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Submodular maximization generalizes many fundamental problems in discrete optimization, including Max-
Cut in directed/undirected graphs, maximum coverage, maximum facility location and marketing over social
networks.

In this paper we consider the problem of maximizing any submodular function subject to d knapsack
constraints, where d is a fixed constant. We establish a strong relation between the discrete problem and
its continuous relaxation, obtained through extension by expectation of the submodular function. Formally,
we show that, for any non-negative submodular function, an α-approximation algorithm for the continuous
relaxation implies a randomized (α− ε)-approximation algorithm for the discrete problem. We use this rela-
tion to obtain an (e−1−ε)-approximation for the problem, and a nearly optimal (1−e−1−ε)−approximation
ratio for the monotone case, for any ε > 0. We further show that the probabilistic domain defined by a
continuous solution can be reduced to yield a polynomial size domain, given an oracle for the extension by
expectation. This leads to a deterministic version of our technique.
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1. Introduction. A real-valued function f , whose domain is all the subsets of a universe U ,
is called submodular if, for any S,T ⊆U ,

f(S) + f(T )≥ f(S ∪T ) + f(S ∩T ).

* A preliminary version of this paper appeared in the Proceedings of the 20th Annual ACM-SIAM Symposium on
Discrete Algorithms, New York, January 2009.
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The concept of submodularity, which can be viewed as a discrete analog of convexity, plays a central
role in combinatorial theorems and algorithms (see, e.g., [12] and the references therein, and the
comprehensive surveys in [10, 26, 20]). Submodular maximization generalizes many fundamental
problems in discrete optimization, including Max-Cut in directed/undirected graphs, maximum
coverage, maximum facility location and marketing over social networks (see, e.g., [14]).

In many settings, including set covering or matroid optimization, the underlying submodular
functions are monotone, meaning that f(S)≤ f(T ) whenever S ⊆ T . In other settings, the function
f(S) is not necessarily monotone. A classic example of such a submodular function is f(S) =∑

e∈δ(S)w(e), where δ(S) is a cut in a graph (or hypergraph) G= (V,E) induced by a set of vertices
S ⊆ V , and w(e) ≥ 0 is the weight of an edge e ⊆ E. An example for a monotone submodular
function is fG,p̄ : 2L→R, defined on a subset of vertices in bipartite graph G= (L,R,E). For any
S ⊆ V , fG,p̄(S) =

∑
v∈N(S) pv, where N(S) is the neighborhood function (i.e., N(S) is the set of

neighbors of S), and pv ≥ 0 is the profit of v, for any v ∈R. The problem max{fG,p̄(S)| |S| ≤ k} is
classical maximum coverage.

In this paper we consider the following problem of maximizing a non-negative submodular set
function subject to d knapsack constraints, where d is a fixed constant (d-SUB). Given a d-
dimensional budget vector L̄, for some d ≥ 1, and an oracle for a non-negative submodular set
function f over a universe U , where each element i ∈ U is associated with a d-dimensional non-
negative cost vector c̄(i), we seek a subset of elements S ⊆ U whose total cost is at most L̄, such
that f(S) is maximized.

There has been extensive work on maximizing submodular monotone functions subject to
matroid constraint.1 For the special case of uniform matroid, i.e., the problem {maxf(S) : |S| ≤ k},
for some k > 1, Nemhauser et. al showed in [23] that a greedy algorithm yields a ratio of 1− e−1

to the optimum. Later works presented greedy algorithms that achieve this ratio for other special
matroids or for variants of maximum coverage (see, e.g., [1, 16, 25, 5]). For a general matroid con-
straint, Calinescu et al. showed in [3] that a scheme based on solving a continuous relaxation of the
problem followed by pipage rounding (a technique introduced by Ageev and Sviridenko [1]) achieves
the ratio of 1−e−1 for maximizing submodular monotone functions that can be expressed as a sum
of weighted rank functions of matroids. Subsequently, this result was extended by Vondrák [26] to
general monotone submodular functions.

The bound of 1− e−1 is the best possible for all of the above problems. This follows from the
lower bound of Nemhauser and Wolsey [22] in the oracle model, and the later result of Feige [9]
for the specific case of maximum coverage, under the assumption that P 6=NP .

Other variants of monotone submodular optimization were also considered. In [2], Bansal et al.
studied the problem of maximizing a monotone submodular function subject to n knapsack con-
straints, for arbitrary n≥ 1, where each element appears in up to k constraints, and k is fixed. The
paper presents a 8ek

e−1
and e2k

e−1
+ o(k) approximations for this problem. Demaine and Zadimoghad-

dam [7] studied bi-criteria approximations for monotone submodular set function optimization.
The problem of maximizing a non-monotone submodular function has been studied as well.

Feige et al. [10] considered (unconstrained) maximization of a general non-monotone submodular
function. The paper gives several (randomized and deterministic) approximation algorithms, as
well as hardness results, also for the special case where the function is symmetric.

Lee et al. [20] studied the problem of maximizing a general submodular function under linear
and matroid constraints. They proposed algorithms that achieve approximation ratio of 1/5−ε for
the problem with d linear constraints and a ratio of 1/(d+ 2 + 1/d+ ε) for d matroid constraints,
for any fixed integer d≥ 1.

