
Compressed Range Minimum Queries?

Seungbum Jo1, Shay Mozes2, and Oren Weimann3

1 University of Haifa
seungbum.jo@uni-siegen.de

2 Interdisciplinary Center Herzliya
smozes@idc.ac.il

3 University of Haifa
oren@cs.haifa.ac.il

Abstract. Given a string S of n integers in [0, σ), a range minimum
query RMQ(i, j) asks for the index of the smallest integer in S[i . . . j].
It is well known that the problem can be solved with a succinct data
structure of size 2n + o(n) and constant query-time. In this paper we
show how to preprocess S into a compressed representation that allows
fast range minimum queries. This allows for sublinear size data struc-
tures with logarithmic query time. The most natural approach is to use
string compression and construct a data structure for answering range
minimum queries directly on the compressed string. We investigate this
approach using grammar compression. We then consider an alternative
approach. Even if S is not compressible, its Cartesian tree necessar-
ily is. Therefore, instead of compressing S using string compression, we
compress the Cartesian tree of S using tree compression. We show that
this approach can be exponentially better than the former, and is never
worse by more than an O(σ) factor (i.e. for constant alphabets it is never
asymptotically worse).

1 Introduction

Given a string S of n integers in [0, σ), a range minimum query RMQ(i, j) returns
the index of the smallest integer in S[i . . . j]. A range minimum data structure
consists of a preprocessing algorithm and a query algorithm. The preprocessing
algorithm takes as input the string S, and constructs the data structure, whereas
the query algorithm takes as input the indices i, j and, by accessing the data
structure, returns RMQ(i, j). The range minimum problem is one of the most
fundamental problems in stringology, and as such has been extensively studied,
both in theory and in practice (see e.g. [11] and references therein).

Range minimum data structures fall into two categories. Systematic data
structures store the input string S, whereas non-systematic data structures do
not. A significant amount of attention has been devoted to devising RMQ data
structures that answer queries in constant time and require as little space as
possible. There are succinct systematic structures that answer queries in constant

? Supported in part by Israel Science Foundation grant 592/17

mailto:seungbum.jo@uni-siegen.de
mailto:smozes@idc.ac.il
mailto:oren@cs.haifa.ac.il

2 S. Jo, S. Mozes, and O. Weimann

time and require fewer than 2n bits in addition to the n log σ bits required to
represent S [11]. Similarly, there are succinct non-systematic structures that
answer queries in constant time, and require 2n+ o(n) bits [8, 11].

The Cartesian tree C of S is a rooted ordered binary tree with n nodes. It is
defined recursively. Let i be the index of the smallest element of S (if the smallest
element appears multiple times in S, let i be the first such appearance). The
Cartesian tree of S is composed of a root node whose left subtree is the Cartesian
tree of S[1, i − 1], and whose right subtree is the Cartesian tree of S[i + 1, n].
See Fig. 1. By definition, the character S[i] corresponds to the i’th node in an
inorder traversal of C (we will refer to this node as node i). Furthermore, for any
nodes i and j in C, their lowest common ancestor LCA(i, j) in C corresponds to
RMQ(i, j) in S. It follows that the Cartesian tree of S completely characterizes S
in terms of range minimum queries. Indeed, two strings return the same answers
for all possible range minimum queries if and only if their Cartesian trees are
identical. This well known property has been used by many RMQ data structures
including the succinct structures mentioned above. Since there are 22n−O(logn)

distinct rooted binary trees with n nodes, there is an information theoretic lower
bound of 2n − O(log n) bits for RMQ data structures. In this sense, the above
mentioned 2n+ o(n) bits data structures [8, 11] are nearly optimal.

1.1 Our results and techniques

In this work we present RMQ data structures whose size can be sublinear in the
size of the input string that answer queries in O(log n) time. This is achieved
by using compression techniques, and developing data structures that can an-
swer RMQ/LCA queries directly on the compressed objects. Since we aim for
sublinear size data structures, we focus on non-systematic data structures. We
consider two different approaches to achieve this goal. The first approach is to
use string compression to compress S, and devise an RMQ data structure on the
compressed representation. This approach has also been suggested in [1, Section
7.1] in the context of compressed suffix arrays. See also [8, Theorem 2], [11, The-
orem 4.1], and [3] for steps in this direction. The second approach is to use tree
compression to compress the Cartesian tree C, and devise an LCA data structure
on the compressed representation. To the best of our knowledge, this is the first
time such approach has been suggested. Note that the two approaches are not
equivalent. For example, consider a sorted sequence of an arbitrary subset of n
different integers from [1, 2n]. As a string this sorted sequence is not compress-
ible, but its Cartesian tree is an (unlabeled) path, which is highly compressible.
In a nutshell, we show that the tree compression approach can exponentially out-
perform the string compression approach. Furthermore, it is never worse than
the string compression approach by more than an O(σ) factor. We next elaborate
on these two approaches.

