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Abstract. We study the model of resource allocation games with con-
flicting congestion effects that was introduced by Feldman and Tamir
(2012). In this model, an agent’s cost consists of its resource’s load (which
increases with congestion) and its share in the resource’s activation cost
(which decreases with congestion). The current work studies the conver-
gence rate of best-response dynamics (BRD) in the case of homogeneous
agents. Even within this simple setting, interesting phenomena arise. We
show that, in contrast to standard congestion games with identical jobs
and resources, the convergence rate of BRD under conflicting congestion
effects might be super-linear in the number of jobs. Nevertheless, a spe-
cific form of BRD is proposed, which is guaranteed to converge in linear
time.

1 Introduction

Resource allocation is considered to be a fundamental problem in algorithmic
game theory, and has naturally been the subject of intensive research within
this field. Most of the game-theoretic literature on resource allocation settings
emphasizes either the negative or the positive congestion effects on the individual
cost of an agent. The former approach assumes that the cost of a resource is some
non-decreasing function of its load. This literature includes job scheduling and
routing models [22, 10, 20]. In these cases an individual user will attempt to avoid
sharing its resource with others as much as possible. The second approach, in
stark contrast, assumes that a resource’s cost is a decreasing function of its load.
This is the case, for example, in network design and cost sharing connection
games, in which each resource has some activation cost, which should be covered
by its users [2, 6]. In these cases, an individual user wishes to share its resource
with as many other users as possible in attempt to decrease its share in the cost.

In reality, most applications have cost functions that exhibit both negative
and positive congestion effects. Accordingly, more practical models that integrate
the two congestion effects into a unified cost function have been considered [1,
14, 9]. The present paper studies the resource allocation setting that is intro-
duced by Feldman and Tamir [9], in which the individual cost of an agent is
composed of two components, one that exhibits positive externalities, and the
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other that exhibits negative externalities. More specifically, every resource has
some activation cost, that is shared among all the agents using it. The indi-
vidual cost of an agent is the sum of its chosen resource’s load (reflecting the
negative externalities) and its share in the resource’s activation cost (reflecting
the positive externalities). This model is applicable to a large set of applications,
including job scheduling, network routing, and network design settings. In all of
these applications, users gain some benefits from sharing a resource with others,
but also incur some costs from using a congestible resource.

The induced game, unlike its two “parent games,” is not a potential game3

when played by heterogeneous agents. Indeed, it has been shown in [9] that
best-response dynamics (BRD) do not necessarily converge in this setting. Yet,
in the special case where agents are identical, the induced game is a potential
game; consequently, any BRD is guaranteed to converge to a Nash equilibrium
[9]. The rate of the convergence, however, has been overlooked thus far. It is
argued that the convergence rate is crucial for the Nash equilibrium hypothesis
to hold; that is, it is more plausible that a Nash equilibrium will be reached if
natural dynamics lead to such an outcome within a small number of moves.

In this paper, we study the convergence rate of BRD in a job scheduling
game with conflicting congestion effects and identical agents.

1.1 Our results

It is fairly easy to see that for unit-size jobs, convergence to a Nash equilibrium is
linear in the number of jobs in both of the “parent” models; namely, if the the cost
function equals the resource’s load or if it equals the job’s share in the resource’s
activation cost. We find that if the cost function takes both components into
consideration, the convergence rate might be super-linear. We then introduce a
specific form of BRD, referred as max-cost, where the job that incurs the highest
cost is the one to perform its best move. The motivation behind this BRD is clear;
it seems reasonable that the job that incurs the highest cost has the strongest
incentive to improve its state. For this special case, the linear convergence rate
is recovered.

1.2 Related work

A lot of research has been conducted in the analysis of job-scheduling appli-
cations using a game-theoretic approach. One branch emphasizes the mecha-
nism design approach, and seeks for truthful mechanisms (see the seminal paper
by [17]). The current work belongs to the second branch, which treats the jobs
as players who choose the machine to run on. The questions that are commonly
analyzed under this approach are Nash equilibrium existence, the convergence
of best-response dynamics to a Nash equilibrium, and the inefficiency of Nash
equilibria (quantified mainly by the price of anarchy [15, 18] and price of stability
[2] measures).

