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Abstract

We present new and improved data structures that answer exact node-to-node distance queries in
planar graphs. Such data structures are also known as distance oracles. For any directed planar graph
on n nodes with non-negative lengths we obtain the following: 1

• Given a desired space allocation S ∈ [n lg lgn, n2], we show how to construct in Õ(S) time a data
structure of size O(S) that answers distance queries in Õ(n/

√
S) time per query.

As a consequence, we obtain an improvement over the fastest algorithm for k–many distances in
planar graphs whenever k ∈ [

√
n, n).

• We provide a linear-space exact distance oracle for planar graphs with query time O(n1/2+ε) for
any constant ε > 0. This is the first such data structure with provable sublinear query time.

• For edge lengths ≥ 1, we provide an exact distance oracle of space Õ(n) such that for any pair of
nodes at distance ` the query time is Õ(min{`,

√
n}). Comparable query performance had been

observed experimentally but could not be proven.

Our data structures are based on the following new tool: given a non-self-crossing cycle C with
c = O(

√
n) nodes, we can preprocess G in Õ(n) time to produce a data structure of size O(n lg lg c) that

can answer the following queries in Õ(c) time: for a query node u, output the distance from u to all
the nodes of C. This data structure builds on and extends a related data structure of Klein (SODA’05),
which reports distances to the boundary of a face, rather than a cycle.

The best distance oracles for planar graphs until the current work are due to Cabello (SODA’06),
Djidjev (WG’96), and Fakcharoenphol and Rao (FOCS’01). For σ ∈ (1, 4/3) and space S = nσ, we
essentially improve the query time from n2/S to

√
n2/S.

1Asymptotic notation as in Õ(·) suppresses polylogarithmic factors in the number of nodes n.



1 Introduction

A fast shortest-path query data structure may be of use whenever an application needs to compute shortest
path distances between some but not all pairs of nodes. Indeed, shortest-path query processing is an
integral part of many applications, in particular in Geographic Information Systems (GIS) and intelligent
transportation systems [JHR96]. These systems may help individuals in finding fast routes or they may also
assist companies in improving fleet management, plant and facility layout, and supply chain management.
A challenge for traffic information systems or public transportation systems is to process a vast number of
queries on-line while keeping the space requirements as small as possible [Zar08]. Low space consumption is
obviously very important when a query algorithm is run on a system with heavily restricted memory such
as a handheld device [GW05] but it is also important for systems with memory hierarchies [HMZ03, AT05],
where caching effects can have a significant impact on the query time.

While many road and public transportation networks are actually not exactly planar [EG08, AFGW10],
they still share many properties with planar graphs; in particular, many road networks appear to have small
separators as well. For this reason, planar graphs are often used to model various transportation networks.

In the following, we provide shortest-path query data structures (distance oracles) for planar graphs
for essentially any specified space requirement. Throughout the paper we assume the edge lengths to be
non-negative.2 Our results extend a result of Cabello [Cab06] and improve upon a result of Djidjev [Dji96].

Theorem 1. Let G be a directed planar graph on n vertices. For any value S in the range S ∈ [n lg lg n, n2],
there is a data structure with preprocessing time O(S lg3 n/ lg lg n) and space O(S) that answers distance

queries in O(nS−1/2 lg2 n lg3/2 lg n) time per query.

As a corollary, we obtain the following result on k–many distances, improving upon Cabello [Cab06], who
proves that the problem can be solved in time Õ((kn)2/3 +n4/3). Our result is an improvement for k = õ(n).
For the range roughly k ∈ [

√
n, n), our algorithm is faster by a factor of Õ((n/k)2/3).

Theorem 2. Let G be a directed planar graph on n vertices. The distances between k = Ω(n1/2 lg n/ lg lg n)
pairs of nodes (s1, t1), (s2, t2), . . . (sk, tk) can be computed in time O((kn)2/3(lg n)7/3(lg lg n)2/3).

We also give a data-structure that does keep the space requirements as small as possible, i.e. linear in the
size of the input. This is the first linear-space data structure with provable sublinear query time for exact
point-to-point shortest-path queries. It has come to our attention that Nussbaum [Nus10] has simultaneously
obtained a similar result.

Theorem 3. For any directed planar graph G with non-negative arc lengths and for any constant ε > 0,
there is a data structure that supports exact distance queries in G with the following properties: the data
structure can be created in time O(n lg n), the space required is O(n), and the query time is O(n1/2+ε).

The main techniques we use are Frederickson’s r–division [Fre87], Fakcharoenphol and Rao’s imple-
mentation of Dijkstra’s algorithm [FR06], and Klein’s Multiple-Source Shortest Paths (MSSP) data struc-
ture [Kle05], for which we propose a more general and more space-efficient alternative.

Theorem 4. Given a directed planar graph G on n nodes and a simple cycle C with c = O(
√
n) nodes,

there is an algorithm that preprocesses G in O(n lg3 n) time to produce a data structure of size O(n lg lg c)
that can answer the following queries in O(c lg2 c lg lg c) time: for a query node u, output the distance from
u to all the nodes of C.

Since Klein’s MSSP data structure has found quite a few applications, we believe that our data structure
could be a useful tool in other algorithms as well.

Experimental results suggest that query times proportional to the shortest-path length are possible in
practice using algorithms based on the so-called arc-flag technique [Lau04, KMS05, HKMS09]. 3 Hilger,
Köhler, Möhring, and Schilling make a statement about the (experimental) worst-case behavior of their
method:

2Our results apply to graphs with negative-length edges by using reduced lengths induced by a feasible price function [Joh77].
The current best bound for computing a feasible price-function in a planar graph is O(n lg2 n/ lg lgn) [MWN10]

3 The preprocessing algorithm of this technique first partitions the graph into regions Vi and thereafter labels each edge e
for all regions Vi with a boolean flag spi(e) indicating whether e lies on any shortest path to Vi. At query time, only edges
leading towards the target region need to be considered.
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In all cases, the search space of our arc-flag method is never larger than ten times the actual
number of nodes on the shortest paths [HKMS09, Section 6].

We can now actually prove a similar statement:

In (provably) all cases, the search space of our method is never larger than a polylogarithmic
factor times the length ` of the shortest paths.