Using string compression. In Section 2.1, we show how to answer range
minimum queries on a grammar compression of the input string S. A grammar
compression is a context-free grammar that generates only S. The grammar is

Compressed Range Minimum Queries 3

represented as a straight line program (SLP) S. I.e., the right-hand side of each
rule in S either consists of the concatenations of two non-terminals or of a single
terminal symbol. The size |S| of the SLP S is defined as the number of rules
in S. Ideally, |S| � |S|. Computing the smallest possible SLP is NP-hard [7],
but there are many theoretically and practically efficient compression schemes
for constructing S [7, 12, 13, 15] that reasonably approximate the optimal SLP.
In particular, Rytter [14] showed an SLP S of depth log n (the depth of an SLP
is the depth of its parse tree) whose size is larger than the optimal SLP by at
most a multiplicative log n factor.

In [1], it was shown how to support range minimum queries on S with a data
structure of size O(|S|) in time proportional to the depth of the SLP S. Bille et
al. [6] designed a data structure of size O(|S|) that supports random-access to S
(i.e. retrieve the i’th symbol in S) in O(log n) time (i.e. regardless of the depth
of the SLP S). We show how to simply augment their data structure within the
same O(|S|) size bound to answer range minimum queries in O(log n) time (i.e.,
how to avoid the logarithmic overhead incurred by using the solution of [1] on
Rytter’s SLP).

Theorem 1. Given a string S of length n and an SLP-grammar compression
S of S, there is a data structure of size O(|S|) that answers range minimum
queries on S in O(log n) time.

Using tree compression. In Section 2.2, we give a data structure for answering
LCA queries on a compressed representation of the Cartesian tree C. By the
discussion above, this is equivalent to answering range minimum queries on S.
We use DAG compression of the top-tree of the Cartesian tree C of S. We now
explain these concepts.

A top-tree [2] of a tree T is a hierarchical decomposition of the edges of
T into clusters. Each cluster is a connected subgraph of T with the property
that any two crossing clusters (i.e., clusters whose intersection is nonempty and
neither cluster contains the other) share at most two vertices; the root of the
cluster (called the top boundary node) and a leaf of the cluster (called a bottom
boundary node). Such a decomposition can be described by a rooted ordered
binary tree T , called a top-tree, whose leaves correspond to clusters with indi-
vidual edges of T , and whose root corresponds to the entire tree T . The cluster
corresponding to a non-leaf node of T is obtained from the clusters of its two
children by either identifying their top boundary nodes (horizontal merge) or by
identifying the top boundary node of the left child with the bottom boundary
node of the right child (vertical merge). See Fig. 1.

A DAG compression [9] of a tree T is a representation of T by a DAG
whose nodes correspond to nodes of T . All nodes of T with the same subtree
are represented by the same node of the DAG. Thus, the DAG has two sinks,
corresponding to the two types of leaf nodes of T (a single edge cluster, either
left or right), and a single source, corresponding the root of T . If u is the parent
of ` and r in T , then the node in the DAG representing the subtree of T rooted
at u has edges leading to the two nodes of the DAG representing the subtree of

4 S. Jo, S. Mozes, and O. Weimann

T rooted at ` and the subtree of T rooted at r. Thus, repeating rooted subtrees
in T are represented only once in the DAG. See Fig. 1.

A top-tree compression [5] of a tree T is a DAG compression of T ’s top-tree T .
Bille et al. [5] showed how to construct a data structure whose size is linear in the
size of the DAG of T and supports navigational queries on T in time linear in the
depth of T . In particular, given the preorder numbers of two vertices u, v in T ,
their data structure can return the preorder number of LCA(u, v) in T . We show
that their data structure can be easily adjusted to work with inorder numbers
instead of preorder, so that, given the inorder numbers i, j of two vertices in T
one can return the inorder number of LCA(i, j) in T . This is precisely RMQ(i, j)
when T is taken to be the Cartesian tree C of S.

