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Abstract We consider distance queries in vertex-labeled planar graphs. For
any fixed 0 < ε ≤ 1/2 we show how to preprocess a directed planar graph with
vertex labels and arc lengths into a data structure that answers queries of the
following form. Given a vertex u and a label λ return a (1 + ε)-approximation
of the distance from u to its closest vertex with label λ. For a directed planar
graph with n vertices, such that the ratio of the largest to smallest arc length is
bounded by N , the preprocessing time is O(ε−2n lg3 n lg(nN)), the data struc-
ture size is O(ε−1n lg n lg(nN)), and the query time is O(lg lg n lg lg (nN) +
ε−1). We also point out that a vertex label distance oracle for undirected planar
graphs suggested in an earlier version of this paper is incorrect.

1 Introduction

Imagine you are driving your car and suddenly see you are about to run out of
gas. What should you do? Obviously, you should find the closest gas station.
This is the vertex-label distance query problem. Various software applications
like Waze and Google Maps attempt to provide such a functionality. The idea is
to preprocess the locations of service providers, such as gas stations, hospitals,
pubs and metro stations in advance, so that when a user, whose location is
not known a priori, asks for the distance to the closest service provider, the
information can be retrieved as quickly as possible. A dual situation is, for
example, when a taxi company wants to dispatch a taxi from the station
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closest to the location where the taxi is required. Clearly, this problem can be
solved using a vertex-label distance oracle by transposing the original graph.

We study this problem from a theoretical point of view. We model the
network as a planar graph with labeled vertices (e.g., a vertex labeled as a gas
station). We study distance oracles for such graphs. A vertex-label distance
oracle is a data structure that represents the input graph and can be queried
for the distance between any vertex and the closest vertex with a desired label.
We consider approximate distance oracles, which, for any given fixed parameter
ε > 0, return a distance estimate that is at least the true distance queried, and
at most (1+ε) times the true distance (this is known as a (1+ε)-stretch). One
would like an oracle with the following properties: queries should be answered
quickly, the oracle should consume little space, and the construction of the
oracle should take as little time as possible. We use the notation 〈O(S(n))space ,
O(T (n))time〉 to express the dependency of the space requirement and query
time of a distance oracle on n, the number of vertices in the graph.

Our results and approach For directed planar graphs we give a (1 + ε)-
stretch 〈O(ε−1n lg n lg(nN))space , O(lg lg n lg lg (nN)+ ε−1)time〉 vertex-label
distance oracle whose construction time is O(ε−2n lg3 n lg(nN)). Throughout
the paper, N is the ratio of the largest to smallest arc length. To the best
of our knowledge, no non-trivial directed vertex-label distance oracles were
proposed prior to the current work.

Consider a vertex-vertex distance oracle for a graph with label set L. If the
oracle works for general directed graphs then the vertex-label problem can be
solved easily; add a distinct apex vλ for each label λ ∈ L, and connect every λ-
labeled vertex to vλ with a zero length arc. Finding the distance from a vertex
u to label λ is now equivalent to finding the distance between u and vλ. The
main difficulty in applying this approach to oracle for directed planar graphs
is that adding apices breaks planarity. In particular, it affects the separability
of the graph. Thus, the reduction does not work with oracles that depend on
planarity or on the existence of separators.

Our contribution is in realizing and showing that the internal workings of
vertex-vertex distances oracles for planar graphs due to Thorup [23] can be ex-
tended to support vertex labels. Achieving this modification is non-trivial since
introducing the apices needs to be done in a manner that guarantees correct-
ness without compromising efficiency. Thorup’s oracles rely on the existence
of fundamental cycle separators in planar graphs, a property that breaks when
apices are added to the graph. We observe, however, that once the graph is
separated, Thorup’s oracle does not depend on planarity. We therefore post-
pone the addition of the apices till a later stage in the construction of the
distance oracle, when the graph has already been separated. We show that,
nonetheless, approximate distances from any vertex to any label in the entire
graph can be efficiently approximated.

An earlier version of this paper claimed a simplified and more efficient
vertex label distance oracle for undirected planar graphs. This claim turns out
to be incorrect, as we briefly explain in Section 7.
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2 Related Work

We summarize related work on approximate distance oracles. For general
graphs, no (2)-stretch approximate vertex-vertex distance oracles with nearly-
linear space consumption are likely to exist [20]. For any integer k ≥ 2, Thorup
and Zwick [24] presented a (2k − 1)-stretch 〈O(kn1+1/k)space , O(k)time〉 dis-
tance oracle for undirected graphs whose construction time is O(kmn1/k).
Wulff-Nilsen [26] achieved the same result with preprocessing of O(kn1+

c
k )

for a universal constant c. Several more improvements of [24] have been ob-
tained for unweighted or sparse graphs ([2], [3], [4]). The current state of the
art is due to Chechik [6]. She presented a (2k − 1)-stretch 〈O(n1+1/k)space ,
O(1)time〉 distance oracle construction algorithm for undirected graphs with
O(n2 +m

√
n) construction time.

In contrast, vertex-vertex oracles for planar graphs with stretch less then
2 have been constructed. Thorup [23] gave a 〈O(ε−1n lg n lg(nN))space ,
O(lg lg (nN) + ε−1)time〉 (1 + ε)-stretch distance oracle for directed planar
graphs, and a (1 + ε)-stretch 〈O(ε−1n lg n)space , O(ε−1)time〉 (simplified) dis-
tance oracle for undirected planar graphs.

Our result is based on Thorup’s directed oracle, which is described in sec-
tion 4. Klein [14] independently gave a distance oracle for undirected planar
graphs with the same bounds. Kawarabayashi, Klein and Sommer [12] have
shown a 〈O(n)space , O(ε−2 lg2(n))time〉 undirected (1+ ε)-stretch distance or-
acle constructed in O(n lg2 n) time, inspired by [23]. They give a trade-off of
〈O( ε

−1n lgn√
r

)space , O(r +
√
rε−1 lg n)time〉|∀r≤n oracle algorithms. Sommer et

al. [13] have shown better tradeoffs for oracles for undirected planar graphs.
For the case where N ∈ poly(n), they achieve (1+ ε)-stretch 〈O∗(n lg n)space ,
O∗(ε−1)time〉 oracle, where O∗ hides lg(ε−1) and lg∗ n factors.

The vertex-label distance query problem was introduced by Hermelin, Levy,
Weimann and Yuster [11]. For any integer k ≥ 2, they gave a (4k − 5)-stretch
〈O(kn1+1/k)space , O(k)time〉 vertex-label distance oracle (expected space) for
undirected general (i.e., non-planar) graphs. This is not efficient when the
number l of distinct labels is o(n1/k) (since the trivial solution of storing all
pairwise vertex-label distances is better in that case). They also presented
a (2k − 1)-stretch 〈O(knl1/k)space , O(k)time〉 oracle for undirected graphs.
Chechik [5] improved the latter result. In the same paper she also presented a
(4k − 5)-stretch 〈O(knl1/k)space , O(k)time〉 (expected space) oracle for undi-
rected graph.

For undirected planar graphs, Li, Ma and Ning [16], building on [14], con-
structed a (1 + ε)-stretch vertex-labeled oracle with 〈O(ε−1n lg n)space ,
O(ε−1 lg n lg∆)time〉 bounds. Here, ∆ is the (hop) diameter of the graph,
which can be θ(n). It is also shown in [16] how to avoid the lg∆ factor when
∆ = O(lg n). The construction time of their oracle is O(ε−1n lg2 n).

