：スリアパ ano

－a puine，lar Monge heap

－ExtractMin－al Activate
 Dijkstra le Q abandan nnars ite nis\％$O(N)=O(\sqrt{n})$ lin．$Q \rightarrow \rightarrow$ ，nis

Dijkstra envjas．${ }^{2 j 2 j} L$ Le 2nk parn al ars jo e．

$$
\begin{aligned}
& F R-D_{i j k s t r a}\left(G_{\text {in }}^{\prime}, G_{\text {out }}^{\prime}, s\right) \\
& d(s)=0 ; \quad d(v)=\infty \quad \forall v \neq s
\end{aligned}
$$

decompose into bipartite graphs
initialize a Mange heap for each bipartite graph initialize heap Q w/ min represetative from each Mange heap

$$
S=\{s\}
$$

while $S \neq V(G)$:

$$
v, M, d_{v} \leftarrow Q \text {. Extract Min }
$$

M. ExtractMin $M-N v a t, 3 n /$

if $v \notin S$:
we or le pekin arno no a lc

$$
\begin{aligned}
& d(v) \leftarrow d v \\
& v . a \cos \text { y. } 3 \text {. } \\
& S \leftarrow S \cup\{v\}
\end{aligned}
$$

for each M that contains v : v and dion
M. Activate (v)
Q. Update Heap (M. Find Min)
$: 30 n \mathrm{~ms}$
sin.j.Ns sak ero ain bl rion 2 apt b le par To $O(N \log N) \quad \rightarrow 3-G i c a$ ndon js Q anigh le
Q. ExtractMin ofrolo
M. ExtractMin
M. Activate
M. Find Min
ann ues bin joe p, $O(\log N)_{\text {anjuls }}$

$$
O\left(N \log ^{2} N\right)=O\left(\sqrt{n} \log ^{2} n\right)
$$

. Jore

Exact Distance Oracles

FR-Dijkstra le a3jebok \sin 个 2 alleas :3n jk - MSSP Kel whice 6 yore -yny yon - Distance oracle
 : Inlle jugre enchod
 (preprocessing time) rojMgn yaw le ajax juc-(query-time) INGHen μ_{s}.

Iaflien pest alpun, (mobile devices Gevf) ase d.jplole a

r-division oolan alkj gad - preprocessing P2, $9^{2} 7 O(r)$ of ank 13 , en/s.k $O\left(\frac{n}{r}\right)$ or r-division a on .ade $27^{2} T O(\sqrt{r})$!
 - $O\left(\left(\frac{n}{\sqrt{r}}\right)^{2}\right)=O\left(\frac{n^{2}}{r}\right)$ thl aza. aly.) , eain te fiop don of r-division a remaen ot

 - (akes merl
:v!u-n prons abie pusa
.nN/ain v, u at eLove ighas enklai R_{v}, R_{u} ind
 O(r) Re ta v le $d_{v}(1)$ anju sipina ana $O(\sqrt{r} \cdot \sqrt{r})=O(r)$ ak irswit $y \in \partial R_{v}, x \in \partial R_{u}$ alsin ak k3N

$$
d^{*}=d_{u}(x)+d(x, y)+d_{v}(y)
$$

 $O(r)$ inlire pins
$O(r)$ kalice us $O\left(\frac{n^{2}}{r}\right)$ s/w tradeoff jLa's

מUN arbanta a'arong G farn ale pra : preprocessing fir-und C forn zindN arbnata G^{\prime} for an pisindues. Sorn $G_{\text {unt } \rightarrow 1}^{\prime} G_{i n}^{\prime} \rightarrow 2 C$ alar MSSP yovr aen, $G_{\text {out }}^{\prime}$: $G_{\text {in }}^{\prime}$ Gout $\rightarrow 1 G_{\text {in }}^{\prime} \rightarrow \lambda$ (RMQ \int_{N}) C arr $D D G-1$

