Multiple-Source Multiple-Sink Maximum Flow in Directed Planar Graphs in Near-Linear Time

Shay Mozes
joint work with Cora Borradaile, Philip Klein, Yahav Nussbaum and Christian Wulff-Nilsen

Planar Graphs

Planar Graphs

Planar Graphs

Planar Graphs

- arise in many applications

Planar Graphs

- arise in many applications

- admit faster algorithms

Planar Graphs

- arise in many applications

- admit faster algorithms
- interesting structural properties

Maximum Flow

input: a graph G with arc capacities and nodes s, t output: an assignment of flow to arcs such that:

- conservation at non-terminals
- respects capacity at all arcs
- maximizes the amount of flow entering t

Maximum Flow

input: a graph G with arc capacities and nodes s, t output: an assignment of flow to arcs such that:

- conservation at non-terminals
- respects capacity at all arcs
- maximizes the amount of flow entering t

Main Result

multiple-source, multiple-sink maximum flow in directed planar graphs in $O\left(n \log ^{3} n\right)$ time.

Applications
 Multiple Sources and Sinks

- transportation networks (Soviet railroad system)
- computer vision - image segmentation, restoration, stereo, object recognition, texture synthesis (grid)
- maximum bipartite matching

Reduction to Single Source and Sink

Reduction to Single Source and Sink

Reduction to Single Source and Sink

- reduction does not preserve planarity
- [Miller, Naor '91] - sources and sinks on a small number of faces

Known Results for Single Source/Sink

general graphs:

- $\tilde{O}(\mathrm{~nm})$ - many results (blocking flow, push relabel)
- $O\left(m^{3 / 2} \log \left(n^{2} / m\right) \log U\right)$ - [Goldberg, Rao '97]
directed planar graphs:
- $O(n)-s$ and t on the same face [Hassin '8I+ Henzinger et al. '94]
- $O(n \log n)$ [Borradaile, Klein '06]

Outline

- a few tools and definitions
- high-level description of recursive algorithm
- main ingredients for near-linear time

Multiple Sinks on a path

Multiple Sinks on a path

reduces to the single sink case -
connect all sinks with infinite-capacity edges
preserves planarity!

The Residual Graph

- given flow f in graph G with capacities $c(a)$, the residual graph G_{f} has same nodes and arcs as G and capacities $\quad c_{f}(a)=c(a)-f(a)$

- a path P is residual if every arc of P has positive capacity

The Residual Graph

- given flow f in graph G with capacities $c(a)$, the residual graph G_{f} has same nodes and arcs as G and capacities $\quad c_{f}(a)=c(a)-f(a)$

- a path P is residual if every arc of P has positive capacity
a flow f is maximum iff there are no residual paths from sources to sinks in G_{f}

a flow f is maximum iff there are no residual paths from sources to sinks in G_{f}

a flow f is maximum iff there are no residual paths from sources to sinks in G_{f}

Flow Zoo

- excess flow at node v is the difference between amount of flow entering v and leaving v conservation \Rightarrow excess flow is zero
- pseudoflow: arc capacities are respected (conservation may not)
- feasible flow: pseudoflow that obeys conservation everywhere except sources and sinks
- circulation: pseudoflow that obeys conservation everywhere (even at sources and sinks)
- given a pseudoflow, it is possible to push back all positive/ negative excess flow to/from its origin in linear time
think of sources as having excess flow $+\infty$ think of sinks as having excess flow $-\infty$
a pseudoflow corresponds to a maximum flow iff there are no residual paths from + to -in the residual graph

think of sources as having excess flow $+\infty$ think of sinks as having excess flow $-\infty$
a pseudoflow corresponds to a maximum flow iff there are no residual paths from + to -in the residual graph

think of sources as having excess flow $+\infty$ think of sinks as having excess flow $-\infty$
a pseudoflow corresponds to a maximum flow iff there are no residual paths from + to -in the residual graph

Cycle Separators [Miller '86]

- simple cycle in a triangulated 2-connected planar graph
- balanced - between n_{β} and $2 n / 3$ nodes on each side
- small: consists of $O(\sqrt{ } n)$ nodes
- can be found in $O(n)$ time

Outline

- a few tools and definitions
- high-level description of recursive algorithm
- main ingredients for near-linear time