3 Potential games have been introduced by [16].
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It is well known that every congestion game is a potential game [19, 16],
and therefore admits a pure Nash equilibrium, and every best-response dynam-
ics converges to a pure Nash equilibrium. However, the convergence time may,
in general, be exponentially long [1, 8, 21]. This observation has led to a large
amount of work that identified special classes of congestion games, where best-
response dynamics converge to a Nash equilibrium in polynomial time or even
linear time. This agenda has been the focus of [7, 11] in a setting with negative
congestion effects, and was also studied in a setting of positive congestion effects
[2]. In particular, it has been shown that it takes at most n steps (where n is the
number of users) to converge to a Nash equilibrium if the network is composed
of parallel links [7], and this result has been later extended to extension-parallel
networks [11]. For resource selection games (i.e., where feasible strategies are
composed of singletons), it has been shown in [13] that better-response dynam-
ics converge within at most mn2 steps for general cost functions (where m and
n are the number of resources and users, respectively). In addition to standard
better- and best-response dynamics, a few variants have been explored. One
example is the study of the convergence rate of α-Nash dynamics to an approxi-
mate Nash equilibrium [5] and to an approximate optimal solutions [3]. Also, the
robustness of best-response convergence to altruistic agents has been studied in
[12], where it has been shown that best-response dynamics may cycle as a result
of altruism.

More recently, congestion models with simultaneous negative and positive
congestion effects have been considered. The model introduced by Johari and
Kumar [14] considers a system with identical users and a single server, where
the negative and positive congestion effects are modeled through fairly general
increasing and decreasing cost functions, respectively. The model introduced
by Feldman and Tamir [9] considers a specific form of negative and positive
congestion effects with multiple machines. This model was studied recently also
by Chen and Gürel [4]. For the special case of unit-size jobs, a more general
model of conflicting congestion effects in routing games has been introduced by
Anshelevich et al., where the cost incurred by an agent is the sum of the delay
on its chosen path and the setup cost on that path. Our model can be seen as a
special case of this model, where the network is composed of parallel links and
the setup cost is determined through the cost-sharing rule.

2 Model and Preliminaries

We consider a job-scheduling setting with identical machines and identical (unit-
size) jobs. There is a set of machines M = {M1,M2, . . .} of unlimited size,4 each
associated with an activation cost, B. An instance of our problem is given as
a tuple (n,B), where n denotes the number of jobs. An assignment method
produces an assignment s = (s1, . . . , sn) of jobs into machines, where sj ∈ M
denotes the machine to which job j is assigned. We use the terms assignment,

4 Although we assume an unlimited number of machines, the number of machines will
clearly be less than n.
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schedule, and profile interchangeably. The load of a machine Mi in a schedule s,
denoted Li(s), is the number of jobs assigned to Mi in s.

Given a job-scheduling setting and an activation cost B, a job-scheduling
game is induced in which the set of players is the set of jobs, and the action
space of each player j, is the set of machines. The cost function of job j in a
given schedule is the sum of two components: the load on j’s machine and j’s
share in the machine’s activation cost. It is assumed that the activation cost B
is shared equally between all the jobs that use a particular machine. That is,
given a profile s in which sj = Mi, the cost of job j is

cj(s) = Li(s) +
B

Li(s)
.

We denote the cost of a job that is assigned to a machine with load x by c(x),
where c(x) = x+ B

x . It can be easily verified that the cost function exhibits the
following structure.

Observation 1 The function c(x) = x+B/x for x > 0 attains its minimum at
x =

√
B, is decreasing for x ∈ (0,

√
B), and increasing for x >

√
B.

Practically, the input to the cost function in our setting is an integral value.
If B is a perfect square, then the integral load achieving the minimal cost is
exactly

√
B. For example, if B = 100, then being assigned to a machine with

load 10 is optimal. In general, however, the optimal integral load (i.e., the load

that minimizes the cost function) may be either
⌊√

B
⌋
or

⌈√
B
⌉
, and for some

values of B it may be both. For example, if B = 12 then both 3 and 4 are optimal
loads, as c(3) = c(4) = 12. We denote an optimal load by ℓ∗ = ℓ∗(B). Assuming
a unique integral optimal load, it is easy to verify that the cost function is
decreasing for x ∈ [1, ℓ∗] and increasing for x ≥ ℓ∗. For two optimal integral
loads, ℓ∗ − 1 and ℓ∗, the cost function is decreasing for x ∈ [1, ℓ∗ − 1] and
increasing for x ≥ ℓ∗.

