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Abstract

A rational and selfish environment may have an incentive to cheat the system it interacts with.
Cheating the system amounts to reporting a stream of inputs that is different from the one corre-
sponding to the real behavior of the environment. The systemmay cope with cheating by charging
penalties to cheats it detects. In this paper, we formalize this setting by means of weighted automata
and their resilience to selfish environments. Automata haveproven to be a successful formalism for
modeling the on-going interaction between a system and its environment. In particular, weighted fi-
nite automata (WFAs), which assign a cost to each input word, are useful in modeling an interaction
that has a quantitative outcome. Consider a WFAA over the alphabetΣ. At each moment in time,
the environment may cheatA by reporting a letter different from the one it actually generates. A
penalty functionη : Σ×Σ → IR≥0 maps each possible false-report to a penalty, charged whenever
the false-report is detected. A detection-probability function p : Σ×Σ → [0,1] gives the probability
of detecting each false-report. We say thatA is (η , p)-resilient to cheating if〈η , p〉 ensures that the
minimal expected cost of an input word is achieved with no cheating. Thus, a rational environment
has no incentive to cheatA .

We study the basic problems arising in the analysis of this setting. In particular, we consider the
problem of deciding whether a given WFAA is (η , p)-resilient with respect to a given penalty func-
tion η and a detection-probability functionp; and the problem of achieving resilience with minimum
resources, namely, givenA andη , finding the minimal (with respect to∑σ ,σ ′ η(σ ,σ ′) · p(σ ,σ ′))
detection-probability functionp, such thatA is (η , p)-resilient. While for general WFAs both prob-
lems are shown to be PSPACE-hard, we present polynomial-time algorithms for deterministic WFAs.

1 Introduction

The environment of modern systems often consists of other systems, havingobjectives of their own.

For example, an e-commerce applications interacts with sellers and buyers. Aseller may provide a

non-reliable description of the goods he is selling. Furthermore, sellers mayprovide false feedback and

twisted rating of their competitors. Buyers may commit to some transaction but not accomplish it, or

may provide a bid that is lower than the real value they are willing to pay, hopingto win even with it. As

another example, the environment of various service-providing systems are clients that wish to minimize

their payment. Clients’ payments may be based on their self-reports, which are usually screened but may

be false. In the same way, biased users may affect the quality of recommendation systems for various

products or services.

The above examples demonstrate the fact that environments have two types of behaviors: thetruthful

behavior – the one they would produce if they follow their protocol, and thereportedbehavior – the one

they actually output, hoping it would lead to a better outcome for them. While the design of systems

cannot assume that the environment would take its truthful behavior, we can assume that environments

arerational, in the sense they always take a behavior that maximizes their outcome.
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Mechanism designis a field in game theory and economics studying the design of games for rational

players. A game isincentive compatibleif no player has an incentive to deviate from his truthful behavior

[NR99, NRTV07]. The outcome of traditional games depend on the final position of the game. In

contrast, the systems we want to reason about maintain anon-going interactionwith their environment

[HP85], and reasoning about their behavior refer not to their final state (in fact, much of the research in the

area considers non-terminating systems, with no final state) but rather to thelanguageof computations

that they generate. In [FKL10], the authors studyrational synthesis, where the synthesized systems are

guaranteed to satisfy their specifications when they interact with rational environments (rather than with

hostile environments that do not have objectives other than to fail the system[PR89]). In this paper, we

suggest and study a possible model for reasoning about incentive capacity in the context of on-going

behaviors and quantitative properties, or formal power series. Reporting of trustworthy information is an

essential component also in service-providing systems.

Automata have proven to be a successful formalism for modeling on-going behaviors. Consider a

system with a setP of atomic propositions. Each assignment to the atomic propositions corresponds

to a letterσ in the alphabet 2P. Accordingly, a computation of the system, which is a sequence of

such assignments, is a word over the alphabet 2P, and a specification for the system is a language over

this alphabet, describing the desired properties of the system. By translatingspecifications to automata,

it is possible to reduce questions about systems and their specifications to questions about automata

[VW94]. For example, a systemSsatisfies a specificationψ if the language that contains exactly all the

computations generated byS is contained in the language of an automaton that accepts exactly all words

satisfyingψ .

A boolean language maps words to true or false. Aqualitative languagemaps words to values

from a richer domain [CCH+05, Hen07]. AWeighted automatonA on finite words (WFAs, for short)

[Eil74, SS78, Moh97, DKe09] defines a quantitative languageL : Σ∗ → IR≥0∪{∞}. Technically, each

transition ofA has a traversal cost, each state has an acceptance cost, and the cost of a run is the sum

of the costs of the transitions taken along the run plus the acceptance cost of its last state. The cost of a

word is then the minimum cost over all runs on it (note that the cost may be infinite).

A rational and selfish environment may have an incentive to cheat the WFA and report a word dif-

ferent from the one generated by its truthful behavior. The WFA may cope with cheating by charging

penalties to cheats it detects. Formally, at each moment in time, the environment maycheat the WFA by

reporting a letter different from the one its truthful behavior generates.A detection-probability function

p : Σ×Σ→ [0,1] gives the probability of detecting each false-report. Apenalty functionη : Σ×Σ→ IR≥0

gives the penalty charged whenever a particular false-report is detected. Thus, when the environment re-

ports that a letterσ is σ ′, then the WFA detects the cheating with probabilityp(σ ,σ ′), in which case the

environment is chargedη(σ ,σ ′). The expected cost of a wordw is then the minimum (over all wordsw′

of the same length asw) cost ofw′ plus the expected cost of reportingw to bew′. We say that a WFA

A is (η , p)-resilient to cheatingif 〈η , p〉 ensures that, for all words, the above minimal expected cost is

achieved in a cheat-free run. Thus, a dominant strategy for the environment is one that does not cheat.

We study the basic problems arising in the analysis of this setting. First, we observe that, by linearity

of expectation, a detection probability functionp and a penalty functionη can be combined to a single

expected-feefunctionθ = η ◦p; that is, for allσ ,σ ′ ∈Σ, we haveθ(σ ,σ ′) = η(σ ,σ ′) ·p(σ ,σ ′). Accord-

ingly, we can studyθ -resilience, which simplifies the probabilistic reasoning. Second, we make use of
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the fact it is possible to construct, given a WFAA and an expected-fee functionθ , a WFACheat(A ,θ)

that takes cheating into account and in which the cost of a word is its minimal possible cost (achieved

by a best cheating strategy). We show thatθ -resilience to cheating is a semantic property. Thus, given

a weighted languageL : Σ∗ → IR≥0∪{∞}, and a penalty functionθ , then either all WFAs forA are

θ -resilient to cheating, or none of them is. It follows that the natural problem of translating a given WFA

A that need not beθ -resilient to cheating to an equivalent WFA that isθ -resilient to cheating is not

interesting, as equivalent WFAs have the same resilience.