Recursion, First try

Recursion, First try

- find separator

Recursion, First try

- find separator
- find maximum MSMS flow inside and outsider recursively

Recursion, First try

- find separator
- find maximum MSMS flow inside and outsider recursively
- no residual paths from sources to sinks in each subgraph

Recursion, Second try

Recursion, Second try

- find separator

Recursion, Second try

- find separator
- recursive problem (almost): eliminate residual paths:
- from sources to sinks
- from sources to separator
- from separator to sinks

Recursion, Second try

- find separator
- recursive problem (almost): eliminate residual paths
- from sources to sinks
- from sources to separator
- from separator to sinks

Recursion, Second try

- find separator
- recursive problem (almost): eliminate residual paths
- from sources to sinks
- from sources to separator
- from separator to sinks

Recursion, Second try

- find separator
- recursive problem (almost): eliminate residual paths
- from sources to sinks
- from sources to separator
- from separator to sinks
- eliminate residual paths from + to - on separator

Recursion, Second try

- find separator
- recursive problem (almost): eliminate residual paths
- from sources to sinks
- from sources to separator
- from separator to sinks
- eliminate residual paths from + to - on separator

Recursion, Second try

- find separator
- recursive problem (almost): eliminate residual paths
- from sources to sinks
- from sources to separator
- from separator to sinks
- eliminate residual paths from + to - on separator

- return flow from + to sources and from sinks to -

Recursion, Second try

- find separator
- recursive problem (almost): eliminate residual paths
- from sources to sinks
- from sources to separator
- from separator to sinks
- eliminate residual paths from + to - on separator

- return flow from + to sources and from sinks to -

Recursion, Second try

- find separator
- recursive problem (almost): eliminate residual paths
- from sources to sinks
- from sources to separator
- from separator to sinks
- eliminate residual paths from + to - on separator

- return flow from + to sources and from sinks to -

Fixing the Separator

eliminate residual paths from + to - on separator

Fixing the Separator

eliminate residual paths from + to - on separator

- make capacity of separator edges infinite
- handle nodes one by one:

Fixing the Separator

eliminate residual paths from + to - on separator

- make capacity of separator edges infinite
- handle nodes one by one:
- reduce capacity of incident edges back to original

Fixing the Separator

eliminate residual paths from + to - on separator

- make capacity of separator edges infinite
- handle nodes one by one:
- reduce capacity of incident edges back to original
- push + excess to neighbor using max-flow in residual graph

Fixing the Separator

eliminate residual paths from + to - on separator

- make capacity of separator edges infinite
- handle nodes one by one:
- reduce capacity of incident edges back to original
- push + excess to neighbor
- push - excess from neighbor using max-flow in residual graph

Fixing the Separator

eliminate residual paths from + to - on separator

- make capacity of separator edges infinite
- handle nodes one by one:
- reduce capacity of incident edges back to original
- push + excess to neighbor
- push - excess from neighbor using max-flow in residual graph

Fixing the Separator

eliminate residual paths from + to - on separator

- make capacity of separator edges infinite
- handle nodes one by one:
- reduce capacity of incident edges back to original
- push + excess to neighbor
- push - excess from neighbor
running time: $O(\sqrt{n}) \cdot O(n)=O\left(n^{3 / 2}\right)$

Outline

- a few tools and definitions
- high-level description of recursive algorithm
- main ingredients for near-linear time

Near Linear Time

bottleneck is fixing step which consists of $O(\sqrt{n})$ max-flow computations in residual graph between neighbor nodes on a simple cycle
can represent the flow compactly: flow is in graph with $O(n)$ edges representation has size $O(\sqrt{n})$ maintain flow only on separator edges flow elsewhere represented implicitly
\Rightarrow can perform each max-flow computation in $O\left(\sqrt{n} \log ^{2} n\right)$ instead of $O(n)$

Planar Duality

Planar Duality

Planar Duality

Max-Flow between Neighbors [Hassin 198I]

 to compute max flow from s to t :

Max-Flow between Neighbors [Hassin 1981]

to compute max flow from s to t :

- make capacity of arc $t s$ infinite

Max-Flow between Neighbors [Hassin 1981]

 to compute max flow from s to t :- make capacity of arc $t s$ infinite
- $\phi_{0}=$ the face to the left of arc $t s$

Max-Flow between Neighbors [Hassin 1981]

 to compute max flow from s to t :- make capacity of arc $t s$ infinite
- $\phi_{0}=$ the face to the left of arc $t s$
- consider capacity of an arc in the primal as its length in the dual

