
Hierarchical Network Formation Games∗

Orna Kupferman † Tami Tamir ‡

January 20, 2017

Abstract

Classical network-formation games (NFGs) are played on directed graphs, and are used in
network design and analysis. Edges in the network are associated with costs and players have
reachability objectives, which they try to fulfill at a minimal cost. When several players use the
same edge, they share its cost. The theoretical and practical aspects of NFGs have been extensively
studied and are well understood. All studies of NFGs, however, consider an explicit representation
of the network. In practice, networks are often built in a hierarchical manner. Technically, some
of the vertices in the network are boxes, associated with nested sub-networks, where a sub-network
may be “called” by several boxes in the network. This makes hierarchical networks exponentially
more succinct than traditional “flat” networks.

We introduce hierarchical network formation games (HNFGs) and study theoretical and prac-
tical aspects of the hierarchical setting. Different applications call for different cost-sharing mech-
anisms, which define how edge-formation costs are shared by their users. Indeed, in some appli-
cations, cost sharing should refer to the flat expansion of the network and in some it should take
into account the hierarchical structure of the network. We study properties of HNFGs like stability
and equilibrium inefficiency in the different mechanisms. We also study computational aspects
of HNFGs, where the principal question is whether their exponential succinctness with respect to
NFGs leads to an exponential increase in the complexity of reasoning about them. This question is
analogous to research done in the formal-verification community about the ability to model-check
hierarchical systems in their succinct presentation. We show that the picture is diverse and depends
on the mechanism applied.

1 Introduction

Network design is a fundamental well-studied problem. A game-theoretic approach to the analysis
of network design has become especially relevant with the emergence of the Internet, where different
users share resources like software or communication channels [21, 1, 19, 8]. In network-formation
games (NFGs, for short) [8], the network is modeled by a weighted directed graph. The weight of an
edge indicates the cost of activating the transition it models, which is independent of the number of
∗The research leading to this paper has received funding from the European Research Council under the European Union’s

Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement no 278410, and from The Israel Science Foundation
(grant no 1229/10). An extended abstract of this paper appeared in the Proceedings of the 23rd International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS), April 2017.
†School of Engineering and Computer Science, Hebrew University, Jerusalem, Israel.
‡School of Computer Science, The Interdisciplinary Center, Herzliya, Israel.

1

times the edge is used. Players have reachability objectives, each given by a source and a target vertex.
A strategy for a player is a path from the source to the target. Under the common fair cost-sharing
mechanism, the cost of an edge is shared evenly by the players that use it.

Since the players attempt to minimize their own costs, rather than to optimize some global objective,
they selfishly select a path instead of being assigned one by a central authority. The focus in game
theory is on the stable outcomes of a given setting. The most prominent stability concept is that of
a Nash equilibrium (NE): a profile (vector of strategies, one for each player) such that no player can
decrease his cost by unilaterally deviating from his current strategy; that is, assuming that the strategies
of the other players do not change.1 A best-response (BR) for a player is a move that results in a profile
with a reduced cost for the player. Thus, an NE can be viewed as a profile in which no player has a BR
move. A social optimum (SO) is a profile that minimizes the total cost of the edges used by all players;
thus the one obtained when the players obey some centralized authority.

Research on NFGs involves conceptual questions about them, like the existence of an NE or an analysis
of equilibrium inefficiency. It is well known that decentralized decision-making may lead to solutions
that are sub-optimal from the point of view of society as a whole. The inefficiency incurred due to
selfish behavior is quantified according to the price of stability (PoS) [8], namely the ratio between the
costs of the best NE and the SO, and the price of anarchy (PoA) [26, 33], namely the ratio between
the costs of the worst NE and the SO. Research also concerns computational problems, like finding
an SO, BR moves, and an NE. In NFGs, the picture is well understood. Every NFG has an NE; In
a k-player game, the PoS and PoA are O(log k) and k, respectively; the problem of finding an SO is
NP-complete, a single best-response move can be found in polynomial time; and the problem of finding
an NE is PLS-complete [24, 37, 32].

To the best of our knowledge, all studies of NFGs consider an explicit representation of the network.
That is, the network is given by means of its underlying weighted graph, and reasoning about it involves
algorithms applied to explicitly-represented graphs. In practice, however, networks are often structured
and given in some succinct presentation. This calls for a fresh examination of NFGs. First, the source
for the succinctness may require new and more suitable cost-sharing mechanisms. In addition, the
computational aspects of NFGs should be examined in terms of their succinct presentation.

In this paper we introduce and study hierarchical network formation games (HNFGs). Essentially,
HNFGs are NFGs in which some of the vertices in the network may “call” (that is, be substituted by)
nested sub-networks. Since a sub-network may be called by several vertices in the network, an HNFG
may be exponentially more succinct than the NFG obtained by its “flattening”.

Before we describe HNFGs and the challenges they bring with them in more detail, let us survey briefly
the analogous research in model checking, where the study of succinct presentations and symbolic al-
gorithms is a major research area. In model checking, we verify that a system meets its specification
by translating the system to a finite state machine (FSM), translating the specification to a temporal-
logic formula, and checking that the FSM satisfies the formula [16]. The translation of a high-level
description of a system to an FSM involves a blow-up, and the size of the FSM is typically the com-
putational bottleneck in model-checking algorithms. There are several sources of the blow-up that the
translation of systems to FSMs involves. One is the ability of components in the system to work in

1Throughout this paper, we consider pure strategies, as is the case for the vast literature on cost-sharing games. Unlike
mixed strategies, pure strategies may not be random, or drawn from a distribution.

2

parallel and communicate with each other, possibly using variables [20, 18, 34]. Another source has
to do with the ability of a high-level description of a system to reuse the same component in different
contexts (say, by calling a procedure). Researchers have studied hierarchical FSMs, in which some
of the states of the FSM are boxes, which correspond to nested FSMs. The naive approach to model
checking such systems is to “flatten” them by repeatedly substituting references to sub-structures by
copies of these sub-structures. This, however, results in a flat system that is exponential in the nesting
depth of the hierarchical system. In [6], it is shown that for LTL model checking, one can avoid this
blow-up altogether, whereas for CTL, one can trade it for an exponential blow-up in the (often much
smaller) size of the formula and the maximal number of exits of sub-structures. Likewise, it is shown in
[7] that hierarchical parity games can be solved in PSPACE, also leading to a PSPACE model checking
algorithm for the µ-calculus. In other words, while hierarchical FSMs are exponentially more succinct
than flat FSMs [5], in many cases the complexity of the model-checking problem is not exponentially
higher in the hierarchical setting. Thus, there is clear motivation not to flatten the FSM before model
checking it. The hierarchical setting is appealing in the context of network design, as many networks
are structured in a hierarchical manner. 2 In addition, understanding which types of problems can be
solved in the hierarchical setting is of general interest to the formal-verification community.

The fact that box-vertices may be “called” by several vertices in the network calls for new cost-sharing
mechanisms – ones that take the hierarchy into account when defining how edge-formation costs are
shared by their users. We suggest three different cost-sharing mechanisms. In the flat mechanism,
the hierarchical structure is flattened and the costs refer to the resulting network. The flat mechanism
corresponds to the traditional setting of NFGs, and is suitable in applications in which the traversal of
edges corresponds to the utilization of consumable resources. For example, when the network models
a hardware design that is built from a library of components, or when the network models a commu-
nication system in which local routing is performed by local networks that are composed into a global
one. In the hierarchical approach, the cost of forming an edge in a sub-network is charged only once,
regardless of the number of times it is used in different calls. The hierarchical approach is suitable in
applications in which the traversal of edges corresponds to the utilization of non-consumable resources.
Thus, repeated calls to a resource do not require its re-formation. For example, when the network mod-
els a software design that is built from a library of procedures and functions. The emergence of the
OOP programming paradigm makes the hierarchical approach common [29, 27]. In this approach, we
study both a uniform hierarchical (UH) cost-sharing mechanism, where all players that use an edge
share its cost evenly, and a proportional hierarchical (PH) cost-sharing mechanism, where the cost of
an edge is shared among its users in proportion to their demand. Indeed, each player may use each
sub-network a different number of times. In the PH mechanism, this number influences the cost of
using the sub-network. Note that the PH mechanism is related to a resource-allocation game in which
the strategies of the players are multisets of resources [9, 10].

After introducing HNFGs and the possible cost-sharing mechanisms, we study stability and equilibrium
inefficiency in the different mechanisms. In particular, we show that while in HNFGs with the flat or
UH mechanism, an NE always exists, this is not the case for the PH mechanism. Likewise, while the

2We note that different types of hierarchies, mainly ones that refer to a partition of the network to levels, have already
been studied. In particular, in [36, 35], it is shown how these levels induce a hierarchical game (also termed “hierarchical
NFG”, but with the adjective “hierarchical” describing the game rather than the network), leading to a clever decomposition
of the game. Our notion of hierarchy is different and refers to nesting of sub-networks. In particular, in earlier work there is
no notion of a flat extension, which is the key issue in our games.