With these observations and constructions, we turn to study the practical problems of the setting.

From the environment’s point of view, we consider the problem of finding,given A , θ , and a word

w∈ Σ∗, a wordw′ such that the environment can minimize the cost ofw in A by reporting it to bew′.

We show that the problem can be reduced to the problem of finding a shortest path in a graph, which can

be solved in polynomial time [Dij59].

We then turn to study problems from the designer’s point of view. We start with the problem of

deciding whether a given WFAA is θ -resilient to cheating with respect to a given expected fee function

θ . We show that the problem is PSPACE-hard, but present a polynomial-time solution for the caseA is

deterministic. Our solution is based on dynamic programming, taking into accountwords of increasing

lengths. In particular, we show that cycles along which cheating is beneficial (and can therefore lead to

an unbounded incentive to cheat) can be detected after quadratically manyiterations.

A system with no limits on penalties and with unbounded resources can prevent cheating by fixing a

high expected-fee function. In practice, penalties may be limited by an external authority, and increasing

the probability of detecting cheats requires resources. Consider a WFAA and two expected-fee func-

tionsθ1 andθ2 such thatθ1 ≤ θ2 (that isθ1(σ ,σ ′) ≤ θ2(σ ,σ ′) for all σ ,σ ′ ∈ Σ). If A is θ1-resilient to

cheating, thenA is clearly alsoθ2-resilient to cheating, yetθ1 achieves resilience more efficiently. In

particular,θ1 can be obtained fromθ2 by reducing the probability of cheat detection, hence saving on re-

sources required for cheat detection. Recall thatθ = η ◦ p, for a penalty functionη and a detection prob-

ability function p. Assuming that the penalty functionη is determined by an external authority, and that

system’s resources are allocated to increase the detection probability, we consider the following problem

of minimal resources resilience: Given a WFAA and a penalty functionη , find a probability detection

function p such thatA is (η ◦ p)-resilient, and the detection budget, given by∑σ ,σ ′ η(σ ,σ ′)p(σ ,σ ′),

is minimal. Note that the probabilities in our objective function are weighted byη . This reflects the

fact that detecting a cheat with a high penalty tends to require high resources. Indeed, in practice, the

higher is the responsibility of a guard, the higher is his salary. We study the minimal resources resilience

problem and show that it is PSPACE-hard. As in resilience testing, the problem is easier in the deter-

ministic case, for which we present a polynomial-time solution, based on describing the problem as a

linear program. Essentially, the constraints of the linear program are induced by the restrictions used

in the testing algorithm, with the expected-fee values being variables. The samemethod can be used in

order to solve additional minimal-budget problems, with any desired linear objective function over the

detection-probability function or the penalty function.

We also consider two variants of the setting. In therising-penaltyvariant, the expected penalty for

cheating increases with the number of cheats. This variant reflects the realistic response of systems to

user’s false report: allocating more resources to cheat detection, or formally, increasing the detection

probability with each detected cheat. In thebounded cheatingvariant the number of times the environ-
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ment can cheat or the total budget it can invest in penalties is bounded.

2 Preliminaries

In this section we give a formal description of the model we consider, and present several observations

and constructions that will be used throughout the paper.

2.1 Weighted Finite Automaton

Given an alphabetΣ, a weighted language is a functionL : Σ∗ → IR≥0∪{∞} mapping each word inΣ∗

to a positive (possibly∞) cost. Aweighted finite automaton(WFA, for short) isA = 〈Σ,Q,∆,c,Q0,τ〉,
whereΣ is a finite input alphabet,Q is a finite set of states,∆ ⊆ Q× Σ×Q is a transition relation,

c : ∆ → IR≥0 is a cost function,Q0 ⊆ Q is a set of initial states, andτ : Q → IR≥0 ∪ {∞} is a final

cost function. A transitiond = 〈q,σ , p〉 ∈ ∆ (also written∆(q,σ , p)) can be taken when reading the

input letterσ ∈ Σ, and it causesA to move from stateq to statep with cost c(d). The transition

relation∆ induces a transition functionδ : Q×Σ → 2Q, where for a stateq∈ Q and a letterσ ∈ Σ, we

haveδ (q,σ) := {p : ∆(q,σ , p)}. We extendδ to sets of states, by lettingδ (S,a) :=
⋃

q∈Sδ (q,a), and

recursively to words inΣ∗, by lettingδ (q,ε) = q, andδ (q,u ·σ) := δ (δ (q,u),σ), for everyu∈ Σ∗ and

σ ∈ Σ.

Note that a WFAA may be nondeterministic in the sense that it may have many initial states, and

the transition function may lead to several successor states. If|Q0| = 1 and for every stateq ∈ Q and

letterσ ∈ Σ we have|δ (q,σ)| ≤ 1, thenA is adeterministicWFA (for short, DWFA).

For a wordw = w1 . . .wn ∈ Σ∗, a run ofA on w is a sequencer = r0, r1, . . . , rn ∈ Qn+1, where

r0 ∈ Q0 and for every 1≤ i ≤ n, we have∆(r i−1,wi , r i). The cost of a run is the sum of the costs of

the transitions that constitute the run, along with the final cost.1 Formally, letr = r0, r1, . . . , rn be a

run of A on w, and letd = d1 . . .dn ∈ ∆∗ be the corresponding sequence of transitions. The cost ofr is

cost(A , r) = ∑n
i=1c(di)+ τ(rn). For two indices 1≤ j1 < j2 ≤ n, we usecost(A , r, j1, j2) to denote the

cost of the sub-run leading fromq j1−1 to q j2. Thus,cost(A , r, j1, j2) = ∑ j2
i= j1

c(di) The cost ofw in A ,

denotedcost(A ,w), is the minimal cost over all runs ofA on w. Thus,cost(A ,w) = min{cost(A , r) :

r is an accepting run ofA onw}. Note that while WFAs do not have a set of acceptance states, runs that

reach statesq for which τ(q) = ∞ have cost∞, thus the functionτ can be viewed as a refinement of

the partition of the state space to accepting and rejecting states. The weighted language ofA , denoted

L(A ), maps each wordw∈ Σ∗ to cost(A ,w).

We assume that all statesq ∈ Q are reachable inA . We assume that all states, except maybe the

initial states are not empty, in the sense they map at least one word to a finite cost.Thus, for allq∈ Q

there isw ∈ Σ∗ such that the cost ofw in A with initial stateq is in IR. Finally, given two WFAsA

andA ′, we say thatA is cheaper thanA ′, denotedA � A ′, if for every wordw ∈ Σ∗, we have that

cost(A ,w) ≤ cost(A ′,w).