Łącki, Oćwieja, Pilipczuk, Sankowski, and Zych [18] developed dynamic
vertex-labeled distance oracles for undirected general and planar graphs,
and used them to maintain approximate solutions for dynamic Steiner and
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subgraph TSP problems. They describe a generic scheme for converting
certain distance oracles for undirected planar graphs into dynamic vertex-
label distance oracle. Applying their scheme to one of the slower variants
of Thorup’s distance oracles, they obtained a 〈O(ε−1n lg n lg(nN))space ,
O(ε−1 lg n lg(nN))time〉 (1+ ε)-stretch undirected vertex-labeled distance ora-
cle that also supports merging labels.

Another related work is by Abraham, Chechik, Krauthgamer and Wieder
[1], who considered approximate nearest neighbor search in planar graph met-
rics. This is the special case of vertex-labeled distance oracle with only one
label. For this easier problem they obtained a data structure whose size is
nearly linear in the number of labeled vertices. However, they assume an exact
vertex-vertex distance oracle is provided.

To the best of our knowledge, no non-trivial directed vertex-label distance
oracles were proposed prior to the current work.

3 Preliminaries

In this paper we only deal with connected graphs. This is without loss of
generality since each weakly connected component can be handled separately.
For a graph G, we denote by V (G) and E(G) the set of vertices and arcs of
G, respectively. Throughout the paper, all graphs are directed unless stated
otherwise. We write e = uv to denote an arc from vertex u to vertex v. We
use the term edges when dealing with undirected graphs, or when we wish to
ignore the orientation of arcs in directed graphs.

Let δ : E(G) → R+ be a function assigning lengths to the arcs. We assume
that the lengths are normalized so that the smallest arc length is 1. The length
of a path is the sum of lengths of its arcs. For u, v ∈ V (G), the distance between
u and v in G, denoted δG(u, v), is the length of a shortest u-to-v path in G.
We denote by N the maximum length of an arc in G. Thus δG(·, ·) = O(nN).
We assume there are no parallel arcs since it suffices to keep just the arc with
minimum length within each set of parallel arcs.

A path or a cycle P is simple if each vertex is the endpoint of at most two
arcs of P . The concatenation of two paths P1 and P2, where the last vertex of
P1 is the first vertex of P2, is denoted P1 ◦ P2. Two paths P and Q intersect
if V (P ) ∩ V (Q) 6= ∅. For a simple path Q and a vertex set U ⊆ V (Q) with
|U | ≥ 2, we define Q̄, the reduction of Q to U as a path whose vertices are
U . Consider the vertices of U in the order in which they are visited by Q. For
every two consecutive vertices u1, u2 of U in this order, there is an arc u1u2

in Q̄ whose length is the length of the u1-to-u2 subpath of Q.
Let L = {λi}li=1 be a set of l labels. A vertex-labeled graph is a graph G

equipped with a function f : V (G) → L. We define Vλ = {v ∈ V (G)|f(v) = λ}
to be the set of vertices with label λ. For a vertex-labeled G and λ ∈ L, we
define δG(u, λ) = min

w∈Vλ

δG(u,w) to be the distance in G from u to the closest

λ-labeled vertex.
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A vertex-label distance oracle is a data structure that, for a specific vertex-
labeled graph G, given a vertex v ∈ V (G) and a label λ ∈ L, outputs (an
approximation of) δG(v, λ). We note that this problem is a generalization
of the basic distance oracle problem in which each vertex is given a unique
label. Constructing an O(nl)-space vertex-label distance oracle is trivial, by
precomputing and storing the distance between each vertex and each possible
label. The goal is, therefore, to devise an oracle which requires o(nl) space,
while allowing fast queries.

We assume the reader is familiar with basic definitions and properties of
planar graphs, such as the definitions of planar embeddings, and planar duality.
Let G be a planar embedded graph. Each vertex of G is embedded to a point
in the plane, and each arc is embedded as a curve in the plane between the
images of its endpoints, such that the images of distinct arcs are internally
disjoint. The faces of G are the maximally connected regions of the plane after
removing the image of the vertices and arcs of G. Each face is identified with
the set of arcs and vertices on its boundary. We denote by G∗ the planar dual
of G. The vertices of G∗ are the faces of G, and the arcs of G∗ are in one-to-one
correspondence with the arcs of G. We can therefore refer to the same arc e in
both the primal G and the dual G∗. For a graph G, we define the size of the
graph as |G| = |V (G)|+ |E(G)|. An immediate consequence of Euler’s formula
is that in a planar graph G where each face of G is of size at least 3 (i.e. there are
no parallel edges and no self loops), |E(G)| = O(|V (G)|). The number of faces
is also O(|E(G)|). Therefore, for planar graph G, |G| = O(|V (G)|) = O(n).

An undirected cycle C in a directed graph G is a set of arcs in G that,
when regarded as undirected edges, form a cycle. Let G be a directed planar
embedded graph, and let f∞ be the infinite face of G. Let C be a simple
undirected cycle in G. The cycle C partitions the plane into two regions. A
face f is enclosed by C if it belongs to the part of the partition that does not
contain the infinite face. A vertex u ∈ V (G) is enclosed by C if it is incident
to a face enclosed by C. It is strictly enclosed if, in addition, u is not a vertex
of C. An arc e ∈ E(G) is strictly enclosed by C if both faces incident to e
are enclosed by C. An arc e ∈ E(G) is enclosed by C if e ∈ E(C) or if e is
strictly enclosed by C. The interior of C is the subgraph induced on G by the
edges enclosed by C. The exterior of C is the subgraph induced on G by the
edges not strictly enclosed by C. Note that C belongs to both the interior and
exterior of G. The strict interior and strict exterior of G are, respectively, the
interior and exterior of G without the vertices and edges of C.

The following is a specialized statement of the Jordan curve theorem for
planar embedded graphs.

Proposition 1 Let G be a planar graph. Let C be an undirected simple cycle
in G. Any path in G between a vertex in the interior of C and a vertex in the
exterior of C contains a vertex of C.

Let T be a rooted spanning tree of an undirected graph G. For u ∈ V (G),
let T [u] denote the unique root-to-u path in T . We call T [u] a branch of T .
Let u1, u2 ∈ V (G) be two vertices such that e = u1u2 ∈ E(G) \ E(T ). The
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fundamental cycle of e (with respect to T ) is the undirected cycle composed of
E(T [u1]), e, and E(T [u2]). Note that a fundamental cycle might not be simple
since T [u1] and T [u2] might have a common prefix. In general, a fundamental
cycle can be decomposed into a simple prefix path and a simple cycle. We
extend the notions of enclosure defined above for simple cycles to fundamental
cycles. A face f is enclosed by C if f is enclosed by the simple cycle portion
of C. The remaining definitions are as in the simple cycle case.

Proposition 2 ([22]) For any spanning tree T of G, the set of edges of G
not in T form a spanning tree of G∗.

For a spanning tree T of G, we use T ∗ to denote the spanning tree of G∗

consisting of the edges not in T .
An undirected fundamental cycle C is a fundamental cycle separator if each

of the interior and exterior of C, consists of at most 3/4 of the faces of G.1
Lipton and Tarjan [17] show that, if G is triangulated (every face is adjacent
to at most 3 vertices) then for any spanning tree T of G, there is an edge
not in T whose fundamental cycle with respect to T is a fundamental cycle
separator. Goodrich [7] observed that such an edge can be found by looking for
an edge-separator in the dual tree T ∗. Thorup [23] used a different construc-
tion that separates a graph into three balanced subgraphs. Our discussion of
fundamental cycle separators differs from Thorup’s, and follows that of [15].
This leads to a simpler structure of the oracle, as we discuss in Section 4.

