Multiple-Source Multiple-Sink
Maximum Flow in Directed Planar
Graphs in Near-Linear Time

Shay Mozes

joint work with Cora Borradaile,

BROWN Philip Klein,Yahav Nussbaum and

Christian VWulff-Nilsen

Planar Graphs

Planar Graphs

zall

Planar Graphs

g

Planar Graphs

e Union Sg y 75 ~ 2,
Sy 5 5]0/ 6‘,,’\ b & v% b &
o sy sdave ol Mg, 3
s ! % 0754 st 73, 4 ‘;\@
& C < g s Apee Stuyvesant
> S =
s-%s Webster Hall = o§ 0 & Town
- e
Deutsches €7, K3 T astave s
H "5 < D145t 4,
aus / sth'st /7 ' Mul
1§.Cafe Wha o Bobst (NYU) or PI-8 & &
Libr 0)&’
5, &
b3 T,
fcs
SR SR Y. ‘. Suen Dragon |
A use '| Ange Garden
ot S =
= Other Music «.Kw @
&, A A s/ 6‘)‘, 8144 Ss’/’s & e"’ 515”)
O o & DS My, g e, &
% & & S & 7
» & F Sty & < 7th
¥ @ Sy S {
y £ * Tompkins K] bq
- Bleecker <& Square Park 2
5 St-Lexington @ & & &, = v@ A
3 Ty s) Laplaza & €7, %
& BroadwayLatayette 1 St &5, Cultural b S
Puck Bldg r h s 4‘%6\
< 5 & 4
5 g K Say s
L EE @ 2
9 3, 3 St
IS
NoLita- Katz's Del o &g, O
Lombardi a New - p RAY 85», Qe
Pizsa Musetm 3 S8 Cay
%, / ; g 2 Y s‘j""s o
)y 5 5 28
e e, - & Mons 5 € 2 Orchard

arise in many applications

RONINGSBERGA
e

T TTITRLL T
4hz‘uv~-a
TR "

Planar Graphs

r : . <75 ~ 3
wall 0) Union Sg b Oy
x Ve, "s, 51@ 6,,; %S V% S
@3 Ave g Ay A
rac 14 St 73, &
8 A~ Stuyvesant

iy
S Town

Church

<
i3
o5

Mul

Suen Dragon’ ©

Garden
&
-
2
s
7t
L /)S,
8, & o Tompkins 2 q
Bleecker - g, x i 2 square Park & £
St-Lexington ol Ty 2 o LaPlaza &7, &
afayette 0 3 &5 % &, S Cutural " . g
y § e o Cultura 3 i
Puck Bldg & & s g,
® & N & £,
7g 5 < Sy b Gy &
g F & Second Ave % 2
E Lower East 0 &5, K (&
[2nd/Ave . §
& SoHo NoLita Sidez2ndive Katz's Deli S " -
e Sprin . §
SRS 7 Seing | ompardis T, e New y 4 ég Mg & &
AN T =y Musedm) ; & 3 P
& 8, " af 2 2, <
& %, R ST
iy Moo o, E k] g5 €6 WX Em Orchard

arise in many applications

admit faster algorithms

RONINGSBERGA

||&.H ILﬂJI IIL:I L £

Planar Graphs

o T ~ 2y,
g, % &
5
& . £
s Church' * & /%é Ay Stuyvesant
$Srhs Vebster Hall = f.? Town

