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Abstract
Given an edge-weighted directed graph G, the Negative-
k-Cycle problem asks whether G contains a negative-
weight cycle with at most k edges. For k = 3 the
problem is known as the NegativeTriangle problem and
is equivalent to all-pairs shortest paths (and to min-plus
matrix multiplication) and solvable in O(n3) time. In this
paper, we consider the case of directed planar graphs. We
show that the Negative-k-Cycle problem can be solved
in min{O(nk2 logn), O(n2 logn)} time. Assuming the min-
plus convolution conjecture, we then show, for k > n1/3 that
there is no algorithm polynomially faster than O(n1.5

√
k),

and for k ≤ n1/3 that our O(nk2 logn) upper bound is
essentially tight. The latter gives the first non-trivial tight
bounds for a planar graph problem in P. Our lower bounds
are obtained by introducing a natural problem on matrices
that generalizes both min-plus matrix multiplication and
min-plus convolution, and whose complexity lies between the
complexities of these two problems.

1 Introduction
In this paper we present upper and lower bounds for the
Negative-k-Cycle problem in planar graphs. In this
problem, we are asked whether a given edge-weighted
directed graph G contains a directed cycle with at most
k edges whose total weight is negative. This is a natural
problem that generalizes both the NegativeTriangle
problem (where k = 3) and the NegativeCycle
problem (where k = n).

In general graphs, the NegativeTriangle prob-
lem is solvable in O(n3) time and is equivalent to all-
pairs shortest-paths (APSP), min-plus matrix multipli-
cation, and many other problems [4, 20] in the sense
that if one of them can be solved in truly subcubic
O(n3−ε) time then all of them can. In sparse graphs,
the NegativeTriangle problem is solvable in O(m1.5)
time [11] and the NegativeCycle problem is solv-
able in O(mn) time. Recently, Orlin et al. [18] gave a
randomized O(mn log n) time algorithm that finds the
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smallest k for which there is a negative-k-cycle, and Lin-
coln et al. [15] proved that (conditioned on the hard-
ness of the minimum-weight k-Clique problem) when
m = Θ(n1+1/k) there is no O(n2 + mn1−ε) algorithm
for Negative-(2k + 1)-Cycle.

In planar graphs, the situation is very different. The
NegativeTriangle problem is solvable in linear O(n)
time and the NegativeCycle problem is solvable in
near-linear Õ(n) time [10,12,17]. Here is a simple O(n)
algorithm for NegativeTriangle: Every planar graph
contains a vertex v of degree at most 6, check every two
neighbors of v if they form a negative triangle with v,
remove v from the graph and recurse. This simple trick
works for k = 3 but for other values of k it is entirely
unclear what is the complexity of the Negative-k-
Cycle problem. In this paper we set out to resolve
this problem. In particular,

Can Negative-k-Cycle in planar graphs be solved in
near-linear time?

Until this paper, the only known bound for
PlanarNegative-k-Cycle was the O(n1.5k) time al-
gorithm by Williamson and Subramani [22]. Our first
result is a faster algorithm:

Theorem 1.1. PlanarNegative-k-Cycle can be
solved in O(nk2 log n) time deterministically and in
O(n2 log n) time with constant probability.

The above running times strictly dominate [22] for
any k 6=

√
n and match [22] for k =

√
n. But can one

do better? We use tools from fine-grained complexity
in order to show that probably not. The two obvious
candidates for showing such hardness results are min-
plus matrix multiplication and min-plus convolution:

MinPlusMult
Input: n× n matrices A,B,C with integer entries
in [−W,W ].
Output: Does A[i][k] + B[k][j] ≥ C[i][j] hold for
every i, j, k?
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MinPlusConv
Input: n-length sequences a, b, c with integer en-
tries in [−W,W ].
Output: Does minx+y=z a[x] + b[y] ≥ c[z] hold for
every z?

