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Abstract

We consider the train delivery problem which is a generalization of the bin packing
problem and is equivalent to a one dimensional version of the vehicle routing problem with
unsplittable demands. The problem is also equivalent to the problem of minimizing the
makespan on a single batch machine with non-identical job sizes in the scheduling literature.

The train delivery problem is strongly NP-Hard and does not admit an approximation
ratio better than 3/2. We design the first approximation schemes for the problem. We give
an asymptotic polynomial time approximation scheme, under a notion of asymptotic that
makes sense even though scaling can cause the cost of the optimal solution of any instance to
be arbitrarily large. Alternatively, we give a polynomial time approximation scheme for the
case where W , an input parameter that corresponds to the bin size or the vehicle capacity,
is polynomial in the number of items or demands. The proofs combine techniques used in
approximating bin-packing problems and vehicle routing problems.

1 Introduction

We consider the train delivery problem, which is a generalization of bin packing. The problem
can be equivalently viewed as a one dimensional vehicle routing problem (VRP) with unsplit-
table demands, or as the scheduling problem of minimizing the makespan on a single batch
machine with non-identical job sizes.

Formally, in the train delivery problem we are given a positive integer capacity W and a set
S of n items, each with an associated positive position pi and a positive integer weight wi. We
wish to partition S into subsets {Sj} (train tours) so as to minimize∑

j

max
i∈Sj

pi subject to ∀j
∑
i∈Sj

wi ≤W.

We describe some applications of the different formulations of the train delivery problem. In
the scheduling setting, integrated circuits are tested by subjecting them to thermal stress for an
extended period of time (burn-in). Each circuit has a prespecified minimum burn-in time (pi)
and a number of boards needed (wi). Since circuits may stay in the oven for a period longer than
their burn-in time, it is possible to place different products as a batch in the oven simultaneously
as long as the capacity of the oven (the number of boards in the oven) is not exceeded. The
processing time of each batch is the longest minimum exposure time among all the products
in the batch. Once processing is begun on a batch, no product can be removed from the oven
until the processing of the batch is complete. We wish to find a partition of the circuits into
batches so that the total processing time of all batches (the makespan) is minimized.
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In the VRP setting with unsplittable demands, containers are to be transported from a
harbor to n customers located at positions pi along a railway that extends into the mainland.
The number of containers destined to customer i is wi, and the maximum number of containers
that the freight train can carry is W . All containers destined to a particular customer must be
placed on the same train so that they are delivered at the same time. We wish to find a set of
train trips to deliver all containers so as to minimize the total length of all trips.

In the bin packing setting, various temperature sensitive products are shipped by sea from
southeast Asia to the US. Each product has a weight (in metric tons) and a maximal temperature
at which it may be stored (there is no minimum temperature limit). Each ship can carry at
most W tons. Since the route is fixed, the cost of operating the ship is determined by the
ambient temperature in the cargo area. The lower the temperature, the higher the cost (this
can be an arbitrary monotone function). The shipping company is interested in keeping the
cost of operations as low as possible while keeping the temperatures low enough so none of the
products on board a ship are damaged. The goal is to find a packing of the products in ships
so that the overall cost of operating all of the ships is minimal.

Bin-packing is the special case of the train delivery problem where all the pi’s are equal. It
is well known [17] that bin-packing is strongly NP-hard and does not admit a polynomial time
approximation algorithm with approximation ratio better than 3/2 unless P=NP, hence those
negative results also hold for the train delivery problem. There are, however, algorithms that
achieve an approximation factor of 1 + ε for bin-packing for any ε > 0, provided that the cost
of an optimal solution is at least 1/ε (that is, at least 1/ε bins are necessary). Such algorithms
are called asymptotic polynomial time approximation schemes (APTAS).

Our Results. We give the first approximation schemes for the train delivery problem. The
problem does not admit an asymptotic approximation scheme in the usual sense. The reason
is that the cost of the solution is determined by the positions pi, so any instance can be scaled
so that the cost of an optimal solution is arbitrarily large without changing the solution itself.
Therefore, to define a notion of asymptotic approximation scheme for our problem we restrict
the ratio of the optimal solution and the maximal position. In other words, scale the input so
that maxi pi = 1; then we are in the asymptotic regime if the cost of the scaled input is Ω(1/ε6).

Theorem 1.1. For any instance of the train delivery problem such that maxi pi = O(ε6)OPT,
Algorithm 1 outputs a solution of cost (1 +O(ε))OPT in time O(n log(n)) + log(n)(1/ε)O(1/ε).1

Given an instance of the train delivery problem we can use any constant factor approximation
to check whether the conditions of Theorem 1.1 hold. For example, we can use the constant
factor approximation for the metric VRP with unsplittable demands given by [19].

Alternatively, we give a polynomial time approximation scheme (PTAS) for the case where
W = poly(n) (or where W is specified in unary). Note that bin-packing is still NP-hard for
such instances. We emphasize that the PTAS applies even when the conditions of Theorem 1.1
do not hold.

Theorem 1.2. Given an instance of the train delivery problem such that W = poly(n), Algo-

rithm 5 outputs a solution of cost (1 +O(ε))OPT. Its running time is W eO(1/ε)
+O(n log(n)) +

log(n)(1/ε)O(1/ε).

We note that, unless P=NP, we cannot hope to achieve a PTAS when the conditions of
Theorem 1.2 do not hold. A PTAS that also works when W > poly(n) would give us a

1It is possible to trade off running time with the severity of the asymptotic assumption. An alternative version

of our algorithm uses a less severe asymptotic assumption, maxi pi = O(ε)OPT, but runs in time n(1/ε)O(1/ε)

.
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polynomial time algorithm, rather than a pseudo polynomial time algorithm, for deciding the
NP-hard partition problem2.

Both of our results can be extended to the variant of the one dimensional VRP with un-
splittable demands and multiple depots. We omit the details.

