
Race Scheduling Games

Shaul Rosner and Tami Tamir

School of computer Science. The Interdisciplinary Center (IDC), Herzliya, Israel.
E-mail: shaul.rosner@post.idc.ac.il, tami@idc.ac.il

Abstract

Job scheduling on parallel machines is a well-studied singleton congestion game. We
consider a variant of this game in which the jobs are partitioned into competition sets, and
the goal of every player is to minimize the completion time of his job relative to his com-
petitors. Specifically, the primary goal of a player is to minimize the rank of its completion
time among his competitors, while minimizing the completion time itself is a secondary ob-
jective. This fits environments with strong competition among the participants, in which
the relative performance of the players determine their welfare.

We define and study the corresponding race scheduling game (RSG). We show that RSGs
are significantly different from classical job-scheduling games, and that competition may
lead to a poor outcome. In particular, an RSG need not have a pure Nash equilibrium, and
best-response dynamics may not converge to a NE even if one exists. We identify several
natural classes of games, on identical and on related machines, for which a NE exists and
can be computed efficiently, and we present tight bounds on the equilibrium inefficiencies.
For some classes we prove convergence of BRD, while for others, even with very limited
competition, BRD may loop. Among classes for which a NE is not guaranteed to exist,
we distinguish between classes for which, it is tractable or NP-hard to decide if a given
instance has a NE.

Striving for stability, we also study the Nashification cost of RSGs, either by adding
dummy jobs, or by compensating jobs for having high rank. Our analysis provides insights
and initial results for several other congestion and cost-sharing games that have a natural
‘race’ variant.

1 Introduction

Two men are walking through a forest. Suddenly they see a bear in the distance, running towards them.
They start running away. But then one of them stops, takes some running shoes from his bag, and
starts putting them on. “What are you doing?” says the other man. “Do you think you will run faster
than the bear with those?” “I don’t have to run faster than the bear,” he says. “I just have to run faster
than you.”

In job-scheduling applications, jobs are assigned on machines to be processed. Many inter-
esting combinatorial optimization problems arise in this setting, which is a major discipline in
operations research. A centralized scheduler should assign the jobs in a way that achieves load
balancing, an effective use of the system’s resources, or a target quality of service [25].

Many modern systems provide service to multiple strategic users, whose individual payoff is
affected by the decisions made by others. As a result, non-cooperative game theory has become

1

an essential tool in the analysis of job-scheduling applications (see e.g., [23, 2, 13, 16, 4], and
a survey in [28]. Job-scheduling is a weighted congestion game [26] with singleton strategies,
that is, every player selects a single resource (machine).

In traditional analysis of congestion games, the goal of a player is to minimize his cost. We
propose a new model denoted race games that fits environments with strong competition among
the participants. Formally, the players form competition sets, and a player’s main goal is to do
well relative to his competitors. The welfare of a player is not measured by a predefined cost
or utility function, but relative to the performance of his competitors. This natural objective
arises in many real-life scenarios. For example, in cryptocurrency mining, one needs to be the
first miner to build a block. It does not matter how fast a miner builds a block, as long as
she is the first to do so. Similarly, when buying event tickets from online vendors, the time
spent in the queue is far less important than what tickets are available when it is your turn to
buy. Participants’ ranking is crucial in numerous additional fields, including auctions with a
limited number of winners, where, again, the participants’ rank is more important than their
actual offer, transplant queues, sport leagues, and even submission of papers to competitive
conferences.

In this paper we study the corresponding race scheduling game (RSG, for short). We assume
that the jobs are partitioned into competition sets. The primary goal of a job is to minimize
the rank of its completion time among its competitors, while minimizing the completion time
itself is a secondary objective. As an example, consider a running competition. In order to
be qualified for the final, a runner should be faster than other participants in her heat. The
runners’ ranking is more important than their finish time.

Unfortunately, as we show, even very simple RSGs may not have a NE. We therefore focus
on potentially more stable instances. In many real-life scenarios, competition is present among
agents with similar properties. For example, there is a competition among companies that
offer similar services; in sport competitions, the participants are categorized by their sex and
age group, or by their weight. Some of our results consider games in which competing players
are homogeneous. Specifically, we assume that all the jobs in a competition set have the same
length.