1 A (weighted) matroid is a system of ‘independent subsets’ of a universe, which satisfies certain hereditary and

exchange properties [24].
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Improved lower and upper bounds for non-constrained and constrained submodular maximiza-
tion were recently derived by Gharan and Vondrák [13]. However, this paper does not consider
knapsack constraints.

Several fundamental algorithms for submodular maximization (see, e.g., [1, 3, 26, 20]) use a
continuous extension of submodular function, to which we refer as extension by expectation. Given
a submodular function f : 2U → R, we define F : [0,1]U → R. For any ȳ ∈ [0,1]U , let D ⊆ U be a
random variable such that each element i∈U is chosen independently to be in D with probability
yi (we say that D∼ ȳ). Then

F (ȳ) =E[f(D)] =
∑
D⊆U

(
f(D)

∏
i∈D

yi
∏
i/∈D

(1− yi)

)
.

The general framework of these algorithms is to obtain first a fractional solution for the continuous
extension, followed by rounding which yields a solution for the discrete problem. In this paper we
deal mainly in the rounding step within the scheme above.

Using the definition of F , we define the continuous relaxation of our problem called continuous
d-SUB. Let P = {ȳ ∈ [0,1]U |

∑
i∈U yic̄(i)≤ L̄} be the polytope of the instance, then the problem is

to find ȳ ∈ P for which F (ȳ) is maximized. For α ∈ (0,1], an algorithm A yields α-approximation
for the continuous problem with respect to a submodular function f , if for any assignment of
non-negative costs to the elements, and for any non-negative budget, A finds a feasible solution
for continuous d-SUB of value at least αO, where O is the value of an optimal (integral) solution
for d-SUB with the given costs and budget.

For some specific families of submodular functions, linear programming can be used to derive
such approximation algorithms (see e.g [1, 3]). For monotone submodular functions, Vondrák pre-
sented in [26] a (1−e−1−o(1))-approximation algorithm for the continuous problem. Subsequently,
Lee et al. [20] considered the problem of maximizing any submodular function with multiple knap-
sack constraints and developed a ( 1

4
− o(1))-approximation algorithm for the continuous problem;

however, noting that the rounding method of [19],2 which proved useful for monotone functions,
cannot be applied in the non-monotone case, a ( 1

5
− ε)-approximation was obtained for the dis-

crete problem, by using simple randomized rounding. This gap of approximation ratio between the
continuous and the discrete case led us to further develop the technique in [19], so that it can be
applied also for non-monotone functions.

Subsequent to our study of maximizing monotone submodular functions subject to multiple
knapsack constraints [19], Chekuri et al. [6] showed that, by using a more sophisticated rounding
technique, the algorithm in [19] can be applied to derive a (1−e−1−ε)-approximation for maximiz-
ing a submodular function subject to d knapsack constraints and a matroid constraint. Specifically,
given a fractional solution for the problem, the authors define a probability distribution over the
solution space, such that all of elements in the domain of the distribution are inside the matroid;
these elements also satisfy Chernoff-type concentration bounds, which can be used to prove some of
the probabilistic claims in [19]. The desired approximation ratio is obtained by using the algorithm
of [19] with sampling replaced by the above distribution in the rounding step.

Independently, Fadaei et al. considered d-SUB in [8]. The paper claims to obtain a bound of
(0.25− ε) for the problem with non-monotone submodular function. However, we could not verify
the correctness of the results.3

2 The paper [19] is a preliminary version of this paper.

3 Specifically, in the proof of Theorem 3, the function G can get negative values; thus, the algorithm of [20] cannot be

applied. Overcoming this obstacle is one of the major contributions of our paper while extending the results in [19].
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In [27] Chekuri et al. presented a 0.325 approximation algorithm for d-SUB. To do so, the authors
obtain a (0.325+δ)-approximation for continuous d-SUB, where δ > 0 is a small fixed constant. The
paper also presents a generic approach, called contention resolution (CR), for rounding continuous
solutions subject to various constraints. The approach used for the special case of linear constraints
is based on the technique developed in Section 2, while a main contribution of CR schemes is in
the integration of different rounding techniques, which enables to simultaneously handle multiple
types of constraints. Combining the algorithm for continuous d-SUB with CR scheme the authors
obtain the improved ratio of 0.325.

Recently, Feldman et al. [11] presented a continuous greedy algorithm that yields an e−1-
approximation for the problem max{F (x)|x∈ P}, where P is a down-closed solvable polytope. By
coupling the continuous greedy algorithm with the rounding technique presented in this paper,
they obtained an (e−1− ε) approximation for d-SUB.

1.1. Our results. In this paper we establish a strong relation between the problem of max-
imizing any submodular function subject to d knapsack constraints and its continuous relax-
ation.4 Formally, we show (in Theorem 2) that for any non-negative submodular function, an α-
approximation algorithm for the continuous relaxation implies a randomized (α−ε)-approximation
algorithm for the discrete problem. We use this relation to obtain approximation ratio of (e−1− ε)
for d-SUB, for any ε > 0 by applying the continuous greedy algorithm of [11]. For the case where
the objective function is monotone, we obtain a nearly optimal (1− e−1− ε) approximation using
the results of [26], for any ε > 0. An important consequence of the above relation is that for any
class of submodular functions, a future improvement of the approximation ratio for the continuous
problem, to a factor of α, immediately implies an approximation ratio of (α− ε) for the original
instance.

