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Planar Graphs

• arise in many applications

• admit faster algorithms

• interesting structural properties  



Maximum Flow

input: a graph G with arc capacities and nodes s,t

output: an assignment of flow to arcs such that:

• conservation at non-terminals

• respects capacity at all arcs

• maximizes the amount of flow entering t 
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Main Result

multiple-source, multiple-sink 
maximum flow in directed planar 

graphs in O(n log3n) time.



Applications 
Multiple Sources and Sinks

• transportation networks 
(Soviet railroad system)

• computer vision - image 
segmentation, restoration, 
stereo, object recognition, 
texture synthesis (grid)

• maximum bipartite matching
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Reduction to Single
Source and Sink

• reduction does not preserve planarity

• [Miller, Naor ’91] - sources and sinks on a small 
number of faces



Known Results for 
Single Source/Sink

general graphs: 
• Õ(nm) - many results (blocking flow, push 
relabel)
• O(m3/2 log(n2/m) logU ) - [Goldberg, Rao ’97]

directed planar graphs:
• O(n) - s and t on the same face [Hassin ’81+ 

Henzinger et al. ’94]
• O(n log n) [Borradaile, Klein ’06]



Outline

• a few tools and definitions

• high-level description of recursive algorithm

• main ingredients for near-linear time



Multiple Sinks on a path



Multiple Sinks on a path

reduces to the single 
sink case - 
connect all sinks with 
infinite-capacity edges

preserves planarity!



The Residual Graph

• given flow f  in graph G with capacities c(a), 
the residual graph Gf  has same nodes and arcs as G 
and capacities   cf (a) = c(a) - f(a)

• a path P is residual if every arc of P has positive capacity
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The Residual Graph

• given flow f  in graph G with capacities c(a), 
the residual graph Gf  has same nodes and arcs as G 
and capacities   cf (a) = c(a) - f(a)
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a flow f  is maximum iff there are no residual paths 
from sources to sinks in Gf 
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Flow Zoo
• excess flow at node v is the difference between amount of flow 

entering v and leaving v
conservation ⇒ excess flow is zero

• pseudoflow: arc capacities are respected (conservation may not)

• feasible flow: pseudoflow that obeys conservation everywhere 
except sources and sinks

• circulation: pseudoflow that obeys conservation everywhere 
(even at sources and sinks)

• given a pseudoflow, it is possible to push back all positive/
negative excess flow to/from its origin in linear time
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think of sources as having excess flow +∞
think of sinks as having excess flow -∞

a pseudoflow corresponds to a maximum flow iff 
there are no residual paths from + to - in the residual graph
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think of sources as having excess flow +∞
think of sinks as having excess flow -∞

a pseudoflow corresponds to a maximum flow iff 
there are no residual paths from + to - in the residual graph
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Cycle Separators [Miller ’86]

• simple cycle in a triangulated 
2-connected planar graph

• balanced - between n/3 and 
2n/3 nodes on each side 

• small: consists of O(√n) nodes

• can be found in O(n) time
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Outline

• a few tools and definitions

• high-level description of recursive algorithm

• main ingredients for near-linear time
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Recursion, First try

• find separator
• find maximum MSMS flow 

inside and outsider 
recursively
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Recursion, First try

• find separator
• find maximum MSMS flow 

inside and outsider 
recursively

• no residual paths from 
sources to sinks in each 
subgraph
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Recursion, Second try

• find separator
• recursive problem (almost): 

eliminate residual paths:
• from sources to sinks
• from sources to separator
• from separator to sinks
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eliminate residual paths
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• from sources to separator
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• find separator
• recursive problem (almost): 

eliminate residual paths
• from sources to sinks
• from sources to separator
• from separator to sinks

• eliminate residual paths from 
+ to - on separator



+

-

- s
3

s
2

s
1

t
3

t
2

t
1

Recursion, Second try

• find separator
• recursive problem (almost): 

eliminate residual paths
• from sources to sinks
• from sources to separator
• from separator to sinks

• eliminate residual paths from 
+ to - on separator



+

-

- s
3

s
2

s
1

t
3

t
2

t
1
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• find separator
• recursive problem (almost): 

eliminate residual paths
• from sources to sinks
• from sources to separator
• from separator to sinks

• eliminate residual paths from 
+ to - on separator

• return flow from + to sources and from sinks to -
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Recursion, Second try

• find separator
• recursive problem (almost): 

eliminate residual paths
• from sources to sinks
• from sources to separator
• from separator to sinks