Let G be a planar graph. For the discussion of separators we ignore the
directions of arcs in G and treat it as an undirected graph (the direction of
arcs does not affect separation properties of the graph). The following basic
and simple lemma was proved in [15].

Lemma 1 [15, Lemma 1] Let G be a planar graph with face weights such that
no face has weight more than 1/4 the total weight. Let T be a spanning tree
of G. Let T ∗ be the spanning tree of the planar dual G∗ of G consisting of
the edges not in T . Assume that T ∗ has maximum degree 3. One can find in
O(|V (G)|) time an edge ê of T ∗ such that the total face weight enclosed by the
fundamental cycle of ê with respect to T is at least 1/4 the total weight and at
most 3/4 the total weight.

Let G be a triangulated planar graph with spanning tree T . Let T ∗ be the
spanning tree of G∗ consisting of the edges not in T . Since G is triangulated,
the maximum degree of T ∗ is 3. Let ê be the edge in Lemma 1, and let C
be its fundamental cycle with respect to T . Separating G with C yields two
subgraphs, the interior Gint, and exterior Gext of C. These subgraphs inherit
the embedding from G. Thus, the cycle C is the infinite face of Gint, and the
simple cycle portion of C is a face of Gext. See Figure 1 for an illustration.

One can obtain from T subtrees that span Gext and Gint. The subgraph
of T enclosed by C is a spanning tree Tint of Gint, and the subgraph of T

1 The definitions in the literature differ in the choice of constant (3/4 in our case) as well
as in the quantity according to which the balance of the separation is defined (number of
faces in our case).
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Fig. 1: Separating a graph using a fundamental cycle separator. Left: part of a
graph G is shown. Edges of T are black. Two branches of T on a fundamental
cycle are solid thick. Edges of the dual tree T ∗ are shown in red. Since only a
part of G is shown, this illustration does not show T ∗ as a tree. Center: part
of the subgraph Gext of G is shown. Right: the subgraph Gint is shown. Note
that the spanning trees Text and Tint are subtrees of T , and that the dual
spanning trees T ∗

ext and T ∗
int are subtrees of T ∗. Observe that, e.g., the infinite

face of Gint is not triangulated, yet the maximum degree of T ∗
int remains 3.

not strictly enclosed by C is a spanning tree Text of Gext. Similarly, Consider
the two subtrees, T ∗

ext and T ∗
int, obtained from T ∗ by deleting the edge ê, and

then adding ê back to both subtrees. The subtree T ∗
ext that contains the dual

vertex corresponding to the infinite face f∞ of G is a spanning tree of G∗
ext.

The other subtree, T ∗
int, is a spanning tree of G∗

int.
We note that even though G is triangulated, Gint and Gext are not. For ex-

ample, the face of Gint whose boundary is C might not be a triangle. However,
since the spanning trees T ∗

ext and T ∗
int of G∗ are subtrees of T ∗, their maximum

degree is 3. Hence, one can continue to apply Lemma 1 recursively even though
Gint and Gext are not triangulated. We will describe such a decomposition in
Section 4.

4 Thorup’s Approximate Distance Oracle [23]

In this section we outline the distance oracle of Thorup [23]. This material
is not new, but is necessary for understanding our results. Our description is
somewhat different from that of Thorup. It does not go into all the details of
Thorup’s oracle. Rather, we focus on the aspects that our algorithm does not
use as black boxes.

Thorup shows that the problem of constructing a distance oracle for a
directed graph can be reduced to constructing a distance oracle for a restricted
kind of graphs, defined in the following.

Definition 1 A set T of arcs in a directed graph H is an α-layered spanning
tree if it satisfies the following properties:
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– Regarding the arcs of T as edges, T forms a rooted spanning tree of V (H).
– Each branch of T can be decomposed into no more than 3 directed shortest

paths in H, each of length at most α. These paths may be of opposing
directions. I.e., they need not all be directed away from the root of T .

A graph H is called α-layered if it has an α-layered spanning tree. Thorup
shows that any graph G can be decomposed into α-layered graphs of total
linear size for any α ∈ R+. The decomposition is such that any shortest path
of length at most α in G is represented in at least one of a constant number of
α-layered graphs in the decomposition (See subsection 5.1 for more details).
Thus, a natural scaling technique can be used to answer distance queries in
G by answering distance queries in a few α-layered graphs. The concept of
α-layered is important because fundamental cycles of an α-layered spanning
tree can be decomposed into a constant number of directed shortest paths.
This property is crucial in the design of Thorup’s oracle.

Definition 2 A scale-(α, ε′) distance oracle for a graph H is a data structure
that, when queried for δH(v, w), returns

d(v, w) ∈

{
[δH(v, w), δH(v, w) + ε′α] if δH(v, w) ≤ α

[δH(v, w),∞] otherwise

Thorup shows how to construct a distance oracle for any graph G using
scale-(α, ε′) distance oracles for minors of G at several scales. This is summa-
rized in the following lemma (See subsection 5.1 for more details).

Lemma 2 ([23, Sections 3.1,3.2,3.3]) Let G be a graph. Suppose that, for any
α, ε′ ∈ R+ and any α-layered minor H of G, one can construct, in O(p(|H|, ε′))
time, a scale-(α, ε′) distance oracle with space bound O(s(|H|, ε′)) and query
time O(t(ε′)) (here, p, s and t are arbitrary functions that only depend on |H|
and ε′, not on α). Then, one can construct, for any ε ∈ R+, a (1 + ε)-stretch
〈O(s(|G|, ε

4 ) lg(|G|N))space , O(t( 14 ) lg lg (|G|N)+t( ε4 ))time〉 distance oracle for
G in O(p(|G|, ε

4 ) lg(|G|N)) time.

Planar graphs are closed under taking minors. Thus, by Lemma 2, to show
a distance oracle for planar graphs, one only needs to show how to construct
scale-(α, ε) distance oracles for α-layered planar graphs. We next describe Tho-
rup’s construction of such oracles. In Section 4.1 we explain the recursive struc-
ture. In Section 4.2 we describe a non-efficient construction, and in Section 4.3
we describe how to make the construction efficient. We note again that all of
these constructions are essentially due to Thorup.

4.1 The recursive decomposition

Let G be a directed α-layered planar graph with an α-layered spanning tree
T . Thus, each branch in T can be decomposed into at most 3 directed shortest
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paths. We assume that G is triangulated. This is without loss of generality since
one can triangulate G with infinite length bidirected arcs. Clearly, this does
not affect the shortest paths or the distances in G. For the description of the
recursive decomposition we ignore the directions of arcs of G and treat it as an
undirected graph. We stress that this is done only to define the decomposition.
When describing the oracle we will, of course, take the directions of arcs into
consideration.

The set of edges not in T forms a spanning tree T ∗ of G∗, and, since
G is triangulated, the maximum degree of G∗ is at most 3. We decompose
G recursively using the fundamental cycle separator in Lemma 1 until each
subgraph contains a constant number of faces of G. The decomposition can
be represented by a binary tree T in the following manner. We refer to the
vertices of T as nodes to distinguish them from the vertices of G. See Figure 2
for an illustration.

