
Multiple-Source Multiple-Sink
Maximum Flow in Directed Planar

Graphs in Near-Linear Time

Shay Mozes

joint work with Cora Borradaile,
Philip Klein, Yahav Nussbaum and
Christian Wulff-Nilsen

Planar Graphs

Planar Graphs

Planar Graphs

Planar Graphs

• arise in many applications

Planar Graphs

• arise in many applications

• admit faster algorithms

Planar Graphs

• arise in many applications

• admit faster algorithms

• interesting structural properties

Maximum Flow

input: a graph G with arc capacities and nodes s,t

output: an assignment of flow to arcs such that:

• conservation at non-terminals

• respects capacity at all arcs

• maximizes the amount of flow entering t

4

3

1

1

2

1

2 1

s

t

Maximum Flow

input: a graph G with arc capacities and nodes s,t

output: an assignment of flow to arcs such that:

• conservation at non-terminals

• respects capacity at all arcs

• maximizes the amount of flow entering t

4

3

1

1

2

1

2 1

s

t

Main Result

multiple-source, multiple-sink
maximum flow in directed planar

graphs in O(n log3n) time.

Applications
Multiple Sources and Sinks

• transportation networks
(Soviet railroad system)

• computer vision - image
segmentation, restoration,
stereo, object recognition,
texture synthesis (grid)

• maximum bipartite matching

Reduction to Single
Source and Sink

Reduction to Single
Source and Sink

Reduction to Single
Source and Sink

• reduction does not preserve planarity

• [Miller, Naor ’91] - sources and sinks on a small
number of faces

Known Results for
Single Source/Sink

general graphs:
• Õ(nm) - many results (blocking flow, push
relabel)
• O(m3/2 log(n2/m) logU) - [Goldberg, Rao ’97]

directed planar graphs:
• O(n) - s and t on the same face [Hassin ’81+

Henzinger et al. ’94]
• O(n log n) [Borradaile, Klein ’06]

Outline

• a few tools and definitions

• high-level description of recursive algorithm

• main ingredients for near-linear time

Multiple Sinks on a path

Multiple Sinks on a path

reduces to the single
sink case -
connect all sinks with
infinite-capacity edges

preserves planarity!

The Residual Graph

• given flow f in graph G with capacities c(a),
the residual graph Gf has same nodes and arcs as G
and capacities cf (a) = c(a) - f(a)

• a path P is residual if every arc of P has positive capacity

0
10

The Residual Graph

• given flow f in graph G with capacities c(a),
the residual graph Gf has same nodes and arcs as G
and capacities cf (a) = c(a) - f(a)

• a path P is residual if every arc of P has positive capacity

10
0

4
6

1 1
00

0 3

s1 s2

t

a flow f is maximum iff there are no residual paths
from sources to sinks in Gf

0 1
01

1 2

s1 s2

t

a flow f is maximum iff there are no residual paths
from sources to sinks in Gf

0 3
1
0

0 0
11

2 1

s1 s2

t

a flow f is maximum iff there are no residual paths
from sources to sinks in Gf

0 3
1
0

1
0

Flow Zoo
• excess flow at node v is the difference between amount of flow

entering v and leaving v
conservation ⇒ excess flow is zero

• pseudoflow: arc capacities are respected (conservation may not)

• feasible flow: pseudoflow that obeys conservation everywhere
except sources and sinks

• circulation: pseudoflow that obeys conservation everywhere
(even at sources and sinks)

• given a pseudoflow, it is possible to push back all positive/
negative excess flow to/from its origin in linear time

1 1
00

0 3

s1 s2

t

think of sources as having excess flow +∞
think of sinks as having excess flow -∞

a pseudoflow corresponds to a maximum flow iff
there are no residual paths from + to - in the residual graph

think of sources as having excess flow +∞
think of sinks as having excess flow -∞

a pseudoflow corresponds to a maximum flow iff
there are no residual paths from + to - in the residual graph

3 0

s1 s2

t

0 3
1
0

1
0-3

think of sources as having excess flow +∞
think of sinks as having excess flow -∞

a pseudoflow corresponds to a maximum flow iff
there are no residual paths from + to - in the residual graph

3 0

s1 s2

t

0 3

-1
0 0

11
1
0

1
0

Cycle Separators [Miller ’86]