Mul

Bobst
Library

1§ Cafe Wha

b
Mc Sorleys 4 <
Old Ale House X SuenDragon
Other Music @&,
%% <
2 & St
%\S‘r - & g,
2 8 5
Siver) Tompkins Y q
& Towers ; # square Park ‘é §
5 St-Lexingt & &, T
3 % Laplaza & g
© Broacway-Lafayette (I & ftural f/)
5) & Cultura &,
Puck Bldg s, g
P & 4
®/ S 4*
& g s K s
Did St Patrick's, §F g @ 7
athedral = g L 7y) by
& [dnseroast e
& SoHo NoLita Side 2 Katz's Del 6 E Sy e .
e . v
PG O/ sping | ombardis’ T, e New . v & Sy S
& StLexington Pizza Musetm & 8 %s
& 7 > & &
S) " > o & 2, £,
e (7} S x 7 T
%o, * ang F oY
& Moo O] __5 & g 5 L & 2 Epe Orchard

arise in many applications
admit faster algorithms

interesting structural properties
I WL BT ST 41
—Fij -3 E8 EJ

mhw 7 wﬂmm ‘:,'
48 2998 M‘“?‘ﬂ

e

unpu N.

s T I
.‘gﬁma 11:\4 sl 'N"“""

Maximum Flow

input:a graph G with arc capacities and nodes s,¢
output: an assignment of flow to arcs such that:

® conservation at non-terminals
® respects capacity at all arcs

® maximizes the amount of flow entering ¢

Maximum Flow

input:a graph G with arc capacities and nodes s,¢
output: an assignment of flow to arcs such that:

® conservation at non-terminals
® respects capacity at all arcs

® maximizes the amount of flow entering ¢

Main Result

multiple-source, multiple-sink
maximum flow in directed planar
graphs in O(n log’n) time.

Applications
Multiple Sources and Sinks

’,’. v o & KZ\

® transportation networks
(Soviet railroad system)

® computer vision - image
segmentation, restoration,
stereo, object recognition,
texture synthesis (grid)

® maximum bipartite matching

Reduction to Single
Source and Sink

Reduction to Single
Source and Sink

Reduction to Single
Source and Sink

® reduction does not preserve planarity

® [Miller, Naor ’91] - sources and sinks on a small
number of faces

Known Results for
Single Source/Sink

general graphs:
* O(nm) - many results (blocking flow, push

relabel)
e O(m*? log(n’/m) logl) - [Goldberg, Rao "97]

directed planar graphs:
* O(n) - s and f on the same face [Hassin 81+

Henzinger et al. '94]
* O(nlogn) [Borradaile, Klein ’06]

Qutline

® a few tools and definitions
® high-level description of recursive algorithm

® main ingredients for near-linear time

Multiple Sinks on a path

Multiple Sinks on a path

reduces to the single

sink case -

connect all sinks with
infinite-capacity edges

The Residual Graph

® given flow f in graph G with capacities c(a),
the residual graph Gy has same nodes and arcs as G
and capacities c¢f(a) = c(a) - f(a)

|10
0

<

® 3 path P is residual if every arc of P has positive capacity

The Residual Graph

® given flow f in graph G with capacities c(a),
the residual graph Gy has same nodes and arcs as G
and capacities c¢f(a) = c(a) - f(a)

® 3 path P is residual if every arc of P has positive capacity

a flow f is maximum iff there are no residual paths
from sources to sinks in Gy

> O~

A\Y& B >0 >0 5

a flow f is maximum iff there are no residual paths
from sources to sinks in Gy

> O~

0
A\Y& B 7 >0 >0 5

a flow f is maximum iff there are no residual paths
from sources to sinks in Gy

> O~

0 0
A\Y& B >0 >0 5
1 1

Flow Zoo

excess flow at node v is the difference between amount of flow
entering v and leaving v
conservation = excess flow is zero

pseudoflow: arc capacities are respected (conservation may not)

feasible flow: pseudoflow that obeys conservation everywhere
except sources and sinks

circulation: pseudoflow that obeys conservation everywhere
(even at sources and sinks)

given a pseudoflow, it is possible to push back all positive/
negative excess flow to/from its origin in linear time

think of sources as having excess flow +o
think of sinks as having excess flow -00

a pseudoflow corresponds to a maximum flow iff
there are no residual paths from + to - in the residual graph