Theorem 2. Given a string S of length n and a top-tree compression T of the
Cartesian tree C, there is a data structure of size O(|T |) that answers range
minimum queries on S in O(depth(T)) time.

By combining Theorem 2 with the greedy construction of T given in [5] (in
which depth(T) = O(log n)), we can obtain an O(|T |) space data structure that
answers RMQ in O(log n) time.

We already mentioned that, on some RMQ instances, top-tree compression
can be much better than any string compression technique. As an example,
consider the string S = 123 · · ·n. Its Cartesian tree is a single (rightmost, and
unlabeled) path, which compresses using top-tree compression into size |T | =
O(log n). On the other hand, since σ = n, S is uncompressible with an SLP. By
Theorem 2, this shows that the tree compression approach to the RMQ problem
can be exponentially better than the string compression approach. In fact, for
any string over an alphabet of size σ = Ω(n), any SLP must have |S| = Ω(n)
while for top-trees |T | = O(n/ log n) [5]. In Section 3 we show that, for small
alphabets, T cannot be much larger nor much deeper than S for any SLP S.

Theorem 3. Given a string S of length n over an alphabet of size σ, for any
SLP-grammar compression S of S there is a top-tree compression T of the Carte-
sian tree C with size O(|S| · σ) and depth O(depth(S) · σ).

Plugging Rytter’s [14] SLP into Theorem 3 shows that, at least for small
alphabets σ, the top-tree compression approach to RMQ is never far worse than
the SLP approach.

Corollary 1. Given a string S of length n over an alphabet of size σ, let S
denote the smallest possible SLP-grammar compression of S. There is a top-tree
compression T of the Cartesian tree C of S with size at most |T | = min(O(n/ log n),
O(|S| · σ)), and there is a data structure of size O(|T |) that answers range min-
imum queries on S in O(log n · log σ) time.

Compressed Range Minimum Queries 5

2 RMQ on Compressed Representations

2.1 Compressing the string

Given an SLP compression S of S, Bille et al. [6] presented a data structure of
size O(|S|) that can report any S[i] in O(log n) time. The proof of Theorem 1
is a rather straightforward extension of this data structure to support range
minimum queries.

The key technique used in [6] is an efficient representation of the heavy path
decomposition of the SLP’s parse tree. For each node v in the parse tree, we
select the child of v that derives the longer string to be a heavy node. The other
child is light. Heavy edges are edges going into a heavy node and light edges are
edges going into a light node. The heavy edges decompose the parse tree into
heavy paths. The number of light edges on any path from a node v to a leaf is
O(log |v|) where |v| denotes the length of the string derived from v. A traversal
of the parse tree from its root to the i’th leaf S[i] enters and exists at most log n
heavy paths. Bille et al. show how to simulate this traversal in O(log n) time on
a representation of the heavy path decomposition that uses only O(|S|) space
(note that we cannot afford to store the entire parse tree as its size is n which
can be exponentially larger than |S|). We do not go into the internals of their
representation but it is important to note that for each heavy path P encountered
during the traversal their structure computes the total size (number of leaves)
of all subtrees hanging with light edges from the left (respectively right) of P
between the entry point and exit point in P . This is achieved with a binary
search tree (called an interval biased search tree) that ensures that collecting
these values (as well as finding the entry and exit points) on all encountered
heavy paths telescopes to a total of O(log n) time (rather than O(log2 n)).

In order to extend their structure to support range minimum queries we
need only the following two changes: (1) in the interval biased search tree, apart
from storing for each node the number of leaves in its subtree, we also store the
location of the minimum value leaf. This means that apart from accumulating
subtree sizes we can also compare their minimums. (2) for each heavy path in
their representation we add a standard linear-space constant query-time RMQ
data structure [4] over the left (respectively right) hanging subtree minimums.
This RMQ structure will be queried only on the unique heavy path containing
the lowest common ancestor of the i’th and j’th leaves in the parse tree.

2.2 Compressing the Cartesian tree

We next prove Theorem 2, i.e. how to support range minimum queries on S
using a compressed representation of the Cartesian tree [16]. Recall that the
Cartesian tree C of S is defined as follows: If the smallest character in S is S[i]
(in case of a tie we choose a leftmost position) then the root of C corresponds
to S[i], its left child is the Cartesian tree of S[1, i− 1] and its right child is the
Cartesian tree of S[i + 1, n]. By definition, the i’th character in S corresponds
to the node in C with inorder number i (we will refer to this node as node i).