Our results highlight the differences between RSGs and classical job-scheduling games. We
identify classes of instances for which a stable solution exists and can be computed efficiently,
we analyze the equilibrium inefficiency, and the convergence of best-response dynamics. We
distinguish between different competition structure, and between environments of identical and
related machines. In light of our negative results regarding stability existence, we also study
the problem of Nashification. The goal of Nashification is, given an instance of RSGs, to turn
it into an instance that has a stable solution. This is done either by adding dummy jobs, or by
compensating jobs for having high rank. We believe that this ‘race’ model fits many natural
scenarios, and should be analyzed for additional congestion and cost-sharing games.

2 Model and Preliminaries

A race scheduling game (RSG) is given by G = hJ ;M; fp(j)g 8j 2 J ; fdig 8i 2M; Si, where
J is a set of n jobs, M is a set of m machines, p(j) is the length of job j, di is the delay of
machine i, and S is a partition of the jobs into competition sets. Specifically, S = fS1; : : : ; Scg
such that c � n, [c‘=1S‘ = J , and for all ‘1 6= ‘2, we have S‘1 \ S‘2 = ;. For every job j 2 S‘,

2

the other jobs in S‘ are denoted the competitors of j. Let n‘ denote the number of jobs in S‘.
Job j is controlled by Player j whose strategy space is the set of machinesM. A profile of

a RSG is a schedule s = hs1; : : : ; sni 2 Mn describing the machines selected by the players1.
For a machine i 2M, the load on i in s, denoted Li(s), is the total length of the jobs assigned
on machine i in s, that is, Li(s) =

P
fjjsj=ig p(j). When s is clear from the context, we omit

it. It takes p(j) � di time-units to process job j on machine i. As common in the study of
job-scheduling games, we assume that all the jobs assigned on the same machine are processed
in parallel and have the same completion time. Formally, the completion time of job j in the
profile s is Cj = Lsj (s) � dsj . Machines are called identical if their delays are equal.

Unlike classical job-scheduling games, in which the goal of a player is to minimize its
completion time, in race games, the goal of a player is to do well relative to its competitors.
That is, every profile induces a ranking of the players according to their completion time, and
the goal of each player is to have a lowest possible rank in its competition set. Formally, for a
profile s, let CsS‘

= hCs‘1 ; : : : ; C
s
‘n‘
i be a sorted vector of the completion times of the players in

S‘. That is, Cs‘1 � : : : � C
s
‘n‘

, where Cs‘1 is the minimal completion time of a player from S‘ in

s, etc.. The rank of Player j 2 S‘ in profile s, denoted rank j(s) is the rank of its completion
time in CsS‘

. If several players in a competition set have the same completion time, then they
all have the same rank, which is the corresponding median value. For example, if n‘ = 4 and
CsS‘

= (7; 8; 8; 13) then the players’ ranks are h1; 2:5; 2:5; 4i, and if all players in S‘ have the
same completion time then they all have rank (n‘+1)=2. Note that, independent of the profile,P

j2S‘
rank j(s) = n‘(n‘ + 1)=2. For a profile s and a job j 2 S‘, let Nlow(j; s) be the number

of jobs from S‘ whose completion time is lower than Cj(s), and let Neq(j; s) be the number of
jobs from S‘, whose completion time is Cj(s). Note that for j 2 Neq(j; S). We have,

Observation 2.1 rank j(s) = Nlow(j; s) +
1+Neq(j;s)

2 .

The primary objective of every player is to minimize its rank. The secondary objective is to
minimize its completion time. Formally, Player j prefers profile s0 over profile s if rank j(s

0) <
rank j(s) or rank j(s

0) = rank j(s) and Cj(s
0) < Cj(s). Note that classic job-scheduling games

are a special case of RSGs in which the competition sets are singletons; thus, for every job
j, in every profile, s, we have rank j(s) = 1, and the secondary objective, of minimizing the
completion time is the only objective.

A machine i is a best response (BR) for Player j if, given the strategies of all other players,
j’s rank is minimized if it is assigned on machine i. Best-Response Dynamics (BRD) is a
local-search method where in each step some player is chosen and plays its best improving
deviation (if one exists), given the strategies of the other players.

The focus in game theory is on the stable outcomes of a given setting. The most prominent
stability concept is that of a Nash equilibrium (NE): a profile such that no player can improve
its objective by unilaterally deviating from its current strategy, assuming that the strategies
of the other players do not change. Formally, a profile s is a NE if, for every j 2 J , sj is a BR
for Player j.

Some of our results consider RSGs with homogeneous competition sets. We denote by Gh
the corresponding class of games. Formally, G 2 Gh if, for every 1 � ‘ � c, all the jobs in

1In this paper, we only consider pure strategies.