[
o
73

0|3

Ji v)i
S @ 7 20O€ >@® S

think of sources as having excess flow +o
think of sinks as having excess flow -00

a pseudoflow corresponds to a maximum flow iff
there are no residual paths from + to - in the residual graph

[
o
A

3(0

1
A\Y& B >O<€ >0 5

think of sources as having excess flow +o
think of sinks as having excess flow -00

a pseudoflow corresponds to a maximum flow iff
there are no residual paths from + to - in the residual graph

[
o
A

3(0

()
A\Y& B >O€ >0 5

Cycle Separators [Miller '86]

simple cycle in a triangulated
2-connected planar graph

balanced - between 73 and
ons3 nodes on each side

small: consists of O(\n) nodes

can be found in O(n) time

Qutline

® high-level description of recursive algorithm

Recursion, First try

Recursion, First try

* find separator

Recursion, First try

* find separator

* find maximum MSMS flow
inside and outsider
recursively

Recursion, First try

* find separator

* find maximum MSMS flow
inside and outsider
recursively

* no residual paths from
sources to sinks in each
subgraph

Recursion, Second try

Recursion, Second try

* find separator

Recursion, Second try

* find separator

* recursive problem (almost):
eliminate residual paths:
* from sources to sinks
* from sources to separator
* from separator to sinks

Recursion, Second try

* find separator

* recursive problem (almost):
eliminate residual paths
* from sources to sinks
* from sources to separator
* from separator to sinks

Recursion, Second try

* find separator

* recursive problem (almost):
eliminate residual paths
* from sources to sinks
* from sources to separator
* from separator to sinks

Recursion, Second try

* find separator

* recursive problem (almost):
eliminate residual paths
* from sources to sinks
* from sources to separator
* from separator to sinks

* eliminate residual paths from
+ to - on separator

Recursion, Second try

* find separator

* recursive problem (almost):
eliminate residual paths
* from sources to sinks
* from sources to separator
* from separator to sinks

* eliminate residual paths from
+ to - on separator

Recursion, Second try

* find separator

* recursive problem (almost):
eliminate residual paths
* from sources to sinks
* from sources to separator
* from separator to sinks

* eliminate residual paths from
+ to - on separator

e return flow from + to sources and from sinks to -

Recursion, Second try

* find separator

* recursive problem (almost):
eliminate residual paths
* from sources to sinks
* from sources to separator
* from separator to sinks

* eliminate residual paths from
+ to - on separator

e return flow from + to sources and from sinks to -

Recursion, Second try

* find separator

* recursive problem (almost):
eliminate residual paths
* from sources to sinks
* from sources to separator
* from separator to sinks

* eliminate residual paths from
+ to - on separator

e return flow from + to sources and from sinks to -

Fixing the Separator

eliminate residual paths from + to - on separator

Fixing the Separator

eliminate residual paths from + to - on separator

* make capacity of separator edges
infinite
* handle nodes one by one:

Fixing the Separator

eliminate residual paths from + to - on separator

* make capacity of separator edges
infinite

* handle nodes one by one:

* reduce capacity of incident edges
back to original

Fixing the Separator

eliminate residual paths from + to - on separator

* make capacity of separator edges
infinite

* handle nodes one by one:

* reduce capacity of incident edges
back to original

* push + excess to neighbor using
max-flow in residual graph

Fixing the Separator

eliminate residual paths from + to - on separator

* make capacity of separator edges
infinite

* handle nodes one by one:

* reduce capacity of incident edges
back to original

* push + excess to neighbor

* push - excess from neighbor using
max-flow in residual graph

Fixing the Separator

eliminate residual paths from + to - on separator

* make capacity of separator edges
infinite

* handle nodes one by one:

* reduce capacity of incident edges
back to original

* push + excess to neighbor

* push - excess from neighbor using
max-flow in residual graph

Fixing the Separator

eliminate residual paths from + to - on separator

* make capacity of separator edges
infinite
* handle nodes one by one:

* reduce capacity of incident edges
back to original

* push + excess to neighbor

* push - excess from neighbor

running time:/g(\/ﬁ) : 0(7‘&: O(nS/Q)

separator nodes time for max-flow between neighbors [Hassin + Henzinger et al.]