An assignment s ∈ S is a pure Nash equilibrium (NE) if no job j ∈ N can
benefit from unilaterally deviating from its machine to another machine (possibly
a new machine). In our game, this implies that for every job j assigned to Mi

and every i′ ̸= i, it holds that c(Li(s)) ≤ min(c(1), c(Li′(s) + 1)).

3 Convergence of Best-Response Dynamics

Best-Response Dynamics (BRD) is a local search method where in each step
some player is chosen and plays its best-response strategy, given the strategies
of the others. In systems where the agents always reach a Nash equilibrium after
repeatedly performing improvement steps, the notion of a pure Nash equilibrium
is well justified. In order to better understand the behavior of these dynamics,
this section explores the convergence rate of best-response dynamics into a pure
NE.
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In the general case, in which jobs have arbitrary lengths and the activation
cost of a machine is shared by the jobs proportionally to their length, BRD is
not guaranteed to converge to a NE [9]. In contrast, if the jobs are identical, then
the induced game is equivalent to a congestion game with n resources [19]. One
can easily verify that the function Φ(s) =

∑
i

(
B ·Hℓi +

1
2ℓ

2
i

)
, where ℓi denotes

the number of jobs on machine i, H0 = 0, and Hk = 1 + 1/2 + . . . + 1/k, is a
potential function for the game. Convergence to a NE is guaranteed in potential
games, but the convergence time might be exponential.

In this section we study the convergence time of BRD of unit-length jobs.
We show that the convergence of BRD in general might take Ω(n log n

B ) moves,
and propose a specific form of BRD that ensures convergence within a linear
number of moves. Specifically,

Max-cost BRD: At every time step, a job that incurs the highest cost among
those who can benefit from migration, is chosen to perform its best-response
move (where ties are broken arbitrarily).

The analysis of the convergence rate of BRD and max-cost BRD (MC-BRD
hereafter) is quite complicated and requires several preparations and terminol-
ogy. Recall that all jobs assigned to a machine with load x incur the same cost
c(x) = x+B/x. We denote by ℓ∗ a load achieving minimal cost. By Observation

1, ℓ∗ may be either
⌊√

B
⌋
or

⌈√
B
⌉
, and for some values of B it may be both.

For simplicity, throughout this section we assume a unique optimal load. All the
results hold also for the case of two optimal loads, where minor straightforward
modifications are required in the proofs.

We denote by ℓti the load of machine Mi at time t, i.e., before the migration
of iteration t takes place. A machine that has load at least (respectively, smaller
than) ℓ∗ is said to be a high (low) machine.

We observe that if at some iteration a job migrates to a low machine, then in
subsequent iterations that machine will attract more jobs up to load at least ℓ∗.
Indeed, since c(ℓ + 1) < c(ℓ) for ℓ < ℓ∗, a low best-response machine continues
to be a best response until it is filled up to load at least ℓ∗. Formally,

Observation 2 If at some iteration t there is a migration to a low machine Mi

such that ℓti = ℓ∗ − x for some x > 0, then the following x − 1 iterations will
involve migrations to Mi.

5

Properties of MC-BRD. By the design of the MC-BRD process and as a direct
corollary of Observation 1, every migration in the MC-BRD process is from either
the lowest or the highest machine into either the lowest-high or the highest-low
machine (see Figure 3).

5 It is possible that the system reaches a NE and the BRD process terminates before
x− 1 iterations are performed.
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l*

Low machines High machines

Fig. 1. MC-BRD process. Every migration is from one of the extreme machines into
one of the middle grey machines.