• simple cycle in a triangulated
2-connected planar graph

• balanced - between n/3 and
2n/3 nodes on each side

• small: consists of O(√n) nodes

• can be found in O(n) time

n/2

√
n

n/2

Outline

• a few tools and definitions

• high-level description of recursive algorithm

• main ingredients for near-linear time

Recursion, First try

s
3

s
2

s
1

t
3

t
2

t
1

s
3

s
2

s
1

t
3

t
2

t
1

Recursion, First try

• find separator

s
3

s
2

s
1

t
3

t
2

t
1

Recursion, First try

• find separator
• find maximum MSMS flow

inside and outsider
recursively

s
3

s
2

s
1

t
3

t
2

t
1

Recursion, First try

• find separator
• find maximum MSMS flow

inside and outsider
recursively

• no residual paths from
sources to sinks in each
subgraph

s
3

s
2

s
1

t
3

t
2

t
1

Recursion, Second try

s
3

s
2

s
1

t
3

t
2

t
1

Recursion, Second try

• find separator

s
3

s
2

s
1

t
3

t
2

t
1

Recursion, Second try

• find separator
• recursive problem (almost):

eliminate residual paths:
• from sources to sinks
• from sources to separator
• from separator to sinks

+

-

+ s
3

s
2

s
1

t
3

t
2

t
1

Recursion, Second try

• find separator
• recursive problem (almost):

eliminate residual paths
• from sources to sinks
• from sources to separator
• from separator to sinks

+

-

- s
3

s
2

s
1

t
3

t
2

t
1

Recursion, Second try

• find separator
• recursive problem (almost):

eliminate residual paths
• from sources to sinks
• from sources to separator
• from separator to sinks

+

-

- s
3

s
2

s
1

t
3

t
2

t
1

Recursion, Second try

• find separator
• recursive problem (almost):

eliminate residual paths
• from sources to sinks
• from sources to separator
• from separator to sinks

• eliminate residual paths from
+ to - on separator

+

-

- s
3

s
2

s
1

t
3

t
2

t
1

Recursion, Second try

• find separator
• recursive problem (almost):

eliminate residual paths
• from sources to sinks
• from sources to separator
• from separator to sinks

• eliminate residual paths from
+ to - on separator

+

-

- s
3

s
2

s
1

t
3

t
2

t
1

Recursion, Second try

• find separator
• recursive problem (almost):

eliminate residual paths
• from sources to sinks
• from sources to separator
• from separator to sinks

• eliminate residual paths from
+ to - on separator

• return flow from + to sources and from sinks to -

s
3

s
2

s
1

t
3

t
2

t
1

Recursion, Second try

• find separator
• recursive problem (almost):

eliminate residual paths
• from sources to sinks
• from sources to separator
• from separator to sinks

• eliminate residual paths from
+ to - on separator

• return flow from + to sources and from sinks to -

s
3

s
2

s
1

t
3

t
2

t
1

Recursion, Second try

• find separator
• recursive problem (almost):

eliminate residual paths
• from sources to sinks
• from sources to separator
• from separator to sinks

• eliminate residual paths from
+ to - on separator

• return flow from + to sources and from sinks to -

Fixing the Separator
eliminate residual paths from + to - on separator

-

+

+

+

+

+

-

-

+

-

+

+

+

+

+

-

-

+

Fixing the Separator
eliminate residual paths from + to - on separator

• make capacity of separator edges
infinite

• handle nodes one by one:

-

+

+

+

+

+

-

-

+

Fixing the Separator
eliminate residual paths from + to - on separator

• make capacity of separator edges
infinite

• handle nodes one by one:

• reduce capacity of incident edges
back to original

-

+

+

+

+

+

-

-

+

Fixing the Separator
eliminate residual paths from + to - on separator

• make capacity of separator edges
infinite

• handle nodes one by one:

• reduce capacity of incident edges
back to original

• push + excess to neighbor using
max-flow in residual graph

-

+

+

+

+

+

-

-

+

Fixing the Separator
eliminate residual paths from + to - on separator

• make capacity of separator edges
infinite

• handle nodes one by one:

• reduce capacity of incident edges
back to original

• push + excess to neighbor
• push - excess from neighbor using

max-flow in residual graph

-

+

-

+

+

+

-

-

+

Fixing the Separator
eliminate residual paths from + to - on separator

• make capacity of separator edges
infinite

• handle nodes one by one:

• reduce capacity of incident edges
back to original

• push + excess to neighbor
• push - excess from neighbor using

max-flow in residual graph

-

+

-

+

+

+

-

-

+

Fixing the Separator
eliminate residual paths from + to - on separator

• make capacity of separator edges
infinite

• handle nodes one by one:

• reduce capacity of incident edges
back to original

• push + excess to neighbor
• push - excess from neighbor

running time:

separator nodes time for max-flow between neighbors [Hassin + Henzinger et al.]