Observe that the above problems are the decision
versions (also called the “Lower Bound” versions) of min-
plus multiplication and min-plus convolution. Cygan et
al. [9] conjectured that min-plus convolution cannot be
solved in O(n2−ε polylogW ) time and proved that this
implies that the decision version MinPlusConv can-
not be solved in O(n2−ε polylogW ) time. Vassilevska
Williams and Williams [21] conjectured that APSP can-
not be solved in O(n3−ε polylogW ) time and proved
that this implies that the decision version MinPlus-
Mult cannot be solved in O(n3−ε polylogW ) time. The
min-plus convolution conjecture has already been used
to establish quite a few lower bounds [1,3,5,6,8,9,13,14].
It is particularly appealing because it implies both the
3-SUM conjecture and the APSP (or equivalently Min-
PlusMult) conjecture (and therefore it implies all the
lower bounds that follow from these two very popular
conjectures, see [19]). Namely, Bremner et al. [7] showed
that the min-plus convolution conjecture implies that
MinPlusMult cannot be solved in O(n3−ε polylogW )
time, and Cygan et al. [9] showed that it implies that
3-SUM cannot be solved in O(n2−ε polylogW ) time.

The first conditional lower bound in planar graphs
was given by Abboud and Dahlgaard [2] for the prob-
lem of maintaining a (dynamic) planar graph subject
to edge insertions and deletions as well as distance
queries between any two nodes. Abboud and Dahlgaard
showed that, assuming the MinPlusMult conjecture,
no algorithm can support both updates and queries in
O(n1/2−ε) time. Very recently, Abboud et al. [1] es-
tablished the first conditional lower bound for a static
planar graph problem. They showed that, assuming the
MinPlusConv conjecture, the Sparsest Cut problem
(and also the related Minimum Quotient and Minimum
Bisection problems) cannot be solved in O(n2−ε) time
on a planar graph with n vertices, unit vertex-weights,
and total edge cost C = nO(1). However, this does
not match their upper bound of O(n3/2W log(CW )),
as for instances obtained in the lower bound this is
O(n5/2 log n).

Consider the following simple reduction (inspired
but different from Abboud et al. [1]) from MinPlus-
Conv to PlanarNegative-k-Cycle with k = n:
Let a′[i] = a[i] − i · M , b′[i] = b[i] − i · M and
c′[i] = −c[n − 1 − i] + (n − 1 − i)M , where M is
sufficiently large, say M = 3W + 1. Then finding

x + y = z such that a[x] + b[y] < c[z] is equivalent
to finding x, y, z such that x + y + z ≤ n − 1 and
a′[x] + b′[y] + c′[z] < 0. The graph consists of three
paths (1) u0, u1, . . . , un, (2) v0, v1, . . . , vn, and (3)
w0, w1, . . . , wn. We identify un with v0, vn with w0

and wn with u0, and add zero-weight edges (ui, ui+1),
(vi, vi+1) and (wi, wi+1), for every i = 0, 1, . . . , n.
Finally, we add an edge (u0, un−i) with weight a′[i],
(v0, vn−i) with weight b′[i] and (w0, wn−i) with weight
c′[i]. See Figure 1.

vn = w0

wn = u0 un = v0

Figure 1: Illustration of the reduction for k = Θ(n).

The obtained planar graph on O(n) nodes contains
a negative cycle consisting of at most n + 2 edges if
and only if there are x, y, z such that a[x] + b[y] < c[z].
Consequently, we should not hope for an O(n2−ε) time
algorithm for the PlanarNegative-k-Cycle problem
with k = n. In particular, this excludes a near-linear
time algorithm. However, because this reduction uses
a large value of k, it might be still possible that there
exists, say, an O(nk) time algorithm. This raises the
following question:

Can Negative-k-Cycle in planar graphs be solved in
Õ(nk) time?

To determine the complexity of Negative-k-
Cycle for the case of sublinear values of k, we introduce
a natural variant of matrix multiplication that general-
izes both min-plus matrix multiplication and min-plus
convolution. We hope that this new variant will be use-
ful to study the fine-grained complexity of other prob-
lems with two parameters.