Qutline

® main ingredients for near-linear time

Near Linear Time

bottleneck is fixing step which consists of O(y/n)
max-flow computations in residual graph between
neighbor nodes on a simple cycle

can represent the flow compactly:
flow is in graph with O(n) edges
representation has size O(1/n)
maintain flow only on separator edges
flow elsewhere represented implicitly

= can perform each max-flow computation

in O(v/nlog®n) instead of O(n)

Planar Duality

Planar Duality

Planar Duality

\k

] .
)
) o'
"
o

(]
""" K

Max-Flow between Neighbors
[Hassin I98I]

to compute max flow from s to

Max-Flow between Neighbors
[Hassin I98I]

to compute max flow from s to

* make capacity of arc s infinite

Max-Flow between Neighbors
[Hassin I98I]

to compute max flow from s to

* make capacity of arc ts infinite
* @y = the face to the left of arc ts

Max-Flow between Neighbors
[Hassin I98I]

to compute max flow from s to

* make capacity of arc s infinite
* @y = the face to the left of arc ts

* consider capacity of an arc in the
primal as its length in the dual

Max-Flow between Neighbors
[Hassin I98I]

to compute max flow from s to

* make capacity of arc s infinite

* @y = the face to the left of arc ts

* consider capacity of an arc in the |
primal as its length in the dual - X

* compute:
d(¢) = distance of ¢ from ¢, 1n dual

Max-Flow between Neighbors
[Hassin I98I]

to compute max flow from s to

* make capacity of arc s infinite
e ¢y = the face to the left of arc ts
* consider capacity of an arc in the

primal as its length in the dual
* compute:

d(¢) = distance of ¢ from ¢, 1n dual |

* define flow on arc a by:

o(a) = d(face right of a) - d(face left of a)
o is a feasible circulation that maximizes the flow on arc s

o is a feasible circulation

o is a feasible circulation

conservation:
o(a) = d(tace right of a) - d(face left of a)
flows on arcs outgoing from a node cancel to zero

o is a feasible circulation

conservation:
o(a) = d(tace right of a) - d(face left of a)
flows on arcs outgoing from a node cancel to zero

feasibility guaranteed by shortest paths inequality:

o is a feasible circulation

conservation:
o(a) = d(tace right of a) - d(face left of a)
flows on arcs outgoing from a node cancel to zero

feasibility guaranteed by shortest paths inequality:
d(head of dual of a) < d(tail of dual of a) + length(dual of a)

o is a feasible circulation

conservation:
o(a) = d(tace right of a) - d(face left of a)
flows on arcs outgoing from a node cancel to zero

feasibility guaranteed by shortest paths inequality:

d(head of dual of a) < d(tail of dual of a) + length(dual of a)
d(head of dual of a) - d(tail of dual of a) < capacity of a

o is a feasible circulation

conservation:
o(a) = d(tace right of a) - d(face left of a)
flows on arcs outgoing from a node cancel to zero

feasibility guaranteed by shortest paths inequality:

d(head of dual of a) < d(tail of dual of a) + length(dual of a)
d(head of dual of a) - d(tail of dual of a) < capacity of a

o(a) = d(face right of a) - d(face left of a)

= d(head of dual of a) - d(tail of dual of a)
< capacity of a

Max-Flow between Neighbors
[Hassin I98I]

to compute max flow from s to :

* make capacity of arc s infinite
e ¢y = the face to the left of arc ts
* consider capacity of an arc in the

primal as its length in the dual
* compute:

d(¢) = distance of ¢ from ¢, 1n dual B

* define flow on arc a by:

o(a) = d(face right of a) - d(face left of a)
o is a feasible circulation that maximizes the flow on arc s

Max-Flow between Neighbors
[Hassin I98I]

to compute max flow from s to :

