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Abstract. The LCS of two rooted, ordered, and labeled trees F and
G is the largest forest that can be obtained from both trees by deleting
nodes. We present algorithms for computing tree LCS which exploit the
sparsity inherent to the tree LCS problem. Assuming G is smaller than
F , our first algorithm runs in time O(r · height(F ) · height(G) · lg lg |G|),
where r is the number of pairs (v ∈ F, w ∈ G) such that v and w have the
same label. Our second algorithm runs in time O(Lr lg r · lg lg |G|), where
L is the size of the LCS of F and G. For this algorithm we present a novel
three dimensional alignment graph. Our third algorithm is intended for
the constrained variant of the problem in which only nodes with zero or
one children can be deleted. For this case we obtain an O(rh lg lg |G|)
time algorithm, where h = height(F ) + height(G).

1 Introduction

The longest common subsequence (LCS) of two strings is the longest subsequence
of symbols that appears in both strings. The edit distance of two strings is the
minimal number of character deletions insertions and replacements required to
transform one string into the other. Computing the LCS or the edit distance
can be done using similar dynamic programming algorithms in O(mn) time
and space, where m and n (m ≤ n) are the lengths of the strings [15, 29].
The only known speedups to the edit distance algorithm are by a logarithmic
factor [7, 11, 23]. For the LCS problem however, it is possible to obtain time
complexities better than Õ(mn) in favorable cases, e.g. [3,10,16–18,25]. This is
achieved by exploiting the sparsity inherent to the LCS problem and measuring
the complexity by parameters other than the lengths of the input. In this paper,
we apply this idea to computing the LCS of rooted, ordered, and labeled trees.

The problem of computing string LCS translates to finding a longest chain of
matches in the alignment graph of the two strings. Many string LCS algorithms
that construct such chains by exploiting sparsity have their natural predeces-
sors in either Hirschberg [16] or Hunt and Szymanski [18]. Given two strings
S and T , let L denote the size of their LCS and let r denote the number of
matches in the alignment graph of S and T . Hirschberg’s algorithm achieves
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an O(nL + n lg |Σ|) time complexity by computing chains in succession. The
Hunt-Szymanski algorithm achieves an O(r lg m) time complexity by extending
partial chains. The latter can be improved to O(r lg lg m) by using the suc-
cessor data-structure of van Emde Boas [28]. Apostolico and Guerra [21] gave
an O(mL ·min(lg |Σ|, lg m, lg 2n

m )) time algorithm, and another algorithm with
running time O(m lg n + d lg nm

d ) which can also be implemented to take time
O(d lg lg min(d, nm

d )) [13]. Here, d ≤ r is the number of dominant matches (as
defined by Hirschberg [16]). Note that in the worst case both d and r are Θ(nm),
while the parameter L is always bounded by m. When there are k ≥ 2 input
strings, the sparse LCS problem extends to the problem of chaining from frag-
ments in multiple dimensions [1,24]. Here, the match point arithmetic is extended
with range search techniques, yielding a running time of O(r(lg n)k−2 lg lg n).

The problem of computing the LCS of two trees was considered by Lozano
et al. [22] and Amir et al. [2]. The problem is defined as follows.

Definition 1 (Tree LCS). The LCS of two rooted, ordered, labeled trees, is the
size of the largest forest that can be obtained from both trees by deleting nodes.
Deleting a node v means removing v and all edges incident to v. The children of
v become children of the parent of v (if it exists) instead of v.

We also consider the following constrained variant of the problem.

Definition 2 (Homeomorphic Tree LCS). The Homeomorphic LCS
(HLCS) of two rooted, ordered, labeled trees is the size of the largest tree that
can be obtained from both trees by deleting nodes, such that in the series of node
deletions, a deleted node must have 0 or 1 children at the time the deletion is
applied.

Tree LCS is a popular metric for measuring the similarity of two trees and arises
in XML comparisons, computer vision, compiler optimization, natural language
processing, and computational biology [6, 8, 20, 26, 31]. To date, computing the
LCS of two trees is done by using tree edit distance algorithms. Tai [26] gave the
first such algorithm with a time complexity of O(nm · leaves(F )2 · leaves(G)2),
where n and m are the sizes of the input trees F and G (with m ≤ n) and
leaves(F ) denotes the number of leaves in F . Zhang and Shasha [31] improved
this result to O(nm · min{height(F ), leaves(F )} · min{height(G), leaves(G)}),
where height(F ) denotes the height of F . In the worst case, their algorithm
runs in O(n2m2) = O(n4) time. Klein [19] improved this result to a worst-case
O(m2n lg n) = O(n3 lg n) time algorithm and Demaine et al. [12] further im-
proved to O(nm2(1+ lg n

m )) = O(n3). Chen [9] gave an O(nm+n · leaves(G)2 +
leaves(F ) ·M(leaves(G))) time algorithm, where M(k) is the time complexity for
computing the distance product of two k × k matrices. For homeomorphic edit
distance (where deletions are restricted to nodes with zero or one child), Zhang
et al. [30] gave an O(mn) time algorithm.

Our results. We modify Zhang and Shasha’s algorithms and Klein’s algorithm
similarly to the modifications of Hunt-Szymanski and Hirschberg to the classical
O(mn)-time algorithm for string LCS. We present two algorithms for computing
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the LCS of two rooted, ordered, and labeled trees F and G of sizes n and m. Our
first algorithm runs in time O(r·height(F )·height(G)·lg lg m) where r is the num-
ber of pairs (v ∈ F, w ∈ G) such that v and w have the same label. Our second
algorithm runs in time O(Lr lg r·lg lg m), where L = |LCS(F, G)|. This algorithm
is more complicated and requires a novel three dimensional alignment graph. In
both these algorithms the lg lg m factor can be replaced by lg lg(min(m, r)) by
noticing that if r < m then there are at least m − r nodes in G that do not
match any node in F so we can delete them from G and solve the problem
on the new G whose size is now r. Finally we consider LCS for the case when
only homeomorphic mappings are allowed between the compared trees (i.e. dele-
tions are restricted to nodes with zero or one child). For this case we obtain an
O(rh lg lg m) time algorithm, where h = height(F ) + height(G).

Roadmap. The rest of the paper is organized as follows. Preliminaries and defi-
nitions are given in Section 2. In Section 3 we present our sparse variant of the
Zhang-Shasha algorithm and in sections 4 and 5 we give such variants for Klein’s
algorithm. Finally, in Section 6 we describe our algorithm for the homeomorphic
tree LCS.

2 Preliminaries

For a forest F , the node set of F is written simply as F , as when we speak of
a node v ∈ F . We denote Fv as the subtree of F that contains the node v ∈ F
and all its descendants. A forest obtained from F by deleting vertices is called a
subforest of F . For a pair of trees F, G, two nodes v ∈ F, w ∈ G with the same
label are called a match pair. For the tree LCS problem we assume without loss
of generality that the roots of the two input trees form a match pair (if this
property does not hold for the two input trees, we can add new roots to the
trees and solve the tree LCS problem on the new trees).