MinPlusConvMult
Input: n × n matrices A,B,C whose entries are
sequences of length s of integers in [−W,W ].
Output: Does minx+y=z A[i][k][x] + B[k][j][y] ≥
C[i][j][z] hold for every i, j, k, z?

Clearly, when n = 1 MinPlusConvMult degener-
ates to MinPlusConv and when s = 1 it degenerates
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to MinPlusMult. Algorithmically, the naive O(n3)
algorithm for MinPlusConv and the naive O(n2) al-
gorithm for MinPlusMult imply a naive O(n3s2) algo-
rithm for MinPlusConvMult. In terms of complexity
as a function of the size of the input, without any restric-
tions on the parameters n and s, MinPlusConvMult
is not easier than MinPlusConv and MinPlusMult.
However, in order to prove the hardness of Negative-
k-Cycle, we will be interested in the case where s is re-
stricted to be polynomial in n. When this is the case, we
show that, informally speaking, the complexity of Min-
PlusConvMult lies between min-plus convolution and
min-plus matrix multiplication. More precisely, we show
the following:

Theorem 1.2. For any α, ε > 0 there exists ε′ > 0 s.t.
when s = nα an O(n3s2−ε) time algorithm for Min-
PlusConvMult implies an O(n2−ε

′
) time algorithm

for MinPlusConv, and an O(n3−ε) time algorithm for
MinPlusMult implies an O(n3s2−ε

′
) time algorithm

for MinPlusConvMult.

We then show a reduction from MinPlusConv-
Mult (with parameters n, s) to PlanarNegative-k-
Cycle (with parameters k = n+ s, and n′ = n2s). By
appropriately adjusting the parameters, this results in
the following theorem:

Theorem 1.3. Assuming the min-plus convolution
conjecture, for k > n1/3 there is no algorithm for
PlanarNegative-k-Cycle polynomially faster than
O(n1.5

√
k), and for k ≤ n1/3 there is no algorithm poly-

nomially faster than O(nk2).

In particular, for k ≤ n1/3 we obtain tight upper
and lower bounds (up to sub-polynomial terms). This
is the first non-trivial tight bound for a planar graph
problem in P.

If one is willing to believe in the hardness of
MinPlusMult but not MinPlusConv, our reduction
is still meaningful, as it implies the following theorem:

Theorem 1.4. Assuming the APSP conjecture, there
is no algorithm for PlanarNegative-k-Cycle poly-
nomially faster than O(nk).

2 Upper Bound
In this section we prove Theorem 1.1. Let G′ be
the unweighted undirected planar graph obtained by
disregarding the weights and the directions of all edges
of G. We can assume that G′ is connected. Let T
be a BFS tree in G′ rooted at an arbitrary vertex,
and let d(v) denote the depth of vertex v in T . We
define the i-th slice of T to contain all vertices v such

that d(v) ∈ [i · k, i · k + 2k). Notice that the slices
are not disjoint, but every vertex belongs to at most
two slices. Consider a directed cycle C with at most
k edges in G. Let v1, v2, . . . , v` denote the vertices
of C ordered such that d(v1) ≤ d(v2) ≤ · · · ≤ d(v`).
Then, by construction of G′ and since T is a BFS tree
we have that d(vj) ∈ [d(v1), k + d(v1)] for all j. This
implies that all vertices of C belong to the bd(v1)/kc-th
slice. Consequently, it is enough to solve the problem
separately for the subgraph of G induced by the nodes
of every slice. We next give an O(n′k2) time solution
for a subgraph of size n′ leading to an overall running
time of O(nk2).