3

PoS and PoA in HNFGs with the flat or UH mechanisms agree with these known for NFGs, HNFGs
with the PH mechanism are less stable, and we prove that their PoS may be the number of players.
Then, we study the computational aspects of HNFG. The main questions that we answer refer to the
ability to reason about an HNFG without first flattening it, which may involve an exponential blow-
up. This question is analogous to research done in the formal-verification community about the ability
to model-check hierarchical FSMs in their succinct presentation. We observe that the challenge of
efficient reasoning about HNFGs starts already with a symbolic presentation of strategies. For the
UH and PH mechanisms, we prove that it is sound to restrict attention to homogeneous strategies.
Intuitively, in such strategies, repeated sub-objectives defined with respect to nested sub-networks are
fulfilled in the same way. We show that homogeneous strategies can be represented and operated
efficiently. This implies that the problems of finding an SO or a BR move in HNFGs is in NP, and we
show matching lower bounds, already for very restricted classes of HNFGs. For the flat mechanism,
we focus on HNFGs in which each sub-network has a constant number of exit vertices. We show that
for such HNFGs, the problems of finding an SO or an NE are not more complex than these in the
non-hierarchical setting.

Many variants of cost-sharing games have been studied. A generalization of the network-formation
game of [8] in which players are weighted and a player’s share in an edge cost is proportional to its
weight is considered in [17], where it is shown that the weighted game does not necessarily have a
pure NE. In congestion games, sharing of a resource increases its cost. Studied variants of congestion
games include settings in which players’ payments depend on the resource they choose to use, the set of
players using this resource, or both [31, 30, 28, 23]. In some of these variants a pure NE is guaranteed
to exist while in others it is not. The three different ideas behind cost sharing, namely flat, UH, and PH,
can be combined with other games.

We view this work as another chain in an exciting transfer of concepts and ideas between the areas
of game theory and formal verification: logics for specifying multi-agent systems [3, 14], studies of
equilibria in games related to synthesis and repair problems [13, 12, 22, 2], an extension of NFGs to ob-
jectives that are richer than reachability [9], studies of non-zero-sum games in formal methods [15, 11],
augmentation of the problem of synthesis from component libraries with costs [4], and more.

2 Preliminaries

2.1 Hierarchical Graphs

A weighted graph is G = 〈V,E, c〉, where V is a set of vertices, E ⊆ V × V is a set of directed edges,
and c : E → IR≥0 is a cost function that maps each edge to a non-negative cost. When c(e) = 0, we
say that e is free. A path in G is a sequence ρ = e1, e2, . . . , em of adjacent edges in G. For two vertices
s, t ∈ V , we say that ρ is an (s, t)-path if it connects s to t.

A hierarchical graph consists of a vector of subgraphs that together compose a graph. A subgraph may
be used several times in the composition. Technically, this is done via special vertices, called boxes,
that are substituted in the composition by other subgraphs. In order to ensure a finite nesting depth of
substitutions, the subgraphs are indexed, and a box of a graph can only call (that is, be substituted by)
subgraphs with a strictly bigger index. Formally, a hierarchical graph is a tuple G = 〈G1, . . . , Gn〉,

4

where each subgraph is Gj = 〈Vj , Bj , inj ,Exit j , τj , Ej〉, where Vj and Bj are sets of vertices and
boxes, respectively. We assume that Bn = ∅ and that V1, . . . , Vn, B1, . . . , Bn−1 are pairwise disjoint.
Then, inj ∈ Vj is an entry vertex for Gj , and Exit j ⊆ Vj is a set of exit vertices for Gj . The
function τj : Bj → {j + 1, . . . , n} maps each box of Gj to an index greater than j. If τj(b) = `,
we say that the box b is substituted by G` in Gj . Finally, Ej is an edge relation. Each edge in Ej
is a pair 〈u, v〉 with source u and target v. The source u is either a vertex of Gj , or a pair (b, x),
where b ∈ Bj and x ∈ Exitτj(b). That is, u may be a box b coupled with an exit vertex of the
subgraph by which b is about to be substituted. The target v is a vertex or a box of Gj . Formally,
Ej ⊆ (Vj ∪ (

⋃
b∈Bj ({b} × Exitτj(b))))× (Vj ∪Bj). The depth of G is the number n of subgraphs. A

weighted hierarchical graph is a hierarchical graph with cost functions cj : Ej → IR≥0 that map the
edges in each subgraph to costs.

A subgraph without boxes is flat. Every hierarchical graph can be transformed to an equivalent flat
graph, referred to as its flat expansion, by recursively substituting each box by a copy of the corre-
sponding subgraph. Formally, given a hierarchical graph G, we inductively define for each subgraph
Gj its flat expansion Gfj = 〈V f

j , inj ,Exit j , E
f
j 〉, where V f

j = Vj ∪ (
⋃
b∈Bj ({b} × V

f
τj(b)

)). Note that
different boxes in Gj can be substituted by the same subgraph. This is why we preserve b as an identi-
fier when we substitute it by the flat expansion of τj(b). The edge relation Efj includes the following
edges, which we partition into four classes.

• [Top]: 〈u, v〉 such that u, v ∈ Vj and 〈u, v〉 ∈ Ej ,
• [Call]: 〈u, (b, v)〉 such that u ∈ Vj , v = inτj(b), and 〈u, b〉 ∈ Ej ,
• [Return]: 〈(b, u), v〉 such that u ∈ Exitτj(b), v ∈ Vj , and 〈(b, u), v〉 ∈ Ej , and

• [Internal]: 〈(b, u), (b, v)〉 such that u, v ∈ V f
τj(b)

and 〈u, v〉 ∈ Efτj(b).

Note that each edge in Efj originates from an edge 〈u, v〉 ∈ Ej′ for some j′ ≥ j. Indeed, in top,
call, and return edges, we have that j′ = j, and in internal edges, we have that j′ is the subgraph
from which the edge 〈u, v〉 originates (recursively) in Efτj(b). Formally, let E =

⋃
1≤j≤nEj and

Ef =
⋃

1≤j≤nE
f
j . Then, the function orig : Ef → E is defined recursively as follows. For a top edge

e = 〈u, v〉 or a return edge e = 〈(b, u), v〉, we have orig(e) = e. For a call edge e = 〈u, (b, v)〉, we
have orig(e) = 〈u, b〉. Then, for an internal edge e = 〈(b, u), (b, v)〉, we have orig(e) = orig(〈u, v〉).
The graph Gf1 is the flat expansion of G, and we denote it by Gf . For an edge e in Gf , we refer to
orig(e) as the origin of e in Gf . Consider a path ρ = e1, e2, . . . , em in Gf . For a set π ⊆ E of edges
in G, we say that ρ is covered by π if for all 1 ≤ i ≤ m, we have orig(ei) ∈ π.

A multiset over a set E of elements is a generalization of a subset of E in which each element may
appear more than once. For a multiset π over E and an element e ∈ E, we use π(e) to denote the
number of times e appears in π. For two multisets π1 and π2, the union of π1 and π2 is the multiset
π1∪π2 in which for all e ∈ E, we have (π1∪π2)(e) = π1(e)+π2(e). Then, the difference between p1

and p2 is the multiset π1 \ π2 in which for all e ∈ E, we have (π1 \ π2)(e) = max{0, π1(e)− π2(e)}.
A multiset π is given as a set of its members, with each member e followed by a binary (or decimal)
encoding of π(e). Accordingly, we define the length of π by

∑
e∈π log π(e). Consider a path ρ =

e1, e2, . . . , em in Gf and a multiset π over E; that is, π is a multiset of edges in G. We say that ρ is
covered by π if for every edge e ∈ E, the number of edges in ρ whose origin is e is at most the number

5

of times that e appears in π. Formally, for every e ∈ E, we have that |{1 ≤ i ≤ m : orig(ei) = e}| ≤
π(e).

Example 2.1 Figure 1 presents a weighted hierarchical graph G = 〈G1, G2〉 with τ1(b1) = τ1(b2) =
G2. The flat expansion Gf of G appears on the right.

s

v

t1 t2

b1

b2

G1

u3 u4

u3 u4

2

2

4

3

7

1

22

u1

u2

u3 u4

6

4 5

G2

s

v

t1 t2

b1, u1

b1, u2

b1, u3 b1, u4

b2, u1

b2, u2

b2, u3 b2, u4

2

6

4 5

6

4 5

2

4

6

7

1

22

Figure 1: An example of a hierarchical graph and its flat expansion.