The Euler string of a tree F is the string obtained when performing a left-to-
right DFS traversal of F and writing down the label of each node twice: when the
DFS traversal first enters the node and when it last leaves the node. We define
eF (i) to be the index such that both the ith and eF (i)th characters of the Euler
string of F were generated from the same node of F . Note that eF (eF (i)) = i.

For i ≤ j, we denote by F [i..j] the forest induced by all nodes v ∈ F whose
Euler string indices both lie between i and j. A left-to-right postorder traversal
of a tree F whose root v has children v1, v2, . . . , vk (ordered from left to right)
is a traversal which recursively visits Fv1 , Fv2 , . . . , Fvk

, then finally visits v. The
postorder traversal of a forest F is a traversal composed of postorder traversals
of the trees of F , visited from left to right.

The tree LCS problem can be formulated in terms of matchings. Let F and
G be two forests. We say that a set M ⊆ V (F ) × V (G) is an LCS matching
between F and G if

1. M is a matching, namely every v ∈ F appears in at most one pair of M and
every v ∈ G appears in at most one pair.
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2. For every (v, v′) ∈ M , label(v) = label(v′).
3. For every (v, v′), (w, w′) ∈ M , v is an ancestor of w if and only if v′ is an

ancestor of w′.
4. For every (v, v′), (w, w′) ∈ M , v appears before w in the postorder traversal

of F if and only if v′ appears before w′ in the postorder traversal of G.

An LCS matching M between F and G corresponds to a common subforest of
F and G of size |M |, and vice versa.

For two forests F and G, let LCSR(F, G) (resp., LCSL(F, G)) denote the
size of the largest forest that can be obtained from F and G by node deletions
without deleting the root of the rightmost (resp., leftmost) tree in F or G. If
the roots of the rightmost trees in F and G are not a match pair then we
define LCSR(F, G) = 0. Clearly, LCSR(F, G) ≤ LCS(F,G) and LCSL(F, G) ≤
LCS(F, G).

Lemma 1. If F and G are trees whose roots have equal labels then
LCSR(F, G) = LCSL(F,G) = LCS(F, G).

Proof. Let r and r′ be the roots of F and G, respectively. We need to show that
there is an LCS matching between F and G of size LCS(F, G) in which both
r and r′ are matched. Let M be an LCS matching between F and G of size
LCS(F, G). If r and r′ are matched in M we are done. Moreover, we cannot have
that both r and r′ are not matched in M since in this case M ′ = M ∪ {(r, r′)}
is an LCS matching between F and G of size LCS(F, G) + 1, a contradiction.

Now, assume w.l.o.g. that r is not matched in M and r′ is matched. Let v be
the vertex in F that is matched to r′ in M . Then, M ′ = M ∪ {(r, r′)} \ {(v, r′)}
is an LCS matching between F and G with size LCS(F,G). ut
A path decomposition of a tree F is a set of disjoint paths in F such that (1) each
path ends in a leaf, and (2) each node appears in exactly one path. The main
path of F with respect to a decomposition P is the path in P that contains the
root of F . A heavy path decomposition of a tree F was introduced by Harel and
Tarjan [14] and is built as follows. We classify each node of F as either heavy or
light : for each node v we pick the child of v with maximum number of descendants
and classify it as heavy (ties are resolved arbitrarily), the remaining nodes are
classified as light. The main path P of the heavy path decomposition starts at the
root (which is light), and at each step moves from the current node v to its heavy
child. We next remove the nodes of P from F , and recursively compute a heavy
path decomposition for each of the remaining trees. An important property of
this decomposition is that the number of light ancestors of a node v ∈ F is at
most lg n + 1.

A successor data-structure is a data-structures that stores a set of ele-
ments S with a key for each element and supports the following operations: (1)
insert(S, x): inserts x into S (2) delete(S, x): removes x from S (3) pred(S, k):
returns the element x ∈ S with maximal key such that key(x) ≤ k (4) succ(S, k):
returns the element x ∈ S with minimal key such that key(x) ≥ k. Van Emde
Boas presented a data structure [28] that supports each of these operations in
O(lg lg u) time, where the set of legal keys is {1, 2, . . . , u}.
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3 An O(r · height(F ) · height(G) · lg lg m) algorithm

In this section we present an O(r · height(F ) · height(G) · lg lg m) time algorithm
for computing the LCS of two trees F and G of sizes n and m and heights
height(F ) and height(G) respectively. The relation between this algorithm and
Zhang and Shasha’s O(nm · height(F ) · height(G)) time algorithm [31] is similar
to the relation between Hunt and Szymanski’s O(r lg lg m) time algorithm [18]
and Wagner and Fischer’s O(mn) time algorithm [29] in the string LCS world.

We describe an algorithm based on that of Zhang and Shasha using an align-
ment graph. This approach was also used in [4,5,27]. The alignment graph BF,G

of F and G is an edge-weighted directed graph defined as follows. The vertices
of BF,G are (i, j) for 1 ≤ i ≤ 2n and 1 ≤ j ≤ 2m. Intuitively, vertex (i, j) corre-
sponds to LCS(F [1..i], G[1..j]), and edges in the alignment graph correspond to
edit operations. The graph has the following edges:

1. Edges (i−1, j) → (i, j) and (i, j−1) → (i, j) with weight 0 for every i and j.
These edges either connect vertices which represent the same pair of forests,
or represent deletion of the rightmost root of just one of the forests. Both
cases do not change the LCS, hence the zero weight we assign to these edges.

2. An edge for every match pair v ∈ F, w ∈ G, except for the roots of F and G.
Let i and eF (i) be the two characters of the Euler string of F that correspond
to v, where eF (i) < i, and let eG(j) < j be the two characters of the Euler
string of G that correspond to w. We add an edge (eF (i), eG(j)) → (i, j)
with weight LCS(Fv, Gw) to BF,G. This edge corresponds to matching the
rightmost trees of F [1..i] and G[1..j] and its weight is obtained by recursively
applying the algorithm on the trees Fv and Gw. Note that we cannot add
an edge of this type for the match pair of the roots of F and G because we
cannot compute the weight of such edge by recursion.

3. An edge (2n − 1, 2m − 1) → (2n, 2m) with weight 1, which corresponds to
the match between the roots of F and G.

See Figure 1 for an example. For an edge e = (i, j) → (i′, j′), let tail(e) = (i, j)
and head(e) = (i′, j′). The ith coordinate of a vector x is denoted by xi. For
example, for e above, head(e)2 = j′.

Lemma 2. The maximum weight of a path in BF,G from vertex (1, 1) to vertex
(i, j) is equal to LCS(F [1..i], G[1..j]).

Proof. We prove the lemma using induction on i + j. The base of the induction
(when i = j = 0) is trivially true. Consider some i and j. Let v and w be
the vertices that generate locations i and j in the Euler strings of F and G,
respectively.