Consider the subgraphGi induced inG by the nodes
of the i-th slice, and let G′i be the unweighted undirected
planar graph obtained by disregarding the weight and
the directions of all edges of Gi. Again, we can assume
that G′i is connected by adding extra edges incident to a
new node. By construction, there exists a spanning tree
Ti of G′i of depth O(k). It is well known [16] that under
such assumption G′i and any of its subgraphs admit a
balanced vertex separator of size O(k) that can be found
in linear time. We run a divide-and-conquer procedure
that works as follows: After having found in linear time
a balanced vertex separator S of size O(k), for every
node u ∈ S we check in O(n′k) time if there exists a
negative directed cycle consisting of at most k edges
and containing u. Then, we remove S and recurse on
the obtained smaller subgraphs. Solving the recurrence
we obtain that the running time is O(n′k2 log n).

It remains to explain how to check in O(n′k) time
if there exists a negative directed cycle consisting of at
most k edges and containing u. This is done by simply
running k iterations of Bellman-Ford. More formally,
we proceed in k phases. In the i phase we calculate
for every v the distance di(v) from u to v consisting of
at most i edges. Initially, d0(u) = 0 and d0(v) = ∞
for every v 6= u. The values di+1(v) can be computed
from the values di(v) in O(n′) time by relaxing all the
edges. Overall, the running time is O(n′k) and at the
end d0(u) < 0 if and only if there is a negative cycle
with at most k edges that contains u.

Finally, we explain how to obtain the alternative
O(n2 log n) bound in the theorem’s statement using
standard random sampling. We do this in log k phases.
The i’th phase checks if there is a negative k′-cycle for
k′ ∈ [2i, 2i+1]. The i’th phase begins by randomly
sampling each vertex of G with probability 1

2i . If
there exists a negative k′-cycle for k′ ∈ [2i, 2i+1], then
with constant probability one of the sampled vertices
belongs to this cycle. Therefore, as explained above,
we can find this cycle by running 2i+1 iterations of
Bellman-Ford from each sampled vertex. This takes
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O( n2i · n · 2
i+1) = O(n2) time, so over all phases we

get O(n2 log n) time.

3 Lower Bound
In order to consider the running time as a function of
n, we assume that in a MinPlusConvMult instance
s = nα for some constant α > 0. We start by
proving Theorem 1.2 that, informally speaking, says
that MinPlusConvMult lies between MinPlusConv
and MinPlusMult. This is established through two
reductions, both inspired by the reduction from min-
plus convolution to APSP [7].

Lemma 3.1. For any α, ε > 0, if MinPlusConvMult
can be solved in O(n3+2α−ε) time then MinPlusConv
can be solved in O(n2−ε/(2+α)) time.

Proof. We will reduce an instance of MinPlusConv on
sequences of length n to m instances of MinPlusCon-
vMult on matrices of size m ×m and s = 2nα/(2+α),
so m = s1/α = n1/(2+α). By substituting the assumed
complexity of MinPlusConvMult, we then obtain
that the complexity of MinPlusConv is

O(m ·m3+2α−ε) = O(n1/(2+α) · n(3+2α−ε)/(2+α))

= O(n2−ε/(2+α)).

Let ` = n/m2 = nα/(2+α). We start with partition-
ing all sequences into n/` = n2/(2+α) blocks of length `,
and use ai, bi, ci to denote the i-th block of the sequence
(a[i])n−1i=0 , (b[i])n−1i=0 , (c[i])n−1i=0 , respectively. Further, let
a′i, b

′
i be blocks of length 2` obtained from ai, bi by ap-

pending ` copies of ∞, and let c′i be a block of length
2` obtained by concatenating ci and ci+1 (or appending
` copies of −∞ if ci+1 does not exist). Recall that our
task is to check if minx+y=z a[x] + b[y] ≥ c[z] holds for
every z, or equivalently a[x] + b[y] ≥ c[x + y] holds for
every x, y. Because b(x+y)/`c is either bx/`c+by/`c or
bx/`c+ by/`c+ 1, this is now equivalent to checking if,
for every i, j and x, y we have a′i[x]+ b′j [y] ≥ c′i+j [x+y].