The path ρ = 〈s, (b1, u1)〉, 〈(b1, u1), (b1, u2)〉, 〈(b1, u2), (b1, u4)〉, 〈(b1, u4), (b2, u1)〉, 〈(b2, u1),(b2, u2)〉,
〈(b2, u2), (b2, u4)〉, 〈(b2, u4), t2〉 in Gf is covered by the set π = {〈s, b1〉, 〈(b1, u4), b2〉, 〈(b2, u4), t2〉,
〈u1, u2〉, 〈u2, u4〉}. Note that each of the edges 〈s, b1〉, 〈(b1, u4), b2〉, and 〈(b2, u4), t2〉 in π serve as
the origin of a single edge in ρ, whereas each of the edges 〈u1, u2〉 and 〈u2, u4〉 serve as the origin of
two edges in ρ. Accordingly, ρ is covered by the multiset π = {〈s, b1〉1, 〈(b1, u4), b2〉1, 〈(b2, u4), t2〉1,
〈u1, u2〉2, 〈u2, u4〉2}.
We define the size of a hierarchical graph G by |G| = ∑n

j=1(|Vj |+ |Bj |). The size of its flat expansion,

denoted |Gf |, is the number of vertices in |Gf |. Note that |Gf | =
∑n

j=1(|Vj | +
∑

b∈Bj |G
f
τj(b)
|). It

is not hard to see that the hierarchical setting is exponentially more succinct. Formally, we have the
following.

Proposition 2.1 Flattening a hierarchical graph may involve an exponential blow up. That is, Gf may
be exponentially larger than G. In fact, the exponential blow-up applies already to the diameter of the
graph, and applies even when all the subgraphs in G have a single exit vertex.

Proof: Consider a hierarchical graph G in which Gn has 2 vertices and every subgraph Gj , for

6

j ∈ [n− 1], has an entry vertex branching into two boxes, both calling Gi+1, and then reaching an exit
vertex. We have that G is of size 4n− 2 whereas Gf is of size O(2n). Moreover, if the calls to the two
boxes are sequential, the blow-up is in the diameter of Gf .

2.2 Network Formation Games

For an integer k ∈ IN, let [k] = {1, . . . , k}. A network-formation game (NFG, for short) [8] is
N = 〈k,G, 〈si, ti〉i∈[k]〉, where k is the number of players, G = 〈V,E, c〉 is a weighted graph, and for
each i ∈ [k], the pair 〈si, ti〉 ∈ V × V describes the objective of Player i, namely forming a path from
his source vertex si to his target vertex ti.

A strategy of a player i ∈ [k] is a path from si to ti. A profile in N is a tuple P = 〈π1, . . . , πk〉 of
strategies for the players. That is, for 1 ≤ i ≤ k, we have that πi is a path from si to ti. Consider
a profile P = 〈π1, . . . , πk〉. Recall that c maps each edge to a cost, intuitively standing for the cost
of its formation. The players aim at fulfilling their objective with minimal cost. Since all costs are
positive, we can restrict attention to strategies in which the paths chosen by the players are simple.
Then, we can also ignore the order between the edges in the paths and assume that for all i ∈ [k], we
have that πi ⊆ E is a set of edges that compose a path from si to ti. For an edge e ∈ E, we denote
by loadP (e), the number of players that use the edge e in P . Formally, loadP (e) = |{i : e ∈ πi}|.
Players that share an edge also share its formation cost. Thus, the cost of Player i in the profile P is
cost i(P) =

∑
e∈πi

c(e)
loadP (e) . Finally, the cost of a profile P is the sum of the costs of all the players in

P . Thus, cost(P) =
∑

i∈[k] cost i(P). Note that cost(P) is equal to the sum of the costs of edges that
participate in some strategy in P .

For a profile P and a strategy π of player i ∈ [k], let [P−i, π] denote the profile obtained from P
by replacing the strategy for Player i by π. For two strategies πi and π′i of Player i, we say that πi
is dominated by π′i, if for every profile P in which Player i uses πi, we have that cost i([P−i, π′i]) ≤
cost i(P). A best response (BR) for Player i is a strategy πi that minimizes cost i([P−i, πi]). A profile
P is said to be a (pure) Nash equilibrium (NE) if none of the players in [k] can benefit from an unilateral
deviation from his strategy in P to another strategy. In other words, for every player i and every strategy
π that Player i can deviate to from his current strategy in P , it holds that cost i([P−i, π]) ≥ cost i(P).
The set of NEs of the game N is denoted by Γ(N).

A social optimum (SO) of a game N is a profile that attains the lowest cost. We denote by OPT (N)
the cost of an SO profile; i.e., OPT (N) = minP cost(P). A social optimum may be achieved by a
centralized authority and need not be a NE. The following parameters measure the inefficiency caused
as a result of the selfish interests of the players. First, the price of stability (PoS) [8] of an NFG
N is the ratio between the minimal cost of an NE and the cost of a social optimum of N . That is,
PoS(N) = minP∈Γ(N) cost(P)/OPT (N). Then, the price of anarchy (PoA) [33] of N is the ratio
between the maximal cost of an NE and the cost of the social optimum of N . That is, PoA(N) =
maxP∈Γ(N) cost(P)/OPT (N).

7

2.3 Hierarchical Network Formation Games

An hierarchical network-formation game (HNFG, for short) N = 〈k,G, 〈si, ti〉i∈[k]〉, is similar to an
NFG, except that the underlying graph is hierarchical. The objective of Player i is to form a path from
si to ti in the flat expansion of G. We assume that the objectives of all players are in {in1}×Exit1, for
the entry vertex in1 and the set Exit1 of exit vertices in the “outer” subgraph G1. While this strictly
restricts the class of games, it is very easy to extend our results to a setting in which the objectives
involve arbitrary vertices in G. Essentially, our algorithms proceed from the innermost sub-graph Gn
to G1. The assumption above saves a special treatment for G1.

We introduce three cost-sharing mechanisms for HNFGs. Consider an HNFGN = 〈k,G, 〈si, ti〉i∈[k]〉.
Let G = 〈G1, . . . , Gn〉, with Gj = 〈Vj , Bj , inj ,Exit j , τj , Ej , cj〉. Also, let N f = 〈k,Gf , 〈si, ti〉i∈[k]〉
be the NFG obtained from N by replacing G by its flat expansion.

2.3.1 The flat cost-sharing mechanism

In the flat cost-sharing mechanism (Flat-mechanism, for short), the strategies and the costs of the play-
ers are defined with respect toN f . Thus, the only affect of the hierarchical structure in the flat approach
is its succinctness. The flat mechanism fits settings in which the traversal of edges corresponds to the
formation of physical channels or the utilization of consumable resources. For example, when the
network models a hardware design that should be built from a library of components.

Consider, for example, the graph G = 〈G1, G2〉 depicted in Figure 1. LetN = 〈2,G, {〈s, t1〉, 〈s, t2〉}〉.
Then, the game is played on the flat graph Gf on the right. Consider the profile P = 〈π1, π2〉 in which
Player 1 takes the path that traverses both boxes and in both calls to G2 takes the u3 exit, and Player 2
takes the path that traverses both boxes and in both calls to G2 takes the u4 exit. Then, the players
share the edges 〈s, (b1, u1)〉, 〈(b1, u1), (b1, u2)〉, and 〈(b2, u1), (b2, u2)〉. Accordingly, cost1(P) =
2
2 + 6

2 + 4 + 4 + 2 + 6
2 + 4 + 3 = 24 and cost2(P) = 2

2 + 6
2 + 5 + 7 + 6

2 + 5 + 1 = 25. This is not a
stable profile, as Player 1 can reduce his cost to 22 by deviating to the edge 〈s, t1〉. Also, Player 2 can
join Player 1 in the first box and reduce his cost to 2

2 + 6
2 + 4

2 + 4
2 + 2

2 + 6
2 + 5 + 1 = 18. Note that this

deviation also reduces the cost of Player 1, to 19.

2.3.2 The uniform hierarchical cost-sharing mechanism

Recall that E =
⋃

1≤j≤nEj . In the uniform hierarchical (UH) cost-sharing mechanism, a strategy for
Player i is a set πi ⊆ E of edges in the hierarchical graph G such that πi covers a path from si to ti
in Gf . Players’ costs in a profile P = 〈π1, . . . , πk〉 are defined as follows: For a subgraph Gj and an
edge e ∈ Ej , we define the load on e, denoted loadP (e), as the number of strategies in P that include
e. Thus, loadP (e) = |{i ∈ [k] : e ∈ πi}|. The cost of an edge is shared evenly by the players that use
it. Thus, the cost of Player i in P is cost i(P) =

∑
e∈πi

c(e)
loadP (e) .