Let p be a path from (1, 1) to (i, j) of maximum weight. We first show that
there is an LCS matching M between F [1..i] and G[1..j] of size at least weight(p).
Let e = (i′, j′) → (i, j) be the last edge on p. Denote by p′ the prefix of p up to but
not including e. From the construction of the graph we have that i′ + j′ < i + j,
so by the induction hypothesis, weight(p′) ≤ LCS(F [1..i′], G[1..j′]). Therefore,
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Fig. 1. Example of an alignment graph for two trees F and G.

there is an LCS mapping M ′ between F [1..i′] and G[1..j′] of size weight(p′).
There are three cases, depending on the type of e.

1. If e is an edge of the first type above, then weight(e) = 0, and M = M ′

is the corresponding matching (note that F [1..i′] and G[1..j′] are subforests
of F [1..i] and G[1..j], respectively, so M ′ is also an LCS matching between
F [1..i] and G[1..j]).

2. If e is an edge of the second type above then i′ = eF (i) and j′ = eG(j).
Let M ′′ be an LCS matching between Fv and Gw of size LCS(Fv, Gw). By
construction, weight(e) = LCS(Fv, Gw). The forest F [1..i] is the disjoint
union of the forests F [1..i′] and Fv (as i′ = eF (i)), and Fv is the rightmost
tree in F [1..i]. Similarly, G[1..j] is the disjoint union of the forests G[1..j′]
and Gw, and Gw is the rightmost tree in G[1..j]. Therefore, M = M ′∪M ′′ is
an LCS mapping between F [1..i] and G[1..j] of size weight(p′)+weight(e) =
weight(p).

3. If e is of the third type above then v and w are the roots of F and G,
respectively. Hence, M = M ′ ∪ {(v, w)} is an LCS mapping between F [1..i]
and G[1..j] of size weight(p′) + 1 = weight(p).

We next prove the opposite direction. Let M be an LCS mapping between
F [1..i] and G[1..j] of maximum size. We will show that there is path p from (1, 1)
to (i, j) with weight at least |M |. If v is not matched in M then M is an LCS
matching between F [1..i− 1] and G[1..j]. By, induction, there is a path p′ from
(1, 1) to (i− 1, j) of weight at least |M |. Since there is an edge (i− 1, j) → (i, j)
in BF,G, we obtain that there is a path from (1, 1) to (i, j) of weight at least |M |.
The same argument holds if w is not matched in M . Suppose, therefore, that
both v and w are matched in M . We have that eF (i) < i (otherwise v is not a
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vertex of F [1..i] so it cannot be matched in M) and eG(j) < j. Moreover, v and
w are the last vertices in the postorders of F [1..i] and G[1..j], respectively, so v
must be matched to w. If (i, j) 6= (2n, 2m), then M ′′ = M ∩ (V (Fv)×V (Gw)) is
an LCS matching between Fv and Gw, and M ′ = M \M ′′ is an LCS matching
between F [1..i]−Fv = F [1..eF (i)] and G[1..j]−Gw = G[1..eG(j)]. By induction,
there is a path p′ from (1, 1) to (eF (i), eG(j)) of weight at least |M ′|. Therefore,
there is a path from (1, 1) to (i, j) with weight at least |M ′| + LCS(Fv, Gw) ≥
|M ′| + |M ′′| = |M |. Finally, if (i, j) = (2n, 2m) then M ′ = M \ {(v, w)} is an
LCS matching between F [1..i− 1] and G[1..j − 1]. By induction there is a path
p′ from (1, 1) to (i − 1, j − 1) of weight at least |M ′|, so there is a path from
(1, 1) to (i, j) of weight at least |M ′|+ 1 = |M |. ut
Zhang and Shasha’s algorithm computes the maximum weight of a path from
(1, 1) to (i, j), for every vertex (i, j) of BF,G. By Lemma 2, this gives LCS(F, G)
at the vertex (2n, 2m).

If there are only few match pairs, we can do better. Denote the set of edges
in BF,G with nonzero weights by EF,G. Clearly, |EF,G| = r. We will exploit the
sparsity of the edges EF,G by ignoring the edges with weight 0 and the vertices
that are not the endpoint of an edge in EF,G. We define the score of e ∈ EF,G

as the maximum weight of a path in BF,G from (1, 1) to head(e) that passes
through e.

Lemma 3. score(e) = LCSR(F [1..head(e)1], G[1..head(e)2]) for every edge e ∈
EF,G.

Proof. Fix e ∈ EF,G, and let (v, w) be the corresponding match pair. If v, w are
the roots of F, G, respectively, then F [1..head(e)1] = F and G[1..head(e)2] =
G. Furthermore, by Lemmas 1 and 2, score(e) ≤ LCS(F, G) = LCSR(F, G).
Otherwise, following the proof of Lemma 2, we have that for every path p from
(1, 1) to head(e) which passes through e, there is an LCS matching M = M ′ ∪
M ′′ between F [1..head(e)1] and G[1..head(e)2] whose size is equal to weight(p).
Furthermore, M ′′ is an LCS matching between Fv and Gw of size LCS(Fv, Gw).
By Lemma 1, we may assume that v is matched to w in M ′′. It follows that
score(e) = |M | ≤ LCSR(F [1..head(e)1], G[1..head(e)2]).

In the opposite direction, let M be a matching between F [1..head(e)1] and
G[1..head(e)2] of size LCSR(F [1..head(e)1], G[1..head(e)2]) such that (v, w) ∈
M . Following the proof of Lemma 2 we define a path p from (1, 1) to head(e)
with weight at least |M |. Since (v, w) ∈ M , it follows that p passes through e.
Therefore, score(e) ≥ LCSR(F [1..head(e)1], G[1..head(e)2]). ut
By Lemmas 1 and 3 we have that LCS(F, G) = score((2n − 1, 2m − 1) →
(2n, 2m)). We now describe a procedure that computes LCS(F, G) in O(|EF,G| ·
lg lg m) time, assuming we have already computed LCS(Fv, Gw) for every match
pair v ∈ F, w ∈ G except for the roots of F and G. This procedure computes
score(e) for every e ∈ EF,G. It uses a successor data-structure S that stores edges
from EF,G, where the key of an edge e is head(e)2. The procedure handles the
rows of the alignment graph in increasing order. For row i, it first handles all
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edges e with head(e)1 = i. The pseudocode for the procedure is as follows (we
assume that score(NULL) = 0).
1: for i = 1, . . . , 2n do
2: for every e ∈ EF,G with head(e)1 = i do
3: j ← head(e)2
4: if score(e) > score(pred(S, j)) then
5: insert(S, e)
6: while succ(S, j +1) 6= NULL and score(succ(S, j +1)) ≤ score(e) do
7: delete(S, succ(S, j + 1))
8: for every e ∈ EF,G with tail(e)1 = i do
9: score(e) ← weight(e) + score(pred(S, j))

For time t in the execuion of the algorithm, we say that an edge e is t-relevant
if e was treated by the inner loop of the algorithm (Line 2) prior to time t. We
say that a path p is t-relevant if each nonzero weight edge e of p is t-relevant.
The correctness of the algorithm follows immediately from the following lemma:

Lemma 4. Let t be the beginning of the execution of ith iteration of outer loop
in Line 1. Assume that at time t score(e) correctly stores the score of edge e for
all edges e with tail(e)1 < i, and that for all j, pred(S, j) stores the last edge
from EF,G in a maximal weight t-relevant path from (1, 1) to (i− 1, j). Then:

1. At each beginning point t′ of an iteration of the inner loop in Line 2, for all
j, pred(S, j) stores the last edge from EF,G in a maximal weight t′-relevant
path from (1, 1) to (i, j).