We now define the instances of MinPlusConv-
Mult. In all instances, A[i][k] is simply a′(i−1)m+k.
In the t-th instance, for t = 0, 1, . . . ,m − 1, B[k][j] is
b′t+(j−1)m−k and C[i][j] is c′t+(i+j−2)m, where the nonex-
istent a′i, b′i and c′i are assumed to consist of 2` copies
∞, ∞ and −∞, respectively. We need to argue that
solving all these instances is equivalent to checking the
aforementioned condition.

Assume that in the t-th instance of MinPlus-
ConvMult we have i, j, x, y such that A[i][k][x] +
B[k][j][y] < C[i][j][x + y]. By substituting the defi-
nitions, this implies

a′(i−1)m+k[x] + b′t+(j−1)m−k[y] < c′t+(i+j−2)m[x+ y]

so we have a′i′ [x]+b′j′ [y] < c′i′+j′ [x+y] for some i′, j′, x, y.
Now assume that we have a′i[x] + b′j [y] < c′i+j [x+ y]

for some i, j, x, y. Set t = (i + j) mod m and k =
(i − 1) mod m + 1. Then, both i − k and j − t + k
are nonnegative divisible by m. We can therefore find
i′, j′ such that (i′ − 1)m+ k = i, t+ (j′ − 1)m− k = j
and t+ (i′+ j′−2)m = i+ j. Again by substituting the
definitions, this implies

A[i′][k][x] +B[k][j′][y] < C[i′][j′][x+ y]

for some i′, j′, k, x, y.

Lemma 3.2. For any α, ε > 0, if MinPlusMult can
be solved in O(n3−ε) time then MinPlusConvMult
can be solved in O(n3+2α−ε(1+α/2)) time.

Proof. We will reduce an instance of MinPlusConv-
Mult on n × n matrices with entries being sequences
of length s = nα to

√
s instances of MinPlusMult

on n
√
s × n

√
s matrices. By substituting the assumed

complexity of MinPlusMult, we then obtain that the
complexity of MinPlusConvMult is

O(nα/2n(1+α/2)(3−ε)) = O(n3+2α−ε(1+α/2)).

Bremner et al. [7, Theorem 10] showed how to re-
duce MinPlusConv to MinPlusMult. Their reduc-
tion can be thought of as turning an instance of Min-
PlusConv of sequences of length s into

√
s instances

of MinPlusMult of
√
s ×
√
s matrices. Our reduc-

tion proceeds in two steps. In the first step, we fol-
low the same approach as [7] for each sequence in the
MinPlusConvMult instance. The result of this pro-
cess is a set of

√
s matrices {At[1..n][1..n]}

√
s−1

t=0 , where
the entry At[i][j] is the t’th

√
s ×
√
s matrix from the

reduction in [7] (and similarly for B and C). Doing
so guarantees the following for every i, j, k: there ex-
ist x, y such that A[i][k][x] + B[k][j][y] < C[i][j][x + y]
if and only if there exist t and i′, j′, k′ such that
At[i][k][i′][k′] +Bt[k][j][k′][j′] < Ct[i][j][i

′][j′].
In the second step we convert the n× n×

√
s×
√
s

matrices At, Bt, Ct into n
√
s× n

√
s matrices A′t, B′t, C ′t

by setting

A′t[(i− 1)
√
s+ i′][(k − 1)

√
s+ k′] = At[i][k][i′][k′],

B′t[(k − 1)
√
s+ k′][(j − 1)

√
s+ j′] = Bt[k][j][k′][j′],

C ′t[(i− 1)
√
s+ i′][(j − 1)

√
s+ j′] = Ct[i][j][i

′][j′].

By definition, there exist i, j, k, i′, j′, k′ such that
At[i][k][i′][k′]+Bt[k][j][k′][j′] < Ct[i][j][i

′][j′] if and only
if there exist i, j, k such that A′t[i][k]+B′t[k][j] < Ct[i][j].
Consequently, solving all the obtained instances of Min-
PlusMult is equivalent to solving the original instance
of MinPlusConvMult.
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We note that a weaker conclusion that MinPlus-
ConvMult can be solved in O(n3+2α−ε) time can be
obtained by iterating over every x, y (and z = x + y)
and creating a MinPlusMult instance corresponding
to choosing A[i][j][x], B[j][k][y] and C[i][k][z].