Since all jobs on a particular machine share the same cost, the MC-BRD
process can be described as if it acts on machines rather than on jobs. Specifically,
in every iteration t, one job migrates from machine Mi to machine Mk, k ̸= i,
where (i) c(ℓtk + 1) is minimal, (ii) c(ℓtk + 1) < c(ℓti), and (iii) c(ℓti) is maximal
among all the machines from which a beneficial migration exists. While the MC-
BRD process does not specify which job is migrating from Mi, for simplicity we
will assume a LIFO (last in first out) job selection rule. Specifically, the job that
entered Mi last is the one to migrate. If all jobs on Mi were assigned to it in the
initial configuration, then an arbitrary job is selected. Since the BRD-process
can be characterized by the load-vector of the machines in every time step, the
number of iterations is independent of the job-selection rule. Consequently, our
analysis of the convergence rate of MC-BRD applied with a LIFO job-selection
rule is valid for any MC-BRD process.

Note thatMi, the machine from which a job is selected to migrate in iteration
t, is not necessarily the machine for which c(ℓti) is maximal. For example, suppose
that B = 100 and there are two active machines, a low one with load 3, and a
high one with load 33. It is easy to verify that c(4) < c(33) < c(3) < c(34). In
this case, c(3) is the maximal cost, but jobs on the low machine have no beneficial
move (since c(34) > c(3)). On the other hand, jobs on the high machine wish to
migrate to the low one (since c(4) < c(33)). Thus, the high machine is the one
selected by MC-BRD to perform a migration, although the low machine is the
one incurring max-cost. Clearly, such a case can only occur if the machine that
incurs the max-cost is itself the best-response machines, as summarized in the
following observation.

Observation 3 If at time t the machine Mi that incurs max-cost is not the
one from which a job is selected to migrate in MC-BRD, then c(ℓti + 1) is the
best-response, in particular, this implies that Mi is low.

We next observe that in MC-BRD, if at some iteration a job leaves some low
machine, then in the following iterations all the jobs assigned to that machine



Best Response Dynamics in Conflicting Congestion Games 7

will leave it one by one until the machine empties out. To see this, note that
c(ℓ − 1) > c(ℓ) for ℓ < ℓ∗; thus, if a low machine incurs the highest cost, it
continues to incur the highest cost after its load decreases. It remains to show
that if a beneficial move out of Mi exists when it has load ℓ < ℓ∗, then it is also
beneficial to leave Mi when it has load ℓ − 1. This is ensured by Observation
3. Specifically, if it is not beneficial, then c(ℓ) is the cost of the best-response
machine. But this is impossible since c(ℓ) was the max-cost in the previous
iteration.

Observation 4 If at some iteration t there is a migration from a low machine
Mi such that ℓti = ℓ∗ −x for some x > 0, then the following ℓ∗ −x− 1 iterations
will involve migrations from Mi.

We are now ready to state the bound on the convergence rate of MC-BRD.

Theorem 1. For every job scheduling game with identical jobs, every MC-BRD
process converges to a NE within at most max{ 3n

2 − 3, n− 1} steps.

Proof. First note that at least one machine that is active in the initial configura-
tion will remain active in the final configuration. Thus, at least one job, located
on this machine, does not migrate at all. If every other job migrates at most
once then clearly there are at most n − 1 ≤ max{ 3n

2 − 3, n − 1} iterations. We
show that it is possible for some jobs to migrate twice, but not more than twice.
Moreover, we show that a second migration of a job might happen only towards
the end of the BRD process and that the number of jobs that migrate twice is
limited.

If no job migrates more that once, then the claim is valid. Assume that at
least one job migrates more than once. Let j be the first job to migrate for the
second time. Assume that j migrates from M1 to M2 at time t and from M2 to
M3 at time t′ > t. By our LIFO assumption, ℓ2(t

′) = ℓ2(t) + 1.

Claim 2 At time t′, all the machines, except possibly for M3, have load either
ℓ2(t

′) or ℓ2(t
′)− 1.