The UH mechanism corresponds to settings in which the traversal of edges corresponds to the utilization
of non-consumable resources. Thus, repeated calls to the resource do not require its re-formation. For
example, when the network models a software design that should be build from a library of components.

8

In the uniform sharing rule, we care for the binary information of whether or not a player has used the
resource, and we do not distinguish between light and heavy users of the resource.

Consider again the HNFG N , now with the UH mechanism. Let P = 〈π1, π2〉 be the profile in
which Player 1 takes the path that traverses both boxes and in both calls to G2 takes the u3 exit, and
Player 2 takes the path that traverses both boxes and in both calls to G2 takes the u4 exit. Thus,
π1 = {〈s, b1〉, 〈(b1, u3), v〉, 〈v, b2〉, 〈(b2, u3), t1〉, 〈u1, u2〉, 〈u2, u3〉} and π2 = {〈s, b1〉, 〈(b1, u4), b2〉,
〈(b2, u4), t2〉, 〈u1, u2〉, 〈u2, u4〉}. The load on 〈s, b1〉 and 〈u1, u2〉 is 2, and the load on all other edges
used in P is 1. Accordingly, cost1(P) = 2

2 + 4 + 2 + 3 + 6
2 + 4 = 17 and cost2(P) = 2

2 + 7 +
1 + 6

2 + 5 = 17. Now, Player 1 has no incentive to deviate to 〈s, t1〉. However, P is not a NE as
Player 2 can join Player 1 in the first box and reduce his cost. Indeed, let π′2 = {〈s, b1〉, 〈(b1, u3), v〉,
〈v, b2〉, 〈(b2, u4), t2〉, 〈u1, u2〉, 〈u2, u3〉, 〈u2, u4〉}. Then, in the profile P ′ = 〈π1, π

′
2〉, we have that

cost2(P ′) = 2
2 + 4

2 + 2
2 + 1 + 6

2 + 4
2 + 5 = 15. Note that Player 1 also benefits from this move, as

cost1(P ′) = 12. This example demonstrates that, even-though players have incentive to use an edge
multiple times, the optimal strategy of a player in a subgraph Gi need not induce a single path from ini
to some vertex in Exit i. Rather, it is sometimes beneficial for the players to pay for accessing several
exit vertices.

2.3.3 The proportional hierarchical cost-sharing mechanism

Like the UH mechanism, the proportional hierarchical (PH) cost-sharing mechanism corresponds to
settings in which the traversal of edges corresponds to the utilization of a non-consumable resources.
Here, however, we care for the number of times such resources are used by the players, as their costs
are proportional to the use. In the PH mechanism, a strategy for Player i is a multiset πi of edges
in the hierarchical graph G such that πi covers a path from si to ti in Gf . Players’ costs in a profile
P = 〈π1, . . . , πk〉 are defined as follows: For a subgraph Gj and an edge e ∈ Ej , we define the
weighted load on e, denoted wloadP (e), as the number of times e appears in all the strategies in P .
Recall that for a multiset π, we deonte by π(e) the number of times an element e appears in π. Then,
wloadP (e) =

∑
i∈[k] πi(e), and the cost of Player i in P is cost i(P) =

∑
e∈πi

πi(e)·c(e)
wloadP (e) .

Back to our exampleN , the profile P with the PH mechanism consists of the strategies π1 = {〈s, b1〉1,
〈u1, u2〉2, 〈u2, u3〉2, 〈(b1, u3), v〉1, 〈v, b2〉1, 〈(b2, u3), t1〉1} and π2 = {〈s, b1〉1, 〈u1, u2〉2, 〈u2, u4〉2,
〈(b1, u4), b2〉1, 〈(b2, u4), t2〉1}. Now, wloadP (〈s, b1〉) = wloadP (〈u2, u3〉) = wloadP (〈u2, u4〉) = 2,
wloadP (〈u1, u2〉) = 4, and the weighted load on all other edges used in P is 1. Accordingly, ev-
ery traversal of 〈u1, u2〉 costs 6

4 , and similarly for the other edges. Hence, cost1(P) = 2
2 + 2 · 6

4 +
4 + 4 + 2 + 3 = 17 and cost2(P) = 2

2 + 2 · 6
4 + 5 + 7 + 1 = 17. While Player 1 has no in-

centive to deviate to 〈s, t〉, Player 2 can reduce his cost by deviating to a path that joins Player 1 in
b1. Indeed, let π′2 = {〈s, b1〉1, 〈u1, u2〉2, 〈u2, u3〉1, 〈(b1, u3), v〉1, 〈v, b2〉1, 〈u2, u4〉1, 〈(b2, u4), t2〉1}.
Then, in the profile P ′ = 〈π1, π

′
2〉, we have that wloadP (〈v1, b1〉) = 2, wloadP (〈u1, u2〉) = 4,

wloadP (〈u2, u3〉) = 3, wloadP (〈(b1, u3), v〉) = 2, wloadP (〈v, b2〉) = 2, and the weighted load on all
other edges used in P is 1. Accordingly, cost2(P ′) = 2

2 + 2 · 6
4 + 4

3 + 4
2 + 2

2 + 5 + 1 = 141
3 . Note that

Player 1 also benefits from this move, as cost1(P ′) = 2
2 + 2 · 6

4 + 2 · 4
3 + 4

2 + 2
2 + 3 = 122

3 .

9

3 Stability Existence and Inefficiency

In this section we study the stability of HNFGs. We show that the cost-sharing mechanism is crucial
in this analysis. Specifically, HNFGs with the Flat or the UH mechanism have an NE and their PoA
and PoS are identical to the bounds known for NFGs. On the other hand, we show that even simple
instances of HNFGs with the PH mechanism need not have an NE, and there are games for which the
only stable profile is k times more expensive than the SO.

We start with the stability existence question. The proof of the following theorem is based on converting
every HNFG with the flat or the UH mechanism to an equivalent resource-allocation game, which is
known to have an NE. As we show, the relation with resource-allocation games also induces potential
functions for HNFGs in the flat and UH mechanisms.

Theorem 3.1 Every HNFG with the flat or UH mechanism has an NE.

Proof: An HNFGN with the flat mechanism is identical by definition to an NFG played onN f . For
the UH mechanism we refer to the generalization of NFGs to resource-allocation cost-sharing games,
in which players’ strategies are subset of a given set E of resources. Unlike NFGs, in which a strategy
for player i is a set of resources (that is, edges) that form an (si, ti)-path, in general resource-allocation
games, the strategies are arbitrary subsets of E.

LetN = 〈k,G, 〈si, ti〉i∈[k]〉. By taking the set of edges in G to be the set of resources, and defining the
set of strategies for Player i as the set of subsets of edges that cover a path from si to ti, we can reduce
N with the UH mechanism to a resource allocation game. Note that listing all these strategies may be
exponential in |G|. Here however, we only care about NE existence and not about its calculation.

It is well-known that every resource-allocation cost-sharing game has a NE. Moreover, let Φ(P) =∑
e∈E c(e) ·H(loadP (e)), where H(0) = 0, and H(k) = 1 + 1/2 + . . .+ 1/k, then, as shown in [8],

Φ(P) is a potential function whose value reduces with every beneficial step of a player. This implies
that every best-response sequence is guaranteed to converge to an NE.

For the PH mechanism, we present a negative result.

Theorem 3.2 An HNFG with the PH mechanism need not have an NE.

Proof: Consider the hierarchical graph G = 〈G1, Ga, Gb, Gc〉 depicted in Figure 2. Let N =
〈2,G, {〈s, ti〉}i∈{1,2}〉. For every σ ∈ {a, b, c}, we have that τ1(bσ) = Gσ. In the figure, edges that
are not labeled are free. Thus, Player 1 needs to select in G1 one of the two paths ρ1

1 = (s, ba, bc, t1)
and ρ2

1 = (s, bb, t1), and Player 2 needs to select one of two paths ρ1
2 = (s, ba, ba, ba, t2) and ρ2

2 =
(s, bc, ba, ba, t2).

We show that N with the PH mechanism does not have an NE. Recall that a strategy for Player i is
a multiset πi over edges in G such that πi covers a path from s to ti in Gf . Since all the edges in E1

are free, we describe the players’ strategies as multisets that include only the edges in the subgraphs
Ga, Gb, and Gc. Denote by ea, eb, and ec the (only) edge in Ga, Gb and Gc respectively. Thus, for
Player 1, we have strategies π1

1 = {ea, ec} and π2
1 = {eb}, and for Player 2 we have π1

2 = {ea, ea, ea}
and π2

2 = {ec, ea, ea}.
Table 1 describes the players’ costs in the four possible profiles. Note that c(ea) = 36, c(eb) = 12
and c(ec) = 2. Consider for example the top left profile P = 〈π1

1, π
1
2〉. In this profile, the edge ea is

10

s

t1

t2

ba

bc ba

bb ba bc

G1

36

Ga

12

Gb

2

Gc

Figure 2: An HNFG that has no NE with the PH mechanism.

traversed four times, eb is not traversed at all, and ec is traversed once. Thus, wloadP (ea) = 4. This
implies that every traversal of ea costs c(ea)/wloadP (ea) = 36/4 = 9. Since wloadP (ec) = 1 and
ec ∈ π1

1 , Player 1 should also cover the cost of ec. Hence, cost1(P) = 9 + 2 = 11 and cost2(P) =
3 · 9 = 27. The players’ costs in all other profiles are calculated in a similar way. The costs in the
table imply that players benefit from changing strategies in counter clockwise direction, thus no NE
exists.