– Each node r of T is associated with a subgraph Gr of G. The subgraph
associated with the root of T is G itself. The spanning tree of G is T and
the spanning tree of G∗ is T ∗

– Each non-leaf node r of T is associated with the fundamental cycle sepa-
rator Sepr found by invoking Lemma 1 on Gr. The weight assignment to
the faces of Gr used in the invocation of Lemma 1 assigns weight 1 to each
face of Gr that is also a face of the original graph G (we call these faces
original faces), and weight 0 to all other faces of Gr (these faces are called
holes).

– Each non-leaf node r has two children r0, r1. The subgraph Gr0 associated
with the node r0 is the exterior of Sepr in Gr. The subgraph Gr1 associated
with the node r1 is the interior of Sepr in Gr.
In both Gr0 and Gr1 we replace each of the two branches comprising Sepr
by their reduction to their vertices incident to at least one original face.
As explained in the text following Lemma 1, the spanning trees of Gr0 and
Gr1 are subtrees of Tr (with the branches of Sepr reduced as described
above), and the spanning trees of G∗

r0 and G∗
r1 are subtrees of T ∗

r .

Since the number of original faces decreases by a constant factor at each
level, the depth of T is O(lg n). We will bound the space required to store the
decomposition tree T , and all the subgraphs Gr generated by the decomposi-
tion by O(|G| lg |G|). This is where reducing the branches of Sepr is crucial,
because the sizes of the separators do not decrease along the recursion. We
explain this issue in detail. Recall that the subgraphs created during the re-
cursive decomposition have two type of faces; faces that are also original faces
of G, which we call original faces, and faces that are not faces on G, which are
called holes. The original faces are all triangles, and their number decreases by
a constant factor at each recursive step. The holes are faces that may consist
of more than 3 vertices, and their number increases by at most one at each
recursive step. The problem with bounding the size of the subgraphs Gr arises
from vertices that are adjacent only to holes, because the number of such ver-
tices does not necessarily decrease along the recursion. Note that such vertices
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u

v

Fig. 2: Illustration of the recursive decomposition. Edges of T are black. Edges
of the cycle separator at the first level are solid thick, edges of the cycle
separators at the second level are dashed. Left: part of the graph G is shown.
Center: part of the subgraph G0 of G. G0 has a single hole. Right: part of the
subgraph G00 of G0. G00 has two holes. The subpath of T between vertices u
and v is reduced into a single edge because internal vertices on this subpath
are not incident to original faces of G.

are always vertices of the separator of some ancestor of r in T (possibly r
itself). For this reason we replace the branches of Sepr with their reductions
to vertices incident to at least one original face. This has the effect of replacing
every (possibly long) maximal path of edges that are only incident to holes
with a single reduced edge (that is assigned the length of the path). This
change reduces the size of the subgraph without changing the distances in the
subgraph. After reducing these paths each vertex in the subgraph is incident
to at least one original face. Therefore, the number of vertices in a subgraph
is at most 3 times the number of original faces in the subgraph. Namely, for
any r ∈ T , |Gr| is within a constant multiplicative factor from the number of
original faces in Gr. Since each original face belongs to exactly one Gr at each
level of T , the total size of all subgraphs in a single level of the recursion is
O(|G|). Thus the total size is O(|G| lg |G|).

4.2 A scale-(α, ε) distance oracle

The main idea in obtaining an approximate distance oracle is to store just
a subset of the pairwise distances in the graph, from which all approximate
distances can be computed efficiently. Fix some ε > 0.

Definition 3 (ε-covering connections set) Let H be a graph. Let Q be
a shortest path in H of length at most α. Let v be a vertex of H. A set
C(v,Q) ⊆ V (Q) is called an ε-covering connections set from v to Q with
connection lengths ` : V (H) × V (Q)→ R+ if, for every q∗ ∈ V (Q), if δ(v, q∗) ≤
α, then there exists some q ∈ C(v,Q) s.t. δH(v, q∗) ≤ `(v, q) + δH(q, q∗) ≤
δH(v, q∗) + εα.
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Intuitively one should think of a connection length `(v, q) as the true distance
δH(v, q). However, as we explain later on, to achieve efficient construction,
`(v, q) is sometimes an approximation of δH(v, q). An ε-covering connections
set C(Q, v) from Q to v with connections lengths ` : V (Q) × V (H) → R+

is defined symmetrically. If δ(q∗, v) ≤ α, then there exists some q ∈ C(Q, v)
s.t. δ(q∗, v) ≤ δ(q∗, q) + `(q, v) ≤ δ(q∗, v) + εα. We use the term ε-covering
connections set (or just connections set) to refer to both the v-to-Q (or Q-
to-v) connections as well as their corresponding connection lengths.

Thorup showed that, given any graph H, shortest path Q in H of length at
most α, and for every vertex v ∈ V (H) there exists an ε-covering connections
set of size O(ε−1). The utility of ε-covering connections sets is summarized in
the following lemma ([23, Lemma 3.5]):

Lemma 3 Let Q be a shortest path of length at most α in graph H. Let P
be a shortest u-to-w path in H of length at most α which intersects Q. For
any ε > 0, let C(u,Q) and C(Q,w) be ε-covering connections sets from u to
Q and from Q to w, respectively. Let Huw

Q be a graph with vertices u,w, the
vertices and arcs of the reduction of Q to the connections of u and of w, and
with u-to-Q and Q-to-w arcs whose lengths are the corresponding connection
lengths of C(u,Q) and C(Q,w). Then

δHuw
Q

(u,w) ≤ δH(u,w) + 2εα (1)

A Lowest Common Ancestor (LCA) data structure for a tree T is a data
structure that, given any two nodes x, y of T , returns the node furthest from
the root that is an ancestor of both x and y. Harel and Tarjan [9] (and many
other subsequent simpler and practical results) show how to construct, in linear
time, an LCA data structure of linear size and constant query time.

Let u,w be vertices of G. Let ru, rw be leaves of T such that u ∈ Gru and
w ∈ Grw . Let r be the LCA of ru and rw in T . We denote by Sr the set of six
directed shortest paths in the decomposition of Sepr (recall that each branch
in an α-layered tree can be decomposed into at most 3 directed paths, and that
Sepr is composed of two such branches). If ru 6= rw, u and w are separated by
Sepr, and so, by Proposition 1, every u-to-w path in G must intersect some
path of Sr. Therefore, by Lemma 3, to be able to approximate δG(u,w), it
suffices to keep, for every Q ∈ Sr, connections C(u,Q) and C(Q,u), where
the connection lengths reflect distances in G (not in Gr). To stress that the
connection lengths are in G, we call such connections global connections. If
r = ru = rw, then r is a leaf of T , so the size of Gr is constant. All such
distances (in G) between pairs of vertices in Gr are stored explicitly by the
oracle.

The distance oracle keeps the following items for every internal node r ∈ T
and for every vertex u ∈ Gr:
1. global ε/2 connections C(u,Q) for all Q ∈ Sr.
2. global ε/2 connections C(Q,u) for all Q ∈ Sr.
These connections, over all u ∈ Gr and all paths in Sr are called the connec-
tions of r. In addition, the data structure stores:
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3. A mapping of each vertex v ∈ V (G) to some leaf node rv ∈ T s.t. v ∈ Grv .
4. A lowest common ancestor data structure over T .
5. εα-additive approximation of δG(u, v) for all u, v ∈ V (G) such that ru = rv.