* make capacity of arc s infinite
e ¢y = the face to the left of arc ts

* consider capacity of an arc in the |
primal as its length in the dual S|

* compute: L
d(¢) = distance of ¢ from ¢, 1n dual

* define flow on arc a by:

o(a) = d(face right of a) - d(face left of a)
o is a feasible circulation that maximizes the flow on arc s

* don’t push flow on #s

flow between endpoints of arc a; of C
can be represented by:

flow between endpoints of arc a; of C
can be represented by:

* face labels di(¢) for each face ¢

flow between endpoints of arc a; of C
can be represented by:
* face labels di(¢) for each face ¢

e flow on g;

Flow Representation |/4

flow between endpoints of arc a; of C
can be represented by:

* face labels di(¢) for each face ¢

e flow on g;

Flow Representation |/4

flow between endpoints of arc a; of C
can be represented by:

* face labels di(¢) for each face ¢

e flow on g;

to represent sum of flows for all iterations of fixing step:

Flow Representation |/4

flow between endpoints of arc a; of C
can be represented by:

* face labels di(¢) for each face ¢

e flow on g;

to represent sum of flows for all iterations of fixing step:
* accumulate face labels over all iterations (linearity)

Flow Representation |/4

flow between endpoints of arc a; of C
can be represented by:

* face labels di(¢) for each face ¢

e flow on g;

to represent sum of flows for all iterations of fixing step:
* accumulate face labels over all iterations (linearity)
* explicitly store flow on arcs of separator C

Flow Representation |/4

flow between endpoints of arc a; of C
can be represented by:

* face labels di(¢) for each face ¢
* flow on a;

to represent sum of flows for all iterations of fixing step:
* accumulate face labels over all iterations (linearity)

* explicitly store flow on arcs of separator C

will show it suffices to store face labels
for just the faces adjacent to separator C

Flow Representation 2/4 --

fo - flow after recursive calls '
f - flow on C’s arcs up to current iteration =~
d - accumulated face labels up to current iteration

Flow Representation 2/4 --

fo - flow after recursive calls '
f - flow on C’s arcs up to current iteration =~
d - accumulated face labels up to current iteration

Flow Representation 2/4 --

fo- flow after recursive cals .- v
f - flow on C’s arcs up to current iteration =~
d - accumulated face labels up to current iteration

e for an arc a not on C, flow is:
fola) + d(face right of a) - d(face left of a)

Flow Representation 2/4 --

fo- flow after recursive cals .- v
f - flow on C’s arcs up to current iteration =~
d - accumulated face labels up to current iteration

e for an arc a not on C, flow is:
fola) + d(face right of a) - d(face left of a)

* residual capacity of a is:
c(a) - fo(a) - d(face right of a) + d(tace left of a)

Flow Representation 2/4 --

fo- flow after recursive cals .- v
f - flow on C’s arcs up to current iteration =~
d - accumulated face labels up to current iteration

e for an arc a not on C, flow is:
fola) + d(face right of a) - d(face left of a)

* residual capacity of a is:
c(a) - fo(a) - d(face right of a) + d(tace left of a)

* [ength of dual of a is:
c(a) - fo(a) - d(head of dual of a) + d(tail of dual of a)

Flow Representation 3/4

* length of dual of a is: o
c(a) - fo(a) - d(head of dual of a) + d(tail of dual of a

Flow Representation 3/4

=
K

o©°°
=

* length of dual of a is: I N
c(a) - fo(a) - d(head of dual of a) + d(tail of dual of a

Flow Representation 3/4 -

* length of dual of a is: M N
c(a) - fo(a) - d(head of dual of a) + d(tail of dual of a

* [ength of any dual path P that does not use dual arcs of C is:
2 c(a) - fo(a) - d(head of dual of a) + d(tail of dual of a)

= d(end of P) - d(start of P) + 2 c(a) - fo(a)