Our technique applies random sampling on the solution space, using a distribution defined by
the fractional solution for the problem. In Section 2.5 we show how to convert a feasible solution
for the continuous problem to another feasible solution with up to O(log |U |) fractional entries,
given an oracle to the extension by expectation. This facilitates the usage of exhaustive search
instead of sampling, which leads to a deterministic version of our technique. Specifically, we obtain
a deterministic (e−1− ε)-approximation for general instances and (1− e−1− ε)-approximation for
instances where the submodular function is monotone. For the special case of maximum coverage
with d knapsack constraints, that is, d-SUB where the objective function is f = fG,p̄ for a given
bipartite graph G and profits p̄, this result leads to a deterministic (1− e−1 − ε)−approximation
algorithm, since the extension by expectation of fG,p̄ can be deterministically evaluated. We note
that none of the earlier results leads to a deterministic algorithm for this problem, or to a deter-
ministic rounding procedure for the fractional solution obtained for continuous maximization of
submodular function with knapsack constraints.

Remark: Our study of maximizing submodular functions encompasses also a generalization of
maximum coverage and a budgeted variant of the generalized assignment problem (GAP). These
two problems can be cast as submodular optimization problems, however, the resulting universe
sizes are non-polynomial in the input size. As our algorithms cannot be directly applied to these
problems, more specialized techniques need to be used to obtain approximation algorithm for each
of the problems. Using the technique in Section 2, a (1−e−1−ε)-approximation can be derived for
both problems. The detailed results can be found in [17]. Here, we focus on our general technique
for maximizing submodular functions.

4 Some basic properties of submodular functions are given in Appendix A.



Kulik et al.: Monotone and Non-monotone Submodular Maximization

Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 5

2. Maximizing submodular functions. In this section we describe our framework for max-
imizing a submodular set function subject to multiple linear constraints. For short, we call this
problem d-SUB.

2.1. Preliminaries.

Notation: An essential component in our framework is the distinction between elements by their
costs. We say that an element i is small if c̄(i)≤ ε3L̄; otherwise, the element is big.

Given a universe U , we call a subset of elements S ⊆ U feasible if the total cost of elements in
S is bounded by L̄. We say that S is ε-nearly feasible (or nearly feasible, if ε is known from the
context) if the total cost of the elements in S is bounded by (1+ε)L̄. We refer to f(S) as the value
of S. Similar to the discrete case, ȳ ∈ [0,1]U is feasible if ȳ ∈ P .

For any subset T ⊆ U , we define fT : 2U → R+ by fT (S) = f(S ∪ T )− f(T ). It is easy to verify
that if f is a submodular set function then fT is also a submodular set function. Finally, for any
set S ⊆ U , we define cr(S) =

∑
i∈S cr(i), where 1 ≤ r ≤ d, and c̄(S) =

∑
i∈S c̄(i). For a fractional

solution ȳ ∈ [0,1]U , we define cr(ȳ) =
∑

i∈U cr(i) · yi and c̄(ȳ) =
∑

i∈U c̄(i) · yi.
Overview: Our algorithm consists of two phases, to which we refer as rounding procedure and
profit enumeration. The rounding procedure yields an (α−O(ε))-approximation for instances in
which there are no big elements, using an α-approximate solution for the continuous problem. It
relies heavily on Theorem 1 that gives some conditions on the probabilistic domain of solutions;
these conditions guarantee that the expected profit of the resulting nearly feasible solution is high.
This solution is then converted to a feasible one, by using a fixing procedure. We first present a
randomized version and later show how to derandomize the rounding procedure.

The profit enumeration phase uses enumeration over the most profitable elements in an optimal
solution; then it reduces a general instance to another instance with no big elements, on which we
apply the rounding procedure.

Finally, we combine the above results with an algorithm for the continuous problem (e.g., the
algorithm of [26], or [11]) to obtain approximation algorithm for d-SUB.

2.2. A probabilistic theorem. We first prove a general probabilistic theorem.

Theorem 1. Given a d-SUB instance with no big elements, let x̄∈ [0,1]U be a feasible fractional
solution such that F (x̄)≥O/5, where O is the optimal solution for the d-SUB instance. Let D⊆U
be a random set such that D ∼ x̄ (i.e., for all i ∈ U , i ∈D independently with probability xi), and
let D′ be a random set such that D′ =D if D is ε-nearly feasible, and D′ = ∅ otherwise. Then D′

is always ε-nearly feasible, and E[f(D′)]≥ (1−O(ε))F (x̄).

Proof. Let Xi (1≤ i≤ n) be an indicator random variable for i∈D. By the definition of D these
indicators are independent. For any dimension 1≤ r ≤ d, let Rr = cr(D)

Lr
, and define R= maxrRr,

then R denotes the maximal relative deviation of the cost from the r-th entry in the budget vector,
where the maximum is taken over 1≤ r≤ d.