2. At the end of the ith iteration of the outer loop, score(e) also correctly stores
the score for all edges e with tail(e)1 = i.

Proof. We prove (1) by induction on the number of inner loop iterations. If t′

is the first iteration, then the set of t-relevant edges is identical to the set of
t′-relevant edges. In particular, no edge e with head(e)1 = i is t′-relevant. Hence,
for all j, the last nonzero weight edge of a maximal weight t-relevant path from
(1, 1) to (i − 1, j) is also the last nonzero weight edge in a maximal t′-relevant
path from (1, 1) to (i, j). By the assumption of the lemma, pred(S, j) points to
such an edge.

Now, Assume that the lemma holds for some t′ and show for t′′, the beginning
of the following iteration of the inner loop. Let e with head(e) = (i, j) be the
edge treated by the current iteration. Note that e does not belong to any path
that reaches (i, j′) for j′ < j, so the lemma immediately holds for all j′ < j at
time t′′. Also note that tail(e)1 < i, so by the conditions of the lemma, score(e) is
correctly stored. By definition, score(e) is the weight of a maximal weight path p
from (1, 1) to (i, j) that passes through e. Note that all the edges in such a path
except e are t′-relevant, so p is not t′-relevant, but will become relevant when
the current iteration of the inner loop completes. If score(e) ≤ score(pred(S, j))
then p is not a maximal weight path p from (1, 1) to (i, j), and there is no need
to update S for the lemma to hold at t′′ for all j′. This condition is checked in
Line 4. Otherwise, e is the last edge on a maximal t′′-relevant path from (1, 1)
to (i, j). Line 5 inserts e to S, so that at time t′′, pred(S, j) is e, and the lemma
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holds for j. More precisely, denoting succ(S, j + 1) by es and head(es)2 by js,
the lemma holds at time t′′ for all j′ < js. If score(es) > score(e) then p is not
a maximal weight path p from (1, 1) to (i, js) or, in fact, to (i, j′) fo all j′ ≥ js,
so the lemma also holds for all j ≥ js at time t′′. If score(es) ≤ score(e) then
Line 7 deletes es from S, thus making e be pred(S, js). This process is repeated
in the while loop in Line 6 until the lemma holds for all j′ > j.

To prove (2), note that after all edges e with head(e)1 = i are treated by the
inner loop of Line 2, all the paths ending at (i, j) for all j are relevant, so by (1),
score(pred(S, j)) = LCS(F [1..i], G[1..j]). Hence for every e with tail(e) = (i, j),
score(e) = weight(e) + score(pred(S, j)), as in Line 9 of the algorithm. ut

To analyze the running time of the algorithm, let us count the number of
times each operation on S is called. Each edge of EF,G is inserted or deleted at
most once. The number of successor operations is the same as the number of
deletions, and the number of predecessor operations is the same as the number
of edges. Hence, the total number of operations on S is O(|EF,G|). Using the
successor data-structure of van Emde Boas [28] we can support each operation
on S in O(lg lg m) time yielding a total running time of O(|EF,G| · lg lg m). By
running the above procedure recursively on every match pair we get that the
total time complexity is bounded by

O


 ∑

match pair (v,w)

|EFv,Gw | · lg lg m


 = O


lg lg m ·

∑

match pair (v,w)

depth(v) · depth(w)




= O (lg lg m · r · height(F ) · height(G)) .

4 An O(mr lg r · lg lg m) algorithm

We begin this section by giving an alternative description of Klein’s algorithm
using an alignment graph. However, as opposed to the alignment graph of [4,5,27]
our graph is three dimensional.

Given a tree F and a path decomposition P of F we define a sequence of
subforests of F as follows. F (n) = F , and F (i) for i < n is the forest obtained
from F (i+1) by deleting one node: if the root of leftmost tree in F is not on the
main path of P then this root is deleted, and otherwise the root of the rightmost
tree in F is deleted. Let xi be the node which is deleted from F (i) when creating
F (i − 1). Let yi be the node of G that generates the ith character of the Euler
string of G. Let Iright be the set of all indices i such that F (i−1) is created from
F (i) by deleting the rightmost root of F (i), and Ileft = {1, . . . , n} \ Iright.

The alignment graph BF,G of trees F and G is defined as follows. The vertices
of BF,G are (i, j, k) for 0 ≤ i ≤ n, 1 ≤ j ≤ 2m, and j ≤ k ≤ 2m. Intuitively,
vertex (i, j, k) corresponds to LCS(F (i), G[j..k]). For a vertex (i, j, k) with i ∈
Iright the following edges enter the vertex.

1. If i ≥ 1, an edge (i− 1, j, k) → (i, j, k) with weight 0. This edge corresponds
to deletion of the rightmost root of F (i). This does not increase the LCS
hence the zero weight.
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2. If j ≤ k − 1, an edge (i, j, k − 1) → (i, j, k) with weight 0. This edge ei-
ther connects vertices which represent the same pair of forests, or represent
deletion of the rightmost root in G[j..k]. Both cases do not change the LCS,
hence the zero weight.

3. If xi, yk is a match pair, j ≤ eG(k) < k, and xi is not on the main path of F ,
an edge (i− |Fxi |, j, eG(k)) → (i, j, k) with weight LCS(Fxi , Gyk

). This edge
correspond to matching the rightmost tree in F (i) to the rightmost tree of
G[j..k].

4. If xi, yk is a match pair, j ≤ eG(k) < k, and xi is on the main path of F , an
edge (i− 1, eG(k), k − 1) → (i, j, k) with weight 1. This edge corresponds to
matching xi (the root of F (i) = Fxi

) to yk (the rightmost root of G[j..k]).
If we match these nodes then only descendants of yk can be matched to the
nodes of F (i − 1) (since F (i) is a tree). To ensure this, we set the second
coordinate of the tail of the edge to eG(k) (instead of j as in the previous
case), since nodes with indices j′ < eG(k) are not descendants of yk.

Similarly, for i ∈ Ileft the edges that enter (i, j, k) are

1. If i ≥ 1, an edge (i− 1, j, k) → (i, j, k) with weight 0.
2. If j ≤ k − 1, an edge (i, j + 1, k) → (i, j, k) with weight 0.
3. If xi, yj is a match pair, j < eG(j) ≤ k, and xi is not on the main path of

F , an edge (i− |Fxi |, eG(j), k) → (i, j, k) with weight LCS(Fxi , Gyj ).
4. If xi, yj is a match pair, j < eG(j) ≤ k, and xi is on the main path of F , an

edge (i− 1, j + 1, eG(j)) → (i, j, k) with weight 1.