More precisely:

Theorem 5. For any planar graph G with edge lengths ≥ 1 there is an exact distance oracle of space
O(n lg n lg lg n) with query time O(min

{
` lg2 ` lg lg `,

√
n lg2 n

}
) for any pair of nodes at distance `. The

preprocessing time is at most O(n1+ε) for any constant ε > 0.

Note that our data structure has query time proportional to the path length. In fact, our algorithm
maintains a Bellman-Ford-type invariant: after iteration i, the distance represents the minimum path length
among all paths on Õ(i) edges — the correct distance is computed after time roughly proportional to the
minimum number of edges on a shortest path but we can only guarantee correctness after time Õ(`). If we
may further assume that, for some constant ε > 0, all s − t paths of length at most (1 + ε)dG(s, t) have
Ω(hG(s, t)) edges (where hG(s, t) denotes the number of edges (hops) on a minimum-hop shortest-path), then
our data structure can be constructed to have query time proportional to the minimum number of edges
on a shortest path Õ(hG(s, t)). This assumption essentially means that any s − t path with significantly
fewer edges than the shortest path is much longer. Graphs and weight functions considered in practice, in
particular those in [HKMS09], appear to satisfy this assumption.

Our main contributions can be summarized as follows: i) We significantly improve the worst-case behavior
of previously known distance oracles with low space requirements (in particular, we also provide the first one
with linear space and sublinear query time), and ii) we also make an important step towards proving the
behavior observed in practice. As our main tool, iii) we provide a more general multiple-source shortest-path
data structure with many potential applications.

1.1 Related Work

Shortest-path query processing for planar graphs have been studied extensively. In this section, we give a
brief review of previous results.

For exact shortest-path queries, the currently best result in terms of the tradeoff between space and query
time is by Fakcharoenphol and Rao [FR06]. Their data structure of space Õ(n) can be constructed in time
Õ(n) and processes queries in time Õ(

√
n). The preprocessing time and space can be improved by logarithmic

factors [KMW10, Kle05, MWN10]. Note that, in these three articles [FR06, KMW10, MWN10], the main
objective is actually a fast single-source shortest path algorithm for planar graphs with real (potentially neg-
ative) edge weights. Only [FR06] specifically discuss distance oracles, but the results of [KMW10, MWN10]
immediately imply improvments to the distance oracle in [FR06]. In this work, we focus on the data struc-
ture and its space–query time tradeoff. Note that, when choosing ε = 1/ lg n, our result (Theorem 3) slightly
improves upon the product of space times query time in [FR06, KMW10, MWN10].

Some distance oracles have better query times. Djidjev [Dji96] proves that for any S ∈ [n, n2] there is
an exact distance oracle with preprocessing time O(S) (which increases to O(n

√
S) for S ∈ [n, n3/2]), space

O(S), and query time O(n2/S). For a smaller range, he also proves that for any S ∈ [n4/3, n3/2] there is
an exact distance oracle with preprocessing time O(nS1/2), space O(S), and query time Õ(nS−1/2). Chen
and Xu [CX00], extending the range, prove that for any S ∈ [n4/3, n2] there is an exact distance oracle
using space O(S) with preprocessing time O(n

√
S) and query time Õ(n/

√
S). Cabello [Cab06], mainly

improving the preprocessing times, proves that for any S ∈ [n4/3, n2] there is an exact distance oracle with
preprocessing time and space O(S) with query time Õ(n/

√
S). Compared to Djidjev’s construction, the

query time is slower by a logarithmic factor but the range for S is larger. In our construction, we sacrifice
another root-logarithmic factor in the query time but we prove the bounds for essentially the whole range
of S. See Figure 1 for a summary of known results in comparison with ours.

If constant query time is desired, storing a complete distance matrix is almost optimal. For unweighted
graphs, Wulff-Nilsen [WN10a] recently improved the space requirements to o(n2). If the space is restricted
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Theorem 1

Figure 1: Tradeoff of the Space [S] vs. the Query time [Q] for different shortest-path query data structures
on a doubly logarithmic scale, ignoring constant and logarithmic factors. The upper line represents the
Q = n2/S tradeoff (completely covered by Djidjev [Dji96]; Arikati et al. [ACC+96] cover the point S = n3/2;
SSSP (S = n) and APSP (S = n2) also lie on this line). The lower line represents the Q = n/

√
S tradeoff;

the result of Djidjev [Dji96] covers the range S ∈ [n4/3, n3/2]; Chen and Xu [CX00] and Cabello [Cab06]
extend this to S ∈ [n4/3, n2]. Fakcharoenphol and Rao [FR06] cover the point S = n. We extend their
results to the full range S ∈ [n, n2].

to linear, using the linear-time single-source shortest path algorithm of Henzinger et al. [HKRS97] is the
fastest known for exact shortest paths queries until the current work. It has come to our attention that
Nussbaum [Nus10] has simultaneously obtained a result similar to Theorem 3.

Efficient data structures for shortest-path queries have also been devised for restricted classes of planar
graphs [DPZ00, CX00] and for restricted types of queries [Epp99, KK06, Sch98, Kle05]. If approximate
distances and shortest paths are sufficient, (poly-)logarithmic query time has been achieved [Tho04, Kle02,
Kle05, KKS11, Som11].

Based on separators, geometric properties, and other characteristics such as highway structures, many
efficient practical methods have been devised [GSSD08, SS05, BFSS07], their time and space complexities
are however difficult to analyze. Competitive worst-case bounds have been achieved under the assumption
that actual road networks have small highway dimension [AFGW10]. While our preprocessing algorithm
(Theorem 5) runs in almost linear time, some of the problems that appear in the preprocessing stage of
practical route planning methods have recently been proven to be NP-hard [BDDW09, BCK+10].

2 Preliminaries

2.1 Recursive r–division of Planar Graphs

Let G = (V,E) be a planar graph with |V | = n. Let EP be a subset of the edges of G, and let P = (VP , EP )
be the subgraph of G induced by EP . P is called a piece of G. The nodes of VP that are incident in G to
nodes of V \ VP are called the boundary nodes of P and denoted by ∂P .