O(
√
n) ·O(n) = O(n3/2)

Outline

• a few tools and definitions

• high-level description of recursive algorithm

• main ingredients for near-linear time

bottleneck is fixing step which consists of
max-flow computations in residual graph between
neighbor nodes on a simple cycle

can represent the flow compactly:
flow is in graph with edges
representation has size
maintain flow only on separator edges
flow elsewhere represented implicitly

⇒ can perform each max-flow computation

in instead of

-

+

+

+

+

+

-

-

+

Near Linear Time
O(

√
n)

O(
√
n log2 n) O(n)

O(n)
O(

√
n)

Planar Duality

Planar Duality

Planar Duality

s

t

to compute max flow from s to t:

Max-Flow between Neighbors
[Hassin 1981]

Max-Flow between Neighbors
[Hassin 1981]

to compute max flow from s to t:

• make capacity of arc ts infinite

s

t

Max-Flow between Neighbors
[Hassin 1981]

s

t

!
0

to compute max flow from s to t:

• make capacity of arc ts infinite
• φ0 = the face to the left of arc ts

Max-Flow between Neighbors
[Hassin 1981]

s

t

!
0

to compute max flow from s to t:

• make capacity of arc ts infinite
• φ0 = the face to the left of arc ts
• consider capacity of an arc in the

primal as its length in the dual

Max-Flow between Neighbors
[Hassin 1981]

0 2

5

6

4
10

11

11

7

910

12

13

2

5
6

9

s

t

to compute max flow from s to t:

• make capacity of arc ts infinite
• φ0 = the face to the left of arc ts
• consider capacity of an arc in the

primal as its length in the dual
• compute:

d(φ) = distance of φ from φ0 in dual

Max-Flow between Neighbors
[Hassin 1981]

0 2

5

6

4
10

11

11

7

910

12

13

2

5
6

9

s

t

to compute max flow from s to t:

• make capacity of arc ts infinite
• φ0 = the face to the left of arc ts
• consider capacity of an arc in the

primal as its length in the dual
• compute:

d(φ) = distance of φ from φ0 in dual
• define flow on arc a by:
σ(a) = d(face right of a) - d(face left of a)
σ is a feasible circulation that maximizes the flow on arc ts

σ is a feasible circulation

σ is a feasible circulation
conservation:
σ(a) = d(face right of a) - d(face left of a)
flows on arcs outgoing from a node cancel to zero

2

6

4
10

9

11

feasibility guaranteed by shortest paths inequality:

σ is a feasible circulation
conservation:
σ(a) = d(face right of a) - d(face left of a)
flows on arcs outgoing from a node cancel to zero

2

6

4
10

9

11

feasibility guaranteed by shortest paths inequality:
d(head of dual of a) ≤ d(tail of dual of a) + length(dual of a)

σ is a feasible circulation
conservation:
σ(a) = d(face right of a) - d(face left of a)
flows on arcs outgoing from a node cancel to zero

2

6

4
10

9

11

feasibility guaranteed by shortest paths inequality:
d(head of dual of a) ≤ d(tail of dual of a) + length(dual of a)
d(head of dual of a) - d(tail of dual of a) ≤ capacity of a

σ is a feasible circulation
conservation:
σ(a) = d(face right of a) - d(face left of a)
flows on arcs outgoing from a node cancel to zero

2

6

4
10

9

11

feasibility guaranteed by shortest paths inequality:
d(head of dual of a) ≤ d(tail of dual of a) + length(dual of a)
d(head of dual of a) - d(tail of dual of a) ≤ capacity of a

σ(a) = d(face right of a) - d(face left of a)
 = d(head of dual of a) - d(tail of dual of a)
 ≤ capacity of a