3

S‘ have the same length, p‘. The following example summarizes the model and demonstrates
several of the challenges in analyzing RSGs.
Example: Consider a game G 2 Gh on m = 3 identical machines, played by n = 9 jobs in
two homogeneous competition sets. S1 consists of four jobs having length 4, and S2 consists
of five jobs having length 3 (to be denoted 4-jobs and 3-jobs, respectively). All the machines
have the same unit-delay. Fig. 1 presents four profiles of this game. The completion times are
given above the machines and the jobs are labeled by their ranks. Consider the jobs of S2 in

Profile (a). Their completion times are C
(a)
S2

= (7; 12; 12; 12; 12). Thus, the 3-job on M2 has

rank 1, and the four jobs on M3 all have rank 2+3+4+5
4 = 3:5. We show that Profile (a) is a

NE. Consider first deviations of a 4-job from Profile (a): a migration of a 4-job from M1 to
M2 is not beneficial, as it leads to profile (b) in which the rank of the 4-jobs on M2 is 3:5. This
is higher than 3 – the rank of the migrating job in Profile (a). Other deviations of a 4-job are
clearly not beneficial. Consider next deviations of a 3-job. A migration from M3 to M2 is not
beneficial, as it leads to profile (c) in which the rank of the 3-jobs on M2 is 4:5. This is higher
than 3:5 – the rank of the deviating job in Profile (a). Other deviations of a 3-job are clearly
non beneficial. Thus, Profile (a) is a NE. This example demonstrates that race games are
significantly different from classical job-scheduling games. In particular, a beneficial migration
may increase the completion time of a job. For example, the migration of a 3-job that leads
from Profile (c) to Profile (a) increases the completion time of the deviating job from 10 to 12,
but reduces its rank from 4:5 to 3:5. Moreover, simple algorithms that are known to produce
a NE schedule for job-scheduling games without competition need not produce a NE in race
games. In our example, Profile (d) is produced by the Longest Processing Time (LPT) rule. It
is not a NE since the 3-job on M1 can reduce its rank from 5 to 4 by migration to either M2

or M3.

3

3

3

1

1

3.5

3.5

3.5

1.5

1.5 3.5

3.5

1

3.5

3.5

3.5

3.5

3

3

3

1

4.5

4.5

2

2

2

M1 M2 M3

7

1212 12 12

8

11

9
10

3.5

3.5

1.51.5

2.5

5

2.5

2.5

11

10

2.5

10

(a) (d)(c)(b)

M1 M2 M3 M1 M2 M3 M1 M2 M3

p1=4 p2=3

4
5

S1 S2

3.5

Figure 1: Jobs are labeled by their ranks. (a) A NE profile. (b) and (c) Deviations from the
NE are harmful. (d) An LPT schedule.

The social cost of a profile s, denoted cost(s) is the makespan of the corresponding schedule.
That is, the maximal completion time of a job, given by maxiLi(s) � di. A social optimum of
a game G is a profile that attains the lowest possible social cost. We denote by OPT (G) the
cost of a social optimum profile; i.e., OPT (G) = minsmaxiLi(s) � di.

It is well known that decentralized decision-making may lead to sub-optimal solutions from
the point of view of the society as a whole. We quantify the inefficiency incurred due to self-
interested behavior according to the price of anarchy (PoA) [23, 24] and price of stability (PoS)
[3, 27] measures. The PoA is the worst-case inefficiency of a pure Nash equilibrium, while the

4

PoS measures the best-case inefficiency of a pure Nash equilibrium. Formally,

Definition 2.1 Let G be a family of games, and let G be a game in G. Let Υ(G) be the set of
pure Nash equilibria of the game G. Assume that Υ(G) 6= ;.

� The price of anarchy of G is the ratio between the maximal cost of a PNE and the social
optimum of G. That is, PoA(G) = maxs2�(G) cost(s)=OPT (G). The price of anarchy of
the family of games G is PoA(G) = supG2GPoA(G).

� The price of stability of G is the ratio between the minimal cost of a PNE and the social
optimum of G. That is, PoS(G) = mins2�(G) cost(s)=OPT (G). The price of stability of
the family of games G is PoS(G) = supG2GPoS(G).