6 S. Jo, S. Mozes, and O. Weimann

0

0

1
3

2

3
2

1

1

(a) Cartesian tree

3

1

2
2

1

(b) Top-tree

v

er

v

h

(c) DAG

v

v v

h

v

vh

h
v

er

er er er er er

el

el el er el el el

v

v

v

v

v

h

h

er

h

Fig. 1. The string S = “23110122102313” and its corresponding (a) Cartesian tree ,
(b) top-tree, and (c) DAG representation of the top-tree. In (a), each node is labeled
by its corresponding character in S (these labels are for illustration only, the top-tree
construction treats the Cartesian tree as an unlabeled tree). In (b) and (c), each node
is labeled by el or er (atomic edge clusters), v (a vertical merge), or h (a horizontal
merge). Four clusters are marked with matching colors in (a) and in (b).

Observe that for any nodes i and j in C, the lowest common ancestor LCA(i, j)
of these nodes in C corresponds to RMQ(i, j) in S. This implies that without
storing S explicitly, one can answer range minimum queries on S by answering
LCA queries on C. In this section, we show how to support LCA queries on C
on a top-tree compression [5] T of C. The query time is O(depth(T)) which can
be made O(log n) using the (greedy) construction of Bille et al. [5] that gives
depth(T) = O(log n). We first briefly restate the construction of Bille et al., and
then extend it to support LCA queries.

The top-tree of a tree T (in our case T will be the Cartesian tree C) is a
hierarchical decomposition of T into clusters. Let v be a node in T with children
v1, v2.4 Define T (v) to be the subtree of T rooted at v. Define F (v) to be the
forest T (v) without v. A cluster with top boundary node v can be either (1) T (v),
(2) {v} ∪ T (v1), or (3) {v} ∪ T (v2). For any node u 6= v in a cluster with top
boundary node v, deleting from the cluster all descendants of u (not including
u itself) results in a cluster with top boundary node v and bottom boundary node
u. The top-tree is a binary tree defined as follows (see Fig. 1):

– The root of the top-tree is the cluster T itself.
– The leaves of the top-tree are (atomic) clusters corresponding to the edges

of T . An edge (v, parent(v)) of T is a cluster where parent(v) is the top
boundary node. If v is a leaf then there is no bottom boundary node, other-
wise v is a bottom boundary node. If v is the right child of parent(v) then
we label the (v, parent(v)) cluster as er and otherwise as e`.

4 Bille et al. considered trees with arbitrary degree, but since our tree T is a Cartesian
tree we can focus on binary trees.

Compressed Range Minimum Queries 7

– Each internal node of the top-tree is a merged cluster of its two children. Two
edge disjoint clusters A and B whose nodes overlap on a single boundary
node can be merged if their union A ∪ B is also a cluster (i.e. contains at
most two boundary nodes). If A and B share their top boundary node then
the merge is called horizontal. If the top boundary node of A is the bottom
boundary node of B then the merge is called vertical and in the top-tree A
is the left child and B is the right child.

Bille et al. [5] proposed a greedy algorithm for constructing the top-tree:
Start with n identical clusters, one for each edge of T , and at each step merge
all possible clusters. More precisely, at each step, first do all possible horizontal
merges and then do all possible vertical merges. After constructing the top-
tree, the actual compression T is obtained by representing the top-tree as a
directed acyclic graph (DAG) using the algorithm of [9]. Namely, all nodes in
the top-tree that have a child with subtree X will point to the same subtree
X (see Fig. 1). Bille et al. [5] showed that using the above greedy algorithm,
one can construct T of size |T | that can be as small as log n (when the input
tree T is highly repetitive) and in the worst-case is at most O(n/ log0.19

σ n).
Dudek and Gawrychowski [10] have recently improved the worst-case bound to
O(n/ logσ n) by merging in the i’th step only clusters whose size is at most αi

for some constant α. Using either one of these merging algorithms to obtain the
top-tree and its DAG representation T , a data structure of size O(|T |) can then
be constructed to support various queries on T . In particular, given nodes i and
j in T (specified by their position in a preorder traversal of T) Bille et al. showed
how to find the (preorder number of) node LCA(i, j) in O(log n) time. Therefore,
the only change required in order to adapt their data structure to our needs is
the representation of nodes by their inorder rather than preorder numbers.