1In general, a WFA may be defined with respect to any semiring〈IK ,⊕,⊗,0,1〉. The cost of a run is then the semiring
product of the weights along it, and the cost of a word is the semiring sum over all runs on it. For our purposes, we focus
on weighted automata defined with respect to themin-sum semiring, 〈IR≥0∪{∞},min,+,∞,0〉 (sometimes called thetropical

semiring), as defined above.
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2.2 Input Cheating and Resilience of Automata

Recall that a WFA induces a weighted language that maps each word to a cost in IR≥0∪{∞}. Words

may cheat the automaton hoping to be mapped to a lower cost: When the automaton runs on a word

w = w1 . . .wn ∈ Σ∗, then in each position 1≤ i ≤ n, the word can cheat the automaton and report that the

letterwi is a different letterw′
i ∈ Σ. Cheating has a price, and the setting includes apenalty functionη :

Σ×Σ → IR≥0, satisfyingη(σ ,σ) = 0, and adetection-probability function p: Σ×Σ → [0,1] indicating

the probability of catching each specific cheat. Formally, wheneverσ is reported to beσ ′, the automaton

detects the cheating with probabilityp(σ ,σ ′), in which case it chargesη(σ ,σ ′). The expected penalty

for reportingσ to beσ ′ is thereforeη(σ ,σ ′) · p(σ ,σ ′).

For two wordsw = w1,w2, . . . ,wn andw′ = w′
1,w

′
2, . . . ,w

′
n, the expected cost of reportingw to be

w′ is ∑n
i=1 η(wi ,w′

i) · p(wi ,w′
i). Given a WFAA , a penalty functionη , a detection-probability func-

tion p, and two wordsw,w′ such that|w| = |w′|, the expected cost ofw in A whenw is reported to

be w′, denotedexpectedfakedcost(A ,η , p,w,w′), is cost(A ,w′) + ∑n
i=1 η(wi ,w′

i) · p(wi ,w′
i). Finally,

expectedbestcost(A ,η , p,w) is the lowest expected cost with whichw can be read byA (with or with-

out cheating). Thus,expectedbestcost(A ,η , p,w) = minw′:|w′|=|w|expectedfakedcost(A ,η , p,w,w′).

We refer to the wordw′ with which the minimum is achieved as thecheating patternfor w.

We say thatA is (η , p)-resilient to cheatingif it is not worthwhile to cheatA given the penalty

function η and the detection-probability functionp. Formally,A is (η , p)-resilient to cheating if for

every input wordw, it holds thatcost(A ,w) = expectedbestcost(A ,η , p,w).

Studying resilience of automata, it is convenient to consider a non-probabilistic setting in which

cheats are always detected. We use1̂ denote the detection-probability function satisfying1̂(σ ,σ ′) = 1

for all σ ,σ ′ ∈ Σ. As argued in Theorem 2.1 below, the probabilistic setting can be easily reduced to the

non-probabilistic one. The theorem follows easily from the linearity of expectation.

Theorem 2.1. Consider a WFAA , penalty functionη , and detection-probability function p. Letθ =

η ◦ p. Thus,θ : Σ×Σ → IR≥0 is such that for allσ ,σ ′ ∈ Σ, we have thatθ(σ ,σ ′) = η(σ ,σ ′) · p(σ ,σ ′).

Then, for every w∈ Σ∗, we have expectedbestcost(A ,η , p,w) = expectedbestcost(A ,θ , 1̂,w)

Thus, by considering the penalty functionθ = η ◦ p, we can reduce a probabilistic setting withη
and p to a non-probabilistic one. The cost of a word inA is still an expected one, but for simplic-

ity of notations, we use the termsfakedcost(A ,θ ,w,w′) andbestcost(A ,θ ,w), which are analogue

to expectedfakedcost(A ,η , p,w,w′) andexpectedbestcost(A ,η , p,w), and refer toθ -resilience to

cheating, rather than(η , p)-resilience.

Example 2.2. Consider the DWFAA in Figure 1. Every stateqi in the figure is labeled by its final cost.

For example,τ(q4) = 4, andτ(q3) = x, for somex ∈ IR. Every transition is labeled by the letter and

cost associated with it. For example,∆(q2,b,q5) andc(q2,b,q5) = 1. Assume that the penalty function

is uniform and for allσ ,σ ′ ∈ {a,b,c} with σ 6= σ ′, we haveθ(σ ,σ ′) = 2.

The DWFAA demonstrates two of the phenomenon that makes the analysis of cheating challenging.

First, testing an WFA forθ -resilience (even a DWFA, and even with a uniformθ ) may not be local. In

our example, if we takex= 0, then it is easy to see that for every three statesq,q′, andq′′, and two letters

σ andσ ′, it holds thatc(q,σ ,q′)+τ(q′)≤ c(q,σ ′,q′′)+τ(q′′)+θ(σ ,σ ′); that is, for all words of length

1 it is not beneficial to cheat, independent of the initial state. Clearly, this is anecessary condition for
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A to beθ -resilient: if there areq,q′,q′′,σ , andσ ′ that violate the condition, then the wordw ·σ for

which δ (q0,w) = q, hasfakedcost(A ,θ ,w ·σ ,w ·σ ′) < cost(A ,w ·σ), thusbestcost(A ,θ ,w ·σ) <

cost(A ,w ·σ) andw ·σ has an incentive to cheat and pretend to bew ·σ ′. This condition, however, is

not sufficient. For example,cost(A ′,aa) = 8 while fakedcost(A ,θ ,aa,bb) = 2+ 2θ(a,b) = 6. That

is, aahas an incentive to cheat and pretend to bebb.

Second,A demonstrates that cheating may be beneficial only for words that are unboundedly long.

To see this, note thatcost(A ,bck) = k+ 1 andcost(A ,ck+1) = x+ 1. Since cheating in the first letter

costs 2, we have thatbestcost(A ,θ ,bck) = min(k+1,x+3) andbestcost(A ,θ ,ck+1) = min(k+3,x+

1). Thus, the largerx is, the longer are the shortest input words that have an incentive to cheat.

q0,0

q1,0

q2,0

q3,x

q4,4

q5,0

a,2

b,1

c,1

a,3     c,1

a,0 
b,0 
c,0

a,2

b,1
a,4 
b,4 
c,4

a,4 
b,4 
c,4

b,4     c,4

q0,0

q1,0

q2,0

q3,x

q4,4

q5,0

a,2

b,1

c,1

a,3     c,1

a,0 
b,0 
c,0

a,2

b,1
a,4 
b,4 
c,4

a,4 
b,4 
c,4

b,4     c,4

Figure 1:The DWFAA .

A basic challenge in the setting of rational environments is to design systems in which the envi-

ronment has no incentive to cheat. In our setting, one could ask whether agiven WFA A that is not

θ -resilient to cheating can be modified to an equivalent WFAA ′ that isθ -resilient to cheating. Theo-

rem 2.3 below states that this is impossible.

Theorem 2.3. Resilience to cheating is a semantic property. That is, given a weighted language L: Σ∗ →

IR≥0∪{∞} and a penalty functionθ , either all WFAs forL are θ -resilient to cheating, or none of them

is θ -resilient to cheating.