{ea, ec} {eb}
{ea, ea, ea} 11, 27 12, 36

{ec, ea, ea} 13, 25 12, 38

Table 1: Players’ costs inN . Each entry describes the cost of Player 1 followed by the cost of Player 2.

We turn to analyze the equilibrium inefficiency. Once again, the fact that each HNFG with the flat or
the UH mechanism has an equivalent resource-allocation cost-sharing game enables us to adopt the
upper bounds known for resource-allocation games to our setting. Matching lower bounds then follow
from the known bounds on NFGs and the fact that every NFG can be viewed as an HNFG with no
nesting of subgraphs.

Theorem 3.3 The PoS and PoA of k-player HNFGs with the flat or the UH mechanism are O(log k)
and k, respectively.

For the PH mechanism, we show that stability may came with a high cost, strictly higher than the one
known for NFGs.

Theorem 3.4 The PoS and PoA of k-player HNFGs with the PH mechanism are k.

Proof: Similar to the analysis of many other cost-sharing games, PoA≤ k as otherwise, some player
in some NE profile P is paying more than the SO, and can benefit from deviating to his strategy in the

11

SO, contradicting the stability of P . Combining the fact that PoA ≥ PoS, it is sufficient to show that
PoS ≥ k in order to establish the tight bounds.

For every k > 1, we describe a k-player HNFG Nk such that the cost of the only NE in Nk is kM , for
some large constant M , whereas the SO is M + ε′′, for a small constant ε′′. Assume first that k is even.
Partition the set [k] of players into pairs 〈2`− 1, 2`〉 for 1 ≤ ` ≤ k

2 . Let N ` be a 2-player HNFG with
no NE, with the costs of its edges multiplied by a small constant ε. In particular, we refer to the HNFG
described in the proof of Theorem 3.2.

The HNFG Nk is played on the hierarchical graph G = 〈G0, {G`1, G`a, G`b, G`c}1≤`≤k/2〉, where G0 is
depicted in Figure 3, and the other components consists of k/2 copies of the graphs G1, Ga, Gb, and
Gc, described in Figure 2, with all costs multiplied by ε. The graph G0 includes an edge 〈s, t〉 of cost
kM , an edge 〈s, v〉 of cost M , and k/2 free edges 〈v, s`〉 leading the copies G`1 for 1 ≤ ` ≤ k

2 .

s
t v

G1
1 G2

1
. . . G

k
2
1

k · M M

Figure 3: An HNFG Nk for which PoS = k. Every G`1 is a copy of G1 depicted in Figure 2.

For simplicity, we assume that each player can choose between one of two targets. It is easy to see that
this assumption can be removed by adding a new target connected from the two targets by free edges.
Consider the `-th pair of players. The target vertices of the first player in the pair are t and t`1. The target
vertices of the second player are t and t`2. Thus, every player has three strategies: the path consisting of
the edge 〈s, t〉 and the paths starting with s, v, s` and continuing with one of the two strategies in G`1,
as detailed in the proof of Theorem 3.2.

The SO of Nk consists of edges from the right side of the network: the edges 〈s, v〉, {〈v, s`〉1≤`≤k/2},
and edges forming an SO for each of the disjoint k2 games (the latter consists of the edges e`a, e`c, and
additional free edges from G`1). The cost of the SO is then M + ε′k

2 , for ε′ = 38ε.

We show that the only NE in Nk is the profile in which all the players share the edge 〈s, t〉. This
profile is indeed an NE, as the cost of every player is exactly M , and by deviating to the right side of
the network, a player must pay the cost of 〈s, v〉 plus the cost of his chosen path in some G`1, which
together exceeds M . Moreover, this is the only NE since in every other profile, players would benefit
from leaving the edge 〈s, t〉 and reaching N ` – our familiar no-NE game described in the proof of
Theorem 3.2. The cost of this NE profile is kM , implying that the PoS is Mk

M+19kε , which tends to
k.

Finally, if the number k of players is odd, we define for the unpaired player two strategies: one is the
path 〈s, t〉, and the other is a path s, v, u for a new vertex u. By setting to ε the cost of 〈u, v〉, it still
holds that 〈s, t〉 is the only NE profile. The PoS for an odd k is therefore Mk

M+(19k+1)ε , which tends to
k.

12

4 Computational Complexity

In this section we study the complexity of reasoning about HNFGs in the different cost-sharing mecha-
nisms. The principal question is whether the exponential succinctness of HNFGs leads to an exponen-
tial increase in the complexity of reasoning about them.

4.1 The UH and PH mechanisms

Recall that a strategy for Player i in the UH or PH mechanism is a set or a multiset πi over E. A
strategy is feasible if there is a path ρ from si to ti in Gf such that ρ is covered by πi. In traditional
NFGs, it is easy to check in polynomial time whether a given set of edges is a feasible strategy. Indeed,
there, the underlying graph is given explicitly. This is not the case in HNFGs: given πi, a naive
check that πi indeed covers a path from si to ti in Gf involves a construction of Gf , which may be
exponential in G. An efficient checking that a given strategy πi is feasible requires a clever encoding
of πi, involving a restriction to a subset of all possible strategies. We first define this subset and prove
that it is dominating, that is, every Player has a best-response move to a homogeneous strategy.

Recall that πi is feasible if there is a path ρ from si to ti in Gf such that ρ is covered by πi. The path
ρ may traverse subgraphs Gj of G several times (in fact, per Observation 2.1, even exponentially many
times). In each traversal, the path ρ may exit Gj through different exit vertices. For example, in the
HNFGs described in Section 2.3, we showed that the players benefit from taking a strategy that exits
G2 from both u3 and u4. Thus, restricting attention to strategies in which all the traversals of Gj use
the same exit vertex is not sound (and in fact may affect not only the cost of Player i but also cause
ti not to be reachable from si). Consider now two traversals of the subgraph Gj in which Player i
chooses to exit Gj through the same exit vertex u ∈ Exit j . Here too, Player i may choose to fulfill this
repeated “nested sub-objective” in different ways. We say that a strategy for Player i is homogeneous
if for every j ∈ [n] and every u ∈ Exit j , whenever Player i traverses the subgraph Gj through exit u
it uses the same 〈inj , u〉-path. We claim that restricting attention to homogeneous strategies is sound,
and also leads to an efficient feasibility check:

Lemma 4.1 Consider an HNFG N with the UH or PH mechanism, and a player i ∈ [k].

1. Every non-homogeneous strategy for Player i is dominated by a homogeneous one.

2. Checking that a homogeneous strategy of Player i is feasible can be done in poly-time.

Proof: We start with the first claim. We show that as long as Player i follows a non-homogeneous
strategy, he can reduce the degree of non-homogeneousity while only reducing his cost. Repeating this
process, which is guaranteed to terminate, results in a homogeneous strategy.

Let P be a profile in which Player i crosses Gj through exit u more than once, and it uses two different
paths, p1 and p2. In the UH mechanism, p1 and p2 are sets of edges, and Player i pays for using p1∪ p2

regardless of the number of times he traverses each edge in the set. In this case, Player i can clearly
only benefit from using, say, p1 in both crosses.

In the PH mechanism, p1 and p2 are mulisets of edges, and the analysis is more involved. By the
definition of the PH mechanism, for a single use of pl, for l ∈ {1, 2}, Player i pays

∑
e∈pl

c(e)pl(e)
wloadP (e) .

13

Player i would benefit from switching from p2 to p1 iff the cost he saves from leaving p2 in P is higher
than the added cost experienced from joining p1; that is, iff

(∗)
∑

e∈p2\p1

c(e)(p2 \ p1)(e)

wloadP (e)
>

∑
e∈p1\p2

c(e)(p1 \ p2)(e)

wloadP (e) + (p1 \ p2)(e)
.

If (∗) holds, Player i’s cost in P can be reduced by following p1 in both traversals, and we are done.
Otherwise, we show that switching from p1 to p2 is beneficial. Indeed,∑

e∈p1\p2

c(e)(p1 \ p2)(e)

wloadP (e)
>

∑
e∈p1\p2

c(e)(p1 \ p2)(e)

wloadP (e) + (p1 \ p2)(e)
≥

≥
∑

e∈p2\p1

c(e)(p2 \ p1)(e)

wloadP (e)
>

∑
e∈p2\p1

c(e)(p2 \ p1)(e)

wloadP (e) + (p2 \ p1)(e)
.