An r–division [Fre87] of G is a decomposition into O(n/r) edge-disjoint pieces, each with O(r) nodes and
O(
√
r) boundary nodes. We use an r–division with the additional property that, in each piece, there exists

a constant number of faces, called holes, such that every boundary node is incident to some hole. Such a
decomposition can be found in O(n lg r + nr−1/2 lg n) [WN10b] by applying Miller’s cycle separator [Mil86]
iteratively.

We use this r–division recursively. Denote the base of the recursion as level 0, and the top of the recursion
as level k. G is defined to be the only piece at level k. The pieces of level i of the recursion are obtained by
computing an ri–division for each level-(i + 1) piece. The notation ri suggests that we may use a different
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parameter r in the r–division at every level of the recursion. Indeed, using a non-uniform recursion is
important in obtaining Theorem 3. For a level-i piece P , the level-(i − 1) pieces obtained by applying the
r–division to P are called the subpieces of P .

We stress that the classification of nodes of a piece at any level as boundary nodes is with respect to G
(and not P ). This implies that if v is a boundary node of a level-i piece, then v is also a boundary node
of any lower level piece that contains v. This generalizes the decomposition used by Fakcharoenphol and
Rao [FR06]. In that work, Miller’s separator is used at each level rather than an r–decomposition.

2.2 Klein’s Multiple-Source Shortest Paths Algorithm

Klein [Kle05] gave a multiple-source shortest path (MSSP) algorithm with the following properties. The
input consists of a directed planar embedded graph G with non-negative arc-lengths, and a face f . For each
node u in turn on the boundary of f , the algorithm computes (an implicit representation of) the shortest
path tree rooted at u. This takes a total of O(n lg n) time and space. Subsequently, the distance between
any pair (u, v) of nodes of G where u is on the boundary of f , can be queried in O(lg n) time. If the set
of queries is known in advance, then the space requirement is O(n). In particular, given a set S of O(

√
n)

nodes on the boundary of a single face, the algorithm can compute all S-to-S distances in O(n lg n) time
and O(n) space.

We propose a more general and slightly more space-efficient alternative in Section 4, wherein we also
provide a detailed comparison.

2.3 Dense Distance Graphs and Efficient Implementation of Dijkstra’s Algo-
rithm

The dense distance graph for a piece P , denoted DDGP , is the complete graph on ∂P , the boundary nodes
of P , such that the length of an arc corresponds to the distance (in P ) between its endpoints. The dense
distance graph for all pieces P in the r–division can be computed in O(|G| lg |G|) time and space using
Klein’s MSSP; For each piece P , compute MSSP data-structures in O(|P | lg |P |) time and space a constant
number of times, specifying a different hole of P as the distinguished face at each run. Then query the MSSP
data-structures for the distances between the boundary nodes in O(|∂P |2 lg |P |) time. Since in an r–division
|∂P | =

√
|P |, this takes O(|P | lg |P |) time and space per piece, for a total of O(|G| lg |G|) for all pieces.

Let P be a set of pieces (not necessarily at the same level), and let H be the union of the dense distance
graphs of the pieces in P. Fakcharoenphol and Rao [FR06] devised an ingenious implementation of Dijkstra’s
algorithm [Dij59] that computes a shortest path tree in H in time O(|H| lg2 n), where |H| is the number
of nodes in H (i.e., the total number of boundary nodes in all the pieces in P). We will refer to this
implementation as FR-Dijkstra.

In fact, the proof of Fakcharoenphol and Rao’s algorithm only relies on the property that the distances
in each of the dense distance graphs given as input correspond to distances in a planar graph between a
set of nodes that lie on a constant number of faces. It does not rely on any other properties of the r–
decomposition.

FR-Dijkstra can be extended to the following setting (cf. [BSWN10]). Let J be a planar graph. Let n′

denote the number of nodes of J ∪H. We can compute shortest paths in H ∪ J in O(|H| lg2 |H|+ n′ lg n′)
time. The edges of H are relaxed using the efficient data structure of Fakcharoenphol and Rao, while the
edges of J are relaxed as in a traditional implementation of Dijkstra’s algorithm using a heap.

2.3.1 External Dense Distance Graphs

Let G−P be the graph obtained from G by deleting all nodes that belong only to P (i.e., all nodes of P that
are not boundary nodes). The external dense distance graph for a piece P , denoted DDGG−P , is defined to
be the complete graph on ∂P such that the length of an arc corresponds to the distance in G−P between its
endpoints. External dense distance graphs were used recently in [BSWN10]. Computing the external dense
distance graphs for all pieces in an r–division cannot be done efficiently using Klein’s MSSP. The reason is
that |G − P | can be Θ(|G|) for all pieces. Instead, the computation can be done in a top-down approach
as follows (cf. [BSWN10]). Recall that an r–division is obtained as the set of pieces of the deepest level
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in a recursive division of the graph using Miller’s simple cycle separators. Consider the set Q of all pieces
at all levels of the recursion (rather than just the set of pieces at the deepest level). Note that there are
O(lg |G|) recursive levels since the size of the pieces decreases by a constant factor every constant number
of applications of Miller’s cycle separator theorem. First, we compute DDGQ for every piece Q ∈ Q. As
explained above, this can be done in O(|G| lg |G|) for all the pieces in a specific level of the recursion, for a
total of O(|G| lg2 |G|) for all pieces in Q. Next, we consider a piece Q and denote the two subpieces of Q
by Q1 and Q2. DDGG−Q2 is obtained by computing distances in DDGQ1 ∪DDGG−Q (see Figure 2), using
multiple applications of FR-Dijkstra, once for each node in ∂Q2. This takes O(|Q| lg2 |∂Q|) per piece, for an
overall O(|G| lg2 |G|) time for all pieces in a specific level. Since the number of levels is bounded by lg |G|,
the entire computation takes O(|G| lg3 |G|) time.

Q2
Q1

G-Q

Figure 2: Pieces Q1 and Q2 in some level of the recursive application of Miller’s cycle separator theorem.
The piece Q is the union of Q1 and Q2. Distances in G−Q2, the exterior of Q2 are obtained by considering
shortest paths in the interior of Q1 and in G−Q, the exterior of Q.

3 A Linear-Space Distance Oracle

We first provide our linear-space data structure. The techniques used to construct and query our distance
oracle are reused in the other more general constructions, in particular in the cycle MSSP data structure
(Section 4).

