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Abstract
We describe a data structure for submatrix maximum
queries in Monge matrices or Monge partial matrices, where
a query specifies a contiguous submatrix of the given ma-
trix, and its output is the maximum element of that subma-
trix. Our data structure for an n × n Monge matrix takes
O(n log n) space, O(n log2 n) preprocessing time, and can
answer queries in O(log2 n) time. For a Monge partial ma-
trix the space bound and the preprocessing time both grow
by the small factor α(n), where α(n) is the inverse Acker-
mann function. Our design exploits an interpretation of the
column maxima in a Monge matrix (resp., Monge partial
matrix) as an upper envelope of pseudo-lines (resp., pseudo-
segments).

We give two applications for this data structure: (1)
For a set of n points in a rectangle B in the plane, we build
a data structure that, given a query point p, returns the
largest-area empty axis-parallel rectangle contained in B and
containing p, in O(log4 n) time. The preprocessing time is
O(nα(n) log4 n), and the space required is O(nα(n) log3 n).
This improves substantially a previous data structure of
Augustine et al. [arXiv:1004.0558] that requires quadratic
space. (2) Given an n-node arbitrarily weighted planar
digraph, with possibly negative edge weights, we build,
in O(n log2 n/ log log n) time, a linear-size data structure
that supports edge-weight updates and distance queries
between arbitrary pairs of nodes (where the distance is
minimum weight of a path in the graph between the pair
of nodes), in O(n2/3 log5/3 n) time for each update and

query. This improves the O(n4/5 log13/5 n)-time bound
of Fakcharoenphol and Rao [JCSS 72, 2006]. Our data
structure has already been applied in a recent maximum
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flow algorithm for planar graphs of Borradaile et al. [FOCS
2011], and we believe it will find additional applications.

1 Introduction.

A matrix M is a Monge matrix if for every pair of
rows i < j and every pair of columns k < ℓ we have
Mik +Mjℓ ≤ Miℓ +Mjk; it is called an inverse Monge
matrix if the reverse inequality Mik+Mjℓ ≥ Miℓ+Mjk

holds for every such quadruple of indices.1 Suppose
we have two ordered sets of points, A and B, on two
opposite sides of a rectangle, respectively. Monge [34]
observed that for i < j and k < ℓ any monotone path
from point i of A to point ℓ of B must cross any such
path from point j of A to point k of B. It follows
that the matrix in which the (i, k) entry stores the
distance from point i of A to point k of B has the Monge
property. Consequently, Monge matrices proved to be
useful in solving problems related to distances between
points in the plane.

In addition, Monge matrices have many applica-
tions in combinatorial optimization and computational
geometry: The traveling salesman problem can be
solved in linear time if the underlying cost matrix is
a Monge matrix [40]. The greedy algorithm solves
the trasportation problem optimally if the costs form
a Monge matrix [24]. Monge matrices were also used
to obtain efficient algorithms for several problems on n-
gons, like finding the k furthest vertices from any vertex
[2], finding a minimum-area circumscribing d-gon, and
others [2, 3]. For a survey on Monge matrices and their
uses in combinatorial optimization see [11].

A particularly famous result with many applications
is an algorithm by Aggarwal et al. [2] to find the
minimum or the maximum in each row of an m × n
Monge matrix in O(m + n) time. This algorithm is
known as the SMAWK algorithm for the initials of
its inventors. There are also algorithms with slightly
worse asymptotic running times for finding row maxima
and row minima in specific kinds of Monge partial

1In what follows we will sometimes make no distinction be-
tween Monge and inverse Monge matrices. Note that by reversing
the order of the rows or of the columns, an inverse Monge matrix
becomes a Monge matrix.



matrices in which some of the entries are undefined.
In these cases we require that the matrix have the
Monge property only with respect to the defined entries
[1, 28, 29]. We note that all of these algorithms actually
assume the weaker property of total monotonicity of the
underlying matrix (see below for the definition), which
is implied by the inverse Monge property.

1.1 Our contributions. We present a data struc-
ture for efficient submatrix maximum queries in an n×n
Monge matrix.2 Our data structure is constructed in
O(n log2 n) time, its size is O(n log n), and it can find
the maximum in any (contiguous) submatrix, specified
by a range of rows and a range of columns, in O(log2 n)
time.

There are two special cases for which we give more
efficient data structures. (1) When the query submatrix
is a row-interval, that is, a contiguous portion of a
single row, we present a data structure that requires
O(n log n) preprocessing time and O(n log n) space, and
can answer queries inO(log n) time. (2) When the query
submatrix is a slab, that is, a contiguous subsequence
of complete rows, we present a data structure that can
be constructed in O(n) time and can answer a query in
O(1) time.

We show how to extend our data structures to
Monge partial matrices, which are Monge matrices that
contain undefined entries, so that the defined entries
form within each row or column a contiguous interval.
The query times of the submatrix maximum, row in-
terval maximum, and slab maximum data structures all
remain the same, but their sizes and construction times
grow by a factor of α(n), except for the construction
time of the row-interval data structure which grows by
the slightly larger factor α(n) log n.

We obtain these data structures using techniques
from computational geometry. Specifically, we think of
the rows of the matrix as functions over the discrete
sequence of column indices, and exploit the fact that the
Monge property implies that these functions are in fact
discrete variants of pseudo-lines (or pseudo-segments in
case of partial matrices). This connection may prove
useful for constructing other data structures for Monge
matrices. We describe our data structures in Section 3.

Our Monge row-interval minimum data structure
has already been applied in a recent maximum flow
algorithm for planar graphs of Borradaile et al. [10]
(involving a subset of the authors). In this paper we
present two new applications of our data structures.
In the first application we give, for a planar point set

2To simplify the presentation we discuss square matrices here.
Our results apply also to rectangular matrices, see Section 3.

enclosed in some fixed axis-parallel box B, an almost
linear-size structure for finding the largest-area empty
axis-parallel rectangle containing a query point, where
the previous best solution required quadratic space. In
the second application we substantially improve a data
structure of Fakcharoenphol and Rao [20] for distance
queries in a dynamically weighted planar digraph when
the edge weights can be negative. We elaborate on these
two applications next.

Finding the largest empty rectangle contain-
ing a query point. Let P be a set of n points in a
fixed axis-parallel rectangle B in the plane. A P -empty
rectangle (or just an empty rectangle for short) is any
axis-parallel rectangle that is contained in B and its in-
terior does not contain any point of P . We consider
the problem of preprocessing P into a data structure
so that, given a query point q, we can efficiently find
the largest-area P -empty rectangle containing q. This
problem arises in electronic design automation, in the
context of the design and verification of physical layouts
of integrated circuits (see, e.g., [42, Chapter 9]).

The largest-area P -empty rectangle containing q is
a maximal empty rectangle, namely, it is a P -empty
rectangle not contained in any other P -empty rectangle.
Each side of a maximal empty rectangle abuts a point
of P or an edge of B. See Figure 1 for an illustration.
Maximal empty rectangles arise in the enumeration of
“maximal white rectangles” in image segmentation [7].

B

q

Figure 1: A maximal P -empty rectangle containing a
query point q.

Augustine et al. [6] gave a data structure for this
problem whose storage and preprocessing time are both
O(n2 log n), and the query time is O(log n). In Section
4, we significantly improve this result, in terms of
storage and preprocessing time. Specifically, we present
a data structure that requires O(nα(n) log3 n) space and
can answer a query in O(log4 n) time. The structure can
be constructed in O(nα(n) log4 n) time.

In a nutshell, our algorithm computes all the max-
imal P -empty rectangles and preprocesses them into a



data structure which is then searched with the query
point. A major problem that one faces is that the num-
ber of maximal P -empty rectangles can be quadratic in
n (see, e.g., Figure 5), so we cannot afford to compute
them explicitly. Instead, we exploit the inverse Monge
partial matrix structure that exists in certain configu-
rations, which facilitates a faster search for the maxi-
mum. The inverse Monge property of areas of certain
configurations of rectangles has been already observed
in McKenna et al. [33] and used by Aggarwal and Suri [4]
for finding the largest (global) P -empty rectangle.

Our data structure can be modified to find the
largest-perimeter P -empty rectangle containing a given
query point q, in a way similar to the algorithm of [4].