We next describe how a query is performed. Given a u-to-w distance query,
let r be the lowest common ancestor of ru and rw in T . If r = ru = rw, the
query algorithm returns their length approximation (item 5 above) in O(1)
time. Otherwise, the query algorithm computes, for each path Q ∈ Sr the
length of a shortest u-to-w path that intersects Q using the ε/2-covering sets
C(u,Q) and C(Q,w). By the construction of T , the number of such paths Q
is constant. If δ(u, v) ≤ α, one can compute the distance estimate within εα
additive error (see Lemma 3) for each Q in O(ε−1) time (see also [23, Lemma
3.6]). Thus, if δ(u, v) ≤ α, an additive εα distance approximation is produced
in O(ε−1) time.

We now bound the total space required for the oracle. Since the height of
T is O(lg n), and since each original face belongs to exactly one subgraph at
each level of T , each original face belongs to Gr for O(lg n) nodes r of T . For
each of the O(1) shortest paths in Sr of each such node r, and each original
face f (of G) in Gr, each of the 3 vertices of f has a set of O(ε−1) connections.
This gives a total of O(ε−1n lg n) connections in items 1,2. Items 3,4 require
O(n) space. Since there are O(n) leaves, each with a subgraph of constant
size, storing the additional length approximations in item 5 also requires O(n)
space. Hence the total space required by the oracle is O(ε−1n lg n).

The simplifications in our presentation of Thorup’s oracle compared to the
original description in [23] stem from the fact that all fundamental cycle sepa-
rators used throughout our recursive decomposition are obtained via subtrees
of a single spanning tree T ∗ of G∗. Since G is assumed to be triangulated, T ∗

and all its subtrees have maximum degree 3, so there is no need to retrian-
gulate the subgraphs Gr along the recursive decomposition. This leads to a
significant simplification because it implies that all cycle separators used in
our constructions consist of original arcs of G. Therefore, by Proposition 1, it
suffices to check connections only on the separator of the LCA of ru and rv
in order to approximate the distance from u to v. In Thorup’s construction
a cycle separator Sepr computed for some Gr may consist of artificial edges
introduced to triangulate Gr. In this situation, even though Sepr separates u
from v in Gr, there may exist in G u-to-v paths that do not intersect Sepr.
Therefore, in order to approximate the distance from u to v one needs to check
connections on all the separators of all the ancestors of the LCA of ru and rv.
Thorup deals with this by defining the concept of the frame of Gr. The use
of frames leads to additional complications since one needs to make sure that
the number of paths in each frame is constant. Our construction avoids the
need for frames and its associated complications.
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4.3 Efficient construction

We now mention some, but not all the details of Thorup’s O(ε−2n lg3 n)-time
construction algorithm. The computation of the connections and connection
lengths is done top-down the decomposition tree T . Thorup [23, Lemma 3.11,
3.12] describes a divide-and-conquer procedure that constructs the connections
C(u,Q) for all vertices u in a graph H, and a single shortest path Q. A
symmetric procedure computes C(Q,u). We summarize the procedure in the
following lemma.

Let H be a graph. Let Q be a shortest path in H. Let sssp(Q,H) be a
function s.t. for any subgraph H0 of H, and any vertex q ∈ Q0, where Q0

is the reduction of Q to V (H0), we can compute single source shortest paths
from q in the graph Q0 ∪H0 in O(sssp(Q,H)|E(H0)|) time. It is easy to see
that a standard implementation of Dijkstra’s algorithm with priority queue
implies sssp(Q,H) = O(lg |E(H)|). If H is planar, then sssp(Q,H) = O(1)
by the algorithm of Henzinger et al. [10].

Lemma 4 [23, Lemmas 3.11,3.12] Let Q be a shortest path of length at most
α in a directed graph H. Connections C(u,Q) and C(Q,u) for all vertices
u ∈ V (H), where the connection lengths correspond to distances in H, can be
computed in O(ε−1sssp(Q,H)|E(H)| lg |V (Q)|) total time.

Using Lemma 4 on (planar) Gr for all internal r ∈ T and all Q ∈ Sr takes
total O(ε−1|G| lg3 |G|) time (by a similar analysis to the one used to bound the
space, see also Lemma 6), but does not generate global connections. Because
the lemma is applied only to Gr, the connection lengths are with respect to
Gr, not to G. We call such connections local connections (of r). For the sake
of later computations of global ε/2 connections, the algorithm first computes
local ε/6 connections for all internal r ∈ T and all Q ∈ Sr.

We next describe how to efficiently compute global connections. We discuss
the connections of the form C(Q,u). Computing C(u,Q) is similar. Recall that
global connection lengths reflect distances in the entire graph, not just in Gr.
Applying Lemma 4 on G for every r would take quadratic time, which is too
much. Instead, the computation is done top-down T , augmenting Gr with
the local connection lengths of ancestors of r in T , which have already been
computed, and represent distances outside Gr. This is done as follows.

Lemma 5 Let r ∈ T and ε > 0. Global ε/2 connections for r can be computed
in O(ε−2|V (Gr)| lg2 |V (G)|) time using just Gr and local ε/6 connections of
all ancestors of r.

Proof Let Q be a path in Sr. Let XQ
r be the graph composed of:

– The vertices of Gr.
– The arcs of Q.
– For each ancestor r′ of r (including r itself), for each path Q′ ∈ Sr′ , let

V (Q′)◦ be the vertices of Q′ that have (local) connections to V (Gr) or
(local) connections from V (Q):
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q1

Q
∈ Sr

Q̄′ ∈ Sr′

Q̄′′ ∈ Sr′′

...

u
Gr

Fig. 3: The figure illustrates a part of XQ
r . The dashed circle represents Sepr.

Only solid arcs are part of XQ
r . A shortest path from q1 ∈ Q to u ∈ V (Gr)

might be enclosed in Gr (local connections C(Q,u)) or approximated through
a path which intersects a separator of an ancestor of r (in the figure, it is
composed of arcs from C(q1, Q̄

′), Q̄′ and C(Q̄′, u)).

– The vertices and arcs of Q̄′, the reduction of Q′ to vertices of V (Q′)◦.
– Arcs representing the (local) connection lengths of Q̄′ for connections

from V (Q′)◦ to V (Gr) and from V (Q) to V (Q′)◦.

Since each vertex of Gr has O(ε−1) connections to each path in the separa-
tor of each of r’s O(lg |V (G)|) ancestors, the size of XQ

r is O(ε−1|V (Gr)| lg |V (G)|).
The algorithm applies Lemma 4 on XQ

r to generate ε/6-covering connection
sets from Q in XQ

r . We prove below that for any path Q ∈ Sr, and any
q ∈ V (Q) and u ∈ V (Gr), δXQ

r
(q, u) ≤ δG(q, u)+

ε
3α. (The fact that δG(q, u) ≤

δXQ
r
(q, u) is obvious.) Hence, the ε/6 connections computed in XQ

r are in fact
global (ε/3 + ε/6) connections in G, i.e., global ε/2 connections.