Claim 1. For any ` > 1,

Pr[R> `]<
dε3

(`− 1)2
.

Proof. For any dimension 1≤ r≤ d, it holds that E[cr(D)] =
∑n

i=1E[ci,r ·Xi]≤Lr. Then,

V ar[cr(D)] =
n∑
i=1

V ar[ci,r ·Xi]≤
n∑
i=1

E[c2
i,r ·Xi]

≤
n∑
i=1

E[ci,r ·Xi] · ε3Lr = ε3Lr

n∑
i=1

E[ci,r ·Xi]≤ ε3L2
r.
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The first inequality holds since V ar[X]≤ E[X2], and the second inequality follows from the fact
that ci,r ≤ ε3Lr for 1 ≤ i ≤ n as all elements are small. Recall that, by the Chebyshev-Cantelli
inequality, for any t > 0 and a random variable Z,

Pr [Z −E[Z]≥ t]≤ V ar[Z]

V ar[Z] + t2
.

Thus, for any dimension 1≤ r≤ d,

Pr[Rr > `] = Pr[cr(D)> ` ·Lr]

≤ Pr [cr(D)−E[cr(D)]> (`− 1)Lr]

≤ ε3L2
r

(`− 1)2L2
r

≤ ε3

(`− 1)2
,

and by the union bound, we get that

Pr[R> `]≤ dε3

(`− 1)2
.

Define an indicator random variable N such that N = 1 if D is ε-nearly feasible, and N = 0
otherwise. Thus,we get that N = 0 iff R> (1 + ε), and by the previous claim we have

Claim 2. Pr[N = 0]≤ dε.

Claim 3. For any integer ` > 1, if R≤ ` then

f(D)≤ 2d` · O.

Proof Sketch: We note that the set D can be partitioned to 2d` sets D1, . . .D2d` such that each of
these sets is a feasible solution. Hence, f(Di) ≤ O. By Lemma 8, we have that f(D) ≤ f(D1) +
. . .+ f(D2d`)≤ 2d`O.5 �

Combining the above results we have

Claim 4. E[f(D′)]≥ (1−O(ε))E[f(D)].

Proof. By Claims 1, 2 and 3, we have that

E[f(D)] = E [f(D)| N = 1] ·Pr [N = 1] +E [f(D)| N = 0∧ (R< 2)] ·Pr [N = 0∧ (R< 2)]

+
∑
`≥1

E
[
f(D)| N = 0∧ (2` ≤R< 2`+1)

]
·Pr

[
N = 0∧ (2` ≤R< 2`+1)

]
≤ E[f(D)| N = 1] ·Pr [N = 1] + 4d2ε · O+ d2ε3 · O ·

∑
`≥1

2`+2

(2`−1)2
.

Since the last summation is a constant, and E[f(D)]≥O/5, we have that

E[F (D)]≤E[f(D)|N = 1]Pr [N = 1] + ε · c ·E[F (D)],

5 We give the detailed proof in Appendix B
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where c > 0 is some constant. It follows that

(1−O(ε))E[f(D)]≤E[f(D)|N = 1] ·Pr [N = 1].

Finally, since D′ =D if N = 1 and D′ = 0 otherwise, we have that

E[f(D′)] =E[f(D)|N = 1] ·Pr [N = 1]≥ (1−O(ε))E[f(D)].

By definition, D′ is always ε-nearly feasible. This completes the proof of the theorem.

2.3. Rounding instances with no big elements. In this section we present an (α−O(ε))-
approximation algorithm for d-SUB inputs with no big elements, given an α-approximate solution
for the continuous problem. Inputs with no big elements are easier to tackle. Indeed, any nearly
feasible solution for such input can be converted to a feasible one, with only a small harm to the
total value.

Lemma 1. Let S ⊆ U be an ε-nearly feasible solution with no big elements, then S can be
converted in polynomial time to a feasible solution S′ ⊆ S, such that f(S′)≥ (1−O(ε))f(S).

Proof. In fixing the solution S we handle each dimension separately. For any dimension 1≤ r≤ d, if
cr(S)≤Lr then no modification is needed; otherwise, cr(S)>Lr. Since all elements in S are small,
we can partition S into ` disjoint subsets S1, S2, . . . , S` such that εLr ≤ cr(Sj)< (ε+ ε3)Lr for any
1≤ j ≤ `, where `= Ω(ε−1). Since the function f is submodular, by Lemma 10, we have that f(S)≥∑`

j=1 fS\Sj (Sj). Hence, there exists a value j ∈ {1,2 . . . , `} such that fS\Sj (Sj)≤
f(S)

`
= f(S) ·O(ε)

(note that fS\Sj (Sj) may be negative). Now, cr(S \ Sj)≤ Lr, and f(S \ Sj)≥ (1−O(ε))f(S). We
repeat this step for all 1≤ r≤ d to obtain a feasible set S′ satisfying f(S′)≥ (1−O(ε))f(S).
Combined with Theorem 1, we have the following rounding algorithm.

Randomized Rounding Algorithm for d-SUB with No Big Elements
Input: A d-SUB instance, a feasible solution x̄ for the continuous problem, with F (x̄)≥O/5.