The set of all edges in BF,G with nonzero weights is denoted by EF,G. In order
to build BF,G one needs to know the values of LCS(F ′, G′) for some pairs of
subforests F ′, G′ of F,G. These values are obtained by making recursive calls to
Klein’s algorithm on the appropriate subforests of F and G.

Lemma 5. The maximum weight of a path in BF,G from some vertex (0, l, l) to
vertex (i, j, k) is equal to LCS(F (i), G[j..k]).

Proof. We prove the lemma by induction on i+(k−j). The base on the induction
(i − j + k = 0) is trivially true. Consider some i, j, and k, and suppose that
i ∈ Iright (the proof for i ∈ Ileft is similar).

The proof of the lemma is similar to the proof of Lemma 2. We first show that
for a path p from some vertex (0, l, l) to (i, j, k) of maximum weight, there is an
LCS matching between F (i) and G[j..k] of size at least weight(p). This is done
by considering the prefix of p up to but not including e, where e = (i′, j′, k′) →
(i, j, k) is the last edge on p. As before, we can use the inductive hypothesis on
p′ (since we have by the construction of the graph that i′ − j′ + k′ < i− j + k)
to obtain an LCS mapping M ′ between F (i′) and G[j′..k′] of weight weight(p′).
We then extend M ′ into the desired matching M according to the type of the
edge e. The arguments are similar to those used in the proof of Lemma 2. Note
that in the case when e is an edge of the fourth type, all the vertices in F that
are matched in M ′ are proper descendants of xi (as F (i) is a tree and i′ = i−1),
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and all the vertices in G that are matched in M ′ are proper descendants of yk

(as G[j′..k′] = Gyk
− yk). Therefore, M = M ′ ∪ {(xi, yk)} is the desired LCS

mapping for that case.
We next prove the opposite direction. We show that for an LCS mapping

M between F (i) and G[j..k] of maximum size, there is path p from some vertex
(0, l, l) to (i, j, k) with weight at least |M |. We consider several cases according
to whether xi and yk are matched in M . If both xi and yk are matched in M
then we consider two cases according to whether xi is on the main path of F . In
each case we choose M ′ ⊆ M such that there is a path of weight at least |M ′|
from some vertex (0, l, l) to some vertex (i′, j′, k′), and from the construction of
the graph there is an edge (i′, j′, k′) → (i, j, k) of weight at least |M | − |M ′|. ut
Klein’s algorithm computes the maximum weight path that ends at each vertex
in BF,G using dynamic programming, and returns the maximum weight of a path
that ends at (n, 1, 2m), which is equal to LCS(F, G). The path decomposition P
is selected in order to minimize the total size of the alignment graph BF,G and
the alignment graphs created by the recursive calls of the algorithm. Using heavy
path decomposition [14], the time complexity of Klein’s algorithm is O(n lg n ·
m2).

Now, we present an algorithm for computing the LCS based on the sparsity
of EF,G. Recall that the score of an edge e ∈ EF,G is the maximum weight of a
path in BF,G that ends at head(e) and passes through e.

Lemma 6. Let e be an edge in EF,G and denote head(e) = (i, j, k). If
i ∈ Iright then score(e) = LCSR(F (i), G[j..k]), and otherwise score(e) =
LCSL(F (i), G[j..k]).

We omit the proof of Lemma 6 as it is similar to the proof of Lemma 3. Knowing
the scores of the edges gives us LCS(F, G) as LCS(F,G) = score((n− 1, 1, 2m−
1) → (n, 1, 2m)). In fact, additional LCS values can be obtained from the scores:

Lemma 7. For every match pair x ∈ F, y ∈ G such that x is on the main path
of F there is an edge e ∈ EF,G such that LCS(Fx, Gy) = score(e).

Proof. Let i be the index such that x = xi, and let eG(k) < k be the in-
dices of the two characters in the Euler string of G that correspond to y.
Suppose that i ∈ Iright. Then, e = (i − 1, eG(k), k − 1) → (i, eG(k), k) is
an edge in EF,G. By Lemma 6, score(e) = LCSR(F (i), G[eG(k)..k]). Both
F (i) = Fx and G[eG(k)..k] = Gy are trees, so from Lemma 1 we have that
score(e) = LCS(Fx, Gy). The case of i ∈ Ileft is similar. ut
A high-level description of the algorithm for computing the LCS of F and G is:
1: Build a path decomposition P of F .
2: for every node x in F in postorder do
3: if x is the first node on some path P ∈ P then
4: Build the set EFx,G.
5: Compute the scores of the edges in EFx,G.
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6: Output score((n− 1, 1, 2m− 1) → (n, 1, 2m)).
We will explain how to construct the path decomposition P in step 1 later.

For now note just that P is used when building each of the sets EFx,G in step 4.
In order to build EFx,G one needs to know the values of LCS(Fx′ , Gy) for pairs
of nodes x′ and y, where x′ is a node of Fx that is not on the main path of Fx

w.r.t. P. By Lemma 7, the value of LCS(Fx′ , Gy) is equal to the score of an edge
from EFx′′ ,G where x′′ is the first vertex on the path P ∈ P that contains x′ (x′′

can equal x′). Since the nodes of F are processed in postorder, the scores of the
edges in EFx′′ ,G are known when building EFx,G.

The scores of the edges have the following monotonicity property.

Lemma 8. Let e be an edge in EF,G and denote head(e) = (i, j, k).

1. If i ∈ Iright then for every j′ ≤ j there is an edge e′ ∈ EF,G such that
head(e′) = (i, j′, k) and score(e′) ≥ score(e).

2. If i ∈ Ileft then for every k′ ≥ k there is an edge e′ ∈ EF,G such that
head(e′) = (i, j, k′) and score(e′) ≥ score(e).

Proof. The existence of e′ with head(e′) = (i, j′, k) follows from the construction
of EF,G. Suppose that i ∈ Iright (the case i ∈ Ileft is similar). From Lemma 6 we
know that score(e) = LCSR(F (i), G[j..k]) and score(e′) = LCSR(F (i), G[j′..k]).
Since G[j..k] is a subgraph of G[j′..k] it follows that LCSR(F (i), G[j′..k]) ≥
LCSR(F (i), G[j..k]). ut

It remains to show how to compute the scores of the edges in EF,G. The com-
putation of the scores is based on the following lemma.

Lemma 9. For an edge e ∈ EF,G, score(e) = weight(e) +
max ({score(e′) e′ ∈ E1 ∪ E2} ∪ {0}), where

E1 =

{
e′ ∈ EF,G

head(e′)1 ∈ Iright, head(e′)1 ≤ tail(e)1, head(e′)2 = tail(e)2,
head(e′)3 ≤ tail(e)3

}
,

E2 =

{
e′ ∈ EF,G

head(e′)1 ∈ Ileft,head(e′)1 ≤ tail(e)1, head(e′)2 ≥ tail(e)2,
head(e′)3 = tail(e)3

}
.