In the following, we prove Theorem 3. We restate a more precise version.

Theorem 3. For any directed planar graph G with non-negative arc lengths and for any constant ε > 0,
there is a data structure that supports exact distance queries in G with the following properties: the data
structure can be created in time O(n lg n), the space required is O(n), and the query time is O(n1/2+ε).

For non-constant ε, the preprocessing time is O(n lg(n) lg(1/ε)), the space required is O(n lg(1/ε)), and
the query time is O(n1/2+ε + n1/2 lg2(n) lg(1/ε)).

Our distance oracle is an extension of the oracle in Fakcharoenphol and Rao [FR06]. The main ingredients
of our improved space vs. query time tradeoff are i) instead of recursively using cycle separators, we use
recursive r–divisions, and ii) we use an adaptive recursion, where the ratio between the boundary of a piece
at level i− 1 and the size of a piece at level i equals

√
n (which is the query time we aim for).

We split the proof into descriptions and analysis of the preprocessing and query algorithms. Let k =
Θ(lg(1/ε)).

Preprocessing In the preprocessing step we compute the recursive r–division of the graph with k recursive
levels and values of {ri}ki=0 to be specified below. This takes O(kn lg n) time.

We then compute the dense distance graph for each piece. This is done for a piece P , with r nodes
and O(

√
r) boundary nodes on a constant number of holes, by applying Klein’s MSSP algorithm [Kle05] as

described in Section 2.3. Thus, all of the boundary-to-boundary distances in P are computed in O(r lg r)
time. Summing over all O(n/ri) pieces at level i, the preprocessing time per level is O(n lg ri). The overall
time to compute the dense distance graphs for all pieces over all recursive levels is therefore bounded by
O(kn lg n).

The space required to store DDGP is O((
√
r)2) = O(r); summing over all pieces at level i we obtain

space O( nri ri) = O(n) per level; the total space requirement is O(kn).
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Query Given a query for the distance between nodes u and v, we proceed as follows.
For simplicity of the presentation, we initially assume that neither u nor v are boundary nodes.
Let P0 be the level-0 piece that contains u. We compute distances from u in P0. This is done in O(r0)

time using the algorithm of Henzinger et al. [HKRS97]. Denote these distances by distP0
(u,w). Let H0

denote the star graph with center u and leaves ∂P0. The arcs of H0 are directed from u to the leaves, and
their lengths are the corresponding distances in P0.

Let Su be the set of pieces that contain u. Note that Su contains exactly one piece of each level. Let Ru
be the union of subpieces of every piece in Su. That is, Ru =

⋃
P∈Su

{P ′ : P ′ is a subpiece of P}. Let Hu be
the union of the dense distance graphs of the pieces in Ru. We use FR-Dijkstra (see Section 2.3) to compute
distances from u in Hu ∪H0. Observe that any shortest path from u to a node of Hu can be decomposed
into a shortest path in P0 from u to ∂P0 and shortest paths each of which is between boundary nodes of
some piece in Ru. Since all u-to-∂P0 shortest paths in P0 are represented in H0, and since all shortest paths
between boundary nodes of pieces in Ru are represented in Hu, this observation implies that distances from
u to nodes of Hu in Hu ∪H0 are equal to distances from u to nodes of Hu in G. We denote these distances
by distG(u,w).

We repeat a similar procedure for v (reversing the direction of arcs) to compute distG(w, v), the distances
in G from every node of Hv to v.

Let Puv be the lowest level piece that contains both u and v. Assume first that Puv is not a level-0 piece.
Let Pu (Pv) be the subpiece of Puv that contains u (v). Since Puv is both in Su and in Sv, both Pu and Pv
are in Ru as well as in Rv. This implies that we have already computed distG(u,w) and distG(w, v) for all
w ∈ ∂Pu. Since we have assumed that Puv is not a level-0 piece, the shortest u-to-v path must contain some
node of ∂Pu. Therefore, the u-to-v distance can be found by computing

min
w∈∂Pu

distG(u,w) + distG(w, v).

If Puv is a level-0 piece, then Puv = P0 , and the u-to-v distance can be found by computing

min

{
distP0(u, v), min

w∈∂Puv

{distG(u,w) + distG(w, v)}
}
.

The case when u or v are boundary nodes is a degenerate case that can be solved by the above algorithm.
Let Qu be the highest level piece of which u is a boundary node. We have the preprocessed distances in
Qu from u to all other nodes of ∂Qu. Therefore, it suffices to replace Su above with the set of pieces that
contain Qu as a subgraph in order to assure that Hu is small enough and that the distances computed by
the fast implementation of Dijkstra’s algorithm are the distances from u to nodes of Hu in G.

Query Time We next analyze the query time. Computing the distances distP0 takes O(r0) time. Let |Hu|
denote the number of nodes of Hu. Fakcharoenphol and Rao’s Dijkstra implementation runs in O(|Hu| lg2 n)
time. It therefore remains to bound |Hu|. Let Pi be the level-i piece in Su. Pi has O( ri

ri−1
) subpieces, each

with O(
√
ri−1) boundary nodes. Therefore, the contribution of Pi to |Hu| is O( ri√

ri−1
). The total running

time is therefore

r0 + lg2 n

k∑
i=1

ri√
ri−1

.

Recall that rk = |G| = n, and set r0 =
√
n. For i = 1 . . . k − 1 we recursively define ri so as to satisfy

ri√
ri−1

=
√
n.

This implies

r1 = n
1
2+

1
4 = n1−

1
4

r2 = n
1
2+

3
8 = n1−

1
8

r2 = n
1
2+

7
16 = n1−

1
16

. . .

rk−1 = n1−
1

2k .
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The total running time is thus bounded by

√
n+ lg2 n

(
(k − 1)

√
n+

n√
n1−

1

2k

)
≤
(
k
√
n+ n

1
2+

1

2k+1

)
lg2 n. (1)

By k = Θ(lg(1/ε)) we obtain the claimed running times.

4 A Cycle MSSP Data Structure for Planar Graphs

In this section we provide our main technical tool. We prove Theorem 4, which we restate here.