Proof: Let A1 and A2 be two WFAs forL. Thus, for everyw ∈ Σ∗, we have thatcost(A1,w) =

cost(A2,w) = L(w). We show that ifA1 is not θ -resilient to cheating, then so isA2. Assume that

A1 is notθ -resilient to cheating, and letw andw′ be such that|w′| = |w| andfakedcost(A1,θ ,w,w′) <

cost(A1,w). Recall thatfakedcost(A1,θ ,w,w′) = cost(A1,w′) + θ(w,w′). By the equivalence ofA1

andA2, we have thatcost(A1,w) = cost(A2,w) andcost(A1,w′) = cost(A2,w′). Hence, sinceθ(w,w′)

is independent of the WFA, we also havefakedcost(A2,θ ,w,w′) < cost(A2,w), and we are done.

Note that Theorem 2.3 applies for both nondeterministic and deterministic WFAs.Thus, nondeter-

minism cannot help a WFA to cope with cheats. Note also that Theorem 2.3 considers a given penalty

functionθ and does not include the possibility of achieving resilience by modifying the penalty function,

possibly using the same budget. We will get back to this problem in Section 4.
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2.3 The Cheating-Allowed Automaton

Reasoning about a WFAA and its resilience to cheating, one has to take into account the infinitely many

possible cheating patterns thatA should be resilient too. In this section we show that these patterns can

be modeled by a single WFA obtained fromA by adding transitions that mimics cheating.

Theorem 2.4. Consider a WFAA and a penalty functionθ : Σ×Σ → IR≥0. There is a WFAA ′, with

the same state space asA , such that cost(A ′,w) = bestcost(A ,θ ,w).

Proof: Let A = 〈Σ,Q,∆,c,q0,τ〉. We defineA ′ = 〈Σ,Q,∆′,c′,q0,τ〉, where the transition relation∆′

and the cost functionc′ are defined as follows. For every two statesq,q′ ∈ Q, if there isσ ′ ∈ Σ such that

∆(q,σ ′,q′), then∆′(q,σ ,q′) for everyσ ∈ Σ, andc′(q,σ ,q′) = minσ ′:∆(q,σ ′,q′){c(q,σ ′,q′)+ θ(σ ,σ ′)}.

That is, if the setΣ′ of letters with whichA can move fromq to q′ is not empty, thenA ′ can move from

q to q′ with all letters – by reporting them to be some letter inΣ′. The cost of this transition for a letter

σ is calculated by taking the most beneficial replacement fromΣ′: the one that minimizes the sum of the

cost of the transition and the cost of cheating.

It is not hard to see the correspondence between the nondeterminism ofA ′ and the choices of cheat-

ing patterns. Formally, for every wordw, a cheating patternw′ for w induces a run ofA ′ on w whose

cost isfakedcost(A ,θ ,w,w′). Likewise, every run ofA ′ on w induces a wordw′ that can serve as a

cheating pattern forw. Hence, since the cost ofw in A ′ is the minimal cost of some run ofA ′ onw, we

have thatbestcost(A ,θ ,w) = cost(A ′,w), and we are done.

Given a WFAA and a penalty functionθ , we refer to the WFAA ′ constructed in Theorem 2.4 as

Cheat(A ,θ). For example, the WFA in Figure 2 isCheat(A ,θ), for the WFAA described in Figure 1

andθ(σ ,σ ′) = 2 for all σ ,σ ′ ∈ Σ with σ 6= σ ′.

q0,0

q1,0

q2,0

q3,x

q4,4

q5,0

a,2; b,4; c,4

a,3; b,1; c,3

a,3; b,3; c,1

a,3; b,3; c,1

a,0 
b,0 
c,0

a,4 
b,4 
c,4

a,4 
b,4 
c,4

a,6; b,4; c,4
a,2 
b,4 
c,4

a,3 
b,1 
c,3q0,0

q1,0

q2,0

q3,x

q4,4

q5,0

a,2; b,4; c,4

a,3; b,1; c,3

a,3; b,3; c,1

a,3; b,3; c,1

a,0 
b,0 
c,0

a,4 
b,4 
c,4

a,4 
b,4 
c,4

a,6; b,4; c,4
a,2 
b,4 
c,4

a,3 
b,1 
c,3

Figure 2:The WFAA ′ =Cheat(A ,θ), with uniformθ = 2.

Corollary 2.5. For every WFAA and penalty functionθ , we have thatA is θ -resilient to cheating iff

A � Cheat(A ,θ), that is, for every word w∈ Σ∗, we have that cost(A ,w) ≤ cost(Cheat(A ,θ),w).

Theorem 2.6. Given a WFAA , a penalty functionθ , and a word w∈ Σ∗, the problem of finding

bestcost(A ,θ ,w) and a cheating pattern for it, can be solved in polynomial time.
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Proof: Given a WFAA and a wordw∈ Σ∗, it is possible to findcost(A ,w) as follows (note that we

refer here to cost without cheating). IfA is deterministic, we traverse the single run ofA on w and

find its cost. IfA is nondeterministic, we first restrictA to runs along whichw is read, and then find

the cheapest such run. Formally, we define the productAw of A with an un-weighted automaton with

|w|+1 states whose language is{w}. The WFAAw describes exactly all the run ofA onw and it has no

cycles. We apply toAw a shortest-path algorithm [Dij59] and find the shortest path from an initial state

to a final state.

Now, givenA andθ , letA ′ beCheat(A ,θ). Then, for every wordw, we have thatbestcost(A ,θ ,w)=

cost(A ′,w), which can be calculated as described above. Also, the runr ′ of A ′ on w for which

cost(A ′,w) = cost(r ′,w) reveals the cheating pattern.

Limited Cheating and Rising Penalty Variants: In the above described setting, an input word can

cheat as many times as it wants. Also, the penalties are fixed throughout the interaction. It is easy

to modify the construction ofCheat(A ,θ) and, consequently, our results below, to account for variant

models. For example, by taking several copies ofCheat(A ,θ), it is possible to give a constant bound

on the number of allowed cheats (the states maintain the number of cheats detected so far) or constant

bound on the budget a word can use for cheating (the states maintain the totalcheating costs detected

so far). By taking several copies ofCheat(A ,θ) and modifying the costs in the different copies, it is

possible to letA increase the penalties when cheats are detected (this corresponds to increasing either

the detection-probability function or the penalties themselves; as indeed happens in practice when cheats

are detected).

3 Resilience Testing

In this section we study the problem of deciding, given a WFAA and a penalty functionθ , whetherA

is θ -resilient to cheating. Recall thatA is θ -resilient to cheating ifcost(A ,w) = bestcost(A ,θ ,w).

We show that the problem is PSPACE-hard for WFA but can be solved in polynomial time for DWFA.

3.1 Hardness Proof for WFA

Theorem 3.1. Consider a WFAA and a penalty functionθ . The problem of deciding whetherA is

θ -resilient is PSPACE-hard.