Related work. The train delivery problem in its formulation as the problem of minimizing the
makespan on a single batch machine with non-identical job sizes has been extensively studied in
the past two decades, and the present paper gives the first asymptotic PTAS for this problem.
To the best of our knowledge, Uzsoy [31] was the first to consider the problem. He proved that
it is NP-Hard and presented a few heuristics that were evaluated empirically. Many others have
considered the problem since. Various heuristics are given in [2, 12, 13, 30] to name just a few,
while application of meta-heuristics to the problem were studied in [28, 24, 22]. The work of
Zhang et al. [32] stands out in its theoretical treatment of the worst case behaviour of several
heuristics. They prove constant approximation ratios for some heuristics, with 7/4 being the
best, while showing that others may perform arbitrarily bad.

The techniques we use in this paper draw on those used in the literature for the bin-packing
problem and the vehicle routing problem. Both problems are extensively studied in the liter-
ature. We do not attempt to provide a comprehensive survey, but focus mostly on the works
whose techniques we use in this paper. Bin-packing is one of the problems originally shown to
be strongly NP hard by Garey and Johnson [17]. Fernandez de la Vega and Lueker [15] obtained
the first APTAS. Their algorithm handles big and small demands separately and uses the fact
the small demands can be ignored initially and added greedily to any near optimal solution of
just the big demands. The big demands are rounded and a linear program is used to find a
near optimal solution for them in time O(Cε), where Cε is exponentially large in 1/ε, but does
not depend on n. Subsequently, Karmarkar and Karp [21] gave an asymptotic fully polynomial
approximation scheme (AFPTAS) using the same framework and showing how to efficiently
solve and round the LP relaxation of the problem on just the big demands. Their running time
depends polynomially on 1/ε, rather than exponentially. Many variants of bin-packing have
been considered, (see [10] for a survey). In multi-dimensional bin-packing (See [7, 23, 4, 9] and
references therein), the constraints on the bins are multi-dimensional, but the cost of each bin
is still a fixed constant. In variable-size bin-packing (See [16, 29, 14]) bins of several different
sizes are available and the cost of each bin is proportional to its size. In bin-packing with
“general cost structure”(See [14, 26]), the cost of a bin is a non-decreasing concave function of
the number of elements packed in the bin.

There are AFPTAS for all of these variants and all of those we are aware of handle big
and small items separately and use rounding of the big items. None of these variants, however,
captures the problem we consider. In some of these variants, in contrast to the classical bin-
packing problem, the small demands can make an important contribution to the cost of the
solution and must be handled more carefully. The results differ substantially on how much
consideration is given to small items while computing a solution of the big items. In the case of
bin-packing with ”general cost structure”, the authors of [14] consider small items to be fluid
so that they can be split up arbitrarily among bins. (A similar approach was also used in the
bin-covering problem of [11]).

The VRP is another widely studied problem. The train delivery problem is the 1-dimensional
version of the VRP with unequal or unsplittable demands [19, 6, 5] where a set of customers,
each with its own demand wi must be served by vehicles which depart from and return to a
single depot. Each vehicle may serve at most W demands and each customer must be served by

2Partition: Given a set of integers S = w1, . . . , wn, decide if S can be partitioned into two sets S1 and S2 such
that the sum of the numbers in S1 and S2 are equal.
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a single vehicle. The objective is to minimize the total distance travelled by all vehicles3. In the
1-dimensional version the depot is located at the origin and the position of customer i is given
by pi. We are not aware of any prior work that specifically considers the 1-dimensional VRP
with unsplittable demands. For the metric case Haimovich, Rinnooy Kan, and Stougie give a
constant factor approximation [19]. Bramel et al. give a probabilistic analysis for the Euclidean
plane where customer demands are drawn i.i.d from any distribution [6]. Labbé et al. [25] give
a 2-approximation for the problem on a tree. Additional heuristics that extend their approach
were given in [27, 8].

For the splittable case, where customers may be served by multiple vehicles, Haimovich
and Rinnooy Kan gave a PTAS for the Euclidean plane when W = O(log log n) [18]. Their
approximation scheme partitions the customers into two disjoint instances (far and close)
based on the distance from the depot and solves each instance independently. The far instance
is small enough so that it can be solved exactly by brute force, but sufficiently large, so that
the error incurred by solving the instances independently is controlled. The close instance is
“close” enough to the depot such that for small values of W a constant factor algorithm (that
they also present) finds a near optimal solution for close. Recently, Adamaszek, Czumaj, and

Lingas extended this to W ≤ 2log
δ n (where δ a function of ε) [1]. Their algorithm partitions

the instance into disjoint regions based on distances from the depot, and solves the problem in
each region independently. Their analysis uses a shifting technique [3, 20].

Main techniques. To achieve Theorem 1.1, we round the positions of all demands geomet-
rically and then apply the bin packing rounding scheme from [15] to the big demands at each
position to get a small number of distinct big demands. We then use a scheme similar to [1] to
partition the items into disjoint regions and solve the problem for each region independently.
A shifting technique as in [1] shows that if we do this for a few different partitions, at least one
of them yields a near-optimal solution for the original instance. In each region of the partition,
we solve a relaxed problem where we pretend that the small demands are fluid and can be
split arbitrarily among different tours, as is done in [14, 11]. We find a near optimal solution
for the relaxed problem and extend it greedily into a feasible solution for unsplittable small
demands, as was done in bin packing algorithms. The crux of our analysis lies in showing that
it is possible to construct a near-optimal solution by greedily inserting the small demands to
the relaxed solution we compute. See Section 2 for details.

To achieve Theorem 1.2, we partition the instance into close and far instances and solve
the two resulting instances independently, as was done for the splittable VRP problem in [18].
Our far instance is small enough to solve it exactly by dynamic programming, and our close
instance is solved by Theorem 1.1. The crux of the analysis is a structural lemma which is an
extension of [18] to the unsplittable case. See Section 3 for details.