Let q ∈ V (Q), and u ∈ V (Gr). Consider a shortest q-to-u path P . Let r′ be
the rootmost ancestor of r such that P intersects Sr′ . I.e., P is confined to Gr′ .
If r′ = r then P is confined to Gr, and because there are arcs representing local
ε/6 connections lengths for C(Q,u), δXQ

r
(q, u) ≤ δG(q, u) +

ε
6α. Otherwise, r′

is a strict ancestor of r. Let Q′ be a path of Sr′ intersected by P . Consider the
local ε/6 connection lengths from q to Q̄′ in r′ and the local ε/6 connection
lengths from Q̄′ to u. These connection lengths were calculated with respect
to exact distances in Gr′ . Since Q̄′, C(q, Q̄′) and C(Q̄′, u) are all present in
XQ

r , it follows from Lemma 3 that δXQ
r
(q, u) ≤ δGr′ (q, u) + 2 ε

6α. Since P is
confined to Gr′ , δGr′ (q, u) = δG(q, u), and so δXQ

r
(q, u) ≤ δG(q, u) +

ε
3α, as

claimed.
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To analyze the running time, first note that XQ
r can be easily constructed

in O(|XQ
r |) time by storing, when constructing the oracle, for each vertex of

G its connections on each of the separators in each of the subgraphs it belongs
to. The lengths of the arcs of XQ

r can be obtained within the same time bound
since they are either stored as connection lengths, or correspond to distances
between vertices on a shortest path comprising part of a separator. In the latter
case a distance can be retrieved in constant time by storing, when constructing
the oracle, for each vertex on a shortest path of a separator, its distance from
the beginning of the path.

We next show that sssp(Q,XQ
r ) = O(1). That is, we show how to compute

a shortest path tree in XQ
r rooted at any vertex of Q in O(|E(XQ

r )|) time. We
first go through the vertices of Q in order. For each vertex u ∈ V (Q) we relax
all the arcs uv ∈ E(XQ

r ). Let S be the set of all reduced paths of separators
of strict ancestors of r. For each path Q̄′ ∈ S (in any order), we go through
the vertices of Q̄′ in order. For each vertex u ∈ V (Q̄′) we relax all the arcs
uv ∈ E(XQ

r ). The computation is correct by the construction of XQ
r ; for any

q ∈ V (Q) and any v ∈ V (XQ
r ), every q-to-v path starts with a subpath of

Q, followed by a subpath of at most one path Q̄′ ∈ S, and then reaching v.
Hence, the relaxation order is correct.

XQ
r has O(ε−1|V (Gr)| lg |V (G)|) arcs and vertices because all ancestral

separator paths are in reduced form. Hence, applying Lemma 4 to XQ
r for

each path Q of Sr requires O(ε−2|V (Gr)| lg2 |V (G)|) time. Since there are a
constant number of shortest paths in Sr, this is also the total runtime.

Lemma 6 Given an α-layered graph (along with an α-layered spanning tree),
constructing a scale-(α, ε) distance oracle takes O(ε−2|V (G)| lg3 |V (G)|) time.

Proof Since a fundamental cycle separator can be found in linear time,
constructing the decomposition tree T takes O(|V (G)| log |V (G)|) time. Lo-
cal connections are computed, for each r ∈ T and each path Q of
Sr, by applying Lemma 4 to Gr using Dijkstra’s algorithm.2 This takes
O(ε−1|E(Gr)| lg2 |V (Gr)|) time. Global connections are computed by applying
Lemma 5 to XQ

r , which takes O(ε−2|V (Gr)| lg2 |V (G)|) time by Lemma 5.
Hence, computing all connections for a single r ∈ T takes

O(ε−2|V (Gr)| lg2 |V (G)|). Summing over all r ∈ T in the same depth results
in O(ε−2|V (G)| lg2 |V (G)|) time. Summing over all O(lg |V (G)|) depths gives
a total preprocessing time of O(ε−2|V (G)| lg3 |V (G)|).

Finally, computing length approximations for all pair of vertices u, v ∈
V (G) where ru = rv (item 5 in the description of the oracle) can also be
done within the same time bound using a degenerate application of Lemma 5.
For each leaf node r and for each u, v ∈ V (Gr), let r′ be the subgraph of
r consisting of just u and v. Define Sepr′ to be the singleton vertex u, and
consider u to be the a trivial local connection from u to v with local connection
length `(u, v) = δGr

(u, v). Considering r′ as a child of r and applying Lemma 5

2 Since Gr is planar, one may use [10] instead to achieve O(ε−1|E(Gr)| lg |V (G)|) com-
plexity. However this is not the bottleneck.
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to r′ yields a global connection from u to v in O(ε−2 lg2 |V (G)|) time. That is,
the length of this connection is an ε/2 approximation of δG(u, v). As there are
O(|V (G)|) such pairs (u, v) over all leaves of T , the total preprocessing time
remains O(ε−2|V (G)| lg3 |V (G)|).

By Lemma 2 and Lemma 6, we obtain the following theorem:

Theorem 1 One can construct a (1 + ε)-stretch 〈O(ε−1n lg n lg(nN))space ,
O( lg lg (nN) + ε−1)time〉 distance oracle in O(ε−2n lg3 n lg(nN)) time.

5 Scale-(α, ε) Vertex-Label Distance Oracle

In this section we show how to adapt Thorup’s oracle (section 4) to the vertex-
label case. Most of our description details how a scale-(α, ε) vertex-label dis-
tance oracle can be constructed efficiently. At the end of the section we explain
why Thorup’s argument showing that scale-(α, ε) distance oracles can be used
to construct a general distance oracle (Lemma 2) applies in the vertex-label
case as well.

Thorup’s oracle supports one-to-one (vertex-vertex) distance queries, whereas
here we need one-to-many distance queries. Given two vertices u, v, Thorup’s
oracle finds the LCA of ru and rv in T , and uses its connections to produce
the desired distance approximation. In a one-to-many query, we are given the
query vertex u, but there is no analogue for v. We do not know which λ-
labeled vertex in G is closest to u. The minimal distance approximation from
u to a λ-labeled vertex in Gru can be computed in O(1), using the vertex-
vertex distance oracle data structure, as |Gru | = O(1). Therefore, we assume,
without loss of generality, that a shortest u-to-λ path intersects some path of
Sparent(ru). More precisely, we assume that a shortest u-to-λ path intersects
the separator of the leafmost (i.e., furthest from the root) strict ancestor r of
ru in T such that Gr contains some λ-labeled vertex. The node r takes the
role of the LCA of ru and rv in the vertex-vertex query algorithm. In order to
be able to use r’s connections in a distance query, one must make sure that
r’s connections represent approximate distances to λ-labeled vertices in the
entire graph, not just in Gr.

We define a set L of new (artificial) vertices, one per label. For every r ∈ T ,
let Lr = {λ ∈ L|V (Gr) ∩ Vλ 6= ∅} be the restriction of L to labels present in
Gr. Let Ĝr be the graph with vertex set V (Ĝr) = V (Gr) ∪ Lr whose arcs are
the arcs of Gr along with a zero-length arc from each λ-labeled vertex of Gr

to the corresponding vertex in Lr. Note that the number of vertices and arcs
in Ĝr is within a constant factor of those of Gr.

In addition to the information stored in the vertex-vertex case (Lemma 6),
for every r ∈ T and λ ∈ Lr, the oracle stores connections w.r.t. λ. For every
shortest path Q ∈ Sr the oracle stores global ε/2 connections C(Q,λ). Before
explaining how to compute these connections we discuss how a distance query
is performed.
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Obtaining the distance from u to λ is done by finding the leafmost strict
ancestor r of ru with λ ∈ Lr. The algorithm estimates, for each Q ∈ Sr,
the length of a shortest u-to-λ path that intersects Q, using the connections
C(u,Q) and C(Q,λ) stored for r (Since λ ∈ Lr, r does store Q-to-λ connec-
tions).