• eliminate residual paths from 
+ to - on separator

• return flow from + to sources and from sinks to -



Fixing the Separator
eliminate residual paths from + to - on separator
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eliminate residual paths from + to - on separator

• make capacity of separator edges 
infinite 

• handle nodes one by one:
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• make capacity of separator edges 
infinite 

• handle nodes one by one:

• reduce capacity of incident edges 
back to original

• push + excess to neighbor using 
max-flow in residual graph
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Fixing the Separator
eliminate residual paths from + to - on separator

• make capacity of separator edges 
infinite 

• handle nodes one by one:

• reduce capacity of incident edges 
back to original

• push + excess to neighbor
• push - excess from neighbor

running time:

separator nodes time for max-flow between neighbors [Hassin + Henzinger et al.]

O(
√
n) ·O(n) = O(n3/2)



Outline

• a few tools and definitions

• high-level description of recursive algorithm

• main ingredients for near-linear time



bottleneck is fixing step which consists of            
max-flow computations in residual graph between 
neighbor nodes on a simple cycle

can represent the flow compactly:
flow is in graph with          edges  
representation has size 
maintain flow only on separator edges
flow elsewhere represented implicitly

⇒ can perform each max-flow computation 

in                       instead of  
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Near Linear Time
O(

√
n)

O(
√
n log2 n) O(n)

O(n)
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√
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Max-Flow between Neighbors
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to compute max flow from s to t:

• make capacity of arc ts infinite
• φ0 = the face to the left of arc ts
• consider capacity of an arc in the

primal as its length in the dual
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to compute max flow from s to t:

• make capacity of arc ts infinite
• φ0 = the face to the left of arc ts
• consider capacity of an arc in the

primal as its length in the dual
• compute:

d(φ) = distance of  φ  from  φ0  in dual



Max-Flow between Neighbors
[Hassin 1981]
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to compute max flow from s to t:

• make capacity of arc ts infinite
• φ0 = the face to the left of arc ts
• consider capacity of an arc in the

primal as its length in the dual
• compute:

d(φ) = distance of  φ  from  φ0  in dual
• define flow on arc a by:
σ(a) = d(face right of a) - d(face left of a)
σ is a feasible circulation that maximizes the flow on arc ts
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σ is a feasible circulation
conservation:
σ(a) = d(face right of a) - d(face left of a)
flows on arcs outgoing from a node cancel to zero
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feasibility guaranteed by shortest paths inequality:

σ is a feasible circulation
conservation:
σ(a) = d(face right of a) - d(face left of a)
flows on arcs outgoing from a node cancel to zero
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feasibility guaranteed by shortest paths inequality:
d(head of dual of a) ≤ d(tail of dual of a) + length(dual of a)

σ is a feasible circulation
conservation:
σ(a) = d(face right of a) - d(face left of a)
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feasibility guaranteed by shortest paths inequality:
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feasibility guaranteed by shortest paths inequality:
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d(head of dual of a) - d(tail of dual of a) ≤ capacity of a

σ(a) = d(face right of a) - d(face left of a)
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Max-Flow between Neighbors
[Hassin 1981]
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to compute max flow from s to t:

• make capacity of arc ts infinite
• φ0 = the face to the left of arc ts
• consider capacity of an arc in the

primal as its length in the dual
• compute:

d(φ) = distance of  φ  from  φ0  in dual
• define flow on arc a by:
σ(a) = d(face right of a) - d(face left of a)
σ is a feasible circulation that maximizes the flow on arc ts



Max-Flow between Neighbors
[Hassin 1981]
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to compute max flow from s to t:

• make capacity of arc ts infinite
• φ0 = the face to the left of arc ts
• consider capacity of an arc in the

primal as its length in the dual
• compute:

d(φ) = distance of  φ  from  φ0  in dual
• define flow on arc a by:
σ(a) = d(face right of a) - d(face left of a)
σ is a feasible circulation that maximizes the flow on arc ts

• don’t push flow on ts
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Flow Representation 1/4
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• face labels di(φ) for each face φ
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flow between endpoints of arc ai of C 
can be represented by:
• face labels di(φ) for each face φ
• flow on ai

to represent sum of flows for all iterations of fixing step:
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flow between endpoints of arc ai of C 
can be represented by:
• face labels di(φ) for each face φ
• flow on ai

to represent sum of flows for all iterations of fixing step:
• accumulate face labels over all iterations (linearity)
• explicitly store flow on arcs of separator C

will show it suffices to store face labels 
for just the faces adjacent to separator C