Proof: We do a reduction from the universality problem for NFAs, proven to be PSPACE-hard in

[RS59]. Given an NFAU , we construct a WFAAU such thatAU is 0-resilient (that is,θ(σ ,σ ′) = 0 for

all σ ,σ ′ ∈ Σ) iff U is universal. Note that an automaton is 0-resilient iff no input word has an incentive

to cheat even if cheating is free. The idea behind the construction is that words not inL(U ) would

induce words that have an incentive to cheatAU . Thus,U is universal iff no word has an incentive to

cheatAU , so even the 0 penalties suffice to ensure resilience. Formally, letU = 〈Σ,Q,∆,Q0,F〉, where

F ⊆ Q is a set of final states, and leta be some letter inΣ. We assume that|Σ| > 1. We defineAU to

go with the lettera to a copy ofU and to go with all lettersΣ\{a} to an accepting sink (see Figure 3).

Thus,AU = 〈Σ,Q∪{q0,qqcc},∆′,{q0},c,τ〉, where∆′ = ∆∪ ({q0}×{a}×Q0)∪ ({q0}× (Σ \ {a})×

{qacc})∪ ({qacc}×Σ×{qacc}).
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Figure 3:The WFAAU .

Also, for all 〈q,σ ,q′〉 ∈ ∆′, we havec(〈q,σ ,q′〉) = 0 and for allq∈ Q∪{q0,qqcc} we haveτ(q) = 0.

It is easy to see thatAU accepts (with cost 0) all words of the forma ·w, for w ∈ L(U ), or of the

form σ ·w, for σ 6= a andw ∈ Σ∗. Accordingly, if U is universal, thenAU accepts all words inΣ∗

with cost 0, and is therefore 0-resilient. Also, ifU is not universal, then there isw 6∈ L(U ) such that

cost(AU ,a·w) = ∞, while fakedcost(AU ,a·w,b·w) = θ(a,b), for anyb∈ Σ\{a}. Hence,AU is not

0-resilient, and we are done.

Many fundamental problems about WFAs are still open. Unlike standard (non-weighted) automata,

not all weighted automata can be determinized [Moh97]. In fact, even the problem of deciding whether

a given WFA has an equivalent DWFA is open, and so are problems that use determinization in their

solution, like deciding whetherA � A ′ for two WFAsA andA ′ [Kro94, CDH08]. We note that the

problem of deciding whetherA �A ′ is open even whenA is a DWFA – it is the nondeterminism inA ′

that makes the problem challenging. Thus, even for the caseA is deterministic, we cannot reduce the

problem of deciding whetherA � Cheat(A ,θ) to a problem whose solution is known. As we describe

below, we are still able to present a polynomial solution to the problem.

3.2 A Polynomial Algorithm for DWFA

We turn to consider the case whereA is deterministic. We show that in this case, the problem of deciding

whetherA is θ -resilient, for a given penalty functionθ , can be solved in polynomial time. LetA =

〈Σ,Q,∆,c,q0,τ〉 be a DWFA. Letn = |Q|. For a given penalty functionθ , let A ′ = 〈Σ,Q,∆′,c′,q0,τ〉
beCheat(A ,θ). We describe an algorithm for deciding whetherA � A ′. By Corollary 2.5, the latter

holds iff A is θ -resilient to cheating.

Our algorithm is similar to the algorithm for deciding whether a given DWFA is equivalent to a WFA

in which it is embodied [AKL09]. We define a sequence of functionsh0,h1, . . . : Q×Q→ IR∪{∞,−∞},

as follows. 2 Intuitively, hi(q,q′) indicates how much a word of length at mosti can gain if instead of

a run ofA that leads toq it takes a run ofA ′ that leads toq′. This difference does not include the

final costs ofq, andq′. Note that there may not be words of length at mosti along whichq andq′ are

reachable, in which casehi(q,q′) would be−∞. Also, it may be that for all wordsw of length at mosti,

the cheapest run inA ′ that readsw and leads toq′ costs more than the run ofA that readsw and leads

to q, in which casehi(q,q′) is negative.

2In the definition ofhi we use addition and subtraction on the elements of IR∪{∞,−∞}. For every finitex∈ IR, we have
∞−x = ∞, andx−∞ = −∞. Also ∞−∞ = 0.
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It is easy to see that if for somei ∈ IN andq,q′ ∈ Q, we have thathi(q,q′) > τ(q′)− τ(q), then there

is a word of length at mosti for which cost(A ,w) > cost(A ′,w), thusA 6� A ′. We show thathi can

be calculated efficiently, and that even though the sequence of functionsmay not reach a fixed-point, it

is possible to determine whetherA � A ′ after calculatinghi for i = 0, . . . ,O(n2). Intuitively, it follows

from the fact that not reaching a fixed-point afterO(n2) iterations points to cycles along which the gain

of A ′ with respect toA is unbounded.

We initializeh0(q0,q0) = 0 andh0(q,q′) = −∞ for all other pairs. Indeed,(q0,q0) is the only pair of

states to which an empty word might reach onA andA ′.

The calculation ofhi+1, for i ≥ 0, uses a functiongi+1 : Q×Q×Σ → IR∪ {∞,−∞}. Intuitively,

gi+1(q,q′,σ) indicates how much a word of length at mosti + 1 that ends with the letterσ can gain if

instead of a run ofA that leads toq it takes a run ofA ′ that leads toq′. Then,

gi+1(q,q′,σ) = max
p,p′:∆(p,σ ,q) ∧ ∆′(p′,σ ,q′)

(hi(p, p′)+c(p,σ ,q)−c′(p′,σ ,q′)). (1)

Thus, the calculation ofgi+1(q,q′,σ) considers all pairs〈p, p′〉 ∈ Q from which q and q′ can be

reached, respectively, whena is read. Sincegi+1(q,q′,σ) is the gain obtained by running inA ′ instead

of in A , we add tohi(p, p′) the cost of the transition〈p,σ ,q〉 in A and subtract the cost of the transition

〈p′,σ ,q′〉 in A ′. Now, for i ≥ 0, we have

hi+1(q,q′) = max{hi(q,q′),max
σ∈Σ

gi+1(q,q′,σ)}. (2)

For i ≥ 0 andq,q′ ∈ Q, we say that a wordw witnesses hi(q,q′) if |w| ≤ i and there is a run ofA ′ on

w that leads toq′ and traversing its transitions costshi(q,q′) less than traversing the transitions of the run

of A on w, which leads toq. Note that since the functionshi ignore the final costs, the above refers to

the cost of traversing the transitions along the runs, rather than the cost of the runs. Clearly, ifhi(q,q′) is

finite, then it has at least one witness.

We can now present the algorithm for deciding whetherA � A′:

1. For i = 0, . . . ,n2: Calculatehi ; if for someq,q′ ∈ Q, we havehi(q,q′) > τ(q′)− τ(q), then return

(A 6� A ′).