Having shown that MinPlusConvMult is be-
tween MinPlusConv and MinPlusMult, we now
proceed to show a reduction from MinPlusConvMult
to PlanarNegative-k-Cycle.

Lemma 3.3. Given an instance of MinPlusConv-
Mult, we can construct in linear time an equivalent
instance of PlanarNegative-k-Cycle on O(n2s)
nodes and k = O(n+ s).

Before we proceed to the proof, let us analyze
the implications of Lemma 3.3 on the complexity of
PlanarNegative-k-Cycle on n nodes and k = nβ ,
assuming the min-plus convolution conjecture of Cygan
et al. [9]:

Conjecture 3.1. For any ε > 0, MinPlusConv
cannot be solved in O(n2−ε polylogW ) time.

For β > 1/3 we proceed as follows. We
consider MinPlusConvMult with s = nα =
n2β/(1−β). By Lemma 3.3 it can be reduced to
PlanarNegative-k-Cycle on N = O(n2+2β/(1−β))
nodes and k = O(n2β/(1−β)). Conjecture 3.1 together
with Lemma 3.1 implies that there is no O(n3+2α−ε) =
O(n3+4β/(1−β)−ε) = O(N3/2k1/2−ε

′
) time algorithm for

this case. For β ≤ 1/3 we proceed slightly differently.
We consider MinPlusConvMult with s = nα = n3β .
By partitioning each matrix into s × s blocks, such an
instance can be reduced using a standard technique to
(n/s)3 instances of MinPlusConvMult on s× s ma-
trices with the same s. By Lemma 3.3, each of the
smaller instances can be reduced to PlanarNegative-
k-Cycle on O(s3) nodes and k = O(s). These in-
stances can be then glued together to obtain a single
graph on N = O(n3) nodes and k = O(s). Conjec-
ture 3.1 together with Lemma 3.1 imply that there is no
O(n3+2α−ε) = O(Nk2−ε) time algorithm for this case.
These two cases together establish Theorem 1.3.

Lemma 3.3 can be also be used in conjunction with
the (perhaps more believable) APSP conjecture:

Conjecture 3.2. For any ε > 0, MinPlusMult
cannot be solved in O(n3−ε polylogW ) time.

We consider an instance of MinPlusMult. Let
` = n3α/(2α+1). By partitioning each matrix into ` × `
blocks and considering the blocks containing the sought

A[i][k], B[k][j] and C[i][j], such an instance can be re-
duced to (n/`)3 instances of MinPlusMult on `×`ma-
trices. Because MinPlusMult can be treated as Min-
PlusConvMult with s = 1, By Lemma 3.3, each of the
smaller matrices can be reduced to PlanarNegative-
k-Cycle on O(`2) nodes and k = O(`). These instances
can be then glued together to obtain a single graph on
N = O(n3/`) nodes and k = O(`). Conjecture 3.2 im-
plies that there is no O(Nk1−ε) time algorithm for this
case and establishes Theorem 1.4.

We proceed to the proof of Lemma 3.3. We first
describe the auxiliary gadgets, then the main gadget,
and then finally explain how to compose three copies of
the main gadget to obtain the reduction.