The local preorder number uC of a node u in T and a cluster C in T is
the preorder number of u in a preorder traversal of the cluster C. To find the
preorder number of LCA(i, j) in O(log n) time, Bille et al. showed it suffices if
for any node u and any cluster C we can compute uC in constant time from uA
or uB (the local preorder numbers of u in the clusters A and B whose merge is
the cluster C) and vice versa. In Lemma 6 of [5] they show that indeed they can
compute this in constant time. The following lemma is a modification of that
lemma to work when uA, uB and uC are local inorder numbers.

Lemma 1 (Modified Lemma 6 of [5]). Let C be an internal node in T
corresponding to the cluster obtained by merging clusters A and B. For any
node u in C, given uC we can tell in constant time if u is in A (and obtain uA)
in B (and obtain uB) or in both. Similarly, if u is in A or in B we can obtain
uC in constant time from uA or uB.

Proof. We show how to obtain uA or uB when uC is given. Obtaining uC from
uA or uB is done similarly. For each node C, we store a following information:

– `(A) (r(A)): the first (last) node visited in an inorder traversal of C that is
also a node in A.

8 S. Jo, S. Mozes, and O. Weimann

– `(B) (r(B)): the first (last) node visited in an inorder traversal of C that is
also a node in B.

– the number of nodes in A and in B.
– u′C , where u′ is the common boundary node of A and B.

Consider the case where C is obtained by merging A and B vertically (when
the bottom boundary node of A is the top boundary node of B), and where B
includes vertices that are in the left subtree of this boundary node, the other
case is handled similarly:

– if uC < `(B) then u is a node in A and uA = uC .
– if `(B) ≤ uC ≤ r(B) then u is a node in B and uB = uC − `(B) + 1. For the

special case when uC = u′C then u is also the bottom boundary node in A
and uA = `(B).

– if uc > r(B) then u is a node in A visited after visiting all the nodes in B
then uA = uC − |B|+ 1.

When C is obtained by merging A and B horizontally (when A and B share
their top boundary node and A is to the left of B):

– if uC < r(A) then u is a node in A and uA = uC .
– if uC ≥ r(A) then u is a node in B and uB = uC − |A|+ 1. For the special

case when uC = u′C then u is also the top boundary node in A and uA = |A|.

3 Compressing the String vs. the Cartesian Tree

In this section we compare the sizes of the SLP compression S and the top-tree
compression T . We show that given any SLP S of height h we can construct a
top-tree compression T based on S (i.e. non-greedily) such that |T | = O(|S| · σ)
and the height of T is O(h log σ). Using T , we can then answer range minimum
queries on S in time O(h log σ) as done in Section 2.2. Furthermore, we can
construct T using Rytter’s SLP [14] as S. Then, the height of S is h = log n
and the size of S is larger than the optimal SLP by at most a multiplicative
log n factor. Combined with Rytter’s SLP, and since every unlabeled tree has
a top-tree compression T of size O(n/ log n) and height log n [5], we obtain
Theorem 3.

Consider a rule C → AB in the SLP. We will construct a top-tree (a hierarchy
of clusters) of C (i.e. of the Cartesian tree of the string derived by the SLP
variable C) assuming we have the top-trees of A and of B. We show that the
top-tree of C contains only O(σ) new clusters that are not clusters in the top-
trees of A and of B, and that the height of the top-tree is only O(log σ) larger
than the height of the top tree of A or the top tree of B. To achieve this, for any
variable A of the SLP, we will make sure that certain clusters (associated with
its rightmost and leftmost paths) must be present in its top-tree. See Fig. 2.

We first describe how the Cartesian tree CT (C) of the string derived by
variable C can be described in terms of the Cartesian trees CT (A) and CT (B).
We label each node in a Cartesian tree with its corresponding character in the

Compressed Range Minimum Queries 9

A`
1

A`
�

0

1

�

7

A`
7

0

A`
2

2

0

1

Ar
0

3

3

3

7

7

8

8

Ar
1

Ar
3

Ar
7

Ar
8

�

3

8

4

9

B`
4

B`
8

B`
9

B`
�

0

CT (A)

CT (B)

3

3

4 Br
4

Br
3

A`
1

A`
�

1

�

7

A`
7

0

A`
2

2

0

1

Ar
0

3

3

3

Ar
1

7

7

8

8

Ar
8

8

9 B`
8

B`
9

3

Ar
3

4

B`
4

Ar
7

CT (C)

Cr
3

3

3

4 Br
4

Br
3

v

CAB

Fig. 2. The Cartesian tree of SLP variables A,B,C where C → AB. The single ad-
ditional clusters of Cr

3 (in green) is formed by merging existing clusters from A (in
blue) and from B (in red). First, cluster CAB is formed by alternating subpaths of the
leftmost path in CT (B) and the rightmost path in CT (A) (here, x = 3, y = 7, and
z = 8). Then, CAB is merged with Br

3 , v, and Ar
3. In this example, As = {Ar

i | i > 3}
and Bp = {B`

i | i > 3}.

