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Maximum Flow

input:a graph G with arc capacities and nodes s,¢
output: an assignment of flow to arcs such that:

® conservation at non-terminals
® respects capacity at all arcs

® maximizes the amount of flow entering ¢
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Main Result

multiple-source, multiple-sink
maximum flow in directed planar
graphs in O(n log’n) time.




Applications
Multiple Sources and Sinks

’,’. v o & KZ\

® transportation networks
(Soviet railroad system)

® computer vision - image
segmentation, restoration,
stereo, object recognition,
texture synthesis (grid)

® maximum bipartite matching




Reduction to Single
Source and Sink
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Reduction to Single
Source and Sink

® reduction does not preserve planarity

® [Miller, Naor ’91] - sources and sinks on a small
number of faces



Known Results for
Single Source/Sink

general graphs:
* O(nm) - many results (blocking flow, push

relabel)
e O(m*? log(n’/m) logl ) - [Goldberg, Rao "97]

directed planar graphs:
* O(n) - s and f on the same face [Hassin 81+

Henzinger et al. '94]
* O(nlogn) [Borradaile, Klein ’06]



Qutline

® a few tools and definitions
® high-level description of recursive algorithm

® main ingredients for near-linear time



Multiple Sinks on a path




Multiple Sinks on a path

reduces to the single

sink case -

connect all sinks with
infinite-capacity edges




The Residual Graph

® given flow f in graph G with capacities c(a),
the residual graph Gy has same nodes and arcs as G
and capacities c¢f(a) = c(a) - f(a)
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® 3 path P is residual if every arc of P has positive capacity



The Residual Graph

® given flow f in graph G with capacities c(a),
the residual graph Gy has same nodes and arcs as G
and capacities c¢f(a) = c(a) - f(a)

® 3 path P is residual if every arc of P has positive capacity



a flow f is maximum iff there are no residual paths
from sources to sinks in Gy
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a flow f is maximum iff there are no residual paths
from sources to sinks in Gy
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Flow Zoo

excess flow at node v is the difference between amount of flow
entering v and leaving v
conservation = excess flow is zero

pseudoflow: arc capacities are respected (conservation may not)

feasible flow: pseudoflow that obeys conservation everywhere
except sources and sinks

circulation: pseudoflow that obeys conservation everywhere
(even at sources and sinks)

given a pseudoflow, it is possible to push back all positive/
negative excess flow to/from its origin in linear time



think of sources as having excess flow +o
think of sinks as having excess flow -00

a pseudoflow corresponds to a maximum flow iff
there are no residual paths from + to - in the residual graph
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think of sources as having excess flow +o
think of sinks as having excess flow -00

a pseudoflow corresponds to a maximum flow iff
there are no residual paths from + to - in the residual graph
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Cycle Separators [Miller '86]

simple cycle in a triangulated
2-connected planar graph

balanced - between 73 and
ons3 nodes on each side

small: consists of O(\n) nodes

can be found in O(n) time



Qutline

® high-level description of recursive algorithm



Recursion, First try
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* find separator

* find maximum MSMS flow
inside and outsider
recursively



Recursion, First try

* find separator

* find maximum MSMS flow
inside and outsider
recursively

* no residual paths from
sources to sinks in each
subgraph
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Fixing the Separator

eliminate residual paths from + to - on separator

* make capacity of separator edges
infinite
* handle nodes one by one:

* reduce capacity of incident edges
back to original

* push + excess to neighbor

* push - excess from neighbor

running time:/g(\/ﬁ) : 0(7‘&: O(nS/Q)

separator nodes time for max-flow between neighbors [Hassin + Henzinger et al.]



Qutline

® main ingredients for near-linear time



Near Linear Time

bottleneck is fixing step which consists of O(y/n)
max-flow computations in residual graph between
neighbor nodes on a simple cycle

can represent the flow compactly:
flow is in graph with O(n) edges
representation has size O(1/n)
maintain flow only on separator edges
flow elsewhere represented implicitly

= can perform each max-flow computation

in O(v/nlog®n) instead of O(n)
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Max-Flow between Neighbors
[Hassin I98I]

to compute max flow from s to

* make capacity of arc s infinite
e ¢y = the face to the left of arc ts
* consider capacity of an arc in the

primal as its length in the dual
* compute:

d(¢) = distance of ¢ from ¢, 1n dual |

* define flow on arc a by:

o(a) = d(face right of a) - d(face left of a)
o is a feasible circulation that maximizes the flow on arc s
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o is a feasible circulation

conservation:
o(a) = d(tace right of a) - d(face left of a)
flows on arcs outgoing from a node cancel to zero

feasibility guaranteed by shortest paths inequality:

d(head of dual of a) < d(tail of dual of a) + length(dual of a)
d(head of dual of a) - d(tail of dual of a) < capacity of a

o(a) = d(face right of a) - d(face left of a)

= d(head of dual of a) - d(tail of dual of a)
< capacity of a




Max-Flow between Neighbors
[Hassin I98I]

to compute max flow from s to :

* make capacity of arc s infinite
e ¢y = the face to the left of arc ts
* consider capacity of an arc in the

primal as its length in the dual
* compute:

d(¢) = distance of ¢ from ¢, 1n dual B

* define flow on arc a by:

o(a) = d(face right of a) - d(face left of a)
o is a feasible circulation that maximizes the flow on arc s