Proof. We first show that there are no low machines at time t′. Assume by way
of contradiction that M0 is low at time t′. The load on M0 remains the same
between time t and t′; that is, ℓ0(t

′) = ℓ0(t) because M0 is not the current best
response and according to Observation 2, if it were the best response at some time
point then it would keep attracting jobs until it was not low anymore. We next
show that M0 is not the max-cost machine at time t′. To see this, note that if it
were a max-cost machine, then, by Observation 3, it should be either the machine
from where a job migrates, or the machine to where a job migrates. But these
two machines are M2 and M3, respectively. Thus, at time t′, M2 is the max-cost
machine. Therefore c(ℓ0(t

′)) ≤ c(ℓ2(t
′)). Also c(ℓ0(t

′)) = c(ℓ0(t)) > c(ℓ0(t) + 1),
becauseM0 is low. However, at time t, j preferred joiningM2 having cost c(ℓ2(t

′))
to joining M0 having cost c(ℓ0(t) + 1), a contradiction.

It remains to consider high machines at time t′. As M2 is the max-cost
machine, there are no machines with load larger than ℓ2(t

′) at time t′. We show
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that no high machine (except maybe for M3) has load less than ℓ2(t
′)−1 = ℓ2(t)

at time t′. Assume by way of contradiction that there is a machine, M4 ̸= M3,
with load less than ℓ2(t

′)− 1. The load of M4 did not decrease between times t
and t′ because in order to get below ℓ2(t

′) − 1 it must be that the max-cost is
achieved by load ℓ2(t

′)− 1, while we know that the load on M2 is higher during
this whole time interval. The same argument can be applied toM3 (we know that
ℓ3(t

′) < ℓ2(t
′)−1 as otherwise the second migration of j would not be beneficial).

Therefore, the load on both M3 and M4 does not decrease between times t and
t′. If M3 or M4 were high already at time t, then j should have preferred one of
them to M2. Thus, both M3 and M4 were low at time t and by the choice of j
at time t, we know that c(ℓ4(t) + 1) ≥ c(ℓ2(t)) as well as c(ℓ3(t) + 1) ≥ c(ℓ2(t)).
Assume w.l.o.g. that ℓ3(t) ≤ ℓ4(t); that is, M4 becomes active before M3. Since
at time t′ both are high, it must be that M3 became a best-response between t
and t′. However, the load on M4 during this time interval was always less than
ℓ2(t

′)− 1, and since c(ℓ3(t) + 1) ≥ c(ℓ2(t)) > c(ℓ4(t
′′)) for every time t′′ between

t and t′, we get a contradiction to the choice of M3 as a best-response during
this time interval.

⊓⊔
Denote by N0 the number of jobs that do not migrate at all, by N1 the

number of jobs migrating once, and by N2 the number of jobs migrating more
than once. Given that at time t′, all machines except for M3 have loads ℓ2(t

′) or
ℓ2(t

′)− 1, the only remaining migrations following time t′ are to M3. Therefore,
jobs migrating more than once can only migrate twice and their second migration
is to M3. Thus, N2 is in fact the number of jobs migrating twice. The following
claim bounds N2.

Claim 3 N2 ≤ n
2 − 2.

Proof. By the above discussion, the only remaining migrations following time t′

are to M3, and a NE is reached when the load is balanced (all machines have load
x or x−1 for some x). Note that all machines except, possibly, M3 must be high
at time t′, since if a machine M ′ ̸= M3 is low, then by Observation 2, it keeps
attracting jobs. Also, a load on a high machine never goes below ℓ∗, therefore,
when a NE is reached, there are at least two active machines, M2 and M3. Also,
ℓ3(t

′) > 1, as if ℓ3(t
′) = 1 and M3 is the best-response at time t′, then it should

have been a best-response also at time t (by Observations 2 and 4, the load on a
low machine could not decrease before it becomes a best-response), contradicting
the choice of j at time t. Therefore, the maximal number of migrations following
time t′ is obtained when the only active machines at time t′ are M2 and M3 and
their loads are n− 2 and 2, respectively. The number of migrations required to
reach a balanced load is n− 2− n

2 = n
2 − 2 if n is even, and n− 2− n+1

2 < n
2 − 2

if n is odd.

⊓⊔
As argued in the beginning of this proof, N0 > 0. Therefore, N1+N2 ≤ n−1.

It follows that the total number of migrations is 0 · N0 + 1 · N1 + 2 · N2 ≤
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(N1 + N2) + N2 ≤ n − 1 + n/2 − 2 = 3n
2 − 3, as promised, where the last

inequality follows by Claim 3. ⊓⊔

The above result is almost tight. Consider an instance with n = B
2 + 2 jobs.