2. For i = n2 + 1, . . . ,2n2: Calculatehi ; if for someq,q′ ∈ Q, we havehi−1(q,q′) < hi(q,q′), then

return(A 6� A ′).

3. Return(A � A ′).

We prove the correctness of the algorithm.

Assume first that the algorithm returns thatA 6� A ′. We distinguish between two cases. If the

algorithm declares thatA 6�A ′ in Step 1, then the wordw that witnesseshi(q,q′) satisfiescost(A ′,w) <

cost(A ,w). If the algorithm declares thatA 6� A ′ in Step 2, letn2 < i ≤ 2n2 and q,q′ ∈ Qi+1 be

such thathi(q,q′) < hi+1(q,q′), and letw be the word of lengthi + 1 that witnesseshi+1(q,q′). Let

r = q0, . . . ,qi+1 be the single run ofA on w, and letr ′ = q′0, . . . ,q
′
i+1 be a run ofA ′ on w such that

cost(A ′,w) = cost(A ′, r ′). Thus,r ′ is the run ofA ′ along whichcost(A ′,w) is obtained. Note that

q= qi+1 andq′ = q′i+1. Sincei +1> n2, there must be two indices 0≤ j1 < j2 ≤ i +1 such thatq j1 = q j2

andq′j1 = q′j2. Let γ = cost(A , r, j1 +1, j2) andγ ′ = cost(A ′, r ′, j1 +1, j2).
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Consider the wordw′ = w1 · · ·w j1 ·w j2+1 · · ·wi+1. Thus,w′ is obtained fromw by removing the sub-

wordw j1+1 · · ·w j2 along whichA andA ′ cycle. The single run ofA onw′ isv= q0, . . . ,q j1,q j2+1, . . . ,qi+1.

Also, v′ = q′0, . . . ,q
′
j1,q

′
j2+1, . . . ,q

′
i+1 is a legal run ofA ′ on w′. Note thatcost(A ,v) = cost(A , r)− γ

andcost(A ′,v′) = cost(A ′, r ′)− γ ′. Sincehi(q,q′) < hi+1(q,q′), bothr andv end inq j1, bothr ′ andv′

end inq′j1, andw′ is of length at mosti (and may therefore serve as a witness tohi(q,q′)), it must be that

cost(A ,v)−cost(A ′,v′) < cost(A , r)−cost(A ′, r ′). Hence,γ − γ ′ > 0.

For j ≥ 1, letw j = w1 · · ·w j1 ·(w j1+1 · · ·w j2)
j . Thus,w j is obtained fromw by pumping the sub-word

w j1+1 · · ·w j2 for j times. Letα = cost(A , r,1, j1) and letα ′ be the cost of the cheapest run ofA ′ that

readsw1 · · ·w j1 and leads fromq0 to q′j1. Recall thatγ − γ ′ > 0, thusγ > γ ′. Hence, sinceα , α ′, τ(q j1),

andτ(q′j1) are all finite, there must bej ≥ 0 for which α + j · γ + τ(q j1) > α ′ + j · γ ′ + τ(q′j1). Since

cost(A ,w j) = α + j · γ + τ(q j1) andcost(A ′,w j) ≤ α + j · γ + τ(q j1), it follows that there isj ≥ 0 for

whichcost(A ,w j) > cost(A ′,w j), thusA 6� A ′, and we are done.

Assume now thatA 6�A ′. Letw= w1 · · ·wl be the shortest word for whichcost(A ,w)> cost(A ′,w).

Let r = q0, . . . ,ql be the single run ofA on w, and letr ′ = q′0, . . . ,q
′
l be a run ofA ′ on w such that

cost(A ′,w) = cost(A ′, r ′). Thus,r ′ is the run along whichcost(A ′,w) is achieved.

We distinguish between two cases. First, ifl ≤ n2, then, by the definition of the functionshi , we have

hl (ql ,q′l ) > τ(q′l )− τ(ql ), thus the algorithm detects thatA 6� A ′ in Step 1.

Second, ifl > n2, then there must be two indices 0≤ j1 < j2 ≤ n2 such thatq j1 = q j2 andq′j1 = q′j2.

Let γ = cost(A , r, j1 + 1, j2) and γ ′ = cost(A ′, r ′, j1 + 1, j2). Sincew is the shortest word for which

cost(A ,w) > cost(A ′,w), it must be thatγ > γ ′. Indeed, otherwise, the wordw′ = w1 · · ·w j1 ·w j2+1 · · ·wl ,

which is shorter thanw, also satisfiescost(A ,w′) > cost(A ′,w′).

Let y∈ Σ∗ be a word of length at mostn2 that witnesseshn2(q j1,q
′
j1). Thus,|y| = t, for t ≤ n2, and

there are runss= s0, . . . ,st ands′ = s′0, . . . ,s
′
t of A andA ′, respectively, ony, such thatst = q j1, s′t = q′j1,

andcost(A ,s,1, t)−cost(A ′,s′,1, t) = hn2(q j1,q
′
j1).

Let j = j2− j1. Consider the wordw′ = y ·w j1+1 · · ·w j2. The wordw′ is of lengtht + j. The single

run ofA onw′ is v= s0,s1, . . . ,st ,q j1+1, . . . ,q j2. Also,v′ = s′0,s
′
1, . . . ,s

′
t ,q

′
j1+1, . . . ,q

′
j2 is a legal run ofA ′

onw′. Note thatcost(A ,v,1, t + j) = cost(A ,s,1, t)+γ andcost(A ′,v′,1, t + j) = cost(A ′,s′,1, t)+γ ′.
Also, sincew′ may serve as a witness toht+ j(q j1,q

′
j2), it must be thatht+ j(q j1,q

′
j2) ≥ cost(A ,v,1, t +

j)− cost(A ′,v′,1, t + j). Sincey witnessesht(q j1,q
′
j1) andγ − γ ′ > 0, it follows thatht+ j(q j1,q

′
j1) >

ht(q j1,q
′
j1). Sinceht(q j1,q

′
j1) = hn2(q j1,q

′
j1), we conclude thatht+ j(q j1,q

′
j1) > hn2(q j1,q

′
j1).

We claim thatn2 < t + j ≤ 2n2. Sincet, j ≤ n2, then clearlyt + j ≤ 2n2. To see thatn2 < t + j, assume

by way of contradiction thatt + j ≤ n2. Then, the wordw′ is of length at mostn2, and it can serve as

witness tohn2(q j1,q
′
j1). Sinceht+ j(q j1,q

′
j1) > hn2(q j1,q

′
j1), this contradicts the fact thaty witnesses

hn2(q j1,q
′
j1). Now, sinceht+ j(q j1,q

′
j1) > hn2(q j1,q

′
j1), we conclude that there is an iterationn2 ≤ i ≤ 2n2

such thathi(q j1,q
′
j1) < hi+1(q j1,q

′
j1), and the algorithm declares thatA 6� A ′ is Step 2.