1. Define a random set D∼ x̄. Let D′ =D if D is ε-nearly feasible, and D′ = ∅ otherwise.
2. Convert D′ to a feasible set D′′ as in the proof of Lemma 1 and return D′′.
Clearly, the algorithm returns a feasible solution for the problem. By Theorem 1, E[f(D′)] ≥

(1−O(ε))F (x̄). By Lemma 1, E[f(D′′)]≥ (1−O(ε))F (x̄). Hence, we have

Lemma 2. For any instance of d-SUB with no big elements, any feasible solution x̄ for the
continuous problem with F (x̄)≥O/5 can be converted to a feasible solution for d-SUB in polynomial
running time with expected profit at least (1−O(ε)) ·F (x̄).

2.4. Approximation algorithm for d-SUB. Given an instance of d-SUB and a subset
T ⊆U , define another instance of d-SUB, to which we refer as the residual problem with respect to
T , with f remaining the objective function. The budget for the residual problem is L̄′ = L̄− c̄(T ),
and the universe U ′ consists of all elements i ∈U \T such that c̄(i)≤ ε3L̄′, and all elements in T .
Formally,

U ′ = T ∪
{
i∈U \T | c̄(i)≤ ε3L̄′

}
.

The new cost of element i is c′(i) = c(i) for any i ∈ U ′ \ T , and c′(i) = 0 for any i ∈ T . It follows
that there are no big elements in the residual problem. Let S be a feasible solution for the residual
problem with respect to T . Then c̄(S)≤ c̄′(S) + c̄(T )≤ L̄′+ c̄(T ) = L̄. Thus, any feasible solution
for the residual problem is also feasible for the original instance.
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Let OT denote the optimal solution for the residual problem with respect to T . Let O =
{i1, . . . , im} be an optimal solution for a d-SUB instance (we use O to denote both an optimal
sub-collection of elements and the optimal value). For `≥ 1, let K` = {i1, . . . , i`}, and assume that
the elements are ordered by their residual profits, i.e., i` = arg maxi∈O\K`−1

fK`−1
({i}).

Lemma 3. Consider T =Kh where h= dd · ε−4e, then OT ≥ (1− ε)O.

Proof. Define O′ =O∩U ′ (U ′ is the universe of the residual problem with respect to T ). Clearly,
the set O′ is a feasible solution for the residual problem with respect to T . We show a lower bound
for f(O′). The set R=O\O′ consists of elements in O\T that are big with respect to the residual
instance. The total cost of elements in R is bounded by L̄′ (since O is a feasible solution), and thus
|R| ≤ ε−3 · d.

Since T =Kh, for any j ∈O \T it holds that fT (j)≤ f(T )

|T | , and we get that

fT (R)≤
∑
j∈R

fT ({j})≤ ε−3 · df(T )

|T |
= εf(T )≤ εO.

Thus, fO′(R)≤ fT (R)≤ εO. Since

f(O) = f(O′) + fO′(R)≤ f(O′) + εf(O),

we have that f(O′)≥ (1− ε)f(O).
Consider the following algorithm.

Approximation Algorithm for d-SUB
Input: A d-SUB instance and an α-approximation algorithm A for the continuous problem with
respect to the function f .

1. For any T ⊆U such that |T | ≤ h= dd · ε−4e
(a) Use A to obtain an α-approximate solution x̄ for the continuous residual problem with

respect to T .
(b) Use the Randomized Rounding Algorithm of Section 2.3 to convert x̄ to a feasible solution

S for the residual problem.
2. Return the best solution found.

Lemma 4. The above approximation algorithm returns an (α−O(ε))-approximate solution for
d-SUB and uses a polynomial number of calls to algorithm A.

Proof. By Lemma 2, in each iteration the algorithm finds a feasible solution S for the residual
problem. Hence, the algorithm always returns a feasible solution for the given d-SUB instance.

Consider the iteration in which T = Kh. By Lemma 3, we have f(OT ) ≥ (1 − ε)f(O). Thus,
in this iteration we get a solution x̄ for the residual problem with F (x̄)≥ α(1− ε)f(O), and the
solution S obtained after the rounding satisfies f(S)≥ (1−O(ε))αf(O).

We summarize in the next result.

Theorem 2. Let f be a submodular function, and suppose there is a polynomial time α-
approximation algorithm for the continuous problem with respect to f . Then there is a polynomial
time randomized (α− ε)-approximation algorithm for d-SUB with respect to f , for any ε > 0.

Since there is a e−1-approximation algorithm for general instances of continuous d-SUB [11], we
have

Theorem 3. There is a polynomial time randomized (e−1 − ε)-approximation algorithm for
d-SUB, for any ε > 0.
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Since there is a (1 − e−1 − o(1)) approximation algorithm for d-SUB with monotone objective
function [26], we have

Theorem 4. There is a polynomial time randomized (1−e−1−ε)-approximation algorithm for
d-SUB with monotone objective function, for any ε > 0.

2.5. Derandomization. In this section we show how the algorithm of Section 2.3 can be
derandomized, assuming we have an oracle for F , the extension by expectation of f . For some
families of submodular functions, F can be directly evaluated; for a general function f , F can be
evaluated with high accuracy by sampling f , as in [26].