σ is a feasible circulation
conservation:
σ(a) = d(face right of a) - d(face left of a)
flows on arcs outgoing from a node cancel to zero

2

6

4
10

9

11

Max-Flow between Neighbors
[Hassin 1981]

0 2

5

6

4
10

11

11

7

910

12

13

2

5
6

9

s

t

to compute max flow from s to t:

• make capacity of arc ts infinite
• φ0 = the face to the left of arc ts
• consider capacity of an arc in the

primal as its length in the dual
• compute:

d(φ) = distance of φ from φ0 in dual
• define flow on arc a by:
σ(a) = d(face right of a) - d(face left of a)
σ is a feasible circulation that maximizes the flow on arc ts

Max-Flow between Neighbors
[Hassin 1981]

0 2

5

6

4
10

11

11

7

910

12

13

2

5
6

9

s

t

to compute max flow from s to t:

• make capacity of arc ts infinite
• φ0 = the face to the left of arc ts
• consider capacity of an arc in the

primal as its length in the dual
• compute:

d(φ) = distance of φ from φ0 in dual
• define flow on arc a by:
σ(a) = d(face right of a) - d(face left of a)
σ is a feasible circulation that maximizes the flow on arc ts

• don’t push flow on ts

0 2

5

6

4
10

11

11

7

910

12

13

2

5
6

9

s

tFlow Representation 1/4

0 2

5

6

4
10

11

11

7

910

12

13

2

5
6

9

s

t

flow between endpoints of arc ai of C
can be represented by:

Flow Representation 1/4

0 2

5

6

4
10

11

11

7

910

12

13

2

5
6

9

s

t

flow between endpoints of arc ai of C
can be represented by:
• face labels di(φ) for each face φ

Flow Representation 1/4

0 2

5

6

4
10

11

11

7

910

12

13

2

5
6

9

s

t

flow between endpoints of arc ai of C
can be represented by:
• face labels di(φ) for each face φ
• flow on ai

Flow Representation 1/4

flow between endpoints of arc ai of C
can be represented by:
• face labels di(φ) for each face φ
• flow on ai

Flow Representation 1/4

flow between endpoints of arc ai of C
can be represented by:
• face labels di(φ) for each face φ
• flow on ai

to represent sum of flows for all iterations of fixing step:

Flow Representation 1/4

flow between endpoints of arc ai of C
can be represented by:
• face labels di(φ) for each face φ
• flow on ai

to represent sum of flows for all iterations of fixing step:
• accumulate face labels over all iterations (linearity)

Flow Representation 1/4

flow between endpoints of arc ai of C
can be represented by:
• face labels di(φ) for each face φ
• flow on ai

to represent sum of flows for all iterations of fixing step:
• accumulate face labels over all iterations (linearity)
• explicitly store flow on arcs of separator C

Flow Representation 1/4

flow between endpoints of arc ai of C
can be represented by:
• face labels di(φ) for each face φ
• flow on ai

to represent sum of flows for all iterations of fixing step:
• accumulate face labels over all iterations (linearity)
• explicitly store flow on arcs of separator C

will show it suffices to store face labels
for just the faces adjacent to separator C

Flow Representation 1/4

f0 - flow after recursive calls
f - flow on C’s arcs up to current iteration
d - accumulated face labels up to current iteration

Flow Representation 2/4

f0 - flow after recursive calls
f - flow on C’s arcs up to current iteration
d - accumulated face labels up to current iteration

Flow Representation 2/4

f0 - flow after recursive calls
f - flow on C’s arcs up to current iteration
d - accumulated face labels up to current iteration

• for an arc a not on C, flow is:
 f0(a) + d(face right of a) - d(face left of a)

Flow Representation 2/4

f0 - flow after recursive calls
f - flow on C’s arcs up to current iteration
d - accumulated face labels up to current iteration

• for an arc a not on C, flow is:
 f0(a) + d(face right of a) - d(face left of a)

• residual capacity of a is:
 c(a) - f0(a) - d(face right of a) + d(face left of a)

Flow Representation 2/4

f0 - flow after recursive calls
f - flow on C’s arcs up to current iteration
d - accumulated face labels up to current iteration

• for an arc a not on C, flow is:
 f0(a) + d(face right of a) - d(face left of a)