Proof. Fix an edge e ∈ EF,G. Let e′ be some edge from E1 ∪ E2. In BF,G

there is a path from head(e′) to tail(e). It follows that there is a path of weight
weight(e) + score(e′) that ends at head(e) and passes through e. Therefore,
score(e) ≥ weight(e) + max ({score(e′) e′ ∈ E1 ∪ E2} ∪ {0}).

To prove the other direction, consider some path P of maximum weight
that ends at head(e) and passes through e. If P does not pass through other
edges in EF,G then we are done as score(e) = weight(e) ≤ weight(e) +
max ({score(e′) e′ ∈ E1 ∪ E2} ∪ {0}). Otherwise, let e2 = (i2, j2, k2) → (i, j, k)
be the last edge P passes through not including e. Since there is a path from
(i, j, k) to tail(e), we have that i ≤ tail(e)1, j ≥ tail(e)2, and k ≤ tail(e)3.
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If i ∈ Iright then by Lemma 8, there is an edge e3 ∈ EF,G with head(e3) =
(i, tail(e)2, k) and score(e3) ≥ score(e2). Since i ≤ tail(e)1 and k ≤ tail(e)3,
the edge e3 is in E1. If i2 ∈ Ileft then again by Lemma 8 we have that
there is an edge e3 ∈ E2 such that score(e3) ≥ score(e2). In both cases,
score(e) = weight(e) + score(e2) ≤ weight(e) + score(e3), so score(e) ≤
weight(e) + max ({score(e′) e′ ∈ E1 ∪ E2} ∪ {0}). ut

Define the boundary of the alignment graph BF,G as the set of points (0, `, `)
for some `. We call an edge e with head(e)1 ∈ Iright a right edge. The algorithm
for computing the scores of the edges in EF,G uses 4m successor data-structures
S left

1 , . . . , S left
2m and Sright

1 , . . . , Sright
2m . Each of these structures stores a subset of

EF,G. The key of an edge e in some structure Sright
i is head(e)3, and the key of

an edge e in some structure S left
i is head(e)2. The algorithm handles the edges

in EF,G by increasing order of the first coordinate i. The important invariant
is that when handling index i, for all j, k, pred(Sright

j , k) stores the last edge
from EF,G in a maximal weight path that starts anywhere on the boundary
of BF,G and ends at (i, j, k), among all the paths whose nonzero weight edges
were already considered by the algorithm and whose last nonzero weight edge
is a right edge. An analogue invariant holds for the S left

k ’s, namely that when
handling row i, for all j, k, succ(S left

k , j) stores the last edge from EF,G in a
maximal weight path that starts anywhere on the boundary of BF,G, and ends
at (i, j, k) among all the paths whose nonzero weight edges were already con-
sidered by the algorithm and whose last nonzero weight edge is a left edge.
Assume that in the current iteration, i ∈ Iright. We first handle all edges e with
head(e)1 = i. Since i ∈ Iright, all of these edges are right edges. When consid-
ering an edge e whose head is (i, j, k), the invariant for S left

k trivially holds for
any k since e is a right edge, so it does not affect S left

k which only stores left
edges. To maintain the invariant for Sright

j , if score(e) > score(pred(Sright
j , k)),

then e is a better way to reach (i, j, k) than pred(Sright
j , k). Hence, we insert e

into Sright
j . In this case we also check if score(succ(Sright

j , k +1)) ≤ score(e). If so,
e is also better than succ(Sright

j , k + 1) so we delete succ(Sright
j , k + 1) from Sright

j .
After handling all edges whose head is i, by the invariant, LCS(F (i), G[i..j])
is exactly the maximum between score(pred(Sright

j , k)) (the maximal path that
reaches (i, j, k) and ends with a right edge) and score(succ(S left

k , j)) (the max-
imal path that reaches (i, j, k) and ends with a left edge). Therefore, we
can now update the scores of all the edges e with tail(e) = (i, j, k) by
weight(e)+max(score(pred((Sright

j , k))), score(succ(S left
k , j))). The pseudocode for

computing the scores is given below (recall that score(NULL) = 0).
1: for i = 1, . . . , n do
2: for every e ∈ EF,G with head(e)1 = i do
3: j ← head(e)2, k ← head(e)3
4: if i ∈ Iright and score(e) > score(pred(Sright

j , k)) then
5: insert(Sright

j , e)
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6: while succ(Sright
j , k + 1) 6= NULL and score(succ(Sright

j , k + 1)) ≤
score(e) do

7: delete(Sright
j , succ(Sright

j , k + 1))
8: if i ∈ Ileft and score(e) > score(succ(S left

k , j)) then
9: insert(S left

k , e)
10: while pred(S left

k , j−1) 6= NULL and score(pred(S left
k , j−1)) ≤ score(e)

do
11: delete(S left

k , pred(S left
k , j − 1))

12: for every e ∈ EF,G with tail(e)1 = i do
13: j ← tail(e)2, k ← tail(e)3
14: score(e) ← weight(e) + max(score(pred(Sright

j , k)), score(succ(S left
k , j)))

Just as in the previous section, using the successor data-structure of van
Emde Boas [28] we have that computing the scores of the edges in EF,G takes
O(|EF,G| lg lg m) time. The time for computing the LCS between F and G is
therefore O(

∑
x∈LP |EFx,G| lg lg m), where LP is the set of the first nodes of the

paths in P. In order to minimize
∑

x∈LP |EFx,G|, we build P similar to a heavy
path decomposition but where heavy is determined by number of matches and
not by size. This is done as follows. We begin building the main path. We start
at the root of F and then we repeatedly extend the path by moving to a child
w of the current node that maximizes the number of matches between Fw and
G (ties are broken arbitrarily). After obtaining the main path, we remove its
nodes from F and then recursively build a path decomposition of each of the
remaining trees. The decomposition P that is obtained has the property that for
each node x ∈ F , the number of nodes in LP that are ancestors of x is at most
lg r + 1.

Lemma 10.
∑

x∈LP |EFx,G| ≤ 2mr(lg r + 1).

Proof. Every edge in EF,G corresponds to a match pair x ∈ F, y ∈ G. A fixed
match pair x ∈ F, y ∈ G generates edges in the sets EFx′ ,G for every node x′ ∈ LP
that is an ancestor of x. In each set EFx′ ,G the match pair x, y generates at most
2m edges. Therefore

∑
x∈LP |EFx,G| ≤

∑
match pairs 2m(lg r+1) ≤ 2mr(lg r+1).

ut

We have therefore shown an algorithm that computes the LCS of two trees in
O(mr lg r · lg lg m) time.