Theorem 4. Given a directed planar graph G on n nodes and a simple cycle C with c = O(
√
n) nodes,

there is an algorithm that preprocesses G in O(n lg3 n) time to produce a data structure of size O(n lg lg c)
that can answer the following queries in O(c lg2 c lg lg c) time: for a query node u, output the distance from
u to all the nodes of C.

Comparison with Klein’s MSSP data structure Our data structure can be seen as an alternative to
Klein’s MSSP data structure (see Section 2.2) with two main advantages (which we exploit in Section 5):

• our data structure can handle queries to an arbitrary not-too-long cycle as opposed to a single face,
and

• the space requirements are only O(n lg lg n) (even O(n) is possible at the cost of increasing the query
time) as opposed to O(n lg n),

and three main disadvantages:

• our data structure cannot efficiently answer queries from u to a single node on the cycle C; such a
query requires the same time as computing the distances from u to all the nodes on C,

• our data structure requires amortized time O(lg2 c lg lg c) per node on the cycle, as opposed to O(lg n)
per node, which is slower for long cycles, and

• the preprocessing time of our data structure is O(n lg3 n) as opposed to O(n lg n).

Preprocessing Let G0 be the exterior of C. That is, the graph obtained from G by deleting all nodes
strictly enclosed by C. Consider C as the infinite face of G0. Similarly, Let G1 be the interior of G. Namely,
the graph obtained from G by deleting all nodes not enclosed by C. Consider C as the infinite face of G1.
The preprocessing step consists of the following:

1. Computing DDGC and DDGG−C . This can be done in O((n + c2) lg n) time using Klein’s MSSP
algorithm [Kle05]. Storing DDGC and DDGG−C requires O(c2) = O(n) space.

2. For i ∈ {0, 1}, computing an r–division of Gi with r = c2. Each piece has O(c2) nodes and O(c)
boundary nodes incident to a constant number of holes. Consider the nodes of C as boundary nodes of
every piece in the division (each piece still has O(c) boundary nodes). This step takes O(n lg n) time.

3. Computing, for each piece P , a recursive r–division of P identical to the one that would be computed
in the preprocessing step of the oracle in Section 3 with ε = 1/ lg c. That is, the number of levels in this
recursive decomposition is k = Θ(lg lg c). The top level (level k) piece in this recursive decomposition is
the entire piece P . In the description in Section 3, the top level piece is the entire graph and therefore
it has no boundary nodes. Here, in contrast, we consider the boundary nodes of P as boundary nodes
of the top-level piece in the decomposition (and thus, as boundary nodes of any lower-lever piece in
which they appear). This does not asymptotically change the total number of boundary nodes at any
level of the recursive decomposition since P has c boundary nodes, and every level of the recursive
decomposition consists of a total of Ω(c) boundary nodes. The time to compute the recursive r–division
for all pieces is bounded by O(n lg2 n).
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4. Computing, for each piece P , the dense distance graph for each of the pieces in the recursive decom-
position of P . Let HP denote the union of the dense distance graphs for all the pieces in the recursive
decomposition of P . As discussed in Section 3, the space required to store HP is O(n lg ε) = O(n lg lg c).
Using the methods presented in Section 3, computing HP takes O(|P | lg |P | lg lg c) = O(c2 lg c lg lg c).
This leads to a total running time of O(n lg c lg lg c) for computing HP for all pieces P .

5. Computing, for each piece P , the dense distance graph DDGGi−P . Recall that we consider the nodes
of C as boundary nodes of every piece in the division. These dense distance graphs can be computed
as described in Section 2.3.1. As shown there, the entire computation (for all pieces combined) takes
O(n lg3 n) time.

The time required for the preprocessing step is therefore O(n lg3 n) and the space required is O(n lg lg c).

C

G1
G0 - P

uP0

Figure 3: A schematic diagram showing the various subgraphs whose dense distance graphs are used in a
query to the cycle distance oracle. The cycle C is double-lined. The interior of C is the subgraph G1. The
query node u is indicated by a small solid circle. The piece P in the r–decomposition of the exterior of
C (G0) is shown as a grey region with solid boundary. The boundaries of the pieces whose dense distance
graphs are in Hu are shown as dotted lines (one level) and dashed-dotted lines (another level). P0 is the
smallest piece of P that contains u. Any shortest path from u to C can be decomposed into a shortest path
from u to ∂P0 followed by shortest paths between nodes on the boundaries shown in the figure.

Query When queried with a node u, the data structure outputs the distances from u to all the nodes of C.
We describe the case where u is not enclosed by C. In this case we use the dense distance graphs computed
in the preprocessing step for G0. The symmetric case is handled similarly, by using the dense distance graphs
computed for G1.

Let P be a piece in the r–division of G0 to which u belongs. Recall that P consists of O(c2) nodes.
Consider the recursive r–division of P computed in item 3 of the preprocessing stage. Let P0 be the level-0
piece of P that contains u. P0 consists of O(

√
c2) = O(c) nodes.4

We first compute, in O(c) time, the distances from u to all nodes of P0, and store them in a table distP0
.

We then compute, using FR-Dijkstra, the distances from u in the union of the following dense distance
graphs (see Figure 3):

1. H0, the star graph with center u and leaves ∂P0. The arcs of H0 are directed from u to the leaves and
their lengths are the corresponding lengths in distP0 .

4Here, as in Section 3, we assume that u is not a boundary node in the recursive r–decomposition of P . The case where u
is such a boundary node is degenerate, see Section 3.
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2. Hu, the subset of dense distance graphs in HP that correspond to pieces in the recursive decomposition
of P that contain u and their subpieces. These dense distance graphs are available in Hu.

3. DDGG0−P

4. DDGC

Note that the first two graphs are the analogs of H0 and Hu from Section 3.
Distances from u in the union of the above graphs are equal to the distances from u in G. This is true

since any u-to-C shortest path can be decomposed into (1) a shortest path in P0 from u to ∂P0, (2) shortest
paths each of which is a shortest path in Q between boundary nodes of Q for some piece in the recursive
r–decompostion of P that is represented in Hu, (3) shortest paths in G0 − P between nodes of ∂P ∪C, and
(4) shortest paths in the interior of C between nodes of C

To bound the running time of FR-Dijkstra we need to bound the number of nodes in all dense distance
graphs used in the FR-Dijkstra computation. H0 has O(

√
c) nodes. The analysis in Section 3 shows that

the graphs in the set Hu consist of O(
√
|P | lg lg |P |) nodes (substitute k = 1/ lg |P | in eq. (1)). DDGG0−P

has O(c +
√
P ) = O(c) nodes, and DDGC has c nodes. Combined, we get that the running time of the

invocation of FR-Dijkstra is bounded by O(c lg2 c lg lg c). This dominates the O(c) time required for the
computation of distP0

, so the overall query time is O(c lg2 c lg lg c), as claimed.