Preliminaries. For the remainder of the paper we use the language of the vehicle routing
problem: We refer to tours (rather than sets), customers (rather than items), locations (rather
than positions) and demands (rather than weights). We assume the existence of a depot at the
origin. Without loss of generality we assume that our input is preprocessed as defined below:

Definition 1.3. (Preprocessed) An instance is preprocessed if:
• No demand is located closer than ε · pmax/n from the depot, where pmax = maxi pi.
• All customers are located to the right of the depot.

If there are any demands located closer than ε · pmax/n from the depot, we can serve them
each with a separate tour. This will have overall cost at most 2εpmax, which is at most εOPT
given that any solution must have cost at least 2pmax. Finally if there are customers on the right

3The VRP objective is 2 times the objective of the train delivery problem
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and left of the depot, we can solve each side separately, as they are analogous to one another,
and return the union of the two solutions. We will use the following lower bound from [19].

Lemma 1.4. [19](Rad Lower Bound.) For any instance I of the train delivery problem, OPT(I)
has cost at least Rad(I) = 2

W

∑
i∈I pi · wi.

2 Algorithm for Theorem 1.1

The algorithm is given in Algorithm 1. We present high level description first and details in
subsections.

Algorithm 1 Asymptotic PTAS for train delivery

Input: A preprocessed input with demands (pi, wi)1≤i≤n and train capacity W
Precondition: maxi pi ≤ εOPT

1: Round the input using Algorithm 2.
2: for 1 ≤ i ≤ 1/ε do
3: Let Pi be the i-th partition into regions (as in Definition 2.4).
4: for each non-empty region R of Pi do
5: Get a relaxed solution covering all demands in R treating small demands as fluid using

Algorithm 3.
6: Extend the relaxed solution to cover small demands feasibly using Algorithm 4.
7: Let Best(Pi) be the union of the solutions found for each region R ∈ Pi.

Output: mini Best(Pi), the minimum cost solution found.

Rounding. We reduce the number of locations by rounding each location up to the next integer
power of (1 + ε). We call demand wi big if wi ≥ εW and small otherwise. We use the classical
rounding technique from bin packing algorithms to reduce the number of distinct big demands
at each location.
Partitioning into regions. We partition the demands into disjoint regions based on their
distance from the depot (Definition 2.4) so that each region has only a constant number of
locations containing demands. We solve the problem approximately within each region inde-
pendently. Using a shifting argument, we show that if we do this for a few different partitions,
the union of the individual approximate solutions in at least one of the partitions yields a near
optimal solution for the original instance.
Solving within a region. Within each region, we treat big and small demands differently.
We relax the unsplittable constraint for small demands and think of them as fluid, allowing
each small demand to be split up between multiple tours. Using a linear program we solve the
relaxed problem considering all the big demands and the total volume of small demand fluid at
each location in the region.

Since each region R contains just a constant number of locations and each location contains
a constant number of distinct big demands, the total number of distinct big demands in R is
constant. This allows us to obtain a solution for the relaxed problem in constant time.

We construct a feasible solution from the relaxed solution by adding the small demands
greedily. We prove that the solution we output has cost at most (1+2ε)OPT(R)+O((1/ε)5)pR,
where OPT(R) denotes the optimal solution of region R and pR is the location furthest from
the depot in R (Lemma 2.10).

Our definition of regions ensures that pR decreases geometrically as the regions get closer
to the depot. Thus the sum of pR over all regions is at most O(pmax), where pmax is the
location of the furthest demand in the instance. Our assumption pmax ≤ O(ε6)OPT ensures
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that the additive cost incurred by the greedy extension (the pR terms) is within the desired
approximation factor.

2.1 Rounding

Rounding is performed using Algorithm 2.

Algorithm 2 Rounding Instance

Input: train capacity W , demands (pi, wi)1≤i≤n

1: Round each pi up to the smallest integer power of (1 + ε).
2: Partition demands (wi)i into big (≥Wε) and small (< Wε).

Rounding big demands:
3: for each location ` s.t. n`, the number of big demands at `, is at least 1/ε2 do
4: Go through those big demands in decreasing order to partition them into ε−2 groups such

that each group (except possibly one) has cardinality exactly bn`ε2c.
5: for each group g do
6: Round every demand in g up to the maximum demand in g.

Output: rounded instance I ′ of the train delivery problem

The analysis relies on the following lemma whose proof (in the appendix) is an extension of
the bin packing rounding analysis by Fernandez de la Vega and Lueker [15].

Lemma 2.1. Given an instance I of the train delivery problem, Algorithm 2 outputs an instance
I ′ such that:

• Each pi has the form (1 + ε)k for some (non-negative) integer k.

• Each location has at most 1/ε2 + 1 distinct big demands.

• Any feasible solution for I ′ is also feasible for I.

• OPT(I ′) ≤ (1 +O(ε))OPT(I).

2.2 Partitioning into regions

We first define a simple structure for a tour, namely we say a tour has small expanse if it covers
points in a bounded region. We show that a near optimal solution can be obtained using only
tours with this simple structure.

Definition 2.2. A tour that covers only points between locations p and p′, p ≤ p′, has expanse
p′/p. A small expanse tour has expanse at most 1/ε.

Lemma 2.3. Let I ′ be an instance of the train delivery problem. There exists a solution using
only small expanse tours which costs at most (1 + 2ε)OPT(I).

By Lemma 2.3 (proved in the appendix), we can concentrate on finding the optimal small
expanse solution.

We partition instance I ′ into regions, where each region has large expanse. We find an opti-
mal solution for each region independently and output the union of these solutions. Intuitively,
as the expanse of the region is large only a few tours of the optimal small expanse solution will
cover points in more than one region.
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Definition 2.4. Let I ′ be a rounded instance of the train delivery problem and pmax = maxi pi.
A block, defined by an integer i, is the set of demands with locations in (pmaxε

i+1, pmaxε
i]. A

region is a group of at most 1/ε consecutive blocks.
For 0 ≤ j < 1/ε, let Pj denote the partition of I into regions, one initial region (εjpmax, pmax]

and the other regions (εjpmaxε
(i+1)/ε, εjpmaxε

i/ε] for i ≥ 0.