Max-Flow between Neighbors
[Hassin I98I]

to compute max flow from s to :

* make capacity of arc s infinite
e ¢y = the face to the left of arc ts

* consider capacity of an arc in the |
primal as its length in the dual S|

* compute: L
d(¢) = distance of ¢ from ¢, 1n dual

* define flow on arc a by:

o(a) = d(face right of a) - d(face left of a)
o is a feasible circulation that maximizes the flow on arc s

* don’t push flow on #s
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Flow Representation |/4

flow between endpoints of arc a; of C
can be represented by:

* face labels di(¢) for each face ¢
* flow on a;

to represent sum of flows for all iterations of fixing step:
* accumulate face labels over all iterations (linearity)

* explicitly store flow on arcs of separator C

will show it suffices to store face labels
for just the faces adjacent to separator C
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Flow Representation 2/4 --

fo- flow after recursive cals .- v
f - flow on C’s arcs up to current iteration =~
d - accumulated face labels up to current iteration

e for an arc a not on C, flow is:
fola) + d(face right of a) - d(face left of a)

* residual capacity of a is:
c(a) - fo(a) - d(face right of a) + d(tace left of a)

* [ength of dual of a is:
c(a) - fo(a) - d(head of dual of a) + d(tail of dual of a)



Flow Representation 3/4

* length of dual of a is: o
c(a) - fo(a) - d(head of dual of a) + d(tail of dual of a



Flow Representation 3/4
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* length of dual of a is: I N
c(a) - fo(a) - d(head of dual of a) + d(tail of dual of a



Flow Representation 3/4 -

* length of dual of a is: M N
c(a) - fo(a) - d(head of dual of a) + d(tail of dual of a

* [ength of any dual path P that does not use dual arcs of C is:
2 c(a) - fo(a) - d(head of dual of a) + d(tail of dual of a)

= d(end of P) - d(start of P) + 2 c(a) - fo(a)



Flow Representation 3/4 -
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* length of dual of a is: M o
c(a) - fo(a) - d(head of dual of a) + d(tail of dual of a

* [ength of any dual path P that does not use dual arcs of C is:
2 c(a) - fo(a) - d(head of dual of a) + d(tail of dual of a)
= d(end of P) - d(start of P) + 2 c(a) - fo(a)

* ignoring arcs of C, shortest paths are independent of d
note: length of shortest path does change by d(end of P) - d(start of P)



Flow Representation 4/4 - ‘ |

* X = set of faces adjacent to separator C . n \
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= set of endpoints of dual arcs of C
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* X = set of faces adjacent to separator C "

-
4
4

- ®

= set of endpoints of dual arcs of C

* H - dual graph without dual arcs of C

* any shortest path in dual graph can be decomposed into:

- shortest paths in H
- dual arcs of C
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----- SANE=Y

e X = set of faces adjacent to separator C _—X|

-
4
4

= set of endpoints of dual arcs of C

* H - dual graph without dual arcs of C

* any shortest path in dual graph can be decomposed into:

- shortest paths in H
- dual arcs of C
* precompute all-pair shortest paths between nodes of X in H

- can be done in O(n log n) time [Klein SODA’05]
- these shortest paths do not change

- for x,y € X, length of x-to-y path changes by d(x) - d(y)
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Flow Representation 4/4 ”
----- SANE=Y

e X = set of faces adjacent to separator C _—X|

-
4
4

= set of endpoints of dual arcs of C

* H - dual graph without dual arcs of C

* any shortest path in dual graph can be decomposed into:
- shortest paths in H
- dual arcs of C
* precompute all-pair shortest paths between nodes of X in H

- can be done in O(n log n) time [Klein SODA’05]
- these shortest paths do not change

- for x,y € X, length of x-to-y path changes by d(x) - d(y)
* suffices to maintain face labels for X and explicit flow for C



Efficient
Implementation

* precompute all-pair shortest paths
between nodes of X in H O(n) pairs
®* maintain:
- face labels for X O(v/n) faces
- explicit flow for C O(+/n) arcs

e can implement Dijkstra’s algorithm with this representation
in O(v/nlog” n) time using a modification of a data-structure

of Fakcharoenphol and Rao [FOCS’01]

running time: O(y/n) - O(v/nlog® n) = O(nlog® n)
7 ™

separator nodes time for max-flow between neighbors using compact representation



Back to the Entire Graph

* with compact representation we have:
- explicit flow f on all arcs of C )
- accumulated face labels only for faces adjacent to C

* need to extend face labels to all faces

* can be done using one more shortest-path computation in
the dual which takes linear time



Recall High-Level Algorithm

* find separator

* recursive problem (almost):
eliminate residual paths
* from sources to sinks
* from sources to separator
* from separator to sinks

* eliminate residual paths from
+ to - on separator

e return flow from + to sources and from sinks to -

running time: O(n log’n)



Open Questions/Directions

® can running time be improved!?
(bottleneck is Fakcharoenphol and Rao’s data structure
and its modification)
* can this technique be adapted to bounded-genus graphs!?
* implementation