Flow Representation 1/4



f0 - flow after recursive calls
f   - flow on C’s arcs up to current iteration 
d - accumulated face labels up to current iteration
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f0 - flow after recursive calls
f   - flow on C’s arcs up to current iteration 
d - accumulated face labels up to current iteration

• for an arc a not on C, flow is:
   f0(a) + d(face right of a) - d(face left of a) 

• residual capacity of a is:
   c(a) - f0(a) - d(face right of a) + d(face left of a) 
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f0 - flow after recursive calls
f   - flow on C’s arcs up to current iteration 
d - accumulated face labels up to current iteration

• for an arc a not on C, flow is:
   f0(a) + d(face right of a) - d(face left of a) 

• residual capacity of a is:
   c(a) - f0(a) - d(face right of a) + d(face left of a) 

• length of dual of a is:
   c(a) - f0(a) - d(head of dual of a) + d(tail of dual of a) 
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• length of dual of a is:
   c(a) - f0(a) - d(head of dual of a) + d(tail of dual of a) 
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• length of dual of a is:
   c(a) - f0(a) - d(head of dual of a) + d(tail of dual of a) 
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• length of dual of a is:
   c(a) - f0(a) - d(head of dual of a) + d(tail of dual of a) 

• length of any dual path P that does not use dual arcs of C is:
   ∑ c(a) - f0(a) - d(head of dual of a) + d(tail of dual of a) 
= d(end of P) - d(start of P) + ∑c(a) - f0(a)
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• length of dual of a is:
   c(a) - f0(a) - d(head of dual of a) + d(tail of dual of a) 

• length of any dual path P that does not use dual arcs of C is:
   ∑ c(a) - f0(a) - d(head of dual of a) + d(tail of dual of a) 
= d(end of P) - d(start of P) + ∑c(a) - f0(a)

• ignoring arcs of C, shortest paths are independent of d
note: length of shortest path does change by d(end of P) - d(start of P)

Flow Representation 3/4



Flow Representation 4/4

• X = set of faces adjacent to separator C
   = set of endpoints of dual arcs of  C
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Flow Representation 4/4

• X = set of faces adjacent to separator C
   = set of endpoints of dual arcs of  C

• H - dual graph without dual arcs of C 

• any shortest path in dual graph can be decomposed into:
- shortest paths in H
- dual arcs of C

• precompute all-pair shortest paths between nodes of X in H
- can be done in O(n log n) time [Klein SODA’05]
- these shortest paths do not change
- for x,y ∈ X, length of x-to-y path changes by d(x) - d(y) 



Flow Representation 4/4

• X = set of faces adjacent to separator C
   = set of endpoints of dual arcs of  C

• H - dual graph without dual arcs of C 

• any shortest path in dual graph can be decomposed into:
- shortest paths in H
- dual arcs of C

• precompute all-pair shortest paths between nodes of X in H
- can be done in O(n log n) time [Klein SODA’05]
- these shortest paths do not change
- for x,y ∈ X, length of x-to-y path changes by d(x) - d(y) 

• suffices to maintain face labels for X and explicit flow for C 



Efficient 
Implementation
• precompute all-pair shortest paths 

between nodes of X in H       O(n) pairs
• maintain:

- face labels for X                                    faces
- explicit flow for C                                arcs

• can implement Dijkstra’s algorithm with this representation 
in                   time using a modification of a data-structure 
of Fakcharoenphol and Rao [FOCS’01] 

O(
√
n)

O(
√
n)

O(
√
n log2 n)

running time:

separator nodes time for max-flow between neighbors using compact representation

O(
√
n) ·O(

√
n log2 n) = O(n log2 n)



Back to the Entire Graph

• with compact representation we have:
- explicit flow f on all arcs of C
- accumulated face labels only for faces adjacent to C

• need to extend face labels to all faces
• can be done using one more shortest-path computation in 

the dual which takes linear time
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Recall High-Level Algorithm
• find separator
• recursive problem (almost): 

eliminate residual paths
• from sources to sinks
• from sources to separator
• from separator to sinks

• eliminate residual paths from 
+ to - on separator 

• return flow from + to sources and from sinks to -

running time:  O(n log3n)



Open Questions/Directions
• can running time be improved? 

(bottleneck is Fakcharoenphol and Rao’s data structure 
and its modification)

• can this technique be adapted to bounded-genus graphs?
• implementation
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