Dynamic shortest path queries with negative
edge weights in planar graphs. Let G be an n-node
weighted directed planar graph, where the weights of the
edges of G are arbitrary real numbers, possibly negative.
In Section 5, we present a dynamic data structure that
can answer distance queries (that is, return the minimal
path weight) between arbitrary pairs of nodes in G, and
allows updates of edge weights. The time for a query or
update is O(n2/3 log5/3 n). The construction time of our
data structure is O(n log2 n/ log log n), and it requires
linear space.

Our data structure is based on the data struc-
ture of Fakcharoenphol and Rao [20], which has

O(n4/5 log13/5 n) query time and requires O(n log n)
space, and on the data structure of Klein [30], which
has the same query time and space bound as our algo-
rithm but does not support negative edge weights.

Italiano et al. [26] extended the data structure of
Klein to allow insertions and deletions of edges that do
not change the embedding of the graph. This technique
also applies to our data structure, and we can extend it
to support insertions and deletions of edges, retaining
the same asymptotic time bounds for updates (including
insertions, deletions, and changes of edge weights) and
queries.

1.2 Related work. The problem of finding the
largest empty rectangle containing a query point was
introduced in the paper mentioned above by Augustine
et al. [6]. An easier problem that has been studied more
extensively is that of finding the largest-area P -empty
axis-parallel rectangle contained in B. Notice that the
largest P -empty square is easier to compute, because
its center is a Voronoi vertex in the L∞-Voronoi dia-
gram of P (and of the edges of B), which can be found
in O(n log n) time [17, 32]. There have been several
studies on finding the largest-area maximal empty rect-
angle [5, 14, 37] in B; the fastest algorithm to date,
by Aggarwal and Suri [4], takes O(n log2 n) time and

O(n) space. We use many of the observations in these
algorithms. Most important of which is the quadratic
number of maximal rectangles generated by two “paral-
lel” monotonic chains of points, and the inverse Monge
property which they satisfy. Our main contribution is
adapting these ideas to construct a data structure for
finding the largest empty rectangle containing a query
point.

Nandy et al. [38] show how to find the largest-area
axis-parallel empty rectangle avoiding a set of polygonal
obstacles, within the same time bounds. Boland and
Urrutia [9] present an algorithm for finding the largest-
area axis-parallel rectangle inside an n-sided simple
polygon in O(n log n) time. Chaudhuri et al. [13] give
an algorithm to find the largest-area P -empty rectangle,
with no restriction on its orientation, in O(n3) time.

The problem can be studied for regions other than
axis-parallel rectangles. Augustine et al. [6] studied the
case where the regions containing the query point are
disks. For this case they gave a data structure that
requires O(n2) space, O(n2 log n) preprocessing time,
and can answer a query in O(log n) time.

Static data structures that preprocess an input pla-
nar graph to answer distance queries efficiently were
studied by many authors [12, 16, 19, 20, 21, 22, 30,
35, 39]. The dynamic setting in which updates of
edge weights are supported was recently studied by
Fakcharoenphol and Rao [20]. They describe a data
structure that supports only non-negative edge weights,
requires O(n log n) space, O(n log3 n) preprocessing

time, and performs a query or update inO(n2/3 log7/3 n)
time. They also gave a data structure which supports
negative edge weights but with query and update time of
O(n4/15 log13/5 n), with the same space and preprocess-
ing time. Klein [30], using a technique of Fakcharoen-
phol and Rao, gave a simpler data structure for the case
of non-negative edge weights that requires linear size,
O(n log n) preprocessing time, andO(n2/3 log5/3 n) time
per query and update. Our data structure is based on
these results of Fakcharoenphol and Rao and of Klein.

2 Preliminaries.

Totally monotone and Monge matrices. A
matrix M is totally monotone if, for every pair of
rows i < j and every pair of columns k < ℓ, Mik ≤
Miℓ implies Mjk ≤ Mjℓ. The SMAWK algorithm of
Aggarwal et al. [2] finds all row maxima in a totally
monotone m×n matrix in O(m+n) time. By negating
the entries of the matrix and reversing the order of
the columns to recover total monotonicity, we obtain
a totally monotone matrix in which the maximum of
each row is the negation of the minimum entry of the



row in the original matrix. By applying the SMAWK
algorithm to the transformed matrix we can also find
the row minima in a totally monotone m× n matrix in
O(m+ n) time.

A matrix M is a Monge matrix (also called concave
Monge matrix) if for every pair of rows i < j and every
pair of columns k < ℓ we have Mik +Mjℓ ≤ Miℓ +Mjk.
A matrix M is an inverse Monge matrix (also called
convex Monge matrix) if for every pair of rows i < j
and every pair of columns k < ℓ we have Mik +Mjℓ ≥
Miℓ+Mjk. Clearly ifM is Monge (resp., inverse Monge)
then so is its transpose M t. It is easy to verify that if
M is an inverse Monge matrix, then M and M t are
totally monotone. Also, if M is a Monge matrix, then
by negating the entries of M , or by reversing the order
of the rows or of the columns, we get an inverse Monge
matrix. Therefore, we can use the SMAWK algorithm
for finding row maxima, row minima, column maxima
and column minima in a Monge matrix or in an inverse
Monge matrix.

We say that a matrix M is a partial matrix if some
of the entries of M are undefined, such that the defined
entries of each row are consecutive, and the defined
entries of each column are consecutive.3 See Figure
2. A totally monotone (Monge, inverse Monge) partial
matrix is a partial matrix whose defined entries satisfy
the total monotonicity (resp., Monge, inverse Monge)
condition.

Figure 2: The defined part of a partial matrix.

Upper envelopes of pseudo-lines and of
pseudo-segments. A set L of m x-monotone un-
bounded (resp., bounded) Jordan curves in the plane is
called a family of pseudo-lines (resp., pseudo-segments)
if every pair of curves intersect in at most one point,
and the two curves cross each other there.

We think of a pseudo-line ℓ as a function ℓ(x), x ∈ R,
and of a pseudo-segment s as a function s(x), x ∈ Is,
where Is ⊆ R is some (possibly infinite) interval. The

3Aggarwal and Klawe [1] use a different definition of partial
matrices in a similar context. The two definitions, however, are

nearly equivalent; any partial matrix of [1] can be decomposed

into two partial matrices as defined in this paper, and vice versa.

Column ℓ

Row i

Row j

Column k

Figure 3: The pseudo-lines of two rows in an inverse
Monge matrix.

upper envelope of a set of pseudo-lines L is the function
EL(x) = maxℓ∈L ℓ(x). The upper envelope of a set
S of pseudo-segments is the function ES(x) defined as
follows: ES(x) = maxs∈S{s(x) | x ∈ Is} if there is
an interval Is for some s ∈ S which contains x, and
ES(x) = −∞ otherwise.

A breakpoint in the upper envelope EL(x) of a
set of pseudo-lines L is an intersection point of two
pseudo-lines on EL(x). A breakpoint in the upper
envelope ES(x) of a set S of pseudo-segment is either
an intersection point of two pseudo-segments or an
endpoint of one of the pseudo-segments. We define
the complexity of an envelope EL(x) or ES(x) to be
the number of its breakpoints. Since each pseudo-line
in L can appear along the upper envelope in a single
connected (possibly empty) interval, the complexity of
EL(x) is O(|L|). The complexity of ES(x) is known to
be O(|S|α(|S|)) [41].

Monge matrices and pseudo-lines. Let M be
an m × n inverse Monge matrix. We can think of the
entries of a particular row ρ as defining a (discrete)
function M̂ρ(·), mapping each index π of a column to
the value of Mρπ. By the total monotonicity of M t we
get that Mik ≤ Mjk implies Miℓ ≤ Mjℓ, for any four
indices i < j and k < ℓ, and this in turn implies that
these functions behave as pseudo-lines. Specifically, we
extend the domain of definition of each function M̂ρ to
the continuous interval [1, n], by linearly interpolating
between each pair of π-consecutive points. Then each
pair of the resulting piecewise linear functions intersect
at most once. Moreover, the pseudo-line of row i lies
above the pseudo-line of row j to the left of their
intersection point, and this order is reversed to the right
of that point; very informally, the “slope” of the pseudo-
line of row i is smaller than that of the pseudo-line of
row j. See Figure 3.