$$
\text { Son pox } O\left(n \log ^{2} n\right)
$$

lar $O(n)!$, MSSPS An alar $O(n \log n)$ un enign a/fun

- v-s u-n pand: Latice

 G^{\prime} ale rione C fornn at is and ste, frink

$v \int$ u ix znoni T le eines ania angitorna C.an

$$
(T \rightarrow v!u \text { Le LCA } \rightarrow \text { in ins) }
$$

an C_{k} vera, $T-\lambda C_{0} G$ alale入 C_{1}, \ldots, C_{k} In. - evea farno

 . Co obe ainds paln, wild ape fifona goal

 c_{i} Le MSSP A yaN ir $O\left(\sqrt{n} \lg ^{2} x\right)=O\left(\left|c_{i}\right| \cdot \log ^{2} n\right) \quad$ lan sle.m. μs
 (o(logn) lin T fin, wro ates $\left.O\left(\sqrt{n} \log _{n}^{2}\right) \quad \operatorname{leg} N s\right) \quad O\left(\sqrt{n} \log ^{3} n\right)$ k'l सflien μs, $p l$ (arbuller ajat eforna hat in

 (lis, at) Halle $\tilde{o}(\sqrt{r})!$ dotr $\tilde{o}\left(\frac{n^{2}}{r}\right)$ copr

Branch Decomposition \& Baker's technique

 - monloun
 (..., dominating set, independent set) wank was alral - argeina alra> at CoCS sko.1 If 8 VC :as ara> linas

$$
\begin{aligned}
& 1=y_{v}, \quad 0=x_{v}, v \quad a f_{6} \text { lay }
\end{aligned}
$$

$$
\begin{aligned}
& y_{v}=1+\sum_{i} x_{v_{i}} \\
& x_{v}=\min _{\{ } y_{v}, \sum_{i} y_{v i}
\end{aligned}
$$

? fo ifle fhanes arof μ_{j} an an

 Iri, ver saman for an bo -2ken aloy/n o.36 un pos I Ira an le eved anamne ank mej ay子nka

.
 carving decomposition $<=$ razpit l alat branch decomposition \Leftarrow-hej 6 asisp $/ 6$

Carving Decomposition - exz 7^{27} neiv mons an io ling fis $G=(V, E) \cdots$
 afri ir muma G le fry an alkan $t \in T$ anl3 bs . $t \rightarrow$ enewn T le T_{t} fon ans

han T_{y} - 8 natave flan an - Land
? $G G_{y}$ or G_{Y} be a ajk-G,kn an $\delta_{G}(Y)=\delta_{G}(\{a, b, c\})$ pina anep. $\max _{x \in T}\left|\delta_{G}(x)\right|$ |cis $T K$ anns

akep neis woir wal njest - Branch decomposition - ars

(ab) (bc) cd (de be)
kin $T_{x}-f$ orcane fori an

$$
G_{x}->\text { ajier aep on'4 arae } G_{x} G \text { s.2papi - } \partial_{G}(x)
$$

$$
\max _{x \in T} \partial_{G}(x) \text { keln } T \text { Ce anka }
$$

GE branch decomp. Go Wijvi sani kin G le branchwidth ..)
branch-decomposition of DP arsuke八 VC se.n : NonB , $S \leq \partial_{G}(x)$ Ger , $x \in T$ LS

Y, X le rok W of. Lillin - -33/a rB, iar

$$
M_{w}[s]=\min _{S_{x}, s_{y}} M_{x}\left[s_{x}\right]+M_{y}\left[s_{y}\right]-\left|s_{x} \cap s_{y}\right|
$$

where: $\quad S_{x} \leqslant \partial_{G}(x), S_{y} \leqslant \partial_{G}(y) \quad\left(S_{x} \cup S_{y}\right) \cap \partial_{G}(w)=S$
asing ms in
$0\left(2^{b_{w}} \cdot 2^{b_{w}}\right)=\left|\partial_{G}(x)\right| \cdot\left|\partial_{G}(y)\right|$ apis x, y pun $x \cup y$ ate -jor $\sigma(n)$?T.a en enow ins $O\left(4^{b \omega} \cdot n\right)$ as.n ps
! rl>p branchwidth at inkfor