For the second claim, checking the feasibility of homogeneous strategies requires only one check for
each subgraph Gj and exit vertex u ∈ Exit j , which can be done in polynomial time.

We proceed to study the complexity of finding a BR and an SO in HNFGs with the UH or PH mech-
anism. For NFGs, a BR move can be found in polynomial time, and the problem of finding an SO is
NP-complete [32]. For the lower bound, we show two reductions, both with a single-player HNFG.
One, for the case the depth of the HNFG is a constant, is from the directed Steiner tree problem; and
one, for the case the number of exit vertices is a constant, is from the hitting-set problem.

Theorem 4.2 The problem of finding a BR move for a HFNG with the UH or PH mechanism is NP-
complete. NP-hardness holds already for single-player HNFGs of a constant depth or with a constant
number of exit vertices.

Proof: We start with the upper bound. Given an HNFG N , a profile P for N , a threshold c ∈, and
i ∈ [k], a witness for a BR move is a strategy πi for which cost i([P−i, πi]) ≤ c. By Lemma 4.1, the
strategy πi can be homogeneous, which implies it can be checked in polynomial time.3

For the lower bound, we show two reductions, both with a single-player HNFG. One for the case the
depth of the HNFG is a constant, and one for the case the number of exit vertices is a constant. We
start with the first case and describe a reduction from the directed Steiner tree problem. There, we are
given a directed weighted graph G = 〈V,E, c〉, a source vertex s ∈ V , and a set of terminal vertices
T ⊆ V , and we seek a tree T ⊆ E that connects s to all the vertices in T and is of minimal cost. Given
an input 〈G, s, T 〉 to the directed Steiner tree problem, we describe an HNFG N with a single player
such that an optimal strategy for the player corresponds to an optimal Steiner tree in 〈G, s, T 〉. Let
T = {t1, . . . , tl}. The networkN is defined with a hierarchical graph G = 〈G1, G2〉, for the subgraphs
G1 and G2 appearing in Figure 4. The subgraph G1 consists of a chain of l boxes. All boxes call the
subgraph G2, which is copy of G with the vertices in T being exit-vertices (for clarity, in the figure
we omit the edges in G and their costs). The chain starts with the vertex v0 and ends with t, and the
objective of the player is 〈v0, t〉. In the i-th box, we exit from ti to the (i + 1)-th box. In the last box,

3Note that we handle here the decision-problem variant of the problem, namely one with a threshold c ∈ IR≥0. The
optimization variant then searches for a witness in the optimal threshold.

14

we exit from tl to t. The cost of the edges in G2 coincides with their cost in G. The edges in G1 are
free.

By the construction of G, a strategy π for the player has to cover a path that includes paths from s to
ti, for all ti ∈ T . Accordingly, π corresponds to a tree in G that connects s to all the vertices in T .
Recall that in the UH mechanism, the cost of π is the sum of the costs of its edges. Since N has a
single player, this coincides with the cost of the induced Steiner tree. The fact there is only one player
also implies that the same reasoning holds for the PH mechanism. Indeed, in both cases the cost of the
player is the cost of the profile, which is the sum of the costs of the edges in G2 that are used, namely
the cost of the Steiner tree.

v0 b1 b2 b3
. . . bl t

t1
t2

t3

tl

G1
s

t1

t2

t3

tl

...

G2

Figure 4: A reduction from the directed Steiner tree problem.

For the second case, namely when the number of exit vertices is a constant, we describe a reduction
from the hitting-set problem. An instance of the hitting-set problem consists of a set C of subsets of a
finite set S. The goal is to find a subset S′ ⊆ S of minimum cardinality, such that S′ contains at least
one element from each subset in C.

Given S and C = {C1, . . . , C`}, we construct an HNFG N with a single player such that an optimal
strategy for the player corresponds to a subset S′ of minimal cardinality such that S′ ∩ Ci 6= ∅ for all
i ∈ [`]. The graph G on top of which N is defined consists of an outer graph G1 and |S| additional
subgraphs (See an example in Figure 5). For every element j ∈ S, the subgraph Gj has no boxes and
consists of one directed edge whose cost is 1. Assume that C = {C1, C2, . . . , C`}. The outer graph G1

consists of ` layers, each corresponding to a set in C. The vertices of G1 are {v0, v1, . . . , v`}, and its
boxes are mapped to the subgraphs {Gj}j∈S . The i-th layer ofG1 connects vi−1 and vi by |Ci| parallel
2-edge paths: vk−1, bj , vk, for all j ∈ Ck. All the edges in G1 are free.

Consider a player whose objective is (v0, v`). Every path connecting these edges must cross all the
layers. It is easy to see that crossing the i-th layer involves traversing a box bj for some j ∈ Ci. The
cost of a path is exactly the number of different subgraphs called by boxes along the path. Thus, a
hitting set of minimum cardinality corresponds to a strategy with minimum cost. Since N has a single
player, this holds for both the UH and PH mechanisms.

Thus, the exponential succinctness of HNFGs makes the BR problem for the UH and PH mechanisms
exponentially more complex than the one for NFGs. Since the BR problem in single-player HNFGs
coincides with the SO problem, Theorem 4.2 immediately implies the lower bound in the following
theorem. The upper bound follows from the fact that a witness to the SO consists of listing the set of
edges purchased in every subgraph. It is easy to see that there exists an SO in which every player is
assigned a homogeneous strategy, therefore, the SO’s feasibility is tractable.

15

v0 v1 v2 v3

ba

bb

bc

ba

bb

bd

bc

bd

G1

σ

G
σ

�
Figure 5: A reduction from the hitting-set problem, for S = {a, b, c, d, e}, C =
{{a, b, c}, {a, b, d}, {c, d}}.

Theorem 4.3 The problem of finding an SO for an HNFG with the UH or PH mechanism is NP-
complete. NP-hardness holds already for single-player HNFGs of a constant depth or with a constant
number of exit vertices.

Recall that an HNFG with the PH mechanism need not have an NE (Theorem 3.2). A natural question
arising from this result is whether we can distinguish between instances that have or do not have a
stable profile. We show the following:

Theorem 4.4 Deciding whether an NE exists in an HNFG with the PH mechanism is in Σ2
P and is

NP-hard.

Proof: The class ΣP
2 contains all problems that can be solved by a nondeterministic polynomial-

time Turing machine with an oracle to an NP problem. Given an HNFG with the PH mechanism, the
problem of deciding whether an NE exists is in ΣP

2 : A nondeterministic Turing machine can guess an
NE and then use polynomially many (one for each player) calls to an oracle that checks that no player
has an incentive to deviate. Since the latter problem for HNFGs is in NP (Theorem 4.2), membership
in ΣP

2 follows.

We now prove that the problem is NP-hard. The idea of the hardness proof is to extend the no-NE game
from the proof of Theorem 3.2 such that one of the players has additional strategies. In particular, he
would prefer to avoid the two non-stable strategies if a given instance of an NP decision problem P has
a positive solution. This way, deciding whether an NE exists amounts to solving P .

Specifically, we describe a reduction from the hitting-set problem (defined in the proof of Theorem 4.2).
In the decision problem, we are given an integer k, and the goal is to decide whether a hitting-set of size
k exists. We modify the no-NE game from the proof of Theorem 3.2 as follows. In our modified HNFG
N ′, Player 1 has additional strategies given by the gadget corresponding to the hitting-set problem, as
described in the proof of Theorem 4.2. Using these strategies, Player 1 can select an 〈s, t1〉-path that
crosses the hitting-set gadget. We set the cost of the single edge in each of the subgraphs {Gj}j∈S to
2 + 1−ε

k . Also, the edge (s, bb) in G1 (see Figure 2) has cost 2k − 10. Thus, if Player 1 chooses a path
in the hitting-set gadget corresponding to a hitting-set of size k′, his cost would be k′(2 + 1−ε

k), and if
he chooses a path in the original graph G1, his cost would be as specified in Table 1, plus the cost of
(s, bb). Table 2 gives the Players’ costs is each profile.