Similarly if M is an m × n inverse Monge partial
matrix then, since the defined entries in each row are
consecutive, we can think of each row as a discrete
partially defined function, which, after interpolating



the functions in the same manner as above, is defined
over some connected subinterval of [1, n]. By the total
monotonicity of M t we get that Mik ≤ Mjk implies
Miℓ ≤ Mjℓ, when i < j and k < ℓ and these four entries
of M are all defined. Therefore the interpolated partial
functions corresponding to the rows of M form a family
of pseudo-segments.

We note that the preceding analysis also applies
to any matrix whose transpose is a totally monotone
matrix.

3 The data structure.

In this section we develop the main result of our
paper, data structures for submatrix maximum queries
in (inverse) Monge matrices and in (inverse) Monge
partial matrices.

The model that we assume, which is the same
model used by all the previous studies mentioned in the
introduction, is that the input matrix M is not given
explicity—it has too many entries. Instead, it is given
implicitly so that one can retrieve any desired entry Mij

of M in O(1) time.

3.1 Submatrix maximum in Monge matrices.
Let M be an m× n inverse Monge matrix and consider
the interpretation of the rows of M as pseudo-lines
(see Section 2). The upper envelope of the rows of
M consists of the column maxima of M . An explicit
representation of the entire upper envelope requires
O(n) values. However, the envelope contains only O(m)
breakpoints, and we use these breakpoints to implicitly
represent the envelope.4 We will use this compact
representation for upper envelopes of several subsets
of the rows, and we note that the saving becomes
significant when the number of rows is significantly
smaller than the number of columns.

Every column π is contained in some interval be-
tween two consecutive breakpoints of the upper enve-
lope, and we can find that interval using binary search
on the breakpoints. Once we found the interval, we
know to which pseudo-line it belongs, and we therefore
know which row contains the maximum of column π and
then retrieve that maximum in O(1) time. We conclude
that we can find the maximum in a column π of M in
O(logm) time, given the implicit representation of the
upper envelope of the pseudo-lines of the rows of M as
a list of its breakpoints.

4Technically, since we are dealing with discrete versions of
pseudo-lines, a breakpoint occurs in general “between” two con-
secutive columns. The representation of breakpoints is handled
accordingly, but we will not refer to this issue explicitly in what
follows.

We find the implicit representation of the upper
envelope of all pseudo-lines in O(m(logm + log n))
time using the following standard divide-and-conquer
approach. We build a balanced binary tree Th over the
rows of M . For each node u of Th we compute the upper
envelope of the pseudo-lines representing the rows in the
subtree rooted at u (which we call the upper envelope
of u for short). The upper envelope of a leaf is trivial,
since it represents a single row, and no computation is
needed. For an internal node u, we construct its upper
envelope by merging the envelopes of its two children
w1 and w2, where w1 is the child whose rows have
lower indices. Let k be the number of rows at the
leaves of the subtree of Th rooted at u. The number
of breakpoints in each of the upper envelopes of u, w1,
and w2 is O(k). By the total monotonicity of M and its
implications discussed above, the upper envelope of u
starts with a prefix of the upper envelope of w1, reaches
a breakpoint between the pseudo-line of a row of w1

and that of a row of w2, and ends with a suffix of the
upper envelope of w2. We find the breakpoint between
the upper envelopes of w1 and of w2 using binary search
on the columns. For each column in the binary search,
we find its maximum in the upper envelope of w1 and
in the upper envelope of w2 in O(log k) time. Therefore
the binary search for the breakpoint between the two
upper envelopes takes O(log k log n) time. Then, we
construct the upper envelope of u in O(k) time, by
concatenating the prefix of the upper envelope of w1, the
new breakpoint, and the suffix of the upper envelope of
w2. The total time for constructing the upper envelope
of u from those of its children is O(k+log k log n), which
sums to O(m(logm + log n)) over the entire tree. The
total size of Th is O(m logm).

We use the tree Th to create a data structure for
reporting the maximum of a column within a given
range of consecutive rows. A query in this data
structure is a column π and a range of rows [ρ, ρ′], and
the output is the maximum entry of M at column π
between rows ρ and ρ′ (inclusive). We answer such a
query as follows. There are O(logm) canonical nodes of
Th whose sets of rows are disjoint and cover [ρ, ρ′]. (The
set of rows of each such node u is contained in [ρ, ρ′], but
the set of rows of the parent of u is not.) For each such
canonical node u, we locate the interval of the envelope
of u containing π, and hence the maximum of column
π among the rows of u. The output is the largest of
these O(logm) maxima. A binary search within each
envelope takes O(logm) time, and therefore the total
query time is O(log2 m).

We can reduce the query time by a logarithmic
factor using fractional cascading [15]. This technique
allows us to insert bridges from the envelope of a node



u of Th to the envelopes of its two children, such that
once we locate the interval containing column π in the
envelope of u, we can locate the interval containing
column π in the envelope of its children in O(1) time.
This construction does not incur any space or time
overhead, but reduces the query time to O(logm).

Note that for this data structure we only used
the fact that M t is a totally monotone matrix (see
a comment made earlier). Therefore, by transposing
the matrix, we get the row-interval maximum data
structure for a totally monotone matrix:

Lemma 3.1. Given a totally monotone matrix of size
m× n, one can construct, in O(n(logm+ log n)) time,
a data structure of size O(n log n) that can report the
maximum entry in a query row and a range of columns
in O(log n) time.

We note that by a symmetric treatment of the lower
envelope of pseudo-lines we can construct a variant of
the data structure that reports minima rather than
maxima.

We continue now to construct a data structure that
answers maximum queries within a submatrix ofM . We
build the tree Th over the rows of M with an upper en-
velope for each node of Th in O(m(logm+ log n)) time
as before. We also construct, in O(n(logm + log n))
time, the “flipped” row interval maximum data struc-
ture of Lemma 3.1 for finding the maximum element of
a row within a consecutive range of columns, and de-
note it by B; queries in B take O(log n) time. Let u be
a node of Th. We find and store the maximum in every
interval of the upper envelope of u by an appropriate
query to B. There are O(m logm) such intervals in all
nodes of Th, so finding their maxima takes a total of
O(m logm log n) time, which is the bottleneck step of
the construction. For every node u of Th we build a
range maximum query data structure over the maxima
of the intervals of the upper envelope of u. For our pur-
pose it is sufficient to use a binary search tree over these
intervals, augmented with subtree maxima stored at its
nodes, which can answer a range maximum query in
O(logm) time. Later on, in Section 3.3, we will use the
more sophisticated structure of [8] for another variant
of our data structure.

A query in this data structure is a submatrix of M
with specified ranges R of consecutive rows and C of
consecutive columns, and the answer is the maximum
entry in this submatrix. To answer such a query, we
first represent R as the (disjoint) union of O(logm)
subtrees of Th. For each root u of such a subtree, we find
the maximum of the upper envelope of u in the range
defined by C as follows; refer to Figure 4. We find the
maximum set I of intervals of the upper envelope of

u which are fully contained in C. Then we find the
maximum in the range spanned by I using the range
maximum data structure that we have built over the
intervals of the envelope of u. The prefix p of C which
is not covered by I is contained in a single interval of
the upper envelope of u. Therefore the maximum of
the upper envelope of u within p is in some single row
ρ. Similarly the maximum of the upper envelope of u
in the suffix s of C not covered by I is obtained in
some single row ρ′. We use the structure B to find
the maximum in row ρ within column range p, and the
maximum in row ρ′ within column range s. This way
we cover the entire query submatrix. The query time is
O(logm(logm + log n)), since we need to retrieve and
to search in O(logm) canonical nodes u and we find
the maximum in the upper envelope of each such u in
O(logm + log n) time. We thus obtain the following
submatrix maximum data structure:

at u

u

C

p s

envelope

Figure 4: Maximum query at a single node u of Th.

Lemma 3.2. Given an inverse Monge matrix of size
m×n, one can construct in O(m logm log n+n(logm+
log n)) time a data structure of size O(m logm) that
can report the maximum entry in a given submatrix in
O(logm(logm+ log n)) time.

Again, we can construct a variant of this data structure
for finding minima instead of maxima within the same
time bounds. The same result also applies to Monge
matrices.

3.2 Submatrix maximum in Monge partial ma-
trices. We extend the two data structures from the pre-
vious section to inverse Monge partial matrices. Let
M denote an m× n inverse Monge partial matrix, and
consider the interpretation of the rows of M as pseudo-
segments. Since the complexity of the upper envelope
of k pseudo-segments is O(kα(k)) [41], it follows that



there are O(kα(k)) breakpoints in the upper envelope
of any subset of k rows.