Flow Representation 3/4 -

-

-

-
-" ’

* length of dual of a is: M o
c(a) - fo(a) - d(head of dual of a) + d(tail of dual of a

* [ength of any dual path P that does not use dual arcs of C is:
2 c(a) - fo(a) - d(head of dual of a) + d(tail of dual of a)
= d(end of P) - d(start of P) + 2 c(a) - fo(a)

* ignoring arcs of C, shortest paths are independent of d
note: length of shortest path does change by d(end of P) - d(start of P)

Flow Representation 4/4 - ‘ |

* X = set of faces adjacent to separator C . n \

¢ N
4 LY)
[A)
(Y A)

= set of endpoints of dual arcs of C

-
1

1

S

S
S
S
S

A} o
[y Pig
00
09 o
00 0
o 0
D)
S

Flow Representation 4/4 SN

..... e

-
-
-
-
o ® ’

- ’
. [
)
S
<
L)
o
e 0% 0
00 0
o
4
N
N
N}
N
Q
N
D)
Q
Q

Flow Representation 4/4 ”

* X = set of faces adjacent to separator C "

-
4
4

- ®

= set of endpoints of dual arcs of C

* H - dual graph without dual arcs of C

* any shortest path in dual graph can be decomposed into:

- shortest paths in H
- dual arcs of C

- ’
.]
(Y
S
L
S
o
S
[N 0% 0
P 0
o
o
AN}
N}
Q
Q
Q
N
D)
Q
N

Flow Representation 4/4 ”
----- SANE=Y

e X = set of faces adjacent to separator C _—X|

-
4
4

= set of endpoints of dual arcs of C

* H - dual graph without dual arcs of C

* any shortest path in dual graph can be decomposed into:

- shortest paths in H
- dual arcs of C
* precompute all-pair shortest paths between nodes of X in H

- can be done in O(n log n) time [Klein SODA’05]
- these shortest paths do not change

- for x,y € X, length of x-to-y path changes by d(x) - d(y)

- ’
.)
(Y
S
L
S
o
S
[N 0% 0
P 0
o
o
AN}
N}
Q
Q
Q
N
D)
Q
N

Flow Representation 4/4 ”
----- SANE=Y

e X = set of faces adjacent to separator C _—X|

-
4
4

= set of endpoints of dual arcs of C

* H - dual graph without dual arcs of C

* any shortest path in dual graph can be decomposed into:
- shortest paths in H
- dual arcs of C
* precompute all-pair shortest paths between nodes of X in H

- can be done in O(n log n) time [Klein SODA’05]
- these shortest paths do not change

- for x,y € X, length of x-to-y path changes by d(x) - d(y)
* suffices to maintain face labels for X and explicit flow for C

Efficient
Implementation

* precompute all-pair shortest paths
between nodes of X in H O(n) pairs
®* maintain:
- face labels for X O(v/n) faces
- explicit flow for C O(+/n) arcs

e can implement Dijkstra’s algorithm with this representation
in O(v/nlog” n) time using a modification of a data-structure

of Fakcharoenphol and Rao [FOCS’01]

running time: O(y/n) - O(v/nlog® n) = O(nlog® n)
7 ™

separator nodes time for max-flow between neighbors using compact representation

Back to the Entire Graph

* with compact representation we have:
- explicit flow f on all arcs of C)
- accumulated face labels only for faces adjacent to C

* need to extend face labels to all faces

* can be done using one more shortest-path computation in
the dual which takes linear time

Recall High-Level Algorithm

* find separator

* recursive problem (almost):
eliminate residual paths
* from sources to sinks
* from sources to separator
* from separator to sinks

* eliminate residual paths from
+ to - on separator

e return flow from + to sources and from sinks to -

running time: O(n log’n)

Open Questions/Directions

® can running time be improved!?
(bottleneck is Fakcharoenphol and Rao’s data structure
and its modification)
* can this technique be adapted to bounded-genus graphs!?
* implementation