5 An O(Lr lg r · lg lg m) algorithm

In this section we improve the algorithm of the previous section. Notice that
in the alignment graph of the previous section each match pair generates up to
O(m) edges (while in the alignment graph of Section 3, each match pair generates
exactly one edge). Therefore, the time of processing a match pair is O(m lg lg m).
We will show how to process each group of edges of a match pair in O(L lg lg m)
time by exploiting additional sparsity properties of the problem.
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Formally, we partition the edges of EF,G into groups, where each group is
the edges that correspond to some match pair: For i ∈ Iright let EF,G,i,a =
{e ∈ EF,G head(e)1 = i, head(e)3 = a}, and for i ∈ Ileft let EF,G,i,a = {e ∈
EF,G head(e)1 = i, head(e)2 = a}. The total number of groups EF ′,G,i,a for all
the alignment graphs BF ′,G that are built by the algorithm is at most r(lg r+1).

Consider some group EF,G,i,k for i ∈ Iright. Let s = eG(k). We have that
EF,G,i,k = {e1, . . . , es} where head(ej) = (i, j, k). Denote l1 = score(es) and l2 =
score(e1). By Lemma 8, score(e1) ≥ score(e2) ≥ · · · ≥ score(es). By Lemma 6,
score(ej) ∈ {0, . . . , L} and score(ej) − score(ej+1) ∈ {0, 1} for all j. Therefore,
there are indices jl1 , jl1+1, . . . , jl2 such that score(ejl

) = l and score(ejl+1) = l−1
(if l 6= l1) for all l. These indices are called the compact representation of the
scores of EF,G,i,k.

To improve the algorithm of the previous section, instead of processing in-
dividual edges, we will process groups. For each group, we will compute the
compact representation of its scores. The time to process each group will be
O(L lg lg m) so the total time complexity will be O(Lr lg r · lg lg m).

Following Lemma 9, we define for i ≤ n a two dimensional array Aright
i by

Aright
i [j, k] = max

{
score(e)

e ∈ EF,G, head(e)1 ∈ Iright,head(e)1 ≤ i,

head(e)2 = j, head(e′)3 ≤ k

}
.

Intuitively, Aright
i [j, k] is the score of a maximal weight path that starts anywhere

on the boundary of BF,G and ends at (i, j, k), among all the paths whose last
nonzero weight edge is a right edge. The array Aright

i has the following properties.

1. Each row of Aright
i is monotonically increasing (by definition).

2. Each column of Aright
i is monotonically decreasing (by Lemma 8).

3. The difference between two adjacent cells in Aright
i is either 0 or 1 (by

Lemma 6).
4. Each cell of Aright

i is an integer from {0, . . . , L} (by Lemma 6).

The properties above are same as the properties of the dynamic programming
table for string LCS. Following the approach of [16], we define the l-contour of
Ai (for 1 ≤ l ≤ L) to be the set of all pairs (j, k) such that Aright

i [j, k] = l,
Aright

i [j + 1, k] < l (or j = 2m), and Aright
i [j, k − 1] < l (or k = 1). By properties

(1) and (2) of Aright
i we have that for two pairs (j, k) and (j′, k′) in the l-contour

of Aright
i we have either j < j′ and k < k′, or j > j′ and k > k′.

Similarly, define a two dimensional array Aleft
i by

Aleft
i [j, k] = max

{
score(e)

e ∈ EF,G, head(e)1 ∈ Ileft, head(e)1 ≤ i,

head(e)2 ≥ j, head(e′)3 = k

}
.

The array Aleft
i also satisfies properties 1–4 above.

The algorithm for computing the compact representations of the scores pro-
cesses each i from 1 to n. For each i, the algorithm computes the l-contours
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of Aright
i and Aleft

i for all l by updating the l-contours of Aright
i−1 and Aleft

i−1 that
were computed in the previous iteration. The l-contour of Aright

i for the current
value of i is kept using two successor data-structure Sright

l,1 and Sright
l,2 . The key

of a pair (j, k) in Sright
l,1 is j, while the key of (j, k) in Sright

l,2 is k. The l-contour
of Aleft

i is kept in similar structures S left
l,1 and S left

l,2 . As in the previous algorithm,
iteration i consists of two stages: (1) updating the l-contours according to the
groups EF,G,i,a for all a (2) computing the compact representation of the scores
for each group EF,G,i′,a such that the edges e ∈ EF,G,i′,a satisfy tail(e)1 = i.

Suppose that i ∈ Iright (handling i ∈ Ileft is similar). Then, the contours of
Aleft

i are identical to the contours of Aleft
i−1. In order to compute the l-contours

of Aright
i , we process the groups EF,G,i,k for all k. Consider some fixed EF,G,i,k,

and let jl1 , jl1+1, . . . , jl2 be the compact representation of the scores of EF,G,i,k

(which was computed in a previous iteration of the algorithm). Updating the
l-contours according to the scores of the edges in EF,G,i,k is straightforward:
1: for l = l1, . . . , l2 do
2: if pred(Sright

l,2 , k) = NULL or pred(Sright
l,2 , k)1 < jl then

3: insert(Sright
l,1 , (jl, k))

4: insert(Sright
l,2 , (jl, k))

5: while succ(Sright
l,2 , k + 1) 6= NULL and succ(Sright

l,2 , k + 1)1 ≤ jl do

6: p ← succ(Sright
l,2 , k + 1)

7: delete(Sright
l,1 , p)

8: delete(Sright
l,2 , p)

We now describe how to compute the compact representation of the scores
of some group EF,G,i′,k′ such that the edges e ∈ EF,G,i′,k′ satisfy tail(e)1 = i.
Suppose that i′ ∈ Iright and denote EF,G,i′,k′ = {e1, . . . , es} where head(ej) =
(i′, j, k′). Let k = tail(e1)3. All the edges in EF,G,i′,k′ have the same weight
w. Suppose that xi′ is not on the main path of F . By Lemma 9, score(ej) =
w+max(Aright

i [j, k], Aleft
i [j, k]). Therefore the compact representation of the scores

of EF,G,i′,k′ can be computed using Sright
1,2 , . . . , Sright

L,2 and S left
1,2, . . . , S

left
L,2:

1: jw ← s
2: for l = 1, . . . , L do
3: a ← 0
4: if pred(Sright

l,2 , k) 6= NULL then a ← pred(Sright
l,2 , k)1

5: if pred(S left
l,2 , k) 6= NULL then a ← max(a,pred(S left

l,2 , k)1)
6: if a 6= 0 then jl+w ← a

If xi′ is on the main path of F then score(e1) = · · · = score(es) =
1+max(Aright

i [s, k], Aleft
i [s, k]), and computing the compact representation of the

scores is done similarly. The computation of the compact representation of the
scores of a group EF,G,i′,k′ with i ∈ Ileft is done similarly using the structures
Sright

1,1 , . . . , Sright
L,1 and S left

1,1, . . . , S
left
L,1.

We obtain the following theorem.
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Theorem 1. The tree LCS problem can be solved in time O(Lr lg r · lg lg m).