2.1 Related Work

There is wide literature on job scheduling on parallel machines. The minimum makespan
problem corresponds to the centralized version of our game in which all jobs obey the decisions
of one utility. This is a well-studied NP-complete problem. For identical machines, the simple
greedy List-scheduling (LS) algorithm [19] provides a (2� 1

m)-approximation to the minimum
makespan problem. A slightly better approximation-ratio of (4

3 �
1

3m) is guaranteed by the
Longest Processing Time (LPT) algorithm [20] and A PTAS is given in [21]. For related
machines, with various speeds, LS algorithm provides a �(m)-approximation [12], and a PTAS
is given in [22].

Congestion games [26] consist of a set of resources and a set of players who need to use these
resources. Players’ strategies are subsets of resources. Each resource has a latency function
which, given the load generated by the players on the resource, returns the cost of the resource.
In singleton congestion games players’ strategies are single resources. In weighted congestion
games, each player j has a weight p(j), and its contribution to the load of the resources he uses
as well as its cost are multiplied by p(j) [9].

The special case of symmetric weighted singleton congestion games corresponds to the
setting of job-scheduling: the resources are machines and the players are jobs that need to be
processed by the machines. A survey of results of job-scheduling games appears in [28]. For
identical machines, it is known that LPT-schedules are NE schedules [18], and that the price
of anarchy, which corresponds to the makespan approximation, is 2� 2

m+1 [17]. For uniformly

related machines, the price of anarchy is bounded by logm
log log logm [13]. For two machines, a

bound of 1+
p

5
2 is given in [23]. Additional related work on job-scheduling games deal with

cost functions that depend on the internal order of jobs, e.g., [11, 7], or a cost function based
on both the load on the machine and its activation cost [15].

Other related work studies additional models in which players’ objective involves social
preferences. In standard game theoretic models, players’ objective is to maximize their own
utility, while in games with social preferences, players have preferences over vectors of all
players’ utilities. For example, [29] studies a model in which the mental state of a player is a
score based on all players’ utilities, and in a mental equilibrium, players can not deviate and
improve this score. The main difference from our setting is that in their model, optimizing
one’s utilization has the highest priority, thus, every NE is also a mental equilibrium, which is
not the case in race games. Other models that capture preferences based on emotions such as

5

empathy, envy, or inequality aversion are presented and studied in [6, 10, 14]. A lot of attention
has been given to such models in behavioral game theory. We are not aware of previous work
that analyzes competition in the framework of congestion games. Other social effect, such as
altruism and spite were studied, e.g., in [1, 5, 8].

2.2 Our Results

We show that competition dramatically impacts job-scheduling environments that are con-
trolled by selfish users. RSGs are significantly different from classical job-scheduling games;
their analysis is misleading, and known tools and techniques fail even on simple instances. We
start by analyzing RSGs on identical machines. We show that a RSG need not have a NE,
and deciding whether a game instance has a NE is an NP-complete problem. This is valid
even for instances with only two pairs of competing jobs and two machines, and for instances
with homogeneous competition sets. Moreover, even in cases where a NE exists, BRD may
not converge. On the other hand, we identify several non-trivial classes of instances for which
a NE exists and can be calculated efficiently. Each of these positive results is tight in a sense
that a slight relaxation of the class characterization results in a game that may not have a
NE. Specifically, we present an algorithm for calculating a NE for games with unit-length jobs,
for games in Gh with a limited number of competition sets and machines, or with limited
competition-set size, and games in Gh in which the job lengths form a divisible sequence (e.g.,
powers of 2).

We then provide tight bounds on the equilibrium inefficiency with respect to the minimum
makespan objective. For classical job-scheduling, it is known that PoS = 1 and PoA = 2� 2

m+1

[17]. We show that for RSGs on identical machines, PoS = PoA = 3 � 6
m+2 . This result

demonstrates the ‘price of competition’. The fact that PoS > 1 implies that even if the
system has full control on the initial job assignment, the best stable outcome may not be
optimal. Moreover, since PoA = PoS, in the presence of competition, having control on the
initial job assignment may not be an advantage at all.

For related machines, we start with a negative result showing that even the seemingly
trivial case of unit-length jobs is tricky, and a NE may not exist, even if all jobs are in a single
competition set. For this class of games, however, it is possible to decide whether a game has a
NE, and to calculate one if it exists. Without competition, for unit-jobs and related machines,
a simple greedy algorithm produces an optimal schedule. Moreover, PoA = PoS = 1. We
show that for RSGs with unit jobs and related machines, PoS = PoA = 2. We then move to
study games on related machines and arbitrary-length jobs. Striving for positive results, we
focus on two machines and homogeneous instances. We present an algorithm for calculating a
NE, and prove that any application of BRD converges to a NE. We then bound the equilibrium
inefficiency for arbitrary competition structure. Specifically, for RSGs on two related machines,
PoS = PoA = 2. The PoS lower bound is achieved already with homogeneous competition
sets. Note that for classical job-scheduling game on two related machines, it holds that PoS = 1

and PoA = 1+
p

5
2 [23], thus, again, we witness the harmful effects of a competition.