The sequence gadget. Given a sequence
(a[i])s−1i=0 and parametersM, `, where (informally speak-
ing) ` is a small constant and M is a very large weight,
the sequence gadget S(a,M, `) is constructed as follows.
We create a directed path v0 → v1 → . . .→ v`·s+2 with
` · s + 3 vertices. Then, for every i = 0, 1, . . . , s − 1 we
add the edge (v0, vi+1) with weight a[i]. Finally, we set
the weight of the edge (vs, vs+1) to be −M , and the
weights of the remaining edges on the path to be 0. See
Figure 2. We call v0 the source and v`·s+2 the sink. It is
easy to verify that, for every i = 0, 1, . . . , s−1, there is a
path from the source to the sink consisting of ` ·s− i+2
edges and total weight a[i]−M , and there are no other
source-to-sink paths.

v0 ︸ ︷︷ ︸
s

v`·s+2︸ ︷︷ ︸
(`−1)s+2

a[s− 1]

−M

Figure 2: Sequence gadget.

The grid gadget. Given a matrix A[1..n][1..n]
consisting of sequences of length s and parameters
M,M ′ and `, where (informally speaking) ` is a small
constant and M �M ′, the grid gadget G(A,M,M ′, `)
is obtained as follows. We start with creating an
(n + 1) × (n + 1) grid consisting of nodes vi,j , for
all i, j = 0, 1, . . . , n such that i + j > 0. For every
i = 1, 2, . . . , n and j = 0, 1, . . . , n − 1 we add an edge
(vi,j , vi,j+1). For all i, j = 1, 2, . . . , n we add an edge
(vi,j , vi−1,j). The nodes si = vi,0 are called sources,
and the nodes tj = v0,j are called targets. Then, for
all i, j = 1, 2, . . . , n we subdivide the edge (vi,j−1, vi,j)
by inserting a new node v′i,j , and similarly for all
i, j = 1, 2, . . . , n we subdivide the edge (vi,j , vi−1,j) by
inserting a new node v′′i,j . We set the weights of all
edges to be 0. Finally, we insert a copy of the sequence
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gadget S(A[i][j],M ′′, `) with M ′′ = M + (i + j)M ′,
identifying its source and target nodes with v′i,j and
v′′i,j , respectively. See Figure 3.

s4

s3

s2

s1

t1 t2 t3 t4

v3,2v′3,2

v′′3,2

S(
A
[3
][2
],M

′′ , `
)

Figure 3: Grid gadget.

Consider a path from si to tj . Such path is one
of three types depending on the number of sequence
gadgets visited by the path (where intersecting the
gadget only at its source or sink is not considered to
be visiting):

1. The path does not visit any sequence gadget and
therefore consists of 2(i + j) edges and its total
weight is 0.

2. The path visits exactly one sequence gadget and
therefore consists of 2(i + j) + ` · s − k edges for
some k ∈ {0, 1, . . . , s− 1}. Assume that the visited
sequence gadget has been created for vi′,j′ (where
i′ ≤ i and j′ ≤ j by the construction of the grid).
The total weight of the path is therefore −M−(i′+
j′)M ′ + A[i′][j′][k]. Choosing a sufficiently large
M � M ′ thus guarantees that the total weight of
such a path is either at least −M−(i+j)M ′+M ′/2
or equal to −M − (i+ j)M ′ +A[i][j][k].

3. The path visits at least two sequence gadgets and
therefore consists of at least 2(i+ j) + 2` · s edges.

Composing the gadgets. Before we explain
how to compose the gadget, we reformulate MinPlus-
ConvMult as to make it more suitable for the re-
duction. First, by negating the entries, we obtain an

equivalent formulation in which we are given matrices
A[1..n][1..n], B[1..n][1..n] and C[1..n][1..n] consisting of
sequences of length s and we seek i, j, k, x, y such that
A[i][k][x] + B[k][j][y] + C[i][j][z] < 0 and z = x + y.
Second, by choosing a sufficiently large m and defining
A′[i][j][x] = A[i][j][x] + m · x, B′[k][j][y] = B[k][j][y] +
m · y, and C ′[j][i][z] = C[i][j][s− 1− z]−m(s− 1− z),
we get an equivalent problem of finding i, j, k, x, y, z
such that A′[i][k][x] + B′[k][j][y] + C ′[j][i][z] < 0 and
s− 1 ≤ x+ y + z.