Initially, the jobs are assigned on m = n machines, a single job on each machine.
In a possible MC-BRD process, one of the machines attracts B

2 −1 jobs from B
2 −1

other machines. After B
2 −1 moves, there are three active machines and the load

vector is ⟨B2 , 1, 1⟩. Note that for any B > 2 it holds that c(1) > c(B2 +1) > c(2).
Thus, at this point, one of the low machines becomes the best response and the
other achieves the max-cost. This leads to load vector ⟨B2 , 2⟩. The next B

4 − 1
moves will balance the load on the two machines. The total number of migrations
is B

2 − 1 + 1 + B
4 − 1 = 3B

4 − 1 = 3n
2 − 4.

In contrast to MC-BRD, the convergence time of arbitrary BRD, in which
the moving job is not necessarily the one having maximal cost, might not be
linear in n.

Theorem 4. There exists a job scheduling game with identical jobs and a BRD
process such that the convergence time to a NE is Ω(n log n

B ).

Proof. We describe an instance and a possible BRD convergence of this instance.
Given m, let n = mB/2. Consider an initial assignment in which one machine,
M0, is assigned n − (m − 1) jobs, and m − 1 machines, denoted M1, ...,Mm−1,
are assigned a single job each. A possible BRD process can be described as a
sequence of m − 1 phases. Phase k for k = 1, . . . ,m − 1 begins when machine
Mk is the best-response machine for the first time (i.e., its load increases from 1
to 2). Each phase consists of two stages: (i) balancing - after which the loads on
machines M1, . . . ,Mk are equal (up to a gap of 1), and (ii) filling - after which
the loads on machines M1, . . . ,Mk are all B/2. We demonstrate such a slow
BRD process with 5 machines and B = 100 in Figure 3. A detailed description
of the stages is deferred to the full version.

Claim 5 The number of steps in the above BRD process is Ω(n log n
B ).

Proof. Proof of Claim 5: For simplicity, in the following analysis, we ignore
floors and ceilings and the possible gap of 1 between the machines’ load after
the balancing stage. One can easily verify that in a closer analysis, the total
number of migrations might be reduced by at most m. In general, for arbitrary
m,B, the balancing stage in the first phase is empty. The filling stage consists of
B/2−1 migrations from M0 to M1. After this stage, M2 becomes a best-response
machine (an added job will incur a cost of B/2 + 2, which is the current cost of
a job on M1). Thus, the second phase begins with a migration from M0 to M2.
In the balancing stage jobs are migrating from M1 to M2 until they both have
load (B/2 + 2)/2. In the filling stage, the best-response alternates between the
machines M1,M2, until both have loads B/2, and M3 becomes the new best-
response machine. In general, the balancing stage of phase k can be described
in a recursive manner: first, the balancing stage of phase k − 1 (on machines
M1, . . . ,Mk−1) is repeated on machines M2, . . . ,Mk; this results in balancing
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M0 M1 M2 M3 M4

Phase 1
246 1 1 1 1
197 50 1 1 1 (49)

Phase 2
196 50 2 1 1 (1)
196 26 26 1 1 (24)
148 50 50 1 1 (48)

Phase 3

147 50 50 2 1 (1)
147 50 26 26 1 (24)
147 34 34 34 1 (16)
99 50 50 50 1 (48)

Phase 4

98 50 50 50 2 (1)
98 50 50 26 26 (24)
98 50 34 34 34 (16)
98 38 38 38 38 (12)
50 50 50 50 50 (48)

Fig. 2. A slow BRD process. Each line gives the machines’ load vector at some time
point. The numbers in parentheses show the number of migrations performed since the
previously presented time point.

the loads on M2, . . . ,Mk. Next, there are additional migrations from M1 to
M2, . . . ,Mk. Specifically, in the last part of the balancing stage of phase k, we
move from load vector (on M1, . . . ,Mk)

⟨B
2
,
k − 2

k − 1
· B
2
,
k − 2

k − 1
· B
2
, . . . ,

k − 2

k − 1
· B
2
⟩

to load vector ⟨k−1
k · B

2 , . . . ,
k−1
k · B

2 ⟩. This last part consists of
B
2k migrations.