5 A Distance Oracles with Space S ∈ [n lg lg n, n2]

In this section, we prove Theorem 1. Using our new cycle MSSP data structure, the proof is rather straight-
forward.

Theorem 1. Let G be a directed planar graph on n vertices. For any value S in the range S ∈ [n lg lg n, n2],
there is a data structure with preprocessing time O(S lg3 n/ lg lg n) and space O(S) that answers distance

queries in O(nS−1/2 lg2 n lg3/2 lg n) time per query.

Let r := (n2 lg lg n)/S. Note that r ∈ [lg lg n, n] for any S ∈ [n lg lg n, n2].

Preprocessing We start by computing an r–division. Each piece has O(r) nodes and O(
√
r) boundary

nodes incident to a constant number of holes. For each piece P we compute the following:

1. We compute a distance oracle as in Theorem 3 using ε = 1/ lg r. This takes O(r lg r lg lg r) time and
uses O(r lg lg r) space.

2. For each hole of P (bounded by a cycle) we compute our new cycle MSSP data structures.5 Since the
number of holes per piece is constant, this requires O(n lg3 n) time per piece, and O(S lg3 n/ lg lg n)
overall, which dominates the preprocessing time.

For each region we store a distance oracle, O(1) Cycle MSSP data structures, and the internal and
external dense distance graphs. The total space requirement is thus O((n/r) · n lg lg n) = O(S).

Query Given a pair of nodes s, t, we compute a shortest s-to-t path as follows. Assume first that s and t
are in different regions. Let P denote the piece that contains s and let ∂P denote its boundary. We compute
the distances in G from ∂P to t using the cycle MSSP data structures. These distances can be obtained in
time O(|∂P | lg2 n lg lg n) = O(

√
r lg2 n lg lg n). Analogously, we compute the distances in G from s to ∂P . It

remains to find the node p ∈ ∂P that minimizes dG(s, p) + dG(p, t), which can be done in O(|∂P |) = O(
√
r)

time using a simple sequential search.
If s and t lie in the same piece, we also have to account for the possibility that the shortest s-to-t path

does not visit ∂P . The length of such a path is found by querying the precomputed distance oracle for P ,
which takes O(

√
r lg2 r lg lg r) time.

5Note that for S = o(n lgn) we cannot even afford to store Klein’s MSSP data structure [Kle05].
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Comparison The query time of our data structure is at most O(
√
r lg2 r lg lg r), which, in terms of

S, is O(nS−1/2 lg2 n lg3/2 lg n). Let us contrast this with Cabello’s data structure [Cab06] that, for any

S ∈ [n4/3 lg1/3 n, n2] has preprocessing time and space O(S) and query time O(nS−1/2 lg3/2 n). In our con-
struction, we sacrifice a factor of O(

√
lg n(lg lg n)3) in the query time but we gain a much larger regime for

S. For the range S ∈ [ω(n lg n/ lg lg n), o(n4/3 lg1/3 n)], only data structures of size O(S) with query time
O(n2/S) had been known [Dji96] (see also Figure 1).

k–many distances As a consequence, we also obtain an improved algorithm for k–many distances, for
k = Ω(

√
n/ lg lg n).

Proof of Theorem 2. For some value of r to be specified below, we preprocess G in time O((n2/r) lg3 n),
and then we answer each of the k queries in time O(

√
r lg2 r lg lg r). The total time is O((n2/r) lg3 n +

k
√
r lg2 r lg lg r). This is minimized by setting r = n4/3k−2/3(lg n/ lg lg n)2/3. Note that r = O(n) since

k = Ω(
√
n lg n/ lg lg n). The total running time is thus O((kn)2/3(lg n)7/3(lg lg n)2/3).

6 Distance Oracles with Query Time Quasi-Proportional to the
Shortest-Path Length

We use our new cycle MSSP data structure to prove Theorem 5, which states that there is a distance oracle
with query time proportional to the shortest-path length. We actually prove two versions, the stronger one
being a distance oracle with query time proportional to the minimum number of edges (hops) on a shortest
path. For the stronger version, we need the following assumption, which essentially means that approximate
shortest paths do not use significantly fewer edges.

Assumption 1. Let hG(s, t) denote the number of edges (hops) on a minimum-hop shortest-path. For some
constant ε > 0, all s− t paths of length at most (1 + ε)dG(s, t) have Ω(hG(s, t)) edges.

We restate Theorem 5 and its stronger variant.

Theorem 5. For any planar graph G with edge lengths ≥ 1 there is an exact distance oracle of space
O(n lg n lg lg n) with query time O(min

{
` lg2 ` lg lg `,

√
n lg2 n

}
) for any pair of nodes at distance `. The

preprocessing time is at most O(n1+ε) for any constant ε > 0.
Furthermore, if Assumption 1 holds for G, the query time is at most O(min

{
h lg2 h lg lg h,

√
n lg2 n

}
) for

any pair of nodes (u, v) at hop-distance h = hG(u, v).

Our main ingredient is a distance oracle for planar graphs with tree-width w.

Theorem 6. Let G be a planar graph on n vertices with tree-width w. For any value S in the range
S ∈ [n lg lg n, n2], there is a data structure with preprocessing time O(S lg2 n) and space O(S) that answers
distance queries in O(min{nS−1/2 lg2.5 n,w lg2 w lg lgw}) time per query.

Note that for S superlinear in n but less than roughly nw, the oracle cannot make any use of the additional
space available and the query algorithm runs in time proportional to w (up to logarithmic factors). Any
application should use either space close to linear or more than nw.

Using Theorem 6, the proof of Theorem 5 boils down to a combination of slicing (see for example [Bak94,
Kle08]), local tree-width [Epp00, DH04], and scaling.