Note that there are 1/ε possible ways to partition I ′ into regions. We use a shifting technique
similar to that of Baker [3] and Hochbaum and Maass [20] and an averaging argument to show
that at least one partition yields a near optimal solution for I ′. See appendix.

Lemma 2.5. There exists a partition Pj s.t.
∑

R∈Pj OPT(R) ≤ (1 +O(ε))OPT.

2.3 Solving the relaxed problem in a region

Within a region, the big demands and tours of the region can be described concisely.

Definition 2.6. (Big demand type) Fix a region R of the rounded instance I ′. A big demand
type is a pair (p, b) where p is the location of a big demand and b is one of the at most 1/ε2 big
demand (rounded) values at location p. Let n(d) denote the total number of demands of type d
in region R.

The configuration of a tour roughly describes which points it will cover: for each occurrence
of demand type (p, b) in its multiset the tour covers one of the demands from location p with
value b.

Definition 2.7. (Configuration) Fix a region R of rounded instance I ′. A configuration f of
a tour in R consists of a location rf , which is the furthest location of the tour, and a multiset
Mf of demand types, each with location at most rf , whose values sum up to at most W .

Let cf denote the remaining capacity of a tour with configuration f (i.e., cf = W −∑
(p,b)∈Mf

b). For any big demand type d, let nf (d) denote the multiplicity of d in Mf . Let
S be the set of small demands in a region R. We relax our problem by pretending that the
small demands can be split up among multiple tours. Then we use the following linear pro-
gram to solve the relaxed problem. The linear program has one variable xf for each possible
tour configuration f . The goal of the linear program is to select a minimum cost multiset of
tour configurations such that two constraints are satisfied: Constraint 1 ensures that all big
demand types are covered by the selected tour configurations and constraint 2 ensures that for
each location p, the small demands further right than p can be covered with by the remaining
capacities of the tour configurations that extend to the right of p.

min
∑
f∈F

rfxf

s.t
∑
f∈F

xfnf (d) ≥ n(d) for all demand types d (1)

∑
f :rf≥p

cfxf ≥
∑

(pi,wi)∈S,pi≥p

wi for all locations p (2)

xf ≥ 0

Lemma 2.8. Algorithm 3 outputs a solution in time (1/ε)O(1/ε).
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Algorithm 3 Solve Relaxed Region

Input: R a region of I ′, S the set of small demands in R.

1: Let D be the set of big demand types for region R (Definition 2.6).
2: Let F be the set of tour configurations for region R (Definition 2.7).
3: Let x∗ = (x∗f )f∈F denote a basic optimal solution of the linear program of Equations (1-2).
4: Let x̄f = dx∗fe for each f ∈ F .
5: Cover the big demand types in D with tours specified by the (x̄f )f∈F . (Some tours may

only be assigned a partial list of the big demands listed in its configuration.)

Output: The resulting set of tours covering D.

Algorithm 3 outputs a solution in constant time (Lemma 2.8, see appendix for proof). It
rounds the solution of the above linear program to obtain a solution to the relaxed problem.
The solution returned by Algorithm 3 covers all big demands types in region R and is a near
optimal solution for the relaxed problem in region R. The quality of the solution is guaranteed
by the following lemma whose proof is in the appendix.

Lemma 2.9. Let pR denote the maximum location in region R. Let T be the set of tours output
by Algorithm 3. T covers all big demands in region R and T covers all small demands if each
small demand is allowed to be covered by multiple tours. Let OPT(R) be the cost of the optimal
solution to the (unrelaxed) problem in region R. We have that,

Cost(T ) ≤ OPT(R) + pR((1/ε)2 log(1/ε))(2 + 1/ε2)

2.4 Extending a relaxed solution of a region

Let (rt, ct)t denote the set of tours output by Algorithm 3 where with rt denoting the maximum
location and ct denoting the remaining capacity of tour t after it has covered the big demands.
Algorithm 4 takes the list of tours (rt, ct)t as input and extends the solution to cover the small
demands of R in a feasible way (i.e., without splitting any of them).

Algorithm 4 Greedy Extension

Input: small demands (pi, wi)i and a list T of tours (rt, ct)t. rt is the furthest location of tour
t and ct is its remaining capacity.

1: for each small demand (pi, wi) by order of decreasing pi do
2: if there is a tour t with rt ≥ pi and ct ≥ wi then
3: cover (pi, wi) with t and set ct := ct − wi
4: else
5: add a new tour t with ct = W and rt = pi
6: cover (pi, wi) with t and set ct := ct − wi

Output: the resulting tours.

Lemma 2.10 shows that the greedy extension is a near optimal solution. See appendix.

Lemma 2.10. Let G be the output of Algorithm 4 on input (pi, wi)i = T . Then cost(G) ≤
(1 + 2ε)cost(T ) + 2pR.

2.5 Proof of Main Theorem 1.1

Correctness of Algorithm 1. By Lemma 2.1 the optimal solution of the rounded instance
is a near optimal solution for the original instance. To solve the rounded instance Algorithm
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1 tries all 1/ε partitions of it into regions. Lemma 2.5 shows that for at least one of these
partitions, P ∗, a near optimal solution is obtained by solving in each region independently and
combining the solutions. For the rest of the analysis, focus on the execution of Algorithm 1 that
uses partition P ∗. Let R∗1, R

∗
2, . . . , R

∗
r be the regions of P ∗. It remains to show that Algorithm

1 finds a near optimal solution for each region of partition P ∗.
Consider a region R∗i of P ∗. Algorithm 1 invokes Algorithm 3 to produce a set of tours

T that cover all big demands in region R∗i and all the small demands if each small demand is
treated as fluid (i.e is allowed to be split up among multiple tours).