We use again a divide-and-conquer approach, but
this time merging the upper envelopes of the two chil-
dren w1, w2 of a node u of Th is slightly more involved,
since the envelopes may cross each other multiple times.
To merge the envelopes, we first merge the lists of break-
points representing the envelopes of w1 and w2. We tra-
verse the merged list of endpoints from left to right, and
at each breakpoint we compare the rows that contain
the intervals of the two upper envelopes at the column
of the breakpoint. We add the breakpoint to the upper
envelope of u, only if it remains on this envelope. When
we get two consecutive breakpoints that came from two
different upper envelopes, there must be a new break-
point between them. We find the new breakpoint in
O(log n) time using a binary search on the columns of
the current intervals in the two upper envelopes. Since
we payO(log n) time to find a new breakpoint, and there
are O(mα(m) logm) breakpoints in total, the construc-
tion takes O(mα(m) logm log n) time, and the required
space is O(mα(m) logm). The query time (with frac-
tional cascading) remains O(logm).

An alternative approach is to apply Hershberger’s
algorithm [23], which constructs the upper envelope
of k segments in O(k log k) time. The algorithm is
also applicable to the case at hand of pseudo-segments,
and, as above, we incur the extra factor O(log n)
for finding the intersection of two pseudo-segments.
However, since we need to construct an entire hierarchy
of envelopes, Hershberger’s algorithm does not make the
whole procedure more efficient.

Again, by applying the algorithm described above
to M t, we get the following row-interval maximum data
structure:

Lemma 3.3. Given an totally monotone partial matrix
of size m×n, one can construct, in O(nα(n) logm log n)
time, a data structure of size O(nα(n) log n) that can re-
port the maximum entry in a query row and a contiguous
range of columns in O(log n) time.

We next develop the submatrix maximum data
structure. Similar to what was done before, we
construct the tree Th and the row maxima data
structure B, but this time the construction takes
O((mα(m)+nα(n)) logm log n) time. Since the overall
number of breakpoints in the upper envelopes is now
O(mα(m) logm), the total time for finding the maxi-
mum in every interval between two consecutive break-
points, over all envelopes, is now O(mα(m) logm log n).
Therefore, the total construction time is O((mα(m) +
nα(n)) logm log n), and the total size for the data struc-
ture is O(mα(m) logm). The rest of the data structure

is constructed exactly as in the case of full matrices, and
the query time remains O(logm(logm+ log n)).

In conclusion, we get the following submatrix max-
imum data structure for partial matrices:

Lemma 3.4. Given an inverse Monge partial matrix
of size m × n, one can construct, in O((mα(m) +
nα(n)) logm log n) time, a data structure of size
O(mα(m) logm) that can report the maximum entry in
a query submatrix in O(logm(logm+ log n)) time.

Again, the same results apply for Monge partial matri-
ces. As in Section 3.1, we can also apply symmetric
variants of the above constructions for answering sub-
matrix minimum queries.

3.3 Maximum in a consecutive range of rows.
In the special case where the query submatrices consist
of contiguous ranges of complete rows (i.e., with the
entire range of columns), we can produce a more efficient
slab maximum data structure. Specifically, we find the
maximum in each row using the SMAWK algorithm [2],
and then construct in linear time a data structure that
answers range maximum queries on contiguous ranges of
the row maxima, in O(1) time; see [8] and the references
therein.

Lemma 3.5. Given a totally monotone matrix of size
m × n, one can construct, in O(m + n) time, a data
structure of size O(m) that can report the maximum
entry in a query set of complete consecutive rows, in
O(1) time.

For the case of Monge partial matrices we can con-
struct a similar data structure that uses the algorithm
of Klawe and Kleitman [29] instead of the SMAWK al-
gorithm.5 This yields:

Lemma 3.6. Given a totally monotone partial matrix
of size m × n, one can construct, in O(nα(m) + m)
time, a data structure of size O(m) that can report the
maximum entry in a query range of consecutive rows,
in O(1) time.

4 Maximal empty rectangle containing a query
point.

Let P be a set of n points inside an axis-parallel
rectangular region B in the plane. In this section
we present the first application of our data structures,

5The definition of partial matrices in [29] is the one in [1], which

is different than the definition used in this paper. However, the
algorithm of [29] does apply in our case since, as previously noted,
we can decompose a partial matrix into two partial matrices in
the sense of [29] and run the algorithm of [29] on each of the two
matrices.



which is an algorithm that preprocesses P into a data
structure, so that, given a query point q ∈ B, we can
efficiently find the largest-area axis-parallel P -empty
rectangle containing q and contained in B.

We assume that the points of P are in general
position, so that (i) no two points have the same x-
coordinate or the same y-coordinate, and (ii) all the
maximal P -empty rectangles have distinct areas.

One of the auxiliary structures that we use is a two-
dimensional segment tree, which stores certain subsets
of P -maximal empty rectangles. Here is a brief review
of the structure, provided for the sake of completeness.
Let M be a set of N axis-parallel rectangles in the
plane. We first construct a standard segment tree S [18]
on the x-projections of the rectangles in M. This is a
balanced binary search tree whose leaves correspond to
the intervals between the endpoints of the x-projections
of the rectangles. The span of a node v is the minimal
interval containing all intervals corresponding to the
leaves of its subtree. We store a rectangle R at each
node v such that the x-projection of R contains the
span of v but does not contain the span of the parent
of v. The tree has O(N) nodes, each rectangle is stored
at O(logN) nodes, and the size of the structure is thus
O(N logN). All the rectangles containing a query point
q must be stored at the nodes on the search path of the
x-coordinate of q in the tree.

For each node u of S we take the set Mu of rect-
angles stored at u, and construct a secondary segment
tree Su, storing the y-projections of the rectangles of
Mu. The total size and the preprocessing time of the
resulting two-dimensional segment tree is O(N log2 N).
We can retrieve all rectangles containing a query point q
by traversing the search path π of (the x-coordinate of)
q in the primary tree, and then by traversing the search
paths of (the y-coordinate of) q in each of the secondary
trees associated with the nodes along π. The rectangles
stored at the secondary nodes along these paths are ex-
actly those that contain q. If we store at each secondary
node only the rectangle of largest area among those
assigned to that node, we can easily find the largest-
area rectangle of M containing a query point, in time
O(log2 N). Storing only one rectangle at each secondary
node reduces the size of the segment tree to O(N logN),
but the preprocessing time remains O(N log2 N).

This simple-minded solution will be efficient only
when the size N of M is linear or nearly linear in
n. Unfortunately, as already noted, in general the
number of maximal empty rectangles can be quadratic
in the input size, so for most of them we will need an
additional, implicit representation. For this purpose we
will decompose our problem into subproblems so that
in each of the subproblems most of the maximal empty

rectangles can be represented in an inverse Monge
partial matrix, and we will use our submatrix maximum
query data structure on the resulting matrix.

Naamad et al. [37] classified the maximal P -empty
rectangles within B according to the number of their
edges that touch the edges of B. They showed that
there are only O(n) maximal P -empty rectangles with
at least one edge on ∂B, and that we can compute these
rectangles in O(n log n) time. We precompute these
rectangles and store them in a two-dimensional segment
tree S, as described above. At query time we find the
rectangle of largest area among those special “anchored”
rectangles that contain the query point q, in O(log2 n)
time, by searching with q in S. (The segment tree S
will also store additional rectangles that will arise in
later steps of the construction; see below for details.)

In the remainder of the section we are concerned
only with maximal P -empty rectangles supported by
four points of P , one on each side of the rectangle.
We refer to such rectangles as bounded P -empty rect-
angles. We note that the number of such rectangles can
be Θ(n2) in the worst case [37]; see Figure 5 for an illus-
tration of the lower bound. The upper bound follows by
observing that there is at most one maximal P -empty
rectangle whose top and bottom edges pass through two
respective specific points of P . (To see this, take the
rectangle having these points as a pair of opposite ver-
tices and, assuming it to be P -empty, expand it to the
left and to the right until its left and right edges hit
two additional respective points.) Handling these (po-
tentially quadratically many) rectangles has to be done
implicitly, in a manner that we now proceed to describe.

B

Figure 5: A set P of n points with Θ(n2) maximal P -
empty rectangles.

