In particular, for singleton games, we get a bound of less

than n steps on the convergence time, starting from an arbitrary profile with
fair cost-sharing.

The intuition is that, unlike regular congestion games, the payment of a
player does not increase if other players join resources he is using. Thus, every
migration sets an upper bound on the cost of a player in the final NE.

Consider any BR sequence performed in a uniform matroid game. Denote by
(pt, ξt) the profile after t BR steps. In particular (p0, ξ0) is the initial profile.
Observe that in a BR move of player j, he exchanges k ≤ `j resources. Without
loss of generality, every exchange is associated with a reduced cost. That is,

For all eout ∈ ptj \ pt+1
j and ein ∈ pt+1

j \ ptj , it holds that ξt+1
ein,j

< ξteout,j . (2)

This holds since otherwise, pt+1
j ∪ {eout} \ {ein} is a better or not worse

deviation.
For every profile (p, ξ), and every sub-optimal player j, let zj(p, ξ) be the

minimal payment of j for a resource that he wishes to exchange in a BR move.
Finally, letm0 be the number of resources with positive load in the initial profile.

Theorem 10. In uniform matroid games, if ξ0 is based on fair cost-sharing,
and in every BR step a sub-optimal player with minimal zj(p, ξ) is activated,
then a NE is reached after at most

∑
j `j −m0 steps.
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We defer the proof to our full version. We note that for every n,m0, the
above analysis is tight for a symmetric singleton game with n resources. If in the
initial profile the players are assigned on m0 < n resources, then in turn, each
activated player will select an empty resource.
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