Given T , Algorithm 4 produces a solution that covers small demands feasibly (without
splitting) and by Lemma 2.10 the cost of the resulting solution for R∗i is at most (1+2ε)cost(T )+
2pR∗i , where pR∗i is the maximum location in R∗i . By Lemma 2.9, the cost of region R∗i is at
most (1+2ε)OPT(R∗i )+ `(ε)pR∗i , where `(ε) = (1+2ε)(1/ε)2 log(1/ε)(2+1/ε2)+2 = O((1/ε)5).

Applying the above argument to all regions in P ∗, and using Lemma 2.5, Algorithm 1
outputs a solution of cost∑

i≤r
(1 + 2ε)OPT(R∗i ) + `(ε)pR∗i = (1 +O(ε))OPT + `(ε)

∑
i≥0

pR∗i .

By definition of regions, pR∗i is at most pmaxε
i/ε. Thus

`(ε)
∑
i≥0

pR∗i ≤ `(ε)
∑
i≥0

pmaxε
i/ε ≤ 2`(ε)pmax ≤ O(ε)OPT,

where the last inequality follows by our assumption that maxi pi ≤ O(ε6)OPT.

3 Algorithm for Theorem 1.2

The algorithm is given in Algorithm 5. We present high level description first and details in
subsections.

Algorithm 5 PTAS for the train delivery problem when W ≤ poly(n)

Input: train capacity W , demands (pi, wi)1≤i≤n
Precondition: W ≤ poly(n).

1: Partition the instance into close and far using Algorithm 6
2: Find OPT(far) using Algorithm 7.
3: Find Best(close) using Algorithm 1

Output: Best(close) ∪OPT(far), as the solution for the whole instance.

Partition into close and far instances. We index the demands in decreasing order of their
location from the depot and identify a demand ic. The instance is partitioned into, close and
far where far contains the demands with indices at most ic and close contains the demands
with indices greater than ic.
Optimal solution of far. The partition is such that far contains O(W ) total demand. This
implies that an optimal solution of far uses a constant number of tours (Lemma 3.3). This
allows us to enumerate, in polynomial time, all possible such solutions. Using a generalization of
the well-known dynamic program for subset sum, we can determine in polynomial time whether
a proposed solution is feasible or not, hence an optimal algorithm for far.
Approximate solution of close. We use Algorithm 1 to find a near optimal solution to close.
The cost of the solution is at most (1 + ε)OPT(close) +O((1/ε)5)pic .
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Overall solution. The solution is the union of the solutions for close and far. It is crucial
that, on the one hand, far does not contain too much demand, so it can be solved efficiently.
On the other hand, far contains enough demand so that the condition of Theorem 1.1 holds
for close, namely that pic = O(ε6)OPT, where pic denotes the furthest location in close.

3.1 Partitioning into close and far

Algorithm 6 Partition Close and Far

Input: train capacity W , demands (pi, wi)1≤i≤n s.t. p1 ≥ · · · ≥ pn
1: Let ic be the smallest index such that
•

∑
j≤ic wj ≥W/ε

6

• pic
∑
j≤ic wj ≤ ε

∑n
j=1 wjpj .

If no such ic exist, set ic := n.
2: Far: Let the far instance consist of the demands indexed by 1, . . . , ic.
3: Close: Let the close consist of the remaining demands ic + 1, . . . n.

Output: instances far and close

By Lemma 3.1 the optimal can be transformed into separate solutions for close and far at
small additional cost (see appendix).

Lemma 3.1. Given an instance I of the train delivery problem, Algorithm 6 returns two in-
stances far and close s.t. OPT(close) + OPT(far) ≤ (1 +O(ε))OPT.

3.2 Solving the far instance

To solve the far instance, we show that the total demand in far is O(W ). The following
combinatorial lemma is an extension of Haimovich and Rinnooy Kan’s [18] analysis to the case
of unsplittable demands. It bounds the total demand in the far instance by bounding the
number of demands that violate the requirement pic

∑
j≤ic wj ≤ ε

∑n
j=1wjpj , see the appendix.

Lemma 3.2. Let ic be as in Algorithm 6. Then
∑

j≤ic wj = exp(O(1/ε))W .

This implies that OPT(far) uses a constant, cfar, number of tours. We show how to solve
such an instance optimally using dynamic programming.

Lemma 3.3. Let I be an instance of the problem such that the sum of all the demands in I is
D. Then OPT uses at most d2D/W e tours.

Definition 3.4. (Far Configuration) Let cfar denote the maximum number of tours OPT(far)
may use. A configuration for far consists of:
• An ordered list of locations r1 ≥ r2 . . . ≥ rcfar s.t. ri is the maximum location of tour i.
• For every i ∈ [1, cfar], a list Si of i numbers Si = {si1, . . . sii}.

The cost of the configuration is
∑

j≤cfar 2rj.

For i = 1, 2, . . . cfar− 1, define an interval Ii = (ri+1, ri]. Let Icfar be the interval [pic , rcfar ].
The demands in Ii can only be covered by the i tours whose maximum location is at least
ri. The list Si specifies the total demand from interval Ii that is assigned to each of these
tours. Note that Si does not directly describe how to partition the demands among the i tours.
Finding a set of partitions that is consistent with a configuration, or finding out that no such
set of partitions exists, is done in nW eO(1/ε)

time (i.e., polynomial in n assuming W ≤ poly(n)))
using a trivial extension of the dynamic program for the subset sum problem (see appendix).

Algorithm 7 solves the far instance by iterating all configurations of OPT(far), checking
feasibility, and returning the minimum cost feasible configuration.
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Algorithm 7 Solving the far instance

Input: far demands (pi, wi)i with
∑
i wi = WeO(1/ε)

1: for each configuration f of far as given in definition 3.4 do
2: for each tour j ≤ cfar do
3: if

∑
i≤cfar s

i
j > W then

4: Mark f infeasible. {capacity of tour is exceeded}
5: for each interval i ≤ cfar, with total demand dem(Ii) do
6: if Extended DP of subset sum cannot partition dem(Ii) into si1, . . . , s

i
i then

7: Mark f infeasible. {demands cannot be partitioned}
Output: Solution realized by the minimum cost configuration not marked infeasible.