4.1 Maximal empty rectangles supported by
four points of P . We store the points of P in a two-
dimensional range tree (see, e.g., [18]). The points are
stored at the leaves of the primary tree T in their left-
to-right order. For a node u of T , we denote by Pu



the subset of the points stored at the leaves of the
subtree rooted at u. We associate with each internal
node u of T a vertical splitter ℓu, which is a vertical
line separating the points stored at the left subtree of u
from those stored at the right subtree. These splitters
induce a hierarchical binary decomposition of the plane
into vertical strips. The strip σroot associated with the
root is the entire plane, and the strip σu of a node u is
the portion of the strip of the parent p(u) of u which is
delimited by ℓp(u) and contains Pu.

With each node u in T we associate a secondary tree
Tu containing the points of Pu in a bottom-to-top order.
For a node v of Tu, we denote by Pv the points stored
at the leaves of the subtree rooted at v. We associate
with each internal node v of Tu a horizontal splitter ℓv,
which is a horizontal line separating the points stored
at the left subtree of v from those stored at the right
subtree. These splitters induce a hierarchical binary
decomposition of the strip σu into rectangles. The
rectangle associated with the root of Tu is the entire
vertical strip σu, and the rectangle Bv of a node v is the
portion of the rectangle of the parent p(v) of v which is
delimited by ℓp(v) and contains Pv. See Figure 6.

B

Bv

ov

ℓu

σu

ℓv

Figure 6: The rectangle Bv associated with a secondary
node v, with its splitters and origin.

In this way, the range tree defines a hierarchical
subdivision of the plane, so that each secondary node
v is associated with a rectangular region Bv of the
subdivision. If v is not a leaf then it is associated with a
horizontal splitter ℓv. If the primary node u associated
with the secondary tree of v is also not a leaf then v is
also associated with a vertical splitter ℓu. The vertical
splitter ℓu and the horizontal splitter ℓv meet at a point
ov inside Bv, which we refer to as the origin of v.

A query point q defines a search path πq in T and
a search path in each secondary tree Tu of a primary
node u on πq. We refer to the nodes on these O(log n)
paths as constituting the search set of q, which therefore
consists of O(log2 n) secondary nodes.

Let R be a bounded maximal P -empty rectangle

containing q supported by four points pt, pb, pℓ, and pr
of P , lying respectively on the top, bottom, left, and
right edges of R. Let u be the lowest common ancestor
of pℓ and pr in the primary tree, and let v be the lowest
common ancestor of pt and pb in Tu (clearly, both pt and
pb belong to Tu). By construction, R is contained in Bv

and contains both q and ov. See Figure 7. Note that
both v and u are internal nodes (each being a lowest
common ancestor of two leaves) so ov is indeed defined.
Furthermore, one can easily verify that v is in the search
set of q.

Bv

q

ov

Figure 7: A bounded maximal P -empty rectangle of the
subproblem at v.

In the following we consider only secondary nodes
v which are not leaves, and are associated with primary
nodes u which are not leaves either.

We define the subproblem at a secondary node v (of
the above kind) as the problem of finding the largest-
area bounded maximal P -empty rectangle containing q
and ov which lies in the interior of Bv. It follows that if
we solve each subproblem at each secondary node v in
the search set of q, and take the rectangle of largest area
among those subproblem outputs, we get the largest-
area bounded maximal P -empty rectangle containing q.

In the remainder of this section we focus on the
solution of a single subproblem at a node v of a
secondary tree Tu in the search set of q. We focus only
on the points in Pv and for convenience we extend Bv to
the entire plane and we move ov to the origin. The line
ℓu becomes the y-axis, and the line ℓv becomes the x-
axis. Put nv = |Pv|. We classify the bounded maximal
P -empty rectangles contained in Bv and containing
the origin according to the quadrants containing the
four points associated with them, namely, those lying
on their boundary, and find the largest-area rectangle
containing q in each class separately.

(i) Three defining points in a halfplane. The
easy cases are when one of the four halfplanes defined
by the x-axis or the y-axis (originally ℓu and ℓv)
contains three of the defining points. Chazelle et al. [14]



showed that there are O(nv) bounded maximal empty
rectangles of this type associated with v, which we can
find in O(nv log nv) time. Summing this cost over all
secondary nodes v, we obtain a total of O(n log2 n)
such rectangles, which can be constructed in O(n log3 n)
overall time.

We add all these rectangles to the global segment
tree S. The size of the expanded tree S remains
O(n log n) since it still suffices to store only the largest-
area rectangle among all rectangles associated with each
secondary node. The preprocessing time increases to
O(n log4 n) since each of the O(n log2 n) rectangles is
mapped to O(log2 n) secondary nodes of S, and for each
rectangle R and a node u to which R is mapped, we need
to check whether R is the largest rectangle mapped to
u. A query in S still takes O(log2 n) time.

The remaining cases involve bounded maximal P -
empty rectangles R such that each of the four halfplanes
defined by the y-axis or the x-axis contains exactly
two defining points of R. This can happen in two
situations: either there exist two opposite quadrants,
each containing two defining points of R, or each
quadrant contains exactly one defining point of R.

(ii) One defining point in each quadrant. The
situation in which each quadrant contains exactly one
defining point of R is also easy to handle, because
again there are only O(nv) bounded maximal P -empty
rectangles of this type in Bv. To see this, consider,
without loss of generality, the case where the first
quadrant contains the right defining point, pr, the
second quadrant contains the top defining point, pt,
the third quadrant contains the left defining point, pℓ,
and the fourth quadrant contains the bottom defining
point, pb. See Figure 8. (There is one other situation, in
which the top defining point lies in the first quadrant,
the right point in the fourth quadrant, the bottom point
in the third, and the left point in the second; this case
is handled in a fully symmetric manner.)

We claim that pr can be the right defining point of
at most one such rectangle. Indeed, if pr is the right
defining point of such a rectangle R then pb is the first
point we hit when we sweep downwards a horizontal line
segment connecting pr to the y-axis (assuming the sweep
reaches below the x-axis; otherwise pr cannot be the
right defining point of any rectangle of the current type).
Similarly, the point pℓ is the first point that we hit when
we sweep to the left a vertical line segment connecting
pb to the x-axis, pt is the first point we hit when we
sweep upwards a horizontal line segment connecting pℓ
to the y-axis, and finally pr is the first point we hit when
we sweep a vertical line segment connecting pt to the x-
axis. As noted, if any of the points we hit during these

Bv

q

prov

pt

pℓ

pb

Figure 8: A bounded maximal P -empty rectangle with
one defining point in each quadrant.

sweeps is not in the correct quadrant, or the last sweep
does not hit pr (e.g., because the point pt is lower than
pr), or one of the sweeps does not hit any point before
hitting ∂Bv, then pr is not the right defining point of
any rectangle of this type.

We compute these O(nv) bounded maximal P -
empty rectangles using four balanced search trees. We
maintain the points to the right of the y-axis in a
balanced search tree Σr, sorted by their y coordinates,
storing with each node the leftmost point in its subtree.
Similarly, we maintain the points below the x-axis in a
balanced search tree Σb sorted by their x coordinates,
storing with each node the topmost point in its subtree.
We maintain the points to the left of the y-axis and the
points above the x-axis in symmetric search trees Σℓ

and Σt, respectively. We can find each rectangle in this
family by four queries, starting with each point pr in
the first quadrant, first in Σb to identify pb, then in Σℓ

to find pℓ, in Σt to find pt, and finally in Σr to ensure
that we get back to pr.

Summing over all secondary nodes v, we have
O(n log2 n) such rectangles, which we can construct in
O(n log3 n) overall time. We add these rectangles to the
global segment tree S, without changing the asymptotic
bounds on its performance parameters.

4.2 Two defining points in the first and third
quadrants. The hardest case is where, say, each of
the first and third quadrants contains two defining
points of R. (The case where each of the second
and fourth quadrants contains two defining points is
handled symmetrically.) The defining points in the first
(resp., third) quadrant are consecutive minimal (resp.,
maximal) points of the subset of Pv in that quadrant.
There are O(nv) such pairs.

A point p of the third quadrant is a maximal point
if there is no point in the third quadrant that is to the
right of p and higher than p. Denote the sequence of



maximal points of the third quadrant by E. A point p
of the first quadrant is a minimal point if there is no
point in the first quadrant that is to the left of p and
lower than p. Denote the sequence of minimal points of
the first quadrant by F . Both lists E and F are sorted
from left to right (or, equivalently, from top to bottom).