10 S. Jo, S. Mozes, and O. Weimann

string. These labels are only used for the sake of this description, the actual
Cartesian tree is an unlabeled tree. By definition of the Cartesian tree, the
labels are monotonically non-decreasing as we traverse any root-to-leaf path.
Let `(A) (respectively r(A)) denote the path in CT (A) starting from the root
and following left (respectively right) edges. Since we break ties by taking the
leftmost occurrence of the same character we have that the path `(A) is strictly
increasing (the path r(A) is just non-decreasing).

Let x be the label of the root of CT (B). To simplify the presentation we
assume that the label of the root of CT (A) is smaller or equal to x (the other
case is handled similarly). Split CT (A) by deleting the edge connecting the last
occurrence of x on r(A) with its right child (again, for simplicity of presentation
we assume without loss of generality that this node exists). The resulting two
subtrees are the Cartesian trees CT (Ap) and CT (As) of a prefix Ap and a
suffix of As of A whose concatenation is A. Split CT (B) by deleting the edge
connecting the root to its left child. The resulting two subtrees are the Cartesian
trees CT (Bp) and CT (Bs) of a prefix and a suffix of B. The Cartesian tree
CT (C) of the concatenation C = AB is obtained as follows. Compute recursively
the Cartesian tree CT (AsBp) of the concatenation of As and Bp, and attach
CT (AsBp) as the left child of the rightmost leaf in CT (Ap). Then attach CT (Bs)
as the right child of the rightmost leaf in CT (Ap). See Fig. 2.

We move on to describing the clusters of the top-tree. For a node with label
i appearing in `(A) we define A`i to be the subtree rooted at the node’s right
child. We do this for all nodes except for the first node of `(A) (i.e. the root of
CT (A)). Next consider the path r(A). For every label i there can be multiple
vertices with label i that are consecutive on r(A). We define Ari to be the union
of all vertices of r(A) that have label i together with the subtrees rooted at
their left children. Again, we treat the first node of r(A) (i.e. the root of CT (A))
differently: if its label is i then Ari does not include this vertex (the root) nor its
left subtree. See Fig. 2 (left).

We define the top-tree recursively by describing how to obtain the clusters
for the top-tree of the Cartesian tree CT (C) from the top-trees of CT (A) and
CT (B). For each variable (say A) of the SLP S of S, we require that in the
top-tree of S there is a cluster for every A`i and every Ari . We will show how to
construct all the C`i and Cri clusters of C by merging clusters of A and B while
introducing only O(σ) new clusters, and with O(log σ) increase in height. First
observe that for every i we have that C`i = A`i so we already have these clusters.
Next consider the clusters Cri . Let x denote the label of the root of CT (B). It
is easy to see that Cri = Ari for every i < x and that Cri = Bri for every i > x.
Therefore, the only new cluster we need to create is Crx.

The cluster Crx is composed of the following components: First, it contains
the cluster Arx. Then, the root of CT (B) (denoted v, and whose label is x) is
connected as the right child of the bottom boundary node of Arx. The right child
of v in Crx is the top boundary node of Brx and all of Brx is contained in Crx.
The left child of v in Crx is the top boundary node of a single new cluster CAB
consisting of O(σ) existing clusters.