Lemma 3.5. Given an instance of far with demand WeO(1/ε) Algorithm 7 finds the optimal
solution of far in time nW eO(1/ε)

, which is polynomial in n and W .

3.3 Proof of Main Theorem 1.2

Theorem 1.2 is proved using Lemma 3.6, which follows by the choice of pic . See appendix.

Lemma 3.6. OPT > 2pic/ε
6.
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Figure 1: Rounding the big demands at location p in the proof of Lemma 2.1. The big demands in instance I

(white circles) are sorted and partitioned into groups. The big demands in I ′ (top gray circles) are obtained by

rounding demands up to the maximum in each group. The big demands in I ′′ (bottom gray circles) are obtained

by rounding down each demand to the maximum of the next group.

A Appendix

A.1 Proof of Lemma 2.1

Proof. The first three properties are straightforward. We focus on the last property. We first analyze
rounding locations . Let I1 denote the instance obtained from I after rounding just the locations (Line 1).
Any length d tour in OPT(I) can be transformed into a feasible tour for I1 by extending its length by
at most εd, so

OPT(I1) ≤ (1 + ε)OPT(I). (3)

Next we analyze rounding demands, by carrying out the de la Vega and Lueker bin packing analysis at
each location [15]. Let I” be the instance obtained from I1 by changing line 6 of the algorithm, rounding
demands down to the maximum demand of the next group. Clearly, OPT(I”) ≤ OPT(I1), and so

OPT(I ′) ≤ OPT(I1) + (OPT(I ′)−OPT(I”)). (4)

Note that up to renaming demands, instances I ′ and I” are almost identical (See Figure A.1). In fact,
at each location `, there are at most bn`ε2c demands of I ′ that do not correspond to a demand of I”,
where n` is the number of big demands at location `. Using a single tour to cover each of those demands
yields

OPT(I ′) ≤ OPT(I”) +
∑
`

2n`ε
2p` (5)

Also, by Lemma 1.4 and the fact that big demands are at least εW , we get

OPT(I1) ≥ 2

W

∑
`

n`εWp` =
∑
`

2n`εp` (6)

so OPT(I ′)−OPT(I ′′) ≤ εOPT(I1). Substituting that into 4 and using 3 shows the lemma.

A.2 Proof of Lemma 2.3

Start from the optimal solution for I and consider any tour t. Let pt be the maximum location of the
demands covered by t. For every i ≥ 0, define a new tour ti that covers the demands covered by t in the
interval (εi+1pt, ε

ipt]. Replace t by the collection of tours (ti)i≥0 (See Figure 2).
Together, the tours ti cover exactly the demands initially covered by t, so the new solution is still

feasible. By construction, the tours ti all have small expanse, so the new solution uses only small expanse
tours. We have: OPT(I) =

∑
t 2pt, and the cost of the new solution is at most∑

t

2(1 + ε+ ε2 + . . .)pt < OPT(I)/(1− ε) ≤ (1 + 2ε)OPT(I).
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Figure 2: Lemma 2.3. The depot is the star. Tour t of length pt is replaced by t0, t1, t2, by adding the

dashed segments from the depot. No points are covered by the dashed segments so that ti only covers points in

(ptε
i+1, ptε

i].

A.3 Proof of Lemma 2.5

Let S be the minimum cost solution that uses only small expanse tours. Fix a particular partition Pj
and let Tj be the set of tours from S that cover points in more than one region in Pj . Since each tour in
t ∈ Tj has small expanse, t covers points in at most two regions of partition Pj . For each t ∈ Tj , make
two copies of t, and assign one copy to cover the points in the first active region and the second copy to
cover the points in the second active region of t. After the modifications all tours cover points in only
one region. We obtain: ∑

R∈Pj

OPT(R) ≤ S +
∑
t∈Tj

length(t).

Summing over all partitions, we obtain:

∑
0≤j<1/ε

∑
R∈Pj

OPT(R) ≤
∑

0≤j<1/ε

S +
∑
t∈Tj

length(t)

 (7)

Note that for j 6= i, Ti and Tj are disjoint; a tour t ∈ Tj spans across two consecutive regions in Pj
and thus two consecutive blocks. These consecutive blocks are in the same region in partition Pi, thus
t /∈ Ti. This implies that the right hand side of Equation 7 is at most (1/ε+ 1)S. Thus we have that,∑

0≤j<1/ε

∑
R∈Pj

OPT(R) ≤ (1/ε+ 1)S

As the sum on the left hand side has 1/ε terms, there must exist a term i for which
∑
R∈Pj OPT(R) ≤

(1 + ε)S. The proof follows as S ≤ (1 + 2ε)OPT by Lemma 2.3.

A.4 Proof of Lemma 2.8

Proof. The bottleneck to the running time of Algorithm 3 is the time required to solve the linear program.
This can be done in polynomial time in the number of variables and constraints. The linear program has
one variable for each tour configuration and a constraint for each demand type and each location in region
R. Below we show that there are (1/ε)O(1/ε) tour configurations, (1/ε)2 log(1/ε)(1 + 1/ε2) demand types
and locations (1/ε)2 log(1/ε). This implies that the running time of Algorithm 3 is poly((1/ε)O(1/ε)) =
(1/ε)O(1/ε).

R spans (ε1/εp, p] for some p. By rounding locations as in Lemma 2.1 it follows that there are at most
cloc = (1/ε)2 log(1/ε) locations in R.4 Moreover each location has only 1/ε2 + 1 distinct values of big
demands. Thus the number of demand types is at most ctype = cloc ·(1+1/ε2) = (1/ε)2 log(1/ε)(1+1/ε2).