The functionh0 can be calculated in polynomial time, and so is the functionhi+1, givenhi . Hence,

since we need only a polynomial number of iterations, we can conclude with thefollowing.

Theorem 3.2. Consider a DWFAA and a penalty functionθ . The problem of deciding whetherA is

θ -resilient can be solved in polynomial time.
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4 Achieving Resilience with Minimum Resources

A system with no limit on penalties and with unbounded resources can prevent cheating by fixing a

high penalty function. In practice, penalties may be limited by an external authority, and increasing the

probability of detecting cheats requires resources. In this section we study the problem of minimizing

the resources required in order to guarantee resilience.

We assume that the penalty functionη is determined by an external authority and thatA is (η , 1̂)-

resilient. Thus, the environment has no incentive to cheat if cheating is always detected.3 Given a WFA

A , and a penalty functionη , our goal is to find a detection-probability functionp, such thatA is (η , p)-

resilient to cheating and the budgetB = ∑σ ,σ ′∈Σ η(σ ,σ ′) · p(σ ,σ ′) is minimal. The rationale behind our

goal is that the system can control the probability of catching cheats. In practice, detection probability

can be increased by investing in “guards”, each responsible for a specific possible cheat. The budget we

have is the total payment for the guards. The payment to the guard responsible for detectingσ being

reported asσ ′ is independent of the actual number of timesσ is being reported asσ ′. On the other

hand, the payment is proportional to the penaltyη(σ ,σ ′) charged whenever the guard detects the cheat.

Indeed, in practice, detecting a cheat with a high penalty tends to require high resources: knowing that his

success leads to a high revenue, a guard would require high salary. Wesay thatA can achieve resilience

with budget Bif there areη and p such that the budget ofη and p is B, andA is (η , p)-resilient to

cheating.

As explained in Section 2.2, we can consider an equivalent non-probabilistic setting in which all

cheats are always detected and are charged according to the penalty functionθ = η ◦ p. In the rest of this

section we therefore consider the problem of deciding, given a WFAA and a budgetB∈ IR≥0, whether

A can achieve resilience with budgetB, as well as the optimization problem of finding the minimal

budget with whichA can achieve resilience. A solution for the above problems induces the expected-

fee functionθ . Having θ in hand, we use the given penalty functionη to fix p(σ ,σ ′) = θ(σ ,σ ′)
η(σ ,σ ′) . In

order to guaranteed that our solution is feasible, that is, the probability function is over the rage[0,1],

our algorithm only considers solutions in which for allσ ,σ ′ ∈ Σ we haveη(σ ,σ ′) ≥ θ(σ ,σ ′).

4.1 Hardness Proof for WFA

We first show that, as in the resilience testing problem, the nondeterministic settingis much more diffi-

cult.

Theorem 4.1. Consider a WFAA . Given a budget B, the problem of deciding whether there is a penalty

functionθ with budget B such thatA is θ -resilient to cheating is PSPACE-hard.

Proof: As in the proof of Theorem 3.1, we do a reduction from the universality problem for NFAs.

Given an NFAU , we construct a WFAAU such that there is a penalty functionθ with budget 0 with

whichAU is θ -resilient to cheating iffU is universal.

The construction is similar to the one described in the proof of Theorem 3.1, except that now the

transition fromq0 to qacc is labeled by both all the letters inΣ \ {a}, with cost 0, and the lettera, with

cost 1. It is easy to see that the cost inAU of words of the forma ·w is 0 for w ∈ L(A ) and is 1 for

3Note that this is a reasonable assumption as otherwise, the authority providing the penalty function encourages cheating.
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w 6∈ L(A ). Also, for σ 6= a, the cost of words of the formσ ·w is 0, regardless of the membership ofw

in L(A ). Accordingly, if U is universal, thenAU accepts all words inΣ∗ with cost 0, and is therefore

0-resilient, in which a budget 0 suffices to ensure resilience. Also, ifU is not universal, then there is

w 6∈ L(U ) such thatcost(AU ,a·w) = 1, while fakedcost(AU ,a·w,b·w) = θ(a,b), for anyb∈ Σ\{a}.

Hence, in order to ensureθ -resilience, a penalty functionθ must satisfyθ(a,b) ≥ 1, thus the budget

required toθ is at least|Σ|−1, and we are done.

4.2 A Polynomial Algorithm for DWFA

We turn to consider deterministic WFAs. Note that if we define an order≤ between penalty functions,

whereθ1 ≤ θ2 iff θ1(σ ,σ ′)≤ θ2(σ ,σ ′) for all σ ,σ ′ ∈ Σ, then the penalty functions that ensure resilience

are not linearly ordered. This last observation hints that the problem of finding a minimal sufficient

penalty with respect to whichA is resilient cannot be solved in a straightforward way, as it cannot be

based on a search in a linearly ordered domain. Still, as we show below, when A is a deterministic

DFA, it is possible to describe the resilience requirements as a set of linear inequality constraints. Since

the optimization objective can be also described as a linear function, it is possible to determine the

minimal sufficient penalty function using linear programming (LP). LP is a mathematical tool suitable

for determining an optimal solution for a linear objective function defined over a set of variables, while

obeying a set of requirements represented as linear equations [Chv83].

We describe the problem as a linear programming optimization problem with a polynomial number

of variables and constraints. Given a WFAA and a penalty functionη , the algorithm returns a new

penalty functionθ such that:

1. ∑σ ,σ ′∈Σ θ(σ ,σ ′) is minimal.

2. For allσ ,σ ′ ∈ Σ, we have 0≤ θ(σ ,σ ′)
η(σ ,σ ′) ≤ 1.

3. A is θ -resilient.

Note that the second property assures thatθ = η ◦ p, for some probability functionp satisfying

p(σ ,σ ′) ∈ [0,1].

The first property defines the objective function of the LP. The LP constraints assure the second and

third properties. Specifically, for the third property, the LP constraints assure that the algorithm described

in Section 3.2, for testing whetherA is θ -resilient, would returnA � Cheat(A ,θ). Accordingly, the

variables we use are the following:

• For all σ ,σ ′ ∈ Σ, the variableθσ ,σ ′ maintains the penalty functionθ(σ ,σ ′).

• For 0≤ i ≤ 2n2 andq,q′ ∈ Q, the variablehi,q,q′ maintainshi(q,q′).

• For 0≤ i ≤ 2n2, q,q′ ∈ Q, andσ ∈ Σ, the variablegi,q,q′,σ maintainsgi(q,q′,σ).

The objective function is min∑σ ,σ ′ θσ ,σ ′ . Since the penalty function is non-negative, we have|Σ|2

constraintsθσ ,σ ′ ≥ 0 for all σ ,σ ′ ∈ Σ. In addition,θσ ,σ = 0 for all σ ∈ Σ. Also, in order to guarantee

that the detection-probability function is feasible, we have, for allσ ,σ ′ ∈ Σ, the constraintθσ ,σ ′ ≤ ησ ,σ ′ .
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The additional constraints follow the structure of the algorithm presented in Section 3.2. Fork =

1, . . . ,n2, thek-th set of constraints assures that no word of length at mostk should benefit from cheating.