Proof of Theorem 5. We repeatedly use Theorem 6 for different subgraphs as follows.

Slicing and local tree-width We use standard techniques [Bak94, Kle08] and research on the related
linear local tree-width property [Epp00, DH04] to slice a planar graph into subgraphs of a certain tree-width:

• We compute a breadth-first search tree in the planar dual rooted at an arbitrary face.

• The subgraph induced by the nodes at depth between d and d′ > d has tree-width O(d′ − d) [Epp00,
DH04].
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If we were only interested in paths using at most w edges, we could i) cut the graph into slices of depth w,
and ii) check the union of any two consecutive levels containing both endpoints. It is straightforward to see
that each path on w edges lies completely within one of these unions.

Scaling We apply the slicing step described in the previous paragraph for different scales.

• For every integer i > 0 with 2i ≤
√
n, we slice the graph into subgraphs Gij at depth r = 2i; here,

Gij denotes the graph induced by the nodes adjacent to all the faces at depth in [jr, (j + 1)r). Every

subgraph Gij has tree-width at most O(r).

• For any two consecutive Gij , G
i
j+1 we compute a distance oracle of size O(|Gij ∪Gij+1| lg lg |Gij ∪Gij+1|)

with query time O(r lg2 r lg lg r) as in Theorem 6. Since each node is in at most two graphs Gij and

since each Gij participates in at most two distance oracles, the total size of all these distance oracles
per level i is O(n lg lg n). The total size of our data structure is thus O(n lg(n) lg lg(n)).

Which Scale? Let the smallest number of edges (or hops) on any shortest path from u to v be h = hG(u, v).
At query time we shall use an approximate distance oracle to determine the right scale. In the preprocessing
algorithm, we also precompute the approximate distance oracle of Thorup [Tho04] for ε = 1/2. This oracle
can be computed in O(nε−1 lg3 n) time, it uses space O(nε−1 lg n), and it answers (1 + ε)–approximate
distance queries in time O(1/ε). If Assumption 1 holds, we instead use that value of ε in the construction of
Thorup’s distance oracle. The space consumption is not increased.

Query Algorithm At query time, given a pair of nodes (u, v) at distance `, we need to find a level that
contains a shortest path. We query the approximate distance oracle in time O(1/ε) to obtain an estimate
for `. Let ˜̀ denote this estimate. We then execute one of the following search algorithms.

In the case that Assumption 1 does not hold, we directly query level i for the smallest i with 2i ≥ ˜̀.
Since all the edge weights are at least 1, any path of length ˜̀ has at most ˜̀ edges and is thus contained in
some graph Gij at level i. Since graphs at level i have tree-width O(2i), and since 2i = O(˜̀) = O(`), the

running time of the query algorithm is O(` lg2 ` lg lg `) as claimed.
If Assumption 1 does hold, we search the data structure level by level with increasing i until the first

time a distance at most ˜̀ is found. By Assumption 1, we know that any u− v path of length ≤ (1 + ε)` uses
at least c · hG(u, v) edges for some constant c ≤ 1. We therefore search the next 1− lg2 c levels to make sure
that we find a shortest path. The running time can be calculated using a geometric sum, which is dominated
by the time to search the last level with tree-width O(hG(u, v)).

6.1 Distance Oracles for Planar Graphs with Tree-width o(
√
n)

In this section we prove Theorem 6. There exist oracles for (not necessarily planar) graphs with tree-width
w. Chaudhuri and Zaroliagis [CZ00] provide a distance oracle that uses space O(w3n) and answers distance
queries in time O(w3α(n)), where α(n) denotes the inverse Ackermann function.

In our application, the tree-width w may be non-constant up to O(
√
n). For this reason we cannot use

their distance oracle. In the following we improve upon their result since we further assume planarity: we
can obtain space O(n lg lg n) and query time O(w lg2 w lg lgw) using our distance oracle, which is a better
space vs. query time tradeoff for w = Ω( 3

√
lg lg n).

In some sense our proof can be seen as an improvement over Djidjev’s data structure with space O(S)
and query time O(n2/S). His data structure works on any graph with recursive balanced separators of
size O(

√
n) and, furthermore, similar results can be obtained for graphs with separators of general size

f(n) = o(n) [Dji96, Sections 3 and 4]. The data structure with the better trade-off (space O(S) and query
time O(n/

√
S)) however only works for planar graphs [Dji96, Section 5], since it exploits the Jordan Curve

Theorem. We can now exploit the Jordan Curve Theorem for planar graphs with smaller separators by
observing that, for planar graphs with smaller tree-width (o(

√
n)), the size of the Jordan Curve separating

the inside from the outside decreases proportionally [ST94, DPBF10]. These separators are referred to as
sphere-cut separators [ST94, DPBF10] and they can be found efficiently.
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Lemma 1 (Gu and Tamaki [GT09, proof of Theorem 2]). For any constant ε > 0 and for any biconnected
vertex-weighted planar graph on n nodes with tree-width w, there is an O(n1+ε)–time algorithm that finds a
non-self-crossing cycle C of length O(ε−1w) such that any connected component of G \C has weight at most
2/3 of the total weight.

Proof. The algorithm computes a branch decomposition as in Gu and Tamaki [GT09, proof of Theorem 2].
A branch decomposition [RS91] of a graph G is a ternary tree T whose leafs correspond to the edges of

G. Removing any tree edge e ∈ T creates two connected components T1, T2 ⊆ T , each of which corresponds
to a subgraph Gi of G, induced by the edges corresponding to the set of leafs of T in Ti. In the branch
decomposition tree, we may thus choose the edge e∗ that achieves the best balance among all the edges
e ∈ T .

In the algorithm of Gu and Tamaki, each edge of the branch decomposition tree corresponds to a self-non-
crossing closed curve passing through O(ε−1w) nodes of G (as in sphere-cut decompositions) that encloses
G1 and does not enclose G2 (or vice versa).

Since the degree of each node is at most three, it is possible to choose an edge e∗ such that the total weight
strictly enclosed by the non-self-crossing cycle Ce∗ and the total weight strictly not enclosed by Ce∗ are each
at most a 2/3–fraction of the total weight. The cycle Ce∗ is our balanced separator of length O(ε−1w).