Compressed Range Minimum Queries 11

The cluster CAB consist of all clusters B`i and the clusters Ari for i > x. More
precisely, let y denote the smallest number larger than x such that Ary appears
in r(A). Starting from top to bottom, CAB first contains a leftmost path that
is a prefix of `(B). More precisely, it is the prefix of `(B) containing all nodes
with labels i for x < i < y. For each such node, its right subtree is the cluster
B`i . After this leftmost path CAB then continues with a rightmost path that is a
subpath of r(A) consisting of all nodes in r(A) with labels i for y ≤ i ≤ z. Here
z is the smallest number greater or equal to y such that B`z appears in `(B). In
this way, CAB keeps alternating between subpaths of `(B) and of r(A) (along
with the subtrees hanging from these subpaths). Overall, CAB composes to O(σ)
clusters consisting of single edges, clusters Ari , and clusters B`i . We merge these
clusters into the single cluster CAB by first doing a horizontal merge for every
B`i with a single edge cluster and then greedily doing vertical merges for all O(σ)
clusters of the path. This adds O(σ) new clusters and adds O(log σ) to the height
of the cluster’s hierarchy. Finally, we obtain Crx by merging CAB , Arx, and Brx.

To conclude, once we have all clusters of the SLP’s start variable, we merge
them into a single cluster (i.e. obtain the top-tree of the entire Cartesian tree of
S) by greedily merging all its O(σ) clusters (introducing O(σ) new clusters and
increasing the height by O(log σ)) similarly to the above.

4 Conclusions

In this paper we have investigated compressed RMQ. We have shown that com-
pressing the Cartesian tree can be exponentially better than compressing the
string itself, and is never worse by more than an O(σ) factor. Improving this
O(σ) factor or finding a counter example that actually exhibits an Ω(σ) factor
remains an interesting open question.

References

1. Andrés Abeliuk, Rodrigo Cánovas, and Gonzalo Navarro. Practical compressed
suffix trees. Algorithms, 6(2):319–351, 2013.

2. Stephen Alstrup, Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Main-
taining information in fully-dynamic trees with top trees. ACM Transactions on
Algorithms, 1:243–264, 2003.

3. Jérémy Barbay, Johannes Fischer, and Gonzalo Navarro. Lrm-trees: Compressed
indices, adaptive sorting, and compressed permutations. Theor. Comput. Sci.,
459:26–41, 2012.

4. Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In
LATIN 2000: Theoretical Informatics, 4th Latin American Symposium, Punta del
Este, Uruguay, April 10-14, 2000, Proceedings, pages 88–94, 2000.

5. Philip Bille, Inge Li Gørtz, Gad M. Landau, and Oren Weimann. Tree compression
with top trees. Inf. Comput., 243:166–177, 2015.

6. Philip Bille, Gad M. Landau, Rajeev Raman, Kunihiko Sadakane, Srinivasa Rao
Satti, and Oren Weimann. Random access to grammar-compressed strings and
trees. SIAM J. Comput., 44(3):513–539, 2015.

12 S. Jo, S. Mozes, and O. Weimann

7. Moses Charikar, Eric Lehman, Ding Liu, Rina Panigrahy, Manoj Prabhakaran,
Amit Sahai, and Abhi Shelat. The smallest grammar problem. IEEE Trans.
Information Theory, 51(7):2554–2576, 2005.

8. Pooya Davoodi, Rajeev Raman, and Srinivasa Rao Satti. Succinct representations
of binary trees for range minimum queries. In COCOON 2012, Proceedings, pages
396–407, 2012.

9. Peter J. Downey, Ravi Sethi, and Robert Endre Tarjan. Variations on the common
subexpression problem. J. ACM, 27(4):758–771, 1980.

10. Bartlomiej Dudek and Pawel Gawrychowski. Slowing down top trees for better
worst-case bounds. CoRR, abs/1801.01059, 2018.

11. Johannes Fischer and Volker Heun. Space-efficient preprocessing schemes for range
minimum queries on static arrays. SIAM Journal on Computing, 40(2):465–492,
2011.

12. Keisuke Goto, Hideo Bannai, Shunsuke Inenaga, and Masayuki Takeda. Fast q-
gram mining on SLP compressed strings. J. Discrete Algorithms, 18:89–99, 2013.

13. Artur Jez and Markus Lohrey. Approximation of smallest linear tree grammar. In
31st International Symposium on Theoretical Aspects of Computer Science (STACS
2014), STACS 2014, pages 445–457, 2014.

14. Wojciech Rytter. Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theor. Comput. Sci., 302(1-3):211–222, 2003.

15. Yoshimasa Takabatake, Tomohiro I, and Hiroshi Sakamoto. A space-optimal gram-
mar compression. In 25th Annual European Symposium on Algorithms, ESA 2017,
pages 67:1–67:15, 2017.

16. Jean Vuillemin. A unifying look at data structures. Commun. ACM, 23(4):229–239,
1980.

	Compressed Range Minimum Queries