For k = n2 + 1, . . . ,2n2, thek-th set of constraints assures that no cycle that can lead to unlimited gain

exists. Each such set consists of a polynomial number of constraints and introduces a polynomial number

of variables. Specifically, variables of typehi,q,q′ bound the gain of words of length at mosti, and

variables of typegi,q,q′,σ bound this gain for words of length at mosti ending withσ . While the variables

hi,q,q′ ,gi,q,q′,σ are defined for every 0≤ i ≤ 2n2, q,q′ ∈ Q, andσ ∈ Σ, in practice, many of these variables

are not constrained, as it might be that no word of length at mosti can reach stateq in A andq′ in A ′.

We first describe the constraints considering words of length 1, and thenthe constraints for general

k. Note that the first set of constraints can be viewed as a special case ofthe general set, however, since

we know thatq0 is the only possible state preceding states reachable by a single letter, the presentation of

this set is simpler. We also note that in order to clarify the intuition behind each constraint, the constraints

are not necessarily presented in the canonical form of an LP (that is, with all variables in the left hand

side and all constants in the right hand side).

In order to assure that words of length 1 will not cheat, we have a variable h1,q,q′ for all q,q′ ∈ Q,

and a variableg1,q,q′,σ for all q,q′ ∈ Q,σ ∈ Σ. To reflect Equation (1) in the algorithm described in

Section 3.2, we have, for allσ ′ ∈ Σ such that∆(q0,σ ,q) and ∆(q0,σ ′,q′), the constraintg1,q,q′,σ ≥

c(q0,σ ,q)− c(q0,σ ′,q′)− θ(σ ,σ ′). To reflect Equation (2), we have, for allq,q′ ∈ Q andσ ∈ Σ for

which g1,q,q′,σ is bounded, the constrainth1,q,q′ ≥ g1,q,q′,σ . Sinceh0(q0,q0) = 0 and the sequence of

functionsh0,h1, . . . is non-decreasing, we also have, for the stateq0, the constrainth1(q0,q0)≥ 0. Finally,

to reflect the comparison done in Step 1 of the resilience-testing algorithm, forall q,q′ ∈ Q we have the

constrainth1,q,q′ ≤ τ(q′)− τ(q).

For example, the first set of constraints defined for the DWFAA in Figure 4 is as follows.

g1,q1,q2,a ≥ 2−3−θa,b h1(q1,q2) ≥ g1,q1,q2,a

g1,q1,q2,a ≥ 2−8−θa,c h1(q1,q2) ≤ 5−10

g1,q2,q1,b ≥ 3−2−θb,a h1(q2,q1) ≥ g1,q2,q1,b

g1,q2,q1,c ≥ 8−2−θc,a h1(q2,q1) ≥ g1,q2,q1,c

g1,q2,q2,b ≥ 3−8−θb,c h1(q2,q1) ≤ 10−5

g1,q2,q2,c ≥ 8−3−θc,b h1(q2,q2) ≥ g1,q2,q2,c

h1(q0,q0) ≥ 0 h1(q2,q2) ≥ g1,q2,q2,b

h1(q2,q2) ≤ 5−5

In order to assure that words of lengthi do not cheat, we have a variablehi,q,q′ for all q,q′ ∈ Q, and a

variablegi,q,q′,σ for all q,q′ ∈ Q andσ ∈ Σ. To reflect Equation (1), we have, for allp, p′ ∈ Q andσ ′ ∈ Σ
such that∆(p,σ ,q) and∆(p′,σ ′,q′), the constraint

gi,q,q′,σ ≥ hi−1,p,p′ +c(p,σ ,q)−c(p′,σ ′
,q′)−θ(σ ,σ ′).

To reflect Equation (2), we have, for allq,q′ ∈ Q andσ ∈ Σ for which gi,q,q′,σ is bounded, the constraint

hi,q,q′ ≥ gi,q,q′,σ . Also, for all q,q′ ∈ Q we have the constraintshi,q,q′ ≥ hi−1,q,q′ . Finally, for all q,q′ ∈ Q
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Figure 4:The DWFAA .

we have the constrainthi,q,q′ ≤ τ(q′)− τ(q). This last type of constraints, considering the final costs,

corresponds to the comparison done in Step 1 of the resilience-testing algorithm.

For example, for the DWFA presented in Figure 4, the following are the constraints relevant to words

of length 2 that without cheating must get toq2 but consider getting toq1. Since words of length 1 can

only reachq1 or q2 and∆(q1,c,q2) = ∆(q2,c,q2) = /0, there are no constraints involving the variable

g2,q2,q1,c.

g2,q2,q1,a ≥ h1,q2,q2 +6−2−θ(a,c) g2,q2,q1,b ≥ h1,q2,q1 +7−4−θ(b,a)

g2,q2,q1,a ≥ h1,q2,q1 +6−4−θ(a,a) g2,q2,q1,b ≥ h1,q2,q1 +7−2−θ(b,b)

g2,q2,q1,a ≥ h1,q2,q1 +6−2−θ(a,b) g2,q2,q1,b ≥ h1,q2,q1 +7−1−θ(b,c)

g2,q2,q1,a ≥ h1,q2,q1 +6−1−θ(a,c) g2,q2,q2,b ≥ h1,q2,q1 +7−2−θ(b,c)

h2,q2,q1 ≥ g2,q2,q1,a h2,q2,q1 ≥ h1,q2,q1

h2,q2,q1 ≥ g2,q2,q1,b h2,q2,q1 ≤ 10−5

For k = n2 + 1. . .2k2, the set of variables and the set of constraints are very similar to these sets

for k ≤ n2. The only difference is the last type of constraints for everyq,q′ ∈ Q. Instead ofhi,q,q′ ≤

τ(q′)− τ(q), we havehi,q,q′ ≤ hi−1,q,q′ . These constraints corresponds to the detection of gain increasing

cycles, done in step 2 of the resilience testing algorithm.

The correctness of the following claim follows from the construction of the constraints.

Claim 4.2. The set of penalty functions in all feasible solutions to the LP is identical to the setof penalty

functions for which the resilience algorithm provides a positive answer.

In particular, the feasible solution for which∑σ ,σ ′ θσ ,σ ′ is minimized, corresponds to a penalty func-

tion with minimal total budget. The total number of constraints and variables in ourLP is polynomial

in |Q| and|Σ|. Therefore, it is possible to find an optimal solution for it [Kha79, Chv83]in polynomial

time. This implies a polynomial algorithm for the minimum cost resilience problem of a DWFA.

Acknowledgment We thank Pnina and Yosef Bernholtz for many helpful discussions.
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