The main idea is to reduce the number of fractional entries in the fractional solution x̄, so that
the number of values a random set D∼ x̄ can get is polynomial in the input size (for a fixed value
of ε). Then, we go over all the possible values, and we are promised to obtain a solution of high
value.

A key tool in our derandomization is the pipage rounding technique of Ageev and Sviridenko
[1]. We give below a brief overview of the technique. For any element i∈U , define the unit vector
ī ∈ {0,1}U , in which īj = 0 for any j 6= i, and īi = 1. Given a fractional solution x̄ for the problem
and two elements i, j, such that xi and xj are both fractional, consider the vector function x̄i,j(δ) =
x̄+δī−δj̄ (Note that x̄i,j(δ) is equal to x̄ in all entries except i, j). Let δ+

x̄,i,j and δ−x̄,i,j (for short, δ+

and δ−) be the maximal and minimal value of δ for which x̄i,j(δ)∈ [0,1]U . In both x̄i,j(δ
+), x̄i,j(δ

−),
the entry of either i or j is integral.

Define F x̄
i,j(δ) = F (x̄i,j(δ)) over the domain [δ−, δ+]. The function F x̄

i,j is convex (see [4] for a
detailed proof), thus x̄′ = arg max{x̄i,j(δ+),x̄i,j(δ−)}F (x̄) has fewer fractional entries than x̄, and
F (x̄′)≥ F (x̄). By appropriate selection of i, j, such that x̄′ maintains feasibility (in some sense),
we can repeat the above step to gradually decrease the number of fractional entries. We use the
technique to prove the next result.

Lemma 5. Let x̄ ∈ [0,1]U be a solution having k or less fractional entries (i.e., |{i | 0< xi <
1}| ≤ k), and c̄(x̄) ≤ L̄ for some L̄. Then x̄ can be converted to a vector x̄′ with at most k′ =(

8 ln(2k)

ε

)d
= O(lnd(k)) fractional entries, such that c̄(x̄′) ≤ (1 + ε)L̄, and F (x̄′) ≥ F (x̄), in time

polynomial in k.

Proof. Let U ′ = {i | 0<xi < 1} be the set of all fractional entries. We define a new cost function
c̄′ over the elements in U .

c′r(i) =


cr(i) i /∈U ′

0 cr(i)≤
ε ·Lr
2k

ε ·Lr
2k

(1 + ε/2)j
ε ·Lr
2k

(1 + ε/2)j ≤ cr(i)<
ε ·Lr
2k

(1 + ε/2)j+1

Note that for any i∈U ′, c̄′(i)≤ c̄(i), and

cr(i)≤ (1 +
ε

2
)c′r(i) +

ε ·Lr
2k

,

for all 1≤ r≤ d. The number of different values c′r(i) can get for i∈U ′ is bounded by 8 ln(2k)

ε
(since

all elements are small, and ln(1 +x)≥ x/2). Hence, the number of different values c̄′(i) can get for

i∈U ′ is bounded by k′ =
(

8 ln(2k)

ε

)d
.

We start with x̄′ = x̄, and while there are i, j ∈ U ′ such that x′i and x′j are both fractional, and
c̄′(i) = c̄′(j), define δ+ = δ+

x̄′,i,j and δ− = δ−x̄′,i,j. Since i and j have the same cost (by c̄′), it holds that
c̄′ (x̄i,j(δ

+)) = c̄′ (x̄i,j(δ
−)) = c̄′(x̄). If F x̄

i,j(δ
+)≥ F (x̄), then set x̄′′ = x̄i,j(δ

+), otherwise x̄′′ = x̄i,j(δ
−).
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In both cases F (x̄′′)≥ F (x̄′) and c̄′(x̄′′) = c̄′(x̄′). Now, repeat this step with x̄′ = x̄′′. Since in each
iteration the number of fractional entries in x̄′ decreases, the process will terminate (after at most
k iterations) with a vector x̄′ such that F (x̄′) ≥ F (x̄), c̄′(x̄′) = c̄′(x̄) ≤ L̄, and there are no two
elements i, j ∈ U ′ with c̄′(i) = c̄′(j), where x′i and x′j are both fractional. Also, for any i /∈ U ′, the
entry x′i is integral (since xi was integral and the entry was not modified by the process). Thus,
the number of fractional entries in x̄′ is at most k′. Now, for any dimension 1≤ r≤ d,

cr(x̄
′) =

∑
i/∈U ′

x′icr(i) +
∑
i∈U ′

x′icr(i)

≤ (1 + ε/2) ·
∑
i/∈U ′

x′i · c′r(i) +
∑
i∈U ′

x′i

(
(1 + ε/2)c′r(i) +

ε ·Lr
2k

)
= (1 + ε/2) ·

∑
i∈U

x′i · c′r(i) +
∑
i∈U ′

xi
ε ·Lr
2k
≤ (1 + ε)Lr.