We now explain how to compose the gad-
gets. We create three grid gadgets G(A′,MA,M, 4),
G(B′,MB ,M, 2) and G(C ′,MC ,M, 1), where MA �
MB � MC � M . We use sAi and tAi to the denote
the i-th source and the i-th sink of the grid gadget
G(A,MA,M, 4), and similarly for the other grid gad-
gets. Let d = 12n+ 6s+ 2. We connect tAi to sBi with a
path consisting of 4(n− i)+d edges, and make the total
weight of these edgesMA+2i ·M . Similarly, we connect
tBi to sCi with a path consisting of 4(n − i) + d edges,
and make the total weight of these edges MB + 2i ·M .
Finally, we connect tCi to sAi with a path consisting of
4(n − i) + d edges, and make the total weight of these
edges MC + 2i ·M . See Figure 4.

G(A′,MA,M, 4)

G(B′,MB,M, 2)G(C ′,MC ,M, 1)

sA2

tA5

sB5

tB7sC7

tC2

Figure 4: Overall structure of the reduction.

Consider a cycle consisting of at most k edges where
k = 12n + 6s + 1 + 3d. Because k < 4d and each path
connecting a sink to its corresponding source in the next
grid consists of at least d edges, any cycle consisting of at
most k edges must have the following structure: There
exist i, j, k such that the cycle consists of the following
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six parts:

1. a path from sAi to tAk in G(A′,MA,M, 4) consisting
of at least 2(i+ k) edges,

2. the unique path from tAk to sBk consisting of 4(n−
k) + d edges of total weight MA + 2k ·M ,

3. a path from sBk to tBj in G(B′,MB ,M, 2) consisting
of at least 2(k + j) edges,

4. the unique path from tBj to sCj consisting of 4(n−
j) + d edges of total weight MB + 2j ·M ,

5. a path from sCj to tCi in G(C ′,MC ,M, 1) consisting
of at least 2(j + i) edges,

6. the unique path from tCi to sAi consisting of 4(n−
i) + d edges of total weight MC + 2i ·M .

For a sufficiently large MA, any negative cycle
consisting of at most k edges needs to visit at least
one sequence gadget inside G(A′,MA,M, 4) in order
to cancel out the MA weight. Visiting at least two
such sequence gadgets increases the number of edges
on the cycle to at least 12n + 8s + 3d > k. Therefore,
any negative cycle consisting of at most k edges visits
exactly one sequence gadget inside G(A′,MA,M, 4).
By repeating this reasoning on G(B′,MB ,M, 2) and
G(C ′,MC ,M, 1) we obtain that, in fact, such a cycle
visits exactly one sequence gadget inside each grid
gadget. Next, recall that the total weight of the part
of the cycle inside G(A′,MA,M, 4) is either at least
−MA− (i+ k)M +M/2 or equal to −MA− (i+ k)M +
A′[i][k][x]. Therefore, for a sufficiently large M , it must
be equal to −MA− (i+k)M +A′[i][k][x] (and consist of
2(i+ k) + 4s−x edges). By repeating this reasoning on
G(B′,MB ,M, 2) and G(C ′,MC ,M, 1) we conclude that
the cycle consists of 12n+ 7s−x− y− z+ 3d edges and
its total weight is A′[i][k][x] + B′[k][j][y] + C ′[j][i][z].
The existence of such a negative cycle implies that
12n+7s−x−y−z+3d ≤ k, which is equivalent to s−1 ≤
x+ y+ z and A′[i][k][x] +B′[k][j][y] +C ′[j][i][z] < 0 as
required. In the other direction, it is easy to verify that
if i, j, k, x, y, z are such that A′[i][k][x] + B′[k][j][y] +
C ′[j][i][z] < 0 and s − 1 ≤ x + y + z then there is a
negative cycle (that passes through sAi , tAk , s

B
k , t

B
j sCj ,

and tCi ) consisting of at most k edges. This concludes
the proof of Lemma 3.3.
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