For an optimal sphere-cut decomposition, the fastest algorithm runs in cubic time [ST94, GT08]. For
our purposes, the constant approximation in Lemma 1 suffices.

We define a variant of the r–division as in Section 2.1, wherein we use either Miller’s cycle separator or
sphere-cut separators, whichever is smaller. An [r, w]–division of G with tree-width w is a decomposition
into Θ(n/r) edge-disjoint pieces, each with O(r) nodes and O(min{

√
r, w}) boundary nodes.

Lemma 2. An [r, w]–division can be found in time O(n1+ε lg n+ n lg r + nr−1/2 lg n).

The proof is similar to that of [Fre87, WN10b] and appears in the appendix.

Proof of Theorem 6. The data structure for planar graphs with smaller tree-width is essentially the same
as the data structure for general planar graphs as described in Section 5. The main difference is that, when
computing a cycle separator, instead of Miller’s algorithm to find a cycle separator of length O(

√
n), we use

sphere-cut separators and the corresponding [r, w]–division as in Lemma 2.

7 Conclusion

We introduce a new data structure to answer distance queries between any node v and all the nodes on a
not-too-long cycle of a planar graph. Using this tool, we significantly improve the worst-case query times for
distance oracles with low space requirements both for linear space (down from O(n) to O(n1/2+ε)) and for
superlinear space S (down from O(n2/S) to O(n/

√
S)). We also give the first distance oracle that actually

exploits the tree-width of a planar graph, particularly if it is o(
√
n) and, as an application, we give a distance

oracle whose query time is roughly proportional to the shortest-path length — notably without any sacrifices
in the worst-case behavior. Similar behavior of practical methods had been observed experimentally before
but could not be proven until the current work. We hope that future work will provide a distance oracle with
provable query time proportional to the number of edges on the shortest path. In our opinion, an interesting
open question is whether there is another tradeoff curve below the space O(S) and query time O(n/

√
S)

curve.
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A [r, w]–division; Proof of Lemma 2

An [r, w]–division of G with tree-width w is a decomposition into Θ(n/r) edge-disjoint pieces, each with
O(r) nodes and O(min{

√
r, w}) boundary nodes.

Lemma 2. An [r, w]–division can be found in time O(n1+ε lg n+ n lg r + nr−1/2 lg n).

Proof. The procedure for obtaining the [r, w]–division is the one described in [WN10b], but using either
Miller’s cycle separator or sphere-cut separators, whichever is smaller. If

√
r = O(w) then since the separators

we use are smaller than the separators assumed in the proof of [WN10b, Lemmata 2 and 3], the lemmas
apply and the resulting decomposition has Θ(n/r) pieces, each with O(r) nodes and O(

√
r) boundary nodes.

If,
√
r = ω(w), then first apply the separator theorem as in the procedure for obtaining a weak r-

division [WN10b, Lemma 2] until every piece has size O(r). Note that since
√
r = ω(w)

√
r = ω(w), we will

always use sphere-cut separators, whose size is cw, regardless of the size of the piece we separate. Therefore,
by [WN10b, Lemma 2], the number of pieces is Θ(n/r), and the total number of boundary nodes is O(n/

√
r).

However, here we need a tighter bound on the total number of boundary nodes. In the following we show
that the total number of boundary nodes is O(nw/r).

Consider the binary tree whose root corresponds to G, and whose leaves correspond to the pieces of the
weak r-division. Each internal node in the tree corresponds to a piece in the recursive decomposition that
either consists of too many nodes or contains too many holes and is therefore separated into two subpieces
using a sphere-cut separator. As in the proof of [WN10b, Lemma 2], for any boundary vertex v in the weak
r-division, let b(v) denote one less than the number of pieces containing v as a boundary vertex. Let B(n)
be the sum of b(v) over all such v. Every time a separator is used, cw boundary nodes are introduced, and
the region to which these nodes belong is split into two regions, so the number of regions to which these
nodes belong increases by one. Therefore, B(n) is bounded by the number of internal nodes times cw. Since
the tree is binary, the number of internal nodes is bounded by the number of leafs, so B(n) = O(nw/r).

Next, consider the procedure in [WN10b, Lemma 3] which further divides the pieces of the weak r-division
to make sure that the number of boundary nodes in each piece is small enough. In our case we want to
limit the number of boundary nodes per piece to at most c′w. Let ti denote the number of pieces in the
weak r-division with exactly i boundary nodes. Note that

∑
i ti =

∑
v∈VB

(b(v) + 1), where VB is the set of
boundary vertices over all pieces in the weak r-division. Hence,

∑
i ti ≤ 2B(v), so by the bound on B(v),∑

i ti = O(nw/r).
In the weak r-division, consider a piece P with i > c′

√
r boundary vertices. When the above procedure

splits P , each of the subpieces contains at most a constant fraction of the boundary vertices of P . Hence,
after di/(c′w) splits of P for some constant d, all subpieces will contain at most c′w boundary vertices. This
will result in at most 1 + di/(c′w) subpieces and at most cw new boundary vertices. We may choose c′ to
be sufficiently larger than c. The total number of new boundary vertices introduced by the above procedure
is thus ∑

i

cw(di/(c′w))ti ≤ d
∑
i

iti = O(nw/r)

and the number of new pieces is at most∑
i

(di/(c′w))ti = O(n/r).
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Hence, the procedure generates an r-division. Since a sphere-cut separator can be found in O(n1+ε) time, a
weak r-division can be found in O(n1+ε lg n) = O(n1+ε

′
) time, and refining it into an r-division can be done

within this time bound.

B Decomposition of Shortest Paths into Subpaths

The following elementary trivial observations on shortest paths and their interaction with boundaries of
pieces are the basis for the correctness of our query algorithms.

Lemma 3. Any subpath of a shortest path is a shortest path.

Proof. Assume some subpath is not a shortest path. It may be replaced with a shorter path yielding a
shorter overall path, a contradiction.

Lemma 4. Let Q be a subgraph of G with boundary ∂Q. Any shortest path from x ∈ Q to a node of y ∈ G
has a (possibly empty) x-to-∂Q prefix.

Proof. Follows immediately from the definition of the boundary of a subgraph.
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