This completes the proof.
Using the above lemma, we can reduce the number of fractional entries in x̄ to a number that is

poly-logarithmic in k. However, the number of values D∼ x̄ remains super-polynomial. To reduce
further the number of fractional entries, we apply the above step twice, that is, we convert x̄ with
at most |U | fractional entries to x̄′ with at most k′ = c · lnd |U | entries, where c= c(ε, d) is a fixed
constant. Repeating the conversion, we obtain x̄′′, in which the number of fractional entries is
bounded by

k′′ = c · lnd(k′) = c · lnd(c · lnd |U |)≤ c′(ln ln |U |)d = o(ln |U |),

where c′ is some constant (for a constant ε and d).

Lemma 6. Given a vector L̄ and a constant ε > 0, let x̄∈ [0,1]U be a vector satisfying c̄(x̄)≤ L̄.
Then x̄ can be converted in time polynomial in |U | to a vector x̄′ with at most k′′ = O(log |U |)
fractional entries, such that c̄(x̄′)≤ (1 + ε)2L̄, and F (x̄′)≥ F (x̄),

The next result follows immediately from Lemma 1 (O is the value of an optimal solution for
d-SUB).

Lemma 7. Given x̄∈ [0,1]U such that x̄ is a feasible fractional solution with F (x̄)≥O/5 for a
d-SUB instance with no big elements, there exists a realization of the random variable D∼ x̄, such
that the solution D is nearly feasible, and F (D)≥ (1−O(ε))F (x̄).

Consider the following rounding algorithm.

Deterministic Rounding Algorithm for d-SUB with No Big Elements
Input: A d-SUB instance, a feasible solution x̄ for the continuous problem, with F (x̄)≥O/5.

1. Define x̄′ = (1 + ε)−2 · x̄ (note that F (x̄′)≥ (1 + ε)−2 ·F (x̄)).
2. Convert x̄′ to x̄′′ such that x̄′′ is fractionally feasible, the number of fractional entries in x̄′′ is

O(log |U |), and F (x̄)≥ (1 + ε)−2F (x̄′′), as in Lemma 6.
3. Enumerate over all possible realizations of D ∼ x̄′′. For each such realization, if the solution

D is ε-nearly feasible convert it to a feasible solution D′ (see Lemma 1). Return the solution with
maximum value among the feasible solutions found.

By Theorem 1, the algorithm returns a feasible solution of value at least (1−O(ε))F (x̄). Also, the
running time of the algorithm is polynomial when ε is a fixed constant. Replacing the randomized
rounding step in the algorithm of Section 2.4 with the above Deterministic Rounding Algorithm,
we get the following result.
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Theorem 5. Let f be a submodular function, and assume we have an oracle for F . If there is
a deterministic polynomial time α-approximation algorithm for the continuous problem with respect
to f , then there is a polynomial time deterministic (α−ε)-approximation algorithm for d-SUB with
respect to f , for any ε > 0.

We note that, given an oracle to F , both the algorithms of [26] and [11] for the continuous
problem are deterministic, thus we get the following.

Theorem 6. Given an oracle for F , there is a polynomial time deterministic (1− e−1 − ε)-
approximation algorithm for d-SUB with a monotone function, for any ε > 0.

Theorem 7. Given an oracle for F , there is a polynomial time deterministic (e−1 − ε)-
approximation algorithm for d-SUB for any ε > 0.

For the problem of maximum coverage with d knapsack constraints, i.e., d-SUB where the objec-
tive function is f = fG,p̄, for a given bipartite graph G= (L,R,E) and profits p̄, there is a deter-
ministic

(
1− (1− 1

α
)α− ε

)
-approximation for the continuous problem using linear programming

(see [1]), where α is the maximal degree of any vertex in R. This yields the following result.

Theorem 8. There is a polynomial time deterministic
(
1− (1− 1

α
)α− ε

)
-approximation algo-

rithm for maximum coverage with a constant number of knapsack constraints, where α is the
maximal degree of any vertex in R.6

3. Discussion. In this paper we established a strong relation between the continuous relax-
ation of d-SUB and the discrete problem. This relation is nearly optimal and suggests that future
research should focus on deriving better approximation ratios for the continuous problem.

The question whether better rounding exists remains open; namely, is it possible to obtain an
α−approximation algorithm for d-SUB, given an α< 1 approximation algorithm for the continuous
problem? And more specifically, is there a polynomial time (1− e−1)−approximation for d-SUB
with monotone objective function?

Finally, the running times of our algorithms are exponential in 1/ε, thus rendering them imprac-
tical. Yet, the hardness results for d-dimensional Knapsack (see, e.g., [15, 21, 18]), a special case
of d-SUB, hint that significant improvements over these running times may be impossible.

Appendix A: Basic properties of submodular functions. In this section we give some
simple properties of submodular functions. Recall that f : 2U → R is a submodular function if
f(S) + f(T )≥ f(S ∪T ) + f(T ∩S) for any S,T ⊆U . We define fT (S) = f(S ∪T )− f(T ).

Lemma 8. Let f : 2U →R be a submodular function with f(∅)≥ 0, and let S = S1∪S2∪ . . .∪Sk,
where Si are disjoint sets. Then

f(S)≤ f(S1) + f(S2) + . . . f(Sk).