4The number of locations can be less than cloc since we don’t need to count locations with no demands.
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Since big demands have value at least Wε, at most 1/ε big demands can be taken to make a sum
that is ≤W . Thus the number of tour configurations is at most cloc ·

∑
j≤1/ε(ctype)

j = (1/ε)O(1/ε).

A.5 Proof of Lemma 2.9

Proof. Note that (x̄f )f∈F satisfies all constraints of the linear program (Equations 1-2). Thus the
tours associated with (x̄f )f∈F cover all big demand types (constraint 1) and all fluid small demands by
(constrain 2) in R.

The proof of Lemma 2.8 shows that the linear program has c = cloc+ctype = ((1/ε)2 log(1/ε))(2+1/ε2)
constraints other than the non-negativity constraints. Thus a basic optimal solution x∗ has at most c
fractional coordinates. Thus

∑
f∈F rf x̄f ≤ (

∑
f∈F rfx

∗
f ) + c · pR ≤ OPT(R) + c · pR. The last inequality

uses the fact that the optimal solution to the relaxed problem is at most OPT(R).

A.6 Proof of Lemma 2.10

Proof. Consider the new tours added by algorithm 4. Let (xs)s≥1 be the set of maximum locations for
these tours, sorted in increasing order, and define x0 = 0 for convenience. Let As denote the set of
additional tours, added by the algorithm, whose maximum point is at least xs. We have:

cost(G) = cost(T ) +
∑
s≥1

2(xs − xs−1)|As|. (8)

Let σs =
∑
i:pi≥xs wi denote the total small demand at locations at least xs. Let Ts = {t : rt ≥ xs}

denote the set of tours of T that go beyond location xs i.e., rt ≥ xs. Let αs denote the total available
capacity of all tours of Ts (i.e., αs =

∑
t∈Ts ct). By the condition in line 1 of the algorithm, since the

demands are small and since a new tour is added by the algorithm at location xs, it must be that every
tour t ∈ Ts has remaining capacity at most εW in G. Thus the amount of small demand assigned by G
to the tours in Ts is at least αs−|Ts|εW , and so the amount of small demand assigned by G to new tours
is at most σs−αs + |Ts|εW . Since σs is the total small demand located to the right of location s and αs
is the amount of remaining capacity on the tours Ts, constraint (2) of the linear program implies that
σs − αs ≤ 0 for all s. Thus the total amount of demand assigned by G to new tours is at most |Ts|εW .

Since G does not open another additional tour until all existing tours (of As as well as of Ts) are
almost full, we have:

|As| ≤
|Ts|εW

(1− ε)W
+ 1 =

ε|Ts|
(1− ε)

+ 1. (9)

Substituting (9) into (8) we get that cost(G) is at most:

cost(T ) +
ε

(1− ε)
∑
s≥1

2(xs − xs−1)|Ts|+ 2 max
s
xs.

Since cost(T ) ≥
∑
s≥1 2(xs − xs−1)|Ts| and maxs xs ≤ pR, we obtain

cost(G) ≤ 1

1− ε
cost(T ) + 2pR.

For ε < 1/2 we get, cost(G) ≤ (1 + 2ε)cost(T ) + 2pR.

A.7 Running time of Algorithm 1

Rounding locations and the big demands at each location, and partitioning the instance into regions can
all be done in time O(n log(n)). Each partition Pi consists of O(ε log(n)/ log(ε)) regions. In each region
we solve the relaxed problem and compute the greedy extension. By Lemma 2.8 Algorithm 3 solves
the relaxed problem in time (1/ε)O(1/ε) and by inspection one can see that the greedy extension can be
computed in at most O(n). As Algorithm 1 computes a solution for each of the 1/ε possible partitions,
the final run time of Algorithm 1 is O(n log(n)) + log(n)(1/ε)O(1/ε).
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A.8 Proof of Lemma 3.1

Proof. We show how to modify the tours of OPT so that each tour only covers points in the far instance
or only covers points in the close instance. Let T be the set of tours of OPT which cover points in both
instances. For each t ∈ T cut t at location pic to get three pieces: the first piece goes from the depot to
location pic and covers only points in close, the second piece goes further than pic and covers demands
only in far and the third piece goes from pic back to the depot covering only points in close. Concatenate
the first and third pieces together at pic to get a tour that covers only points in the close instance. Let T2
be the set of second pieces of each tour in T . While there exists at least two pieces in T2 each covering at
most W/2 demand, concatenate the pieces together at pic into a new piece covering at most W demand.
After all concatenations are done, all but at most one piece in T2 covers at least W/2 demand. Add a
single round trip connection from pic to depot to each piece in T2 to get tours covering only points in
the far instance.

The total cost to modify T into tours covering only points in far or close is the cost of T plus the
cost of the additional round trips required to patch up the pieces in T2 into tours. Let dem(i) denote the
total demand with indices ≤ i, i.e dem(i) =

∑
j≤i wj . Since all but one concatenated piece in T2 covers

at least W/2 demand, the number of round trips required is at most dem(ic)/(W/2) + 1 < 3dem(ic)/W .
Thus the total cost of additional round trips is at most 2(3dem(ic)/W )pic which implies that

OPT(close) + OPT(far) ≤ OPT + 6
dem(ic)

W
pic (10)

By choice of ic, dem(ic)pic ≤ ε
∑n
j=1 wjpj . Using Lemma 1.4 we obtain

6dem(ic)

W
· pic ≤ 6ε

∑
j

wjpj
W
≤ 3εOPT,

as desired.

A.9 Proof of Lemma 3.2

Proof. Let i0 be minimum such that
∑i0
i=1 wi ≥ W/ε6. By definition of ic, for every i ∈ [i0, ic) we have

(w1 + · · ·+ wi)pi > ε
∑
j wjpj . Equivalently:

∀i ∈ [i0, ic),
1

ε

wipi∑
j wjpj

>
wi

w1 + · · ·+ wi
.