6 An O(rh lg lg m) algorithm for homeomorphic tree LCS

In this section we address the homeomorphic tree LCS problem. For this problem
we obtain an O(rh lg lg m) time algorithm, where h = height(F ) + height(G).
We start by describing an O(nm) non-sparse algorithm for the problem, based
on the constrained edit distance algorithm of Zhang [30]. Here, the computation
of HLCS(F, G) is done recursively, in a postorder traversal of F and G. For
every pair of nodes v ∈ F and w ∈ G we compute score(v, w) which is equal
to HLCS(Fv, Gw). The computation of score(v, w) is based on the previously
computed scores for all children of v and w as follows. Let c(u) denote the
number of children of a node u and let u1, . . . , uc(u) denote the ordered sequence
of u’s children. Then

score(v, w) = max
{

max
i≤c(v)

{score(vi, w)}, max
i≤c(w)

{score(v, wi)}, α(v, w) + 1
}

(1)

where α(v, w) is defined as follows. If (v, w) is not a match pair then α(v, w) =
−1. Otherwise, α(v, w) is the maximum weight of a non-crossing matching be-
tween the vertices v1, . . . , vc(v) and the vertices w1, . . . , wc(w), where the weight
of matching vi with wj is score(vi, wj). Computing α(v, w) takes O(c(v) · c(w))
time using dynamic programming on a c(v)× c(w) table.

In order to obtain a sparse version of this algorithm, there are two goals to be
met. First, rather than computing score(v, w) for all nm node pairs, we will only
compute the scores for match pairs. Second, we need to avoid the O(c(v) · c(w))
time complexity of the dynamic programming algorithm for computing α(v, w)
and replace it with sparse dynamic programming instead, as in the previous
sections. For every match pair (v, w) we have

score(v, w) = max
{

max
v′
{score(v′, w)}, max

w′
{score(v, w′)}, α(v, w) + 1

}
,

where maxv′ is maximum over all proper descendants v′ of v that have the same
label as v, and maxw′ is defined similarly. To compute α(v, w), define Pv,w to
be the set of all pairs (vi, wj) such that score(vi, wj) > 0. Applying a sparse
dynamic programming approach to the computation of α(v, w) should exploit
the fact that Pv,w can be much smaller than c(v) · c(w). However, note that
just querying all pairs of children of v and w to check which ones have a positive
score would already consume O(c(v) ·c(w)) time! But, suppose we were given the
set Pv,w. In that case, the cost of computing α(v, w) would be O(|Pv,w| lg lg m)
instead of O(c(v)·c(w)). Thus, in the rest of this section we show how to efficiently
construct the sets Pv,w.

Our approach is based on the observation that, even before the scores are
computed, a key subset of the match pairs of Fv and Gw can be identified
that have the potential to eventually participate in Pv,w. For every i ≤ c(v)
and j ≤ c(w), let Ŝv,w,i,j be the set of all match pairs (x, y) such that x is a
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descendant of vi and y is a descendant of wj , and let Sv,w,i,j be the set of all
match pairs (x, y) ∈ Ŝv,w,i,j for which there is no match pair (x′, y′) 6= (x, y) in
Sv,w,i,j such that x′ is an ancestor of x and y′ is an ancestor of y.

The following lemma shows that Pv,w can be built from the sets Sv,w,i,j .

Lemma 11. Let (v, w) be a match pair. Let vi be a child of v and wj be a child
of w such that (vi, wj) is not a match pair. Then, score(vi, wj) is equal to the
maximum score of a pair in Sv,w,i,j, or to 0 if Sv,w,i,j = ∅.
Proof. From equation (1) we have that score(vi, wj) is equal to the maximum
score of a pair in Ŝv,w,i,j , or to 0 if Ŝv,w,i,j = ∅. To finish the proof, we will show
that for every match pair (v̂, ŵ) ∈ Ŝv,w,i,j there is a match pair (v′, w′) ∈ Sv,w,i,j

with score(v′, w′) ≥ score(v̂, ŵ). Let (v̂, ŵ) be a match pair in Ŝv,w,i,j . If (v̂, ŵ) ∈
Sv,w,i,j then we are done. Otherwise, by the definition of Sv,w,i,j , there is a match
pair (v′, w′) ∈ Sv,w,i,j such that v′ is an ancestor of v̂ and w′ is an ancestor of ŵ.
We have that score(v′, w′) = HLCS(Fv′ , Gw′) ≥ HLCS(Fv̂, Gŵ) = score(v̂, ŵ).

ut
From the proof of Lemma 11 we have that for a set S′v,w,i,j such that Sv,w,i,j ⊆
S′v,w,i,j ⊆ Ŝv,w,i,j , score(vi, wj) is equal to the maximum score of a pair in
S′v,w,i,j , or to 0 if S′v,w,i,j = ∅. We build sets S′v,w,i,j as follows. For each match
pair (x, y) of F, G we build a list Lx of all proper ancestors v of x such that
v is the lowest proper ancestor of x with label equal to label(v) (the list Lx is
generated by traversing the path from x to the root while maintaining a boolean
array that stores which characters were already encountered). We also build a
list Ly of all proper ancestors w of y such that w is the lowest proper ancestor
of y with label equal to label(w). For every v ∈ Lx and every proper ancestor w
of y with label(w) = label(v), we add the pair (x, y) to S′v,w,i,j where vi is the
child of v which is on the path from v to x, and wj is the child of w which is on
the path from w to y. Similarly, for every w ∈ Ly and every proper ancestor v
of x with label(v) = label(w), we add the pair (x, y) to S′v,w,i,j .

Lemma 12. S′v,w,i,j ⊇ Sv,w,i,j for all match pairs (v, w) and all i and j.

Proof. Suppose conversely that there is a match pair (v, w) and indices i and j
such that S′v,w,i,j 6⊇ Sv,w,i,j . Let (x, y) be a pair in Sv,w,i,j which is not in S′v,w,i,j

From the fact that (x, y) /∈ S′v,w,i,j we have that there is a vertex v′ such that v′

is a proper ancestor of x, v′ is a proper descendant of v, and label(v′) = label(v).
Also, there is a vertex w′ such that w′ is a proper ancestor of y, w′ is a proper
descendant of w, and label(w′) = label(w). We obtain that (v′, w′) is a match
pair, which contradicts the assumption that (x, y) ∈ Sv,w,i,j . ut
Theorem 2. The homeomorphic tree LCS problem can be solved in
O(rh lg lg m) time, where h = height(F ) + height(G).

Proof. The algorithm consists of a preprocessing stage, during which the sets
Sv,w,i,j are constructed for every match pair (v, w) and every i and j, and a
main stage, in which the scores of match pairs are computed.
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In the preprocessing stage, handling a match pair (x, y) takes O(h)
time. Therefore, the preprocessing stage is done in O(rh) time. Moreover,∑

match pair (v,w)

∑
i

∑
j |S′v,w,i,j | = O(rh).

During the main stage, score(v, w) is computed for O(r) match pairs. This
takes O(|Pv,w| lg lg m) time. Since |Pv,w| ≤

∑
i

∑
j |S′v,w,i,j |, we conclude that

the total work over all match pairs is O(rh lg lg m). ut
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