Assume that a hitting-set of size k exists. Player 1 can choose the path corresponding to the hitting set

16

{ea, ec} {eb} k′-hitting-set path
{ea, ea, ea} 11 + (2k − 10) = 2k + 1, 27 12 + (2k − 10) = 2k + 2, 36 k′(2 + 1−ε

k), 36

{ec, ea, ea} 13 + (2k − 10) = 2k + 3, 25 12 + (2k − 10) = 2k + 2, 38 k′(2 + 1−ε
k), 38

Table 2. Players’ costs in N ′ with the PH mechanism. Each entry describes the cost of Player 1
followed by the cost of Player 2.

and pay 2k+1− ε. It is easy to verify that the top-right profile in the table is an NE. On the other hand,
if the smallest hitting-set has size at least k + 1, then every gadget-path has cost at least 2k + 3 (for
ε < 1

k), implying that Player 1 never selects a gadget-path, which leaves us with the original no-NE
game. We conclude that an NE exists if and only if the answer to the hitting-set decision problem is
positive.

4.2 The flat mechanism with a constant number of exit vertices

Consider an HNFG played over a hierarchical graph G. Recall that in the flat mechanism, costs are
calculated with respect to Gf , which is exponentially larger than G. While the exponential blow-up
applies already for hierarchical graphs in which the number of exit vertices in each subgraph is a
constant (in fact, per Observation 2.1, is 1), experience in formal verification of hierarchical systems
shows that reasoning about hierarchical-FSMs in which each subgraph has a constant number of exit
vertices does make verification easier [6, 7]. In this section we consider HNFGs that are played over
hierarchical graphs in which each subgraph has a constant number of exit vertices. We denote this class
by CE-HNFGs. We note that CE-HNFGs are common in practice: in software, procedures typically
have a constant number of returns, and in hardware, nested boxes are plugged in via a constant number
of connections.

Before we describe our results for CE-HNFGs, let us point out that there are additional aspects in which
the flat mechanism is computationally easier than the UH and PH mechanisms. For example, while the
problem of finding an SO in HNFGs in the UH or PH mechanism is NP-complete already for single-
player CE-HNFGs (by Theorem 4.3), for the flat mechanism, the single-player instance is easy even
without restricting to CE-HNFGs. Indeed, let N = 〈1,G, 〈s, t〉〉, with G = 〈G1, . . . , Gn〉. Starting
with Gn, we recursively replace each box that calls a subgraph Gj by a tree of depth 1 with root inj
and edges to all exit vertices t ∈ Exit j . The cost of such an edge is the cost of the shortest path from
inj to t, which we need to calculate only once (and after boxes in Gj have been recursively replaced
by trees of depth 1). Thus, we have,

Theorem 4.5 The problem of finding an SO in a single-player HNFG with the flat mechanism can be
solved in polynomial time.

For k > 1 players, finding an SO is still tractable, but the algorithm is more involved:

Theorem 4.6 The problem of finding an SO in CE-HNFGs with the flat mechanism can be solved in
polynomial time.

Proof: Let N be a CE-HNFG with G = 〈G1, . . . , Gn〉, where Gj = 〈Vj , Bj , inj ,Exit j , τj , Ej , cj〉.
A profile of N utilizes a subset of the edges in G. In fact, for every box in G that calls a subgraph

17

Gj , the utilized edges form a Steiner tree connecting inj with a set T ⊆ Exit j of exit vertices. Our
algorithm is based on the fact that these Steiner trees can be enumerated, and that the minimum Steiner
tree problem can be solved efficiently when the number of terminals is a constant [25].

For an index j ∈ [n] and a set T ⊆ Exit j , we define the HNFG Nj,T = 〈|T |,Gj , 〈inj , t〉t∈T 〉, where
Gj = 〈Gj , Gj+1, . . . , Gn〉. That is, Nj,T is a |T |-player game, where each player tries to reach from
inj to a different exit vertex t ∈ T . Note that an SO inNj,T is a profile that minimizes the cost required
for forming paths from inj to all vertices in T in the flat expansion of Gj . Now, let G′j be a weighted
tree of depth 1 with root inj and leaves in 2Exitj , where the cost of an edge 〈inj , T 〉, for T ⊆ Exit j ,
is the SO in Nj,T . Thus, G′j describes, for every subset T ⊆ Exit j , the cost of covering paths from
inj to all vertices in T in the flat expansion of Gj . Note that since |Exit j | is constant, so is the size of
G′j .

We argue that for all j ∈ [n] and T ⊆ Exit j , there is an algorithm that finds an SO in Nj,T and
constructs G′j in polynomial time. In particular, taking j = 1 and T = ∪i∈[k]{ti}, we can find the SO
of N in polynomial time.

The algorithm proceeds from the innermost subgraphs, and replaces boxes that call a subgraph Gj by
the weighted tree G′j . In more details, we start with Gn, and construct G′n in polynomial time. Since
Gn does not have boxes, this involves the calculation of the SO in 2|Exitn| NFGs of size |Gn|; that
is, the games Nn,T , for T ⊆ Exitn. Finding the SO in each of these games corresponds to solving a
minimum Steiner tree problem with a constant number of terminals, that can be solved in polynomial
time [25]. Thus, edges’ weights in G′n can be calculated in polynomial time.

Consider now an index j ∈ [n] and assume we have already constructedG′h for all h > j. We construct
G′j as follows. First, we remove all boxes from Gj . We do this by replacing each box b ∈ Bj for
which τj(b) = h by a copy of G′h. The copy is connected to the other vertices of Gj in the following
way. First, edges with target b, are redirected to inh. Then, a vertex T ⊆ Exith in G′h has edges to
all vertices that are reachable in Gj by an edge with source (b, t), for some t ∈ T . Intuitively, taking
the edge 〈inh, T 〉 in this copy of G′h amounts to forming paths to all the exit vertices in T in the flat
expansion of Gh that is called from the box b. Accordingly, once we pay the cost of traversing 〈inh, T 〉
in this copy, we can continue from all the vertices in T . Replacing a box by a copy of G′h increases
the size of Gj by constantly many vertices. Thus, removing all boxes in Gj increases the number of
vertices by O(|Bj |). We can now construct G′j by finding the SO in 2|Exitj | NFGs of size O(|Gj |),
which can be done in polynomial time.

We turn to the problem of calculating an NE. A well-known approach for calculating an NE in NFGs
is best-response dynamics (BRD): starting with an arbitrary profile, we let players perform BR moves
until an NE is reached. The complexity class PLS contains local search problems with polynomial
time searchable neighborhoods [24]. Essentially, a problem is in PLS if there is a set of feasible
solutions for it such that it is possible to find, in polynomial time, an initial feasible solution and
then iteratively improve it, with each improvement being performed in polynomial time, until a local
optimum is reached. While every iteration of BRD takes polynomial time, the number of iterations
need not be polynomial. The problem of finding an NE in NFGs is known to be PLS-complete. We
show how to implement BRD in CE-HNFGs in a way that keeps the polynomial time-complexity for
each improvement step. The idea is to use a succinct representation of a profile in a CE-HNFG, and to
restrict attention to a limited class of profiles that are guaranteed to include an NE.

18

Theorem 4.7 The problem of finding an NE in CE-HNFGs with the flat mechanism is PLS-complete.

Proof: Hardness in PLS follows from hardness for NFGs. We prove membership in PLS. Let
N = 〈k,G, 〈si, ti〉i∈[k]〉 be a CE-HNFG. Consider the subgraphGj . In every profile of the game, every
copy of Gj may be traversed by at most k players. Each of these players traverses a 〈inj , u〉-path for
some u ∈ Exit j . Let zj = |Exit j | and let Exit j = {u1, u2, . . . , uzj}. A vector α = (α1, α2, . . . , αzj)
of integers such that

∑
` α` ≤ k describes the demand of each of the exit vertices of Gj when it is

traversed by kα =
∑

`∈[zj]
α` players. Intuitively, it indicates that for all ` ∈ [zj], there are α` players

that seek to exit via u`. Consider the game Nα
j = 〈kα,Gj , 〈inj , ui〉i∈[kα]〉, where Gj = 〈Gj , . . . , Gn〉.

Intuitively, Nα
j models kα players that traverse Gj with demand vector α. Note that for every j ∈ [n],

the number of different games demand vectors for Gj , namely the number of different vectors α of zj
positive integers that sum up to an integer bounded by k, is O(kzj).

We claim that finding an NE for Nα
j is in PLS. We say that a profile for Nα

j is fair if for every exit
vertex u ∈ Exit j , all the players that traverse Gj through a 〈inj , u〉-path use the same path.

We first show that we can restrict attention to fair profiles, that is, for every exit vertex u ∈ Exit j , all the
players that traverseGj through a 〈inj , u〉-path use the same path. We claim that every NE of an HNFG
with the flat mechanism is fair. The proof is by contradiction: Let P be a profile in which Players a
and b use different paths when crossing Gj through a 〈inj , u〉-path. We show that P cannot be an NE.
Assume w.l.o.g. that costa(P) ≤ costb(P). Assume that Player b joins Player a’s 〈inj , u〉-path. The
load on every edge along this path remains the same or increases. Also, since they used different paths,
for at least one edge the load is increased. Thus, this deviation strictly reduces Player b’s cost.