Consider a consecutive pair (a, b) in E (with a to
the left and above b). Let M1 be the unique maximal
P -empty rectangle whose right edge is anchored at the
y-axis, its left edge passes through a, its bottom edge
passes through b, and its top edge passes through some
point c (in the second quadrant); it is possible that c
does not exist, in which case some minor modifications
(actually, simplifications) need to be applied to the
forthcoming analysis, which we do not spell out.

Let M2 be the unique maximal empty rectangle
whose top edge is anchored at the x-axis, its left edge
passes through a, its bottom edge passes through b, and
its right edge passes through some point d (in the fourth
quadrant; again, we ignore the case where d does not
exist). See Figure 9. Our maximal empty rectangle
cannot extend higher than c, nor can it extend to the
right of d. Hence its two other defining points must be
a pair (w, z) of consecutive elements of F , both lying
to the left of d and below c. The minimal points which
satisfy these constraints form a contiguous subsequence
of F .

c

d

q

b

M
a

Figure 9: The structure of maximal empty rectangles
with two defining points in each of the first and third
quadrants.

That is, for each consecutive pair ρ = (a, b) of points
of E we have a contiguous “interval” Iρ ⊆ F , so that

any consecutive pair π = (w, z) of points in Iρ defines
with ρ a maximal empty rectangle which contains the
origin, and these are the only pairs which can define
with ρ such a rectangle. (Note that we can ignore the
“extreme” rectangles defined by a, b, c, and the highest
point of Iρ, or by a, b, d, and the lowest point of Iρ,
since these rectangles have three of their defining points
in a common halfplane defined by the x-axis or by the
y-axis, and have therefore already been treated.)

To answer queries with respect to these rectangles,
we process the data as follows. We compute the chain E
of maximal points in the third quadrant and the chain
F of minimal points in the first quadrant. This is done
in O(nv log nv) time by sorting the points by their y
coordinate, and traversing them in order. For example,
E can be constructed by scanning the points in the
third quadrant from right to left maintaining the highest
point seen so far; a point belongs to E if and only if
it is higher than the previous highest point. For each
pair ρ = (a, b) of consecutive points in E we compute
the corresponding delimiting points c (in the second
quadrant) and d (in the fourth quadrant). Formally,
c is the lowest point in the second quadrant which lies
to the right of a, and d is the leftmost point in the
fourth quadrant which lies above b. We then use c and
d to “carve out” the interval Iρ of F , consisting of those
points that lie below c and to the left of d. We can
find c by a binary search in the chain of y-minimal and
x-maximal points in the second quadrant, and find d
by a binary search in the chain of x-minimal and y-
maximal points in the fourth quadrant. These chains
can be computed in the same way as in the construction
of E and F . Once we have the chains we can find, for
each consecutive pair ρ = (a, b) in E, the corresponding
entities c, d, and Iρ, in O(log nv) time.

We next define a matrix A as follows. Each row of
A corresponds to a pair ρ of consecutive points in E and
each column of A corresponds to a pair π of consecutive
points in F . If at least one point of π is not in Iρ then
the value of Aρπ is undefined. Otherwise, it is equal
to the area of the (maximal empty) rectangle defined
by ρ and π. By the preceding analysis, the defined
entries in each row form a contiguous subsequence of
columns. It is easy to verify that if ρ2 follows (i.e.,
lies more to the right and below) ρ1 on E then the left
(resp., right) endpoint of Iρ2

cannot be to the right of
the left (resp., right) endpoint of Iρ1

; See Figure 10. It
follows that in each column of A the defined entries also
form a contiguous subsequence of rows. Therefore, A is
a partial matrix. Aggarwal and Suri [4] call this specific
form of a partial matrix a double staircase matrix.

The following simple lemma plays a crucial role in
our analysis.



Figure 10: The structure of the defined portion of A.

Lemma 4.1. [33] Let x1, x2, y1, y2 be four points in
the plane, so that x1 and x2 lie in the first quadrant,
y1 and y2 lie in the third quadrant, x1 lies northwest to
x2, and y1 lies northwest to y2. For any point w in the
third quadrant and any point z in the first quadrant, let
R(w, z) denote the rectangle having w and z as opposite
corners, and let A(w, z) denote the area of R(w, z).
Then we have

(4.1) A(y1, x1) +A(y2, x2) > A(y1, x2) +A(y2, x1).

Proof. The situation is depicted in Figure 11. In the
notation of the figure we have

A(y1, x1)+A(y2, x2) = A(y1, x2)+A(y2, x1)+A1+A2,

where A1 and A2 are the areas of the two shaded
rectangles. ✷

x1

x2

y1

y2

A1

A2

Figure 11: The inverse Monge property of maximal
rectangles.

Lemma 4.1 asserts that if Aρ1π1
, Aρ2π2

, Aρ1π2
, and

Aρ2π2
, for ρ1 < ρ2 and π1 < π2, are all defined then

Aρ1π1
+Aρ2π2

> Aρ1π2
+Aρ2π1

.

Hence A satisfies the inverse Monge property, with
respect to its defined entries, so it is an inverse Monge
partial matrix.

We construct the submatrix maximum data struc-
ture of Lemma 3.4 over A, which we use to find the
maximum in A within a range of consecutive pairs in E
and a range of consecutive pairs in F .

We separate the queries into two case, depending
on which quadrant q lies in.

(i) Answering a query in the first (or third)
quadrant. The query point q itself, if it lies in the
first quadrant, defines a contiguous subsequence Jq of
the sequence F of minimal points in the first quadrant,
namely, those that lie above q and to its right. Only
consecutive pairs with at least one point within this
subsequence can form the top and right defining points
of a maximal empty rectangle containing q of the type
considered here. So we compute Jq, in logarithmic
time, and compute the maximum in the submatrix of
A defined by the set of columns of pairs overlapping
Jq, using the submatrix maximum data structure, and
output the corresponding rectangle.

A query with a point in the third quadrant is
handled in a fully symmetric manner, using a symmetric
data structure in which the roles of E and F are
interchanged.

(ii) Answering a query in the second (or
fourth) quadrant Consider next the case where q is
in the second quadrant of Bv (the case where q is in
the fourth quadrant is handled in a symmetric manner).
Consider the prefix Fq of F consisting of points whose
y-coordinate is larger than that of q, and the prefix Eq

of E consisting of points whose x-coordinate is smaller
than that of q. The rectangles defined by pairs of
consecutive points in E and in F which contain q are
exactly those defined by pairs with at least one point in
Eq and at least one point in Fq. See Figure 12.

We find the maximum entry of A in the submatrix
defined by pairs of Eq and pairs of Fq, using the
submatrix maximum data structure.

Analysis: We next bound the storage, preprocess-
ing cost, and query time for the entire structure.

For a secondary node v in T , the submatrix maxi-
mum structure requires O(nvα(nv) log

2 nv) time to con-
struct and O(nvα(nv) log nv) space. Summing over all
secondary nodes in T , we obtain that the size of the en-
tire range tree (including the submatrix maximum data
structure at each node) is O(nα(n) log3 n), and it can
be constructed in O(nα(n) log4 n) time.

A query q takes O(log2 nv) time in each secondary
node v in q’s search set. (This can be reduced to
O(log nv) in case q is in the first or third quadrant of
the subproblem defined by v, since in this case we can
use the slab maximum data structure of Lemma 3.6).
Summing over all secondary nodes v in the search set
of q, yields an overall O(log4 n) query time in the range
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Figure 12: Querying with a point in the second quad-
rant. The highlighted points form the prefixes Eq and
Fq, plus one extra point in each chain.

tree.
We recall that the entire presentation caters to max-

imal P -empty rectangles having two defining points in
the first quadrant of Bv and two in the third quadrant.
To handle rectangles having two defining points in each
of the second and fourth quadrants, we prepare a sec-
ond, symmetric version of the structure in which the
roles of quadrants are appropriately interchanged, and
query both structures with q.

In summary, we obtain the following main result of
this section.

Theorem 4.1. The data structure described above re-
quires O(nα(n) log3 n) storage, and can be constructed
in O(nα(n) log4 n) time. Using the structure, one can
find the largest-area P -empty rectangle contained in B
and containing a query point q in O(log4 n) time.