Proof. By induction on k. For k= 2, since f is a submodular function, we have that

f(S1) + f(S2)≥ f(S1 ∪S2) + f(S1 ∩S2) = f(S) + f(∅),

and since f(∅)≥ 0, we get that f(S)≤ f(S1) + f(S2).
For k > 2, using the induction hypothesis twice, we have

f(S)≤ f(S1) + f(S2) + . . . f(Sk−2) + f(Sk−1 ∪Sk)≤ f(S1) + f(S2) + . . . f(Sk).

6 The vertices in R represent the elements in the instance, while the vertices in L represent subsets of the elements.
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Lemma 9. Let f : 2U → R+ be a submodular function, and let S,T1, T2 ⊆ U such that T1 ⊆ T2

and S ∩T2 = ∅. Then, fT2(S)≤ fT1(S).

Proof. Since f is submodular,

f(S ∪T1) + f(T2)≥ f(S ∪T1 ∪T2) + f((S ∪T1)∩T2) = f(S ∪T2) + f(T1).

Hence, fT2(S)≤ fT1(S).

Lemma 10. Let f : 2U →R+ be a submodular function, and let S = S1 ∪S2 ∪ . . .∪Sk, where Si
are disjoint sets. Then,

f(S)≥
k∑
i=1

fS\Si(Si).

Proof. We note that

f(S) =
k∑
i=1

fS1∪...∪Si−1
(Si).

By Lemma 9, for each i > 1, fS1∪...∪Si−1
(Si)≥ fS\Si(Si). Hence,

f(S)≥
k∑
i=1

fS\Si(Si).

Appendix B: Proof of Claim 3. We first show that D can be partitioned into 2d` sets

D1, . . .D2d`, such that each of the sets is a feasible solution. W.l.o.g assume that Lr = 1 for all

1≤ r≤ d,7 and define the max-cost of element i to be cm(i) = max1≤r≤d cr(i). Let D= {i1, . . . , it} be

the set of elements in non-decreasing order by their max-costs, i.e., cm(i1)≥ cm(i2)≥ . . .≥ cm(it).

Now, we set Dk = ∅ for all 1≤ k≤ 2`, and for any 1≤ j ≤ t we find a set Dk such that Dk ∪{ij} is

feasible; we then add ij to Dk. Assume towards contradiction that, for some ij, such Dk does not

exist. We say that a set Dk is half-full if cr(Dk) is greater than 1/2 in some dimension 1≤ r ≤ d.

We distinguish between two cases:

(i) If cm(ij)> 1/2 then, clearly, all the sets Dk are half-full, since none of these sets is empty,

and all elements placed in these sets have a dimension in which the cost is greater than 1/2 (as

the elements are ordered by their max-cost).

(ii) If cm(ij)≤ 1/2 then all the sets Dk are half-full, else it would be possible to add ij to one

of them.

Since all the sets Dk are half full, for some 1≤ r≤ d there are at least 2` sets in D1, . . .D2d` whose

costs are greater than 1/2 in dimension r. Assume these sets are D1, . . . ,D2`. Then
∑2`

k=1 cr(Dk)>

2` · 1/2 = `, and therefore cr(D)> `, in contradiction to R≤ `.
Thus, the process terminates successfully with the elements of D partitioned into 2d` sets,

D1, . . .D2d`, such that each of the sets is a feasible solution. Hence, f(Di)≤O, and by Lemma 8,

f(D)≤ f(D1) + . . .+ f(D2d`)≤ 2d`f(O).

7 This can be attained by a proper scaling of the element costs.
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[4] Calinescu, G., C. Chekuri, M. Pál, J. Vondrák. 2011. Maximizing a monotone submodular function
subject to a matroid constraint. SIAM Journal on Computing 40(6) 1740–1766.

[5] Chekuri, C., A. Kumar. 2004. Maximum coverage problem with group budget constraints and applica-
tions. APPROX-RANDOM . 72–83.

[6] Chekuri, C., J. Vondrák, R. Zenklusen. 2010. Dependent randomized rounding via exchange properties
of combinatorial structures. Proceedings of the 2010 IEEE 51st Annual Symposium on Foundations of
Computer Science. 575–584.

[7] Demaine, E. D., M. Zadimoghaddam. 2010. Scheduling to minimize power consumption using submodu-
lar functions. Proceedings of the 22nd ACM Symposium on Parallelism in Algorithms and Architectures.
21–29.

[8] Fadaei, S., MohammadAli S., MohammadAmin F. 2011. Maximizing submodular set functions subject
to different constraints: Combined algorithms. CoRR abs/1101.2973.

[9] Feige, U. 1998. A threshold of lnn for approximating set cover. J. ACM 45(4) 634–652.
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[27] Vondrák, J., C. Chekuri, R. Zenklusen. 2011. Submodular function maximization via the multilinear
relaxation and contention resolution schemes. Proceedings of the 43rd annual ACM symposium on
Theory of computing . New York, NY, USA, 783–792.


	Introduction.
	Our results.

	Maximizing submodular functions.
	Preliminaries.
	A probabilistic theorem.
	Rounding instances with no big elements.
	Approximation algorithm for d-SUB.
	Derandomization.

	Discussion.
	Basic properties of submodular functions.
	Proof of Claim 3.