In light of the negative results regarding equilibrium existence, we discuss possible strategies
of the system to modify a RSG instance or the players’ utilization, such that the resulting game
has a NE. We consider two approaches for Nashification. The first is addition of dummy jobs,
and the second is compensation of low-rank players. Our hardness results imply that min-cost

6

Nashification is also hard. For both approaches, we present tight bounds on the Nashification
cost, in general and for unit-jobs on related machine.

We conclude with a discussion of additional congestion games whose ‘race’ variant is natural
and interesting. We show that some of our results and techniques can be adopted to other
games, and suggest some directions for future work.

3 Identical Machines - Equilibrium Existence

In this section we assume that all the machines have the same unit-delay, that is, for all
i 2M; di = 1. The following example demonstrates that even very simple RSGs may not have
a NE. Consider an instance with two machines and two competing jobs of lengths p1 < p2. If
the jobs are on different machines, then the long job has a higher completion time and can
reduce its rank by joining the short one, so they both have the same completion time and
therefore the same rank. If the jobs are on the same machine, then the short job can reduce
its rank by escaping to the empty machine. Thus, no profile is a NE.

We now show that it is NP-hard to decide whether a given RSG has a NE, even if there are
only two pairs of competing jobs, and all other jobs are singletons aiming only at minimizing
their completion times.

Theorem 3.1 Given an instance of RSG, it is NP-complete to decide whether the game has
a NE profile.

Proof: Given a profile, s, verifying that it is a NE can be done in polynomial time by
considering the jobs one after the other, and checking, for each job, whether its current machine
is its best-response to the other jobs’ assignment.

The hardness proof is by a reduction from the partition problem. An instance of Partition
consists of a set A of k integers a1; : : : ; ak that sums up to 2B for some integer B. The goal
is to decide whether A has a partition into two disjoint sets A0 and A00 such that

P
j2A0 aj =P

j2A00 aj = B. Given an instance of Partition, we construct the following instance of RSG.
There are m = 2 identical machines and n = 2k + 2 jobs. Two jobs have length B + 1, k jobs
have length � < 1

k , and k jobs are originated from the Partition elements, each having length
aj . All the jobs form a single competition set, that is S1 = J .

We show that G has a NE if and only if a partition of A exists. Assume first that a
partition exists. Consider the schedule depicted in Fig. 2(a). Each machine is assigned one
job of length B + 1, half of the �-jobs, and a set of jobs corresponding to A0 or A00. SinceP

j2A0 aj =
P

j2A00 = B, the load on the machines is balanced, and all the jobs have the same
rank. Any migration of a job will increase its completion time and as a result also its rank,
thus, Profile (a) is a NE.

Assume that a partition of A does not exist. We show that no NE exists. First, consider a
schedule in which the two long jobs are assigned on the same machine, say M2. The load on
M2 is at least 2B+ 2. The load on M1 is less than 2B+ 1. If there are additional jobs on M2,
they will clearly benefit from migrating to M1. Consider therefore the schedule depicted in
Fig. 2(b), in which the two long jobs are the only jobs on M2. Their rank is n� 1

2 . A migration
to M1 will increase the completion time of the deviating job, however, it will share the high

7

L

1 1 1 1

(a) (b) (c) (d)

L

L

L L
L

L

L

B+1

B+1

a1

(b)

a2

ak

…

(a)

B+1B+1

A’’A’

(c)

B+1B+1

A’’
A’

M1 M2M1 M2M1 M2

Figure 2: Possible profiles of G. (a) A NE schedule if a Partition exists. No NE if a partition
does not exists and the long jobs are (b) together or (c) separated.

completion time with n� 1 jobs. Thus, such a migration will reduce its rank to n
2 + 1. Thus,

no profile in which the two long jobs are on the same machine is a NE.
Consider next a schedule in which there is one long job on each of M1 and M2. Since A has

no partition, the A-jobs split are between the two machines such that one machine, say M1,
processes a subset A0 of total length at least B + 1, while M2 processes a subset A00 of total
length at most B� 1. Since the total length of the �-jobs is less than 1, these jobs will join M2

(see Fig. 2(c)). Note that in Profile (c) there are at most k + 1 jobs on M1 and at least k + 1
jobs on M2. Thus, deviating from M1 to M2 is rank-reducing.