Proof. Our data structure contains a segment tree S
storing all maximal empty rectangles except those de-
fined in Section 4.2. This segment tree takes O(n log n)
space and is constructed in O(n log4 n) time. A query
in S takes O(log2 n) time. The second component of
our data structure is the range tree T with a sub-
matrix maximum data structure in each secondary
node. As discussed above, T takes O(nα(n) log3 n)
space, O(nα(n) log4 n) preprocessing time, and answers
queries in O(log4 n) time. These bounds dominate the
performance of the entire data structure. ✷

5 Data structure for dynamic shortest path
queries with negative edge weights in planar
graphs.

We next present the second application of the data
structure of Section 3. Let G = (V,E) be a weighted
directed planar graph, where the weights of the edges
of G are arbitrary real numbers, possibly negative. In
this section we construct a data structure that allows
to update the weight of an edge, and to query for the
distance between two arbitrary nodes.

We assume that G is simple, strongly connected,
and that the degree of every node of G is bounded by
a constant. We also assume that G is embedded in the
plane (a plane graph). All these assumptions can be
made without loss of generality; in particular, a plane
embedding of G can be found in linear time (see, e.g.,
[25]). In addition, we assume that there are no cycles
whose total weight is negative, if such a cycle is created
due to a weight update, then our data structure can
detect it. We denote the number of nodes by n. Since
G is planar and simple, we have |E| = O(n).

By a piece of G we refer to a subgraph of G. An r-
division is a division of G into O(n/r) connected pieces
such that each edge of G belongs to exactly one piece,
and each piece contains O(r) nodes. Furthermore, only
O(

√
r) of the nodes of a piece are shared with other

pieces. We call a node which lies in more than one
piece a border node. Note that since the pieces are edge
disjoint and each node has a constant degree it follows
that each border node is contained in a constant number
of pieces.

We can construct an r-division of an n-node planar
graph in O(n log n) time [22]. We assume that each
piece “inherits” its embedding from G. We define a
hole of a piece to be a face of the piece that is not a
face of G. We are interested in an r-division in which
each piece has only a constant number of holes, and
such an r-division can be constructed within the same
O(n log n) time bound [31]. We denote by dP (u, v) the
distance from a node u to a node v within the piece P .

Our data structure is based on the data structure
of Klein [30] which only supports non-negative edge
weights. We overcome this restriction by using reduced
costs [27] which transform the problem into one with
non-negative weights. Klein’s data structure uses a
data structure of of Fakcharoenphol and Rao [20] that
implements Dijkstra’s algorithm efficiently. When us-
ing reduced costs, certain range minimum data struc-
tures used by Fakcharoenphol and Rao must be re-
constructed after each distance query or weight up-
date. We replace the range minimum data structures
used by Fakcharoenphol and Rao with our row-interval
minimum data structure from Lemma 3.1 which has a



faster construction time. We note that this idea, of
using our new row-interval minimum data structure in
Fakcharoenphol and Rao’s fast implementation of Dijk-
stra’s algorithm, has been recently used in the context
of computing a maximum flow in planar graphs [10].
The application to data structures for reporting short-
est paths is new.

5.1 Klein’s dynamic algorithm. In this section we
describe the data structure of Klein [30] which supports
distance queries between pairs of nodes as well as
updates of edge weights. The structure allows only non-
negative edge weights and each query and update takes
O(n2/3 log5/3 n) time. Constructing the data structure
takes O(n log n) time and the space required is O(n).

The structure uses the dense distance graph of G,
which is defined with respect to an r-division of G as
follows. The nodes of the graph are the border nodes of
the r-division. If u and v are border nodes of a piece P
then the dense distance graph contains an edge (u, v) of
weight dP (u, v). It follows that the dense distance graph
is the union of cliques, where each clique contains the
border nodes of a single piece. The distances between
all pairs of border nodes in a piece P can be computed
in O(r log r) time using a multiple source shortest paths
algorithm (the main result in [30]). The dense distance
graph can therefore be constructed in O(n log n) time.

The algorithm for answering a distance query from
a node s in a piece P to a node t in a piece P ′ consists
of three steps:

1. In the first step we find the distance inside P from s
to every border node of P , in O(r log r) time using
Dijkstra’s algorithm.6 If P = P ′, that is, s and t
are in the same piece, then this step also computes
dP (s, t) (which of course does not have to be equal
to the shortest distance between s and t).

2. In the second step we run an implementation of
Dijkstra’s algorithm due to Fakcharoenphol and
Rao [20] on the dense distance graph, initializ-
ing the distance labels of the border nodes of P
with their distance dP (s, ·) from s computed in the
first step, and initializing the labels for all other
nodes to ∞. Fakcharoenphol and Rao’s implemen-
tation of Dijkstra’s algorithm runs on the dense
distance graph of G in O((n/

√
r) log2 r) time and

O(n) space. We describe the interface of this im-
plementation in Section 5.2.

6Klein [30] uses a multiple source shortest path data structure

for this purpose, and finds the distances in O(
√
r log r) time, but

this does not affect the overall asymptotic cost of the algorithm.

3. In the third step, we compute the distance from
the border nodes of P ′ to t inside P ′, where the
initial distance labels of the border nodes of P ′ are
from the previous step. This also takes O(r log r)
time using Dijkstra’s algorithm inside P ′. Upon
termination of the third step we have the weight ℓ
of the shortest path from s to t containing a border
node. If s and t are in different pieces the distance
between them is ℓ, and if they are in the same piece
then the distance is min{dP (s, t), ℓ}.

To update the weight of an edge e in a piece P ,
we reconstruct the part of the dense distance graph
associated with P in O(r log r) time.

To conclude, distance queries to Klein’s data struc-
ture take O(r log r + (n/

√
r) log2 r) time, and the time

for a weight update of an edge is O(r log r). By setting

r = n2/3 log2/3 n, we get that the time for each update
and query is O(n2/3 log5/3 n).

5.2 Fast Dijkstra on the dense distance graph.
In this section we describe the interface of Fakcharoen-
phol and Rao’s fast implementation of Dijkstra’s algo-
rithm [20, Sections 3.2.2 and 4].

Recall that the dense distance graph consists of a
union of cliques, where each clique contains the border
nodes of a single piece in the r-division. Also recall
that the border nodes in each piece in the r-division are
incident to a constant number of holes (faces) of that
piece. We represent the dense distance graph as a set of
matrices, where for each piece P and each pair of holes
h and h′ (possibly h = h′) of P there is a matrix MP,h,h′

whose rows correspond to the border nodes of the hole
h and whose columns correspond to the border nodes of
the hole h′, both listed in clockwise order. The matrix

element MP,h,h′

ij is the distance in P from the ith node

of h to the jth node of h′.
Fakcharoenphol and Rao’s algorithm takes as input

the dense distance graph H, represented by the set of
matrices described above, and initial distance labels of
the nodes of H. It also requires as input certain range-
minimum data structures that we describe below.

The algorithm implements Dijkstra’s algorithm on
H starting with the given initial distance labels and
takes O(nH log2 nH) time, where nH is the number of
nodes of H. Note that the time dependency is on the
number of nodes in H, which is n√

r
, and not on the

number of edges of H, which is O(n).
The fast running time of Fakcharoenphol and Rao’s

algorithm is achieved by exploiting the Monge prop-
erty.7 For every piece P and every hole h of P , the

7Some of the matrices that we describe next are Monge
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Figure 13: Illustration of the decomposotion of MP,h,h

into Monge Submatrices.

matrix MP,h,h is not Monge. Fakcharoenphol and Rao
split MP,h,h into Monge submatrices as follows. Split
the border nodes of h into two consecutive subsets A
and B of equal size. Since A and B are disjoint and
lie on the boundary of the same face of P , the subma-
trix of MP,h,h whose rows correspond to the nodes of
A and whose columns correspond to the nodes of B is
a Monge matrix. Similarly, the submatrix of MP,h,h

whose rows correspond to the nodes of B and whose
columns correspond to the nodes of A is a Monge ma-
trix. We recursively split A and B in the same way,
until we get to sets of size 1. See Fig. 13 for an illus-
tration. Together, all the submatrices defined by this
recursive partitioning of the border nodes of h are dis-
joint and cover MP,h,h. Note that each border node is
represented in O(log r) submatrices.