Summing over i ∈ [i0, ic) implies
1

ε
>

∑
i∈[i0,ic)

wi
w1 + · · ·+ wi

.

Go through the sequence (wi)i0≤i<ic in order of increasing i, to greedily partition the wi’s into groups
g1, g2, . . . such that for every group g except, perhaps, the last one we have W/ε ≤

∑
i∈g wi < W (1/ε+1).

Letting W0 = w1 + · · ·+ wi0−1 and, for group g`, W` =
∑
i∈g` wi, we can rewrite the right hand side as

∑
`≥1

∑
i∈g`

wi
W0 + · · ·+W`−1 +

∑
i′∈g`,i′≤i wi′

≥
∑
`≥1

W`

W0 + · · ·+W`
.

Since all Wg’s (except possibly the last one) are equal to within a (1 + ε) factor, this is at least

1

1 + ε

∑
`≥1

1

`+ 1
≥ 1

2
log(#(groups)).

Thus the number of groups is at most exp(2/ε) (plus possibly one more to account for the last group).
Since each group has total demand at most W (1/ε+1), the total demand is exp(O(1/ε))W , as desired.
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A.10 A Generalization of the Dynamic Program for Subset-Sum

Let {w1, . . . wm} be the demands in interval Ii. The dynamic program populates a table Q. Table
element Q[j, s1, . . . si] specifies whether the demands w1 . . . wj can be partitioned into i sets whose sums
are s1 . . . si. The table is populated using the following recurrence: Q[j, s1, . . . si] is true if any of the
following are true: Q[j − 1, s1−wj , s2, . . . si], Q[j − 1, s1, s2−wj , s3, . . . si], Q[j − 1, s1, s2, s3−wj . . . si],
. . . , Q[j − 1, s1, s2, . . . , si−1, si − wj ]. For the base case Q[1, s1, . . . si] is true if w1 = sj for some j ≤ i
and all the other sk = 0 for all k 6= j. Otherwise Q[1, s1, . . . si] is false. We are interested in the entry
Q[m, s1, . . . si] which specifies whether the partition Si can be realized or not.

A.11 Proof of Lemma 3.3

Proof. We can assume that all but at most one tour covers at least W/2 demand. Otherwise if there are
two tours, each covering at most < W/2 demand, they can be merged together at the depot.

A.12 Proof of Lemma 3.5

Proof. Correctness: Algorithm 7 iterates through all possible configurations and checks the feasibility
of each configuration. Fix a configuration. Line 3 verifies that the load of no tour is greater than W .
Line 6 verifies that the demand in Ii can be partitioned into si1, . . . s

i
i.

Running Time: We analyze the number of configurations possible for far. As the total demand in far is
WeO(1/ε), by Lemma 3.3, cfar = eO(1/ε). The number L of locations with demands in the far instance

is WeO(1/ε). Thus there are Lcfar = W eO(1/ε)

possible right most locations for the cfar tours.
For each of the cfar intervals, there is a list of at most cfar numbers where each number is at most W .

Thus there are W c2far = W eO(1/ε)

possible lists {si1, . . . sii}i. Therefore, the total number of configurations

W eO(1/ε)

, which is a polynomial in n when W ≤ poly(n).
Next we analyze the time required to verify the feasibility of a configuration. Line 3 takes polynomial

time as they involve summing a constant number of values. The extended version of the subset sum
DP requires O(cfar · n ·W cfar ) time since the table Q has size n · s1 · s2 · . . . · si ≤ n ·W cfar , and each
entry can be computed in constant time by looking up at most cfar + 1 entries. Thus Line 6 takes time

n ·W eO(1/ε)

. Therefore, the total running time of Algorithm 7 is n ·W eO(1/ε)

.

A.13 Proof of Lemma 3.6

Proof. By definition of ic,
∑
j≤ic wj ≥W/ε

6. Using Lemma 1.4 we have

OPT ≥ 2
∑
j≤ic

wjpj
W
≥ 2

∑
j≤ic

wjpic
W

≥ 2 · W
ε6
pic
W
.

A.14 Proof of Theorem 1.2

Correctness of Algorithm 5. By Lemma 3.1 OPT(far) plus OPT(close) is a near optimal solution
of the original instance. It remains to show that Algorithm 5 computes near optimal solutions for both
far and close. Lemma 3.5 proves that Algorithm 7 computes the optimal solution of the far instance.

Now we focus on cost of solution for close. Using the notation from the proof of Theorem 1.1, let P ∗

be the partition of the near for which Lemma 2.5 holds and let R∗1, R
∗
2, . . . , R

∗
r be the regions of P ∗. It

remains to show that Algorithm 1 finds a near optimal solution for each region of partition P ∗. Applying
the same argument as in the proof of Theorem 1.1 we can show that Algorithm 1 finds a solution of cost∑

i≤r

(1 + 2ε)OPT(R∗i ) + 2pR∗i = (1 +O(ε))OPT + `(ε)
∑
i≥0

pR∗i .

where `(ε) = O(1/ε5) as defined in the proof of Theorem 1.1.
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The farthest demand in close is at location ≤ pic . Thus by definition of regions the right most
location of a region R∗i is pR∗i = picε

i/ε. Thus we have∑
i≥0

pR∗i ≤
∑
i≥0

picε
i/ε ≤ 2pic ≤ ε6OPT,

where the last inequality follows by Lemma 3.6, pic ≤ ε6OPT.
Thus the cost of the solution output by Algorithm 5 is at most

OPT(far) + (1 +O(ε))OPT(close) + εOPT,

which is (1 +O(ε))OPT by Lemma 3.1.

The running time. By Lemma 3.5 far can be computed by Algorithm 7 in time nW eO(1/ε)

. By
Theorem 1.1 Algorithm 1 finds a solution for the close instance in time O(n log n/ε)+O(log n·(1/ε)O(1/ε)).

Thus the running time of Algorithm 5 is nW eO(1/ε)

+O(n log n/ε) +O(log n · (1/ε)O(1/ε)).
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