• residual capacity of a is:
 c(a) - f0(a) - d(face right of a) + d(face left of a)

• length of dual of a is:
 c(a) - f0(a) - d(head of dual of a) + d(tail of dual of a)

Flow Representation 2/4

• length of dual of a is:
 c(a) - f0(a) - d(head of dual of a) + d(tail of dual of a)

Flow Representation 3/4

• length of dual of a is:
 c(a) - f0(a) - d(head of dual of a) + d(tail of dual of a)

Flow Representation 3/4

• length of dual of a is:
 c(a) - f0(a) - d(head of dual of a) + d(tail of dual of a)

• length of any dual path P that does not use dual arcs of C is:
 ∑ c(a) - f0(a) - d(head of dual of a) + d(tail of dual of a)
= d(end of P) - d(start of P) + ∑c(a) - f0(a)

Flow Representation 3/4

• length of dual of a is:
 c(a) - f0(a) - d(head of dual of a) + d(tail of dual of a)

• length of any dual path P that does not use dual arcs of C is:
 ∑ c(a) - f0(a) - d(head of dual of a) + d(tail of dual of a)
= d(end of P) - d(start of P) + ∑c(a) - f0(a)

• ignoring arcs of C, shortest paths are independent of d
note: length of shortest path does change by d(end of P) - d(start of P)

Flow Representation 3/4

Flow Representation 4/4

• X = set of faces adjacent to separator C
 = set of endpoints of dual arcs of C

Flow Representation 4/4

Flow Representation 4/4

• X = set of faces adjacent to separator C
 = set of endpoints of dual arcs of C

• H - dual graph without dual arcs of C

Flow Representation 4/4

• X = set of faces adjacent to separator C
 = set of endpoints of dual arcs of C

• H - dual graph without dual arcs of C

• any shortest path in dual graph can be decomposed into:
- shortest paths in H
- dual arcs of C

Flow Representation 4/4

• X = set of faces adjacent to separator C
 = set of endpoints of dual arcs of C

• H - dual graph without dual arcs of C

• any shortest path in dual graph can be decomposed into:
- shortest paths in H
- dual arcs of C

• precompute all-pair shortest paths between nodes of X in H
- can be done in O(n log n) time [Klein SODA’05]
- these shortest paths do not change
- for x,y ∈ X, length of x-to-y path changes by d(x) - d(y)

Flow Representation 4/4

• X = set of faces adjacent to separator C
 = set of endpoints of dual arcs of C

• H - dual graph without dual arcs of C

• any shortest path in dual graph can be decomposed into:
- shortest paths in H
- dual arcs of C

• precompute all-pair shortest paths between nodes of X in H
- can be done in O(n log n) time [Klein SODA’05]
- these shortest paths do not change
- for x,y ∈ X, length of x-to-y path changes by d(x) - d(y)

• suffices to maintain face labels for X and explicit flow for C

Efficient
Implementation
• precompute all-pair shortest paths

between nodes of X in H O(n) pairs
• maintain:

- face labels for X faces
- explicit flow for C arcs

• can implement Dijkstra’s algorithm with this representation
in time using a modification of a data-structure
of Fakcharoenphol and Rao [FOCS’01]

O(
√
n)

O(
√
n)

O(
√
n log2 n)

running time:

separator nodes time for max-flow between neighbors using compact representation

O(
√
n) ·O(

√
n log2 n) = O(n log2 n)

Back to the Entire Graph

• with compact representation we have:
- explicit flow f on all arcs of C
- accumulated face labels only for faces adjacent to C

• need to extend face labels to all faces
• can be done using one more shortest-path computation in

the dual which takes linear time

s
3

s
2

s
1

t
3

t
2

t
1

Recall High-Level Algorithm
• find separator
• recursive problem (almost):

eliminate residual paths
• from sources to sinks
• from sources to separator
• from separator to sinks

• eliminate residual paths from
+ to - on separator

• return flow from + to sources and from sinks to -

running time: O(n log3n)

Open Questions/Directions
• can running time be improved?

(bottleneck is Fakcharoenphol and Rao’s data structure
and its modification)

• can this technique be adapted to bounded-genus graphs?
• implementation

Thank You!

3 0

s1 s2

t

0 3

-1

0 0

11

1

0

1

0

s
3

s
2

s
1

t
3

t
2

t
1