Finding r can be done by binary search on the path from ru to the
root of T . The number of steps of the binary search is O(lg lg n). Finding
whether a node r′ has a vertex with label λ can be done, e.g., by storing
all unique labels in Gr′ in a deterministic dictionary [8,21]. This dictionary
works in the word-RAM model. It stores k elements in O(k) space, requires
O(k log k) construction time, and answers whether an element x is in the dic-
tionary in constant time. Over all nodes of T this takes O(n log n) space, and
O(n log n log |L|) = O(n log2 n) preprocessing time, which are dominated by
the overall space and construction time of the oracle. The constant query time
of the deterministic dictionary allows us to perform the binary search for r′ in
O(lg lg n) time. Thus, the query time of our oracle is O(lg lg n+ ε−1).

The Construction Algorithm It remains to show how the connections are com-
puted. We begin with the local connections. For every r ∈ T , for every Q ∈ Sr,
the algorithm computes ε/6 connections sets on Q w.r.t. each vertex of Ĝr by
invoking Lemma 4 on Ĝr.

As for the quality of approximation, we must show that the connection
lengths to the artificial vertices are useful for approximate distance queries.
For the local connections, the approximation is immediate because the desired
distances are in Ĝr.

We now show how to compute the global connections without invoking
Lemma 4 on the entire input graph G at every call. The crucial point is that
the connections to the artificial vertex λ from separators of ancestors of r
represent distances to vertices with label λ that are not necessarily in Gr.

Lemma 7 Let r ∈ T . Global ε/2 connections of r to label λ ∈ Lr can be
computed using just the local ε/6 connections of ancestors of r. Computing all
global connections to Lr for all r ∈ T can be done in O(ε−2|V (G)| lg3 |V (G)|)
time.

Proof Let Q be a shortest path of Sr. Let
−→
XQ

r be the graph composed of the
following: (see Figure 4 for an illustration)

– The vertices Lr.
– The arcs of Q.
– For each ancestor r′ of r (including r), for each path Q′ ∈ Sr′ , let V (Q′)◦

be the vertices of Q′ that have local connections to Lr or local connections
from V (Q):
– The vertices and arcs of Q̄′, the reduction of Q′ to vertices of V (Q′)◦.
– Arcs representing the local connection lengths of Q̄′ from V (Q′)◦ to Lr

and from V (Q) to V (Q′)◦.
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q1

Q
∈ Sr

Q̄′ ∈ Sr′

Q̄′′ ∈ Sr′′

...

u1

u2Gr

λ

Fig. 4: The figure illustrates a part of XQ
r for the labels case, similarly to

Figure 3. The vertices u1 and u2 are λ-labeled vertices of Gr, and are not part
of XQ

r . Paths from Q to λ-labeled vertices such as u1 and u2 confined to Gr

are represented in XQ
r by arcs between Q and λ. These arcs correspond to

the local ε/6 connections of λ on Q in Ĝr. All solid arcs are part of XQ
r . A

shortest path from q1 ∈ V (Q) to λ ∈ Lr is approximated by connections from
q1 to a separator of an ancestor of r and from there to λ. Note that C(Q′, λ)
represent distances from Q′ to λ-labeled vertices that are not necessarily in
Gr.

Let q ∈ V (Q) and λ ∈ Lr. We show that
−→
XQ

r approximates the distance
from q to its closest λ-labeled vertex in G with an additive error of ε

3α, namely:

δ−→
XQ

r

(q, λ) ≤ δG(q, λ) +
ε
3α (2)

Therefore, applying Lemma 4 to
−→
XQ

r with ε/6 results in global ε/2 connec-
tions, just as in Lemma 5.

Let uλ be a closest λ-labeled vertex to q in G. Consider a shortest q-to-uλ

path P in G. Let r′ be the rootmost ancestor of r such that P intersects
Sr′ . As in the vertex-vertex case, if r′ = r then we are done, as the local
connection sets of Q represent approximations of distances from vertices of
Q to vertices Lr in G. Otherwise, r′ 6= r and let Q̃ be a shortest path in
Sr′ that is intersected by P . Consider the local ε/6 connection lengths from
q to Q̃ and from Q̃ to λ in r′. These lengths were calculated with respect to

exact distances in Ĝr′ . Since Q̃, C(q, Q̃) and C(Q̃, λ) are all present in
−→
XQ

r ,
it follows that δ−→

XQ
r

(q, λ) ≤
Lemma 3

δĜr′
(q, λ) + 2 ε

6α. Since P is confined to Gr′ ,

δĜr′
(q, λ) = δGr′ (q, uλ) = δG(q, λ), and the lemma follows.
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The construction algorithm differs from the one in Section 4.2 in the ex-
istence of the artificial vertices. Since |Lr| = O(|V (Gr)|) for any r ∈ T , the
total running time and space requirements remain as in Section 4.2.

5.1 Vertex-Label Distance Oracle

We now explain why Lemma 2 applies also to the vertex-label case, using our
construction algorithm for scale-(α, ε) vertex-label distance oracles. For this
we need to elaborate a bit more on the proof of Lemma 2.

The proof of Lemma 2 relies on two reductions [23, Lemma 3.2, 3.9]. The
first shows that for any graph G, and for any α > 0, one can construct in
linear time a family of α-layered graphs {Gα

i }i such that
1.

∑
|Gα

i | = O(|G|).
2. Each v ∈ V (G) has an index ι(v) s.t. any w ∈ V (G) has d = δG(v, w) ≤ α

iff d = min{δGα
ι(v)−2

(v, w), δGα
ι(v)−1

(v, w), δGα
ι(v)

(v, w)}
3. Each Gα

i is a minor of G. I.e., it can be obtained from G by contraction
and deletion of arcs and vertices. In particular, if G is planar, so is Gα

i .
Item (2.) means that any shortest path of length at most α in G is represented
in at least one of three fixed graphs Gα

i . Thus, one can use scale-(α, ε) distance
oracles for the α-layered graphs {Gα

i } to implement a scale-(α, ε) oracle of G.
The second reduction [23, Lemma 3.8] is a scaling argument that shows

how to construct a (1 + ε)-stretch distance oracle for G using scale-(α, ε′)
distance oracles for α = 2i for all integers i ∈ [dlg(nN)e]. The reduction does
not rely on planarity. Roughly, the idea is that an additive ε

2α-approximation
to δ(u, v) is a multiplicative (1 + ε)-approximation if α

2 ≤ δ(u, v). Therefore
one can use binary search to identify the appropriate scale from which to get
a (1 + ε) approximate distance. See [23, Lemma 3.9] for the details.