For two holes h 6= h′ the matrix MP,h,h′

is not
Monge either. However, since in this case the rows and
columns of MP,h,h′

correspond to disjoint sets of nodes
on two different holes, MP,h,h′

can be replaced, when
constructing the dense distance graph, by two Monge
matrices without affecting the outcome of shortest paths
computations. See [36, Section 4.4] for details. For
notational convenience we regard these two Monge
matrices as the two submatrices of MP,h,h′

.
We can finally describe the range-minimum data

structures that are required as input by Fakcharoenphol
and Rao’s implementation of Dijkstra’s algorithm. The
algorithm requires,8 for every piece P and every pair
of holes h and h′ (possibly h = h′), data structures

matrices while others are inverse Monge matrices. To avoid clutter
we do not make the distinction and refer to both types as Monge
matrices.

8The assumption that these interval trees are required as input
is mentioned in [20] in a footnote on page 884.

capable of answering row range-minimum queries of the
form mins≤ℓ≤tMk,ℓ in O(log r) time for every possible
interval [s, t] of every row k of every submatrix M of
MP,h,h′

. In their paper this is achieved using a separate
interval tree for every row of every submatrix. As
Fakcharoenphol and Rao note, the time to compute
these interval trees for each matrixM is linear in the size
of M . Hence the total time to construct all necessary
interval trees is Θ(n).

5.3 Negative edge weights. In this section we ex-
tend Klein’s data structure as described in Section 5.1
and allow negative edge weights. We deal with neg-
ative edge weights using reduced costs [27]. Reduced
costs are defined with respect to a price function as-
signing to every node v a real value (price) φ(v). The
reduced cost of an edge (u, v) with weight w(u, v) is
w(u, v)+φ(u)−φ(v). If the distance between two nodes
u and v with respect to the original edge weights is
ℓ(u, v), then the distance between the nodes with re-
spect to the reduced costs is ℓ(u, v) + φ(u)− φ(v).

A price function is called feasible if the reduced cost
of every edge is non-negative. We can get a feasible price
function φ by choosing an arbitrary node v, and setting
φ(u) to be the distance from v to u with respect to the
original edge weights.

Instead of computing distances in a graph with neg-
ative edge weights, it is possible to compute distances
with respect to a feasible price function using Dijk-
stra’s algorithm. If we want to initialize the distance
label of a node v with respect to original weights to
some value δ(v) then with reduced costs we initialize it
to δ(v) − φ(v). After Dijkstra’s algorithm finishes the
(true) distance to a node u is δ(u) + φ(u).

In our setting we use two types of price functions.
First, for every piece P we have a price function φP that
is used to compute distances inside P (in the first and
the third steps of the query). Second, we have a price
function φdd for the dense distance graph. Note that the
prices of the same node in each of the price functions
may be different. By using multiple price functions we
can limit an update to a single piece and perform it
efficiently.

Initially, at construction time, we choose an arbi-
trary node v, and compute the distances from v to all
other nodes. We use these distances as the price func-
tions φP for every piece P and as φdd. We can find
these distances in O(n log2 n/ log log n) time [36]. This
dominates the construction time of the data structure.

We change the query algorithm to use reduced costs
rather than original weights. In the first step of the
query, we run Dijkstra’s algorithm inside the piece P
containing s and find the distances from s to all nodes



of P as described before. We run Dijkstra’s algorithm
with the label of s initialized to −φP (s) and with the
reduced costs with respect to φP . This yields distance
labels δ(v) for all v ∈ P . We store δ(v) + φP (v) in
dP (s, v), for every v ∈ P .

In the second step we compute the distance from the
the border nodes of P using reduced costs with respect
to φdd(v) by Fakcharoenphol and Rao’s implementation
of Dijkstra’s algorithm. We initialize the distance label
of each such border node v of P to dP (s, v) − φdd(v).
When this run of Dijkstra completes we recover, for each
border node u of the piece P ′ containing t, the distance
to u by adding φdd(u) to its computed distance label.
We similarly run the third step using reduced costs with
respect to φP ′ .

There are two obstacles in calling Fakcharoenphol
and Rao’s implementation of Dijkstra’s algorithm on
the dense distance graph using reduced costs in the
second step. The first obstacle is that we cannot afford
to explicitly compute the reduced costs of the edges of
the dense distance graph since that would take O(n)
time. Instead, whenever the implementation requires
the reduced cost of an edge (u, v) in the dense distance
graph, we compute it on the fly by adding φdd(u) to
dP (u, v) and subtracting φdd(v).

The second obstacle is that we need to recom-
pute the range minimum data structures required by
Fakcharoenphol and Rao’s implementation of Dijkstra’s
algorithm. These data structures now have to answer
range minimum queries with respect to reduced costs
rather than original weights, and therefore we have to
update them when the potential function φdd changes.
As we noted in Section 5.2, computing all necessary in-
terval trees used by Fakcharoenphol and Rao would take
Θ(n) time, which we cannot afford. Instead, we replace
the per-row range minimum structures that Fakcharoen-
phol and Rao use with a single row-interval minimum
data structure of Lemma 3.1 for each Monge submatrix
M . The overall construction time of these data struc-
tures is faster, so we can efficiently support the change
in the price function.9

We bound the time it takes to compute all these
data structures by considering the Monge submatrices
of each matrix MP,h,h′

separately. Computing the row-
interval minimum data structure of Lemma 3.1 for a
matrix with x rows and columns takes O(x log x) time.
For a fixed P and h, the matrix MP,h,h has O(

√
r) rows

and columns, so the time required for constructing the
data structure all O(log r) Monge submatrices ofMP,h,h

9A Monge matrix remains Monge when we add a constant to a
row or a column. Therefore each submatrix of M remains Monge
when we think of the entry corresponding to border nodes u and
v as containing dP (u, v) + φ(u)− φ(v) rather than dP (u, v).

is O(
√
r log2 r). Similarly for fixed P and h 6= h′, the

time required for the two Monge submatrices of MP,h,h′

is O(
√
r log r). Since the number of holes in each piece

is constant, the total time for all matrices of a piece P
is O(

√
r log2 r). Summing over all n

r pieces we get that
the total construction time for all of the row-interval
data structures is O( n√

r
log2 r) which is the same as

the time required by a single call to Fakcharoenphol
and Rao’s implementation of Dijkstra’s algorithm. Note
that the total space required for our data structure
remains linear.

When we initialize the data structure and construct
the dense distance graph, we compute these row-interval
minimum data structures with respect to the initial
potential function defined above.

Now consider an update of the weight of an edge
e = (u, v) in a piece P to a new value w. Before
updating the weight of e, we compute the distance from
v to u, using the distance query algorithm. If this
distance is less than −w, then changing the weight of e
to w will create a negative cycle. Otherwise observe that
the current distances from v can be used as a feasible
price functions both before and after the weight of e
is updated, since a shortest path from v to any node
cannot use e. We compute the distances from v in P
as in the first step of the query algorithm and use these
distances as the new price function φP for the piece
P . Next, we compute distances from v to every border
node as in the second step of the query algorithm, and
use these distances as the new price function φdd for
the dense distance graph. The time it takes to find the
distances from v to all nodes in P and to all border
nodes is O(r log r+(n/

√
r) log2 r), since this is the time

for the distance query. The change in the weight of
e may change the distances inside P . We therefore
recompute the distances between all border nodes of
P inside P in O(r log r) time and update the distance
matrices of the piece P , as in the data structure for non-
negative edge-weights described in Section 5.1 (here as
well we use the distances from v in P as a feasible price
function since Klein’s multiple source shortest paths
algorithms requires non-negative edge weights). Since
we have updated the price function of the dense distance
graph we must recompute all row-interval minimum
data structures. This takes O((n/

√
r) log2 r) time as

argued above.
In conclusion, we obtained the following theorem:

Theorem 5.1. There is a data structure that, given
a weighted directed planar graph G with n vertices,
supports distance queries between pair of nodes and
updates to edge weights in O(n2/3 log5/3 n) time per
operation. The data structure can be constructed in
O(n log2 n/ log log n) time and requires O(n) space.



Proof. The correctness of the data structure follows
from the description in this section by induction on
the number of operations. By the analysis above the
construction time is as claimed, and the running time
for a query or an update is O(r log r + (n/

√
r) log2 r).

Choosing r = n2/3 log2/3 n yeilds the claimed time
bounds. ✷
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