In the filling stage of phase k, the load on the k machines M1, . . .Mk is
increased from k−1

k
B
2 to B

2 , which takes B
2 migrations (in fact, the exact number

of migrations is B
2 − 2, but the overall distortion in the total counting is at most

2(m− 1), which is negligible).

Denote by bk(fk) the number of migrations in the balancing (filling) stage
of phase k. According to the above description, for every k > 1 it holds that
b(k) = bk−1 +

B
2k and f(k) = B

2 . The total number of migrations in phase k is

bk + fk = bk−1 +
B
2k + B

2 . Also, for k = 1, we have b(1) = 0, f(1) = B
2 . Summing

up all m−1 phases, we get that the total number of migrations until convergence
is
m−1∑
k=1

(bk + fk) =

m−1∑
k=1

(bk−1 +
B

2k
+

B

2
) =

B

2
(m− 1) +

m−1∑
k=1

(bk−1 +
B

2k
)

=
B

2
(m− 1) +

B

2
(
1

2
(m− 2) +

1

3
(m− 3) + . . .+

1

m− 1
(m− (m− 1)))

=
B

2
(m− 1 +

m

2
− 1 +

m

3
− 1 + . . .+

m

m− 1
− 1) =

B

2
(m log(m− 1)− (m− 1)).
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Since m = 2n
B , we get that the total number of migrations is

B

2
(
2n

B
log(

2n

B
− 1)− (

2n

B
− 1)) = Ω(n log

n

B
).

⊓⊔
⊓⊔

While the convergence rate of general BRD is super-linear, the following
theorem establishes an upper bound of n2. Closing the gap remains an open
problem.

Theorem 6. For every job scheduling game with identical jobs, every BRD pro-
cess converges to a NE within at most n2 steps.

Proof. Let mlow be the number of low machines in the initial configuration.
Among these low machines there are m1 machines that will be emptied along
the BRD process, and m2 machines that will form the best-response during the
process and (by Observation 2) end up high. Partition the BRD process into
phases. Phase 0 (which might be empty) consists of migrations as long as the
best response is a high machine, these migrations might be among high machines
or from low machines that are emptied into high machines. Index the m2 most-
loaded low machines in non-increasing order of initial load. For i > 0, phase i
begins when the i-th low machine form the best-response for the first time.

Therefore, the total number of migrations is bounded by the number of
phases, m2+1, multiplied by the number of migrations per phase. Since m2 < n,
showing that the number of migrations in every phase is bounded by n estab-
lishes an upper bound of n2, as desired. We next prove that the number of
migrations in every phase is bounded by n.

For i > 0, phase i begins with migrations to the i-th low machine till it
becomes high. This machine will never become low again, because the job at
height ℓ∗ will never leave it, thus, jobs migrating to the i-th machine, as long as
it is low, will not migrate again (in this, and in later phases).

The following migrations (and all the migrations in phase 0), are migrations
to high machines – among high machines, or from low machines that are emptied.
During such migrations, the best-response value can only increase, therefore, if
job j is migrating to load ℓ, the best-response value will always be at least
c(ℓ + 1) and by the LIFO property, j will not leave the machine as long as the
best-response value is not strictly lower.

⊓⊔
It is interesting to compare our results to those established for the standard

model that considers only the negative congestion effects (i.e., where a job’s cost
is simply the load of its chosen machine). It has been shown by [7] that if the
order of the jobs performing their best-response moves is determined according
to their lengths (i.e., longer job first), then best-response dynamics reaches a
pure Nash equilibrium within at most n improvement steps. In contrast, if the
jobs move in an arbitrary order, then convergence to a Nash equilibrium might
take an exponential number of steps. These results imply that for the special
case of equal-length jobs, convergence occurs within at most n steps. Our results
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provide evidence that when there are conflicting congestion effects, it might take
longer to reach a Nash equilibrium. Nevertheless, for the special case of max-cost
BRD, the consideration of positive congestion effects (through activation costs)
does not lead to a longer convergence time.
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