Now consider the vertex-labeled case. Let G′ be the graph obtained from G
by adding apices representing the labels. All vertices with a specific label are
connected in G′ to the apex corresponding to this label with zero length arcs.
A vertex-vertex distance oracle for G′ is a vertex-label distance oracle for G,
so it suffices to show the former. Applying Thorup’s second reduction to G′, it
suffices to show how to construct a scale-(α, ε) distance oracle for G′ for any
α, ε. Answering distance queries between vertices of G′ that are not apices can
be done using a scale-(α, ε) vertex-vertex distance oracle for the original planar
graph G whose existence was shown by Thorup. Answering distance queries to
an apex in G′ can be done using a vertex-label scale-(α, ε) distance oracle for
G. It therefore suffices to show a vertex-label scale-(α, ε) distance oracle for G.
Let α ∈ R+. We use Thorup’s first reduction, and construct the vertex-label
distance oracle described in the beginning of Section 5 for each minor Gα

i of
G. Given u ∈ V (G) and λ ∈ L with δG(u, λ) ≤ α, let w ∈ Vλ be a closest
λ-labeled vertex to u. By the properties of Thorup’s first reduction, there is
a graph Gα

i in which the u-to-w distance is δG(u,w). Thus, the vertex-label
distance oracle for Gα

i will report a distance of at most δG(u, λ) + εα.
Therefore, the main theorem follows:
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Theorem 2 A (1+ε)-stretch 〈O(ε−1n lg n lg(nN))space , O(lg lg n lg lg (nN)+
ε−1)time〉 vertex-label distance oracle can be constructed in O(ε−2n lg3 n lg(nN))
time for a directed planar graph with n vertices and maximum arc length N .

6 Reporting Approximate Shortest Path

Thorup describes how to augment his oracle to report a u-to-v path of length
(1+ ε)δ(u, v) in time linear in the number of arcs reported. We provide here a
brief description (cf. [23, Sections 2.7, 2.8, 3.7]).

The algorithm now stores additional information. The ε-cover construction
algorithm (Lemma 4) computes shortest path trees rooted at each connection.
In the original description these trees are discarded once the connection lengths
have been recorded. To report shortest paths, the algorithm stores these trees
for all local connections. Let r be a node of T . For each v ∈ Gr, Q ∈ Sr and
global connection q ∈ C(Q, v), (i.e., connections computed by invoking the
ε-cover construction algorithm on XQ

r ), the algorithm records the rootmost
node r′ ∈ T whose separator is intersected by the q-to-v shortest path in XQ

r .
The query algorithm for the distance between u and v uses some global

connection. Let r′ be the node of T recorded for that connection. By choice
of r′ there exists a (1 + ε)-approximate shortest path P between u and v in
Gr′ . The algorithm now uses the local connections of r′ to find P and uses the
shortest path trees stored for those connections to report the edges of P .

Storing all shortest path trees does not change the preprocessing time but
increases the required space to O(ε−1n lg2 n). This is because each vertex par-
ticipates in O(ε−1 lg n) connections shortest path trees (see [23, Lemma 3.12])
in O(lg n) nodes of T . Let d̄ be the number of arcs of the reported path. The
resulting query time is O(ε−1 + lg lg n+ d̄).

We extend this technique to the vertex label case. As in the vertex-vertex
case, the query algorithm finds a node r′ such that there exists in Gr′ a path P
that (1 + ε)-approximates the shortest path between u and a λ-labeled vertex
in G. It then finds P using the local connections of r′. The main difference is
that at this point the algorithm knows the distance to the artificial vertex λ,
but not the identity of the λ-labeled vertex realizing this distance. However,
this information can be stored along with the shortest path trees for local
connections. Consider any r. Recall that each local connection corresponds to
a shortest path in Ĝr. We record, with every local connection to each λ ∈ Lr,
the identity of the vertex preceding λ in the corresponding shortest path.

7 Undirected Vertex-Label Distance Oracle

The extended abstract of the current paper [19] contained a description of
a simplified and more efficient version of a vertex-label distance oracle for
undirected planar graphs. Unfortunately, that oracle is flawed. Specifically,
Lemma 6 in [19] is false. Let Q be a shortest path in an undirected graph G.



Efficient Vertex-Label Distance Oracles for Planar Graphs 21

If one introduces an artificial vertex u (apex) to G and connects u to vertices
of G with zero-length edges, then Q might no longer be a shortest path. The
proof of Lemma 6 in [19] assumes Q remains a shortest path, and is therefore
incorrect. This seems to be a fundamental problem with this approach, which
we were not able to correct. This situation is not problematic in the directed
case, because all the arcs that are added to the graph enter the artificially
added vertices. Therefore, adding these arcs does not change distances between
vertices of the graph in the directed case.

We do mention an improvement to the vertex-label distance oracle of [16]
for undirected planar graphs. Given a label λ and vertex u, for any path Q,
when queried for the shortest u-to-λ path which intersects Q, the algorithm in
[16] uses a predecessor search in order to identify a range of

⋃
v∈Vλ

{C(Q, v)}
which is relevant for the query. In [16] searching for the predecessor is done
using binary search on the vertices of Q, which takes O(lg∆), where ∆ is
the (hop) diameter of the graph. In general ∆ may be as large as n. Instead,
one can record, for each vertex of Q, its ordinal number along Q, and store
the vertices of

⋃
v∈Vλ

{C(Q, v)} in a fast integer predecessor data structure
(e.g. [25]), which supports predecessor search in O(lg lg∆) instead of O(lg∆).
Therefore, the query time for the vertex-label distance oracle of [16] can be
made O(ε−1 lg n lg lg n) instead of O(ε−1 lg2 n) .

8 Concluding Remarks

This work presents an extension of Thorup’s vertex-vertex oracle to enable
vertex-label queries in planar graphs. Although our focus is on planar graphs,
the algorithm works for any class of graphs which are both minor-closed and
tree-path separable. By tree-path separable we mean that, given any spanning
tree, there exists a constant number of root branches whose deletion separates
the graph into subgraphs, each of size at most half the original size.

Related problems In this work we dealt with labeled-graphs where each vertex
has exactly one label. However, there is no obstacle to deal with labeled-
graphs in which each vertex has several labels. Let κ be the bound on the
maximal number of labels a vertex is labeled by. Assuming κ = poly(n), the
preprocessing time and space of the oracles in this work are multiplied by κ.

We note that the oracle in this paper can be used to obtain vertex-vertex
distance oracles in an apex graph G (i.e., G is a planar graph with additional
κ apices). Split each apex a in G into degree(a) copies, one copy for each arc
incident to a. Label the copies of a with a distinct label λa. Note that the
resulting planar graph G′ has the same number of edges as G, and at most κ
times the number of vertices of G. Construct a vertex-vertex distance oracle
and a vertex-label distance oracle for G′. Also store explicitly the distances
between any two apices in κ2 space. Consider a u-to-v query. Let P be a
shortest u-to-v path in G. If P does not visit any apex, its length can be
reported by the vertex-vertex distance oracle for G′. If P does visit some
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apex, then let a1, a2 be the first and last apices on P , respectively. The path
P can be decomposed into (i) a u-to-a1 prefix, (ii) a a1-to-a2 infix, and (iii)
a a2-to-v suffix. The lengths of the 2κ possible prefixes (i) and suffixes (iii)
can be found by making 2κ queries to the vertex-label distance oracle of G′.
The apex-to-apex distances (ii) have been precomputed. Thus the query time
is O(κ2 + κ(lg lg n lg lg (nN) + ε−1)).

A possible direction for future work is to devise efficient label-to-label dis-
tance queries. This seems significantly more difficult. In the vertex-label query,
when queried for a u-to-λ distance the algorithm used the leafmost node r in
T that contains u and some λ-labeled vertex to quickly answer the query. In a
λ1-to-λ2 query, we do not know which node r ∈ T necessarily has its separator
intersected by the desired shortest path. This is because λ1 and λ2 labeled ver-
tices might be scattered in any of the leaves of T . Constructing a label-to-label
distance oracle whose query time does not depend on the number of vertices
with the queried labels remains as an interesting open problem.
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