We conclude that G has a NE if and only if a partition exists.
The above hardness result refers to a case in which S1 = J , that is, all the jobs compete

with each other. The jobs of length B + 1 are required to show that the hardness holds even
if there are hardly any competitions. Specifically, assume that S1 and S2 each consist of a
single long job and a single �-job, and except for these two pairs, all other competition sets are
singletons. Thus, the only goal of n�4 jobs is to minimize their completion time. The analysis
is valid for this game as well: If a partition exists, then Profile (a) is a NE. If a partition does
not exist, then profile (b), as well as every profile in which the long jobs are together, is not
a NE since long jobs will benefit from joining their competitors. Also, profile (c) as well as
every profile in which the long jobs are separated, is not a NE, since the long job on the loaded
machine will benefit from joining its competitor.

Corollary 3.2 Given an instance of RSG, with only two pairs of competing jobs, it is NP-hard
to decide whether the game has a NE profile.

Hoping for positive results, we turn to consider the class Gh of RSGs with homogeneous
competition sets. Recall that G 2 Gh if, for every 1 � ‘ � c, all the jobs in S‘ have the same
length, p‘. Unfortunately, as demonstrated in Fig. 3, games in this class, even with only three
sets and three machines, may not admit a NE. Moreover, as demonstrated in Fig. 4, even if a
NE exists, it may be the case that BRD does not converge.

The next natural question is whether there is an efficient way to decide, given a game
G 2 Gh, whether G has a NE. We answer this question negatively:

Theorem 3.3 Given an instance of RSG with homogeneous competition sets, it is NP-complete
to decide whether the game has a NE profile.

8

1

1 7
7

M1 M2 M3

(a) (c1)(b)

2.5

(c2)

2.5
7 2.5
7 2.5
7 1

1 3
3

7.5
7.5

3 7.5
3 7.5
3

11

6

2

6
6

1

6

6

6
6

11

6
1.5

6
6

1.5

6

6

6
6

(c3)

11

1
8.5

4.5
4.5

8.5

4.5

4.5

4.5
4.5

M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3

27

15
12

14

19

15
17 16

21

14

25
21

17
19

18

S1 S2 S3

1 1

9

p1=14, p2=13, p3=3

Figure 3: An example of a RSG with homogeneous competition sets, that has no NE. Jobs
are labeled by their ranks. Profiles (a)-(b) show that big jobs must be on different machines.
Profiles (c1)� (c2)� (c3)� (c1) loop when big jobs are on different machines.

Figure 4: An example of a RSG with homogeneous competition sets in which c = 2, p1jp2, and
BRD may loop (profiles (a)-(b)-(c)-(a)). A NE exists (profile (d)). Jobs are labeled by their
ranks.

Proof: Given a profile s, verifying that it is a NE can be done in polynomial time by
considering the jobs one after the other, and checking for each job whether its current machine
is its best-response to the other jobs’ assignment.

The hardness proof is by a reduction from the partition problem. An instance of Partition
consists of a set A of k integers a1; : : : ; ak that sums up to 2B for some integer B. The goal
is to decide whether A has a partition into two disjoint sets A0 and A00 such that

P
j2A0 aj =P

j2A00 aj = B. Given an instance of Partition, we construct the following instance of RSG
with homogeneous competition sets. There are m = 4 identical machines and n = k + 13 jobs
divided into k + 2 competition sets. S1 consists of 4 jobs of length 9, S2 consists of 9 jobs of
length 2, and for every 1 � j � k, the j-th element in A defines the set Sj+2 that has a single
job of length

aj

4B . Note that the total length of jobs originated from A is 1=2. We show that G
has a NE if and only if a partition exists.

Assume first that a partition exists. Consider the profile (a) depicted in Fig 5(a): M1

processes two jobs of length 9, M4 processes 7 jobs of length 2, and each of M2 and M3

processes one job of length 9, one job of length 2, and all jobs corresponding to A0 or A00. We
show that profile (a) is a NE. Jobs corresponding to A0 or A00 are in singleton competition sets
and do not have a load-reducing migration, and therefore do not have a beneficial migration.
A migration of a job from S1 will make the target machine most loaded, and does not increase

9