Our algorithm for calculating an NE in N proceeds by calculating for every j ∈ {n, n− 1, . . . , 2} the
NEs for all games Nα

j that can be played on the flat expansion of Gj by a subset of at most k players.
By the above, we can restrict attention to fair NEs, which can be described in space O(|Gj |).

The algorithm begins with Gn. Since Gn has no boxes, calculating an NE for every demand vector can
be done by BRD. Assume we have already calculated NEs for the gamesNα

h for all h > j and feasible
demand vectors α. We describe how to calculate NEs for games over Gj . Consider a demand vector
α for Gj and the HFNG Nα

j = 〈kα,Gj , 〈inj , ui〉i∈[kα]〉. We show how to calculate an NE for Nα
j .

Initially, we pick an arbitrary 〈inj , u`〉-path for all the α` players whose objective is to reach u`. The
union of these paths determines for every box in Gj how many players traverse it and through which
exit. Thus, every box b defines a sub-game Nα′

j′ for j′ = τj(b) and vector α′ as determined by the
current profile. Since j′ > j, the game Nα′

j′ has already been analyzed and the box can be replaced by
a gadget with only a source inj′ and exit vertices for every u ∈ Exit j′ . The cost of the edge (inj′ , u)
is the cost for one player in the NE calculated for Nα′

j′ .

In order to calculate a BR move in Nα
j for a specific player i ∈ [k], we need to solve a shortest path

problem in Gj in which edge weights correspond to the cost to be charged if Player i keeps using
or joins this edge. For edges of type Top, Call, and Return, this is simply the edge cost divided by
the current number of players using it (the load in the given NE profile) plus one if Player i does not
currently use it. For an Internal edge (v, u) that calls the subgraph Gj′ , if Player i currently uses this
edge, then his cost remains as in the NE calculated for Nα′

j′ . Otherwise, we need to calculate the cost
Player i would experience if he moves to a path that includes this edge. Let α′ be the demand vector of
length zj′ describing the demand for exit vertices in Gj′ in the current profile. Let α′′ be the demand
vector obtained from α by increasing by one the entry corresponding to the exit vertex u. The game

19

Nα′′
j′ has been analyzed already, and in particular, it is known what the cost of a player traversing to

exit u is. Indeed, this cost is the cost of the Internal edge (v, u) in Nα
j .

Let z = maxj∈[n] zj . Using the above algorithm, it is possible to calculate an NE for each of the O(kz)
games Nα

j for j ∈ {n, n− 1, . . . , 2}. Once we are done computing a set of NEs for games that can be
played on the flat expansion of Gj , for j ∈ {n, n− 1, . . . , 2}, we can calculate using the same method
an NE for our instance N = Nα

1 for the vector α corresponding to N .

References

[1] S. Albers, S. Elits, E. Even-Dar, Y. Mansour, and L. Roditty. On Nash equilibria for a network creation
game. In Proc. 7th SODA, pages 89–98, 2006.

[2] S. Almagor, G. Avni, and O. Kupferman. Repairing multi-player games, In Proc. 26th CONCUR, pages
325–339, 2015.

[3] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic. Journal of the ACM,
49(5):672–713, 2002.

[4] G. Avni and O. Kupferman. Synthesis from component libraries with costs. In Proc. 25th CONCUR, LNCS
8704, pages 156–172, 2014.

[5] R. Alur, S. Kannan, and M. Yannakakis. Communicating hierarchical state machines. In Proc. 26th ICALP,
LNCS 1644, pages 169–178. Springer, 1999.

[6] R. Alur and M. Yannakakis. Model checking of hierarchical state machines. ACM TOPLAS, 23(3):273–303,
2001.

[7] B. Aminof, O. Kupferman and A. Murano, Improved model checking of hierarchical systems, In Informa-
tion and Computation. 210, pages 68–86, 2012.

[8] E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos, T. Wexler, and T. Roughgarden. The price of stability
for network design with fair cost allocation. SIAM J. Comput., 38(4):1602–1623, 2008.

[9] G. Avni, O. Kupferman, and T. Tamir. Network-formation games with regular objectives. In Information
and Computation. 251, pages 165–178, 2016.

[10] G. Avni, O. Kupferman, and T. Tamir. Congestion games with multisets of resources and applications in
synthesis. In Proc. 35th FST&TCS, LIPIcs, pages 365–379, 2015.

[11] T. Brihaye, V. Bruyère, J. De Pril, and H. Gimbert. On subgame perfection in quantitative reachability
games. LMCS, 9(1), pages 1–32, 2012.

[12] K. Chatterjee. Nash equilibrium for upward-closed objectives. In Proc. 15th CSL, LNCS 4207, pages
271–286. Springer, 2006.

[13] K. Chatterjee, T. A. Henzinger, and M. Jurdzinski. Games with secure equilibria. Theoretical Computer
Science, 365(1-2):67–82, 2006.

[14] K. Chatterjee, T. A. Henzinger, and N. Piterman. Strategy logic. In Proc. 18th CONCUR, pages 59–73,
2007.

[15] K. Chatterjee, R. Majumdar, and M. Jurdzinski. On Nash equilibria in stochastic games. In Proc. 13th CSL,
LNCS 3210, pages 26–40. Springer, 2004.

[16] E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

20

[17] H. Chen and T. Roughgarden. Network Design with Weighted Players, Theory of Computing Systems,
45(2), 302–324, 2009.

[18] W-P. de Roever, H. Langmaack, and A. Pnueli, editors. Compositionality: The Significant Difference,
LNCS 1536, Springer, 1998.

[19] J. R. Correa, A. S. Schulz, and N. E. Stier-Moses. Selfish routing in capacitated networks. Mathematics of
Operations Research 29: 961–976, 2004.

[20] D. Drusinsky and D. Harel. On the power of bounded concurrency I: Finite automata. Journal of the ACM,
41(3):517–539, 1994.

[21] A. Fabrikant, A. Luthra, E. Maneva, C. Papadimitriou, and S. Shenker. On a network creation game. In
ACM PODC, pages 347–351, 2003.

[22] D. Fisman, O. Kupferman, and Y. Lustig. Rational synthesis. In Proc. 16th TACAS, LNCS 6015, pages
190–204. Springer, 2010.

[23] M. Feldman and T. Tamir. Conflicting Congestion Effects in Resource Allocation Games. Journal of Oper-
ations Research 60(3), pages 529–540, 2012.

[24] D. S. Johnson, C. H. Papadimitriou and M. Yannakakis, How easy is local search? Journal of Computer
and System Sciences, 37:79–100, 1988.

[25] B. Kimelfeld and Y. Sagiv, New algorithms for computing Steiner trees for a fixed number of terminals,
http://www.cs.huji.ac.il/ bennyk/papers/steiner06.pdf, 2006.

[26] E. Koutsoupias and C. Papadimitriou. Worst-case Equilibria. Computer Science Review, 3(2): 65-69, 2009.

[27] Y. Lustig and M.Y. Vardi. Synthesis from component libraries, STT&T, 15 (5-6): 603-618, 2013.

[28] I. Milchtaich. Weighted Congestion Games With Separable Preferences. Games and Economic Behavior,
67, 750-757, 2009.

[29] J. C. Mitchell. Concepts in programming languages, Cambridge University Press, 2003.

[30] M. Mavronicolas, I. Milchtaich, B. Monien, and K. Tiemann. Congestion Games with Player-specific Con-
stants. In Proc 32nd MFCS, pp. 633–644, 2007.

[31] D. Monderer and L. Shapley. Potential Games. Games and Economic Behavior, 14:124–143, 1996.

[32] C. A. Meyers and A. S. Schulz. The Complexity of Welfare Maximization in Congestion Games. Networks,
59(2):252–260, 2012.

[33] C. H. Papadimitriou. Algorithms, games, and the internet. In Proc. 33rd STOC, pages 749–753, 2001.

[34] A. Pnueli. In transition from global to modular temporal reasoning about programs. In Logics and Models
of Concurrent Systems, volume F-13 of NATO Advanced Science Institutes, pages 123–144. Springer, 1985.

[35] L. Rose, E.V. Belmega, W. Saad, and M. Debbah. Pricing in heterogeneous wireless networks: hierarchical
games and dynamics. IEEE Trans. Wireless Communications, 13 (9): 4985–5001, 2014.

[36] W. Saad, Q. Zhu, T. Basar, Z. Han, and A. Hjørungnes. Hierarchical network formation games in the uplink
of multi-hop wireless networks Proc. GLOBECOM, pages 1–6, IEEE, 2009.

[37] E. Tardos and T. Wexler. Chapter 19: Network formation games and the potential function method, In
Algorithmic Game Theory, Cambridge University Press, 2007.

21