Max-Flow between Neighbors [Hassin 198I]

to compute max flow from s to t :

- make capacity of arc $t s$ infinite
- $\phi_{0}=$ the face to the left of arc $t s$
- consider capacity of an arc in the primal as its length in the dual
- compute:
$d(\phi)=$ distance of ϕ from ϕ_{0} in dual

Max-Flow between Neighbors [Hassin 198I]

to compute max flow from s to t :

- make capacity of arc $t s$ infinite
- $\phi_{0}=$ the face to the left of arc $t s$
- consider capacity of an arc in the primal as its length in the dual
- compute:
$d(\phi)=$ distance of ϕ from ϕ_{0} in dual
- define flow on arc a by:

$\sigma(a)=d($ face right of $a)-d($ face left of $a)$
σ is a feasible circulation that maximizes the flow on arc $t s$

σ is a feasible circulation

σ is a feasible circulation

conservation:

$\sigma(a)=d($ face right of $a)-d($ face left of $a)$
flows on arcs outgoing from a node cancel to zero

σ is a feasible circulation

conservation:
$\sigma(a)=d($ face right of $a)-d($ face left of $a)$
flows on arcs outgoing from a node cancel to zero

feasibility guaranteed by shortest paths inequality:

σ is a feasible circulation

conservation:
$\sigma(a)=d($ face right of $a)-d($ face left of $a)$
flows on arcs outgoing from a node cancel to zero

feasibility guaranteed by shortest paths inequality: $d($ head of dual of $a) \leq d($ tail of dual of $a)+$ length $($ dual of $a)$

σ is a feasible circulation

conservation:
$\sigma(a)=d($ face right of $a)-d($ face left of $a)$
flows on arcs outgoing from a node cancel to zero

feasibility guaranteed by shortest paths inequality: $d($ head of dual of $a) \leq d($ tail of dual of $a)+$ length (dual of $a)$ $d($ head of dual of $a)-d($ tail of dual of $a) \leq$ capacity of a

σ is a feasible circulation

conservation: $\sigma(a)=d($ face right of $a)-d($ face left of $a)$
flows on arcs outgoing from a node cancel to zero

feasibility guaranteed by shortest paths inequality: $d($ head of dual of $a) \leq d($ tail of dual of $a)+$ length (dual of $a)$ $d($ head of dual of $a)-d($ tail of dual of $a) \leq$ capacity of a
$\sigma(a)=d($ face right of $a)-d($ face left of $a)$ $=d($ head of dual of $a)-d($ tail of dual of $a)$ \leq capacity of a

Max-Flow between Neighbors [Hassin 198I]

to compute max flow from s to t :

- make capacity of arc $t s$ infinite
- $\phi_{0}=$ the face to the left of arc $t s$
- consider capacity of an arc in the primal as its length in the dual
- compute:
$d(\phi)=$ distance of ϕ from ϕ_{0} in dual
- define flow on arc a by:

$\sigma(a)=d($ face right of $a)-d($ face left of $a)$
σ is a feasible circulation that maximizes the flow on arc $t s$

Max-Flow between Neighbors [Hassin 198I]

 to compute max flow from s to t :- make capacity of arc $t s$ infinite
- $\phi_{0}=$ the face to the left of arc $t s$
- consider capacity of an arc in the primal as its length in the dual
- compute:
$d(\phi)=$ distance of ϕ from ϕ_{0} in dual
- define flow on arc a by:

$\sigma(a)=d($ face right of $a)-d($ face left of $a)$
σ is a feasible circulation that maximizes the flow on arc $t s$
- don't push flow on $t s$

Flow Representation I/4

Flow Representation I/4

flow between endpoints of arc a_{i} of C can be represented by:

Flow Representation I/4

flow between endpoints of arc a_{i} of C can be represented by:

- face labels $d_{i}(\phi)$ for each face ϕ

Flow Representation I/4

flow between endpoints of arc a_{i} of C can be represented by:

- face labels $d_{i}(\phi)$ for each face ϕ

- flow on a_{i}

Flow Representation I/4

flow between endpoints of arc a_{i} of C can be represented by:

- face labels $d_{i}(\phi)$ for each face ϕ

- flow on a_{i}

Flow Representation I/4

flow between endpoints of arc a_{i} of C can be represented by:

- face labels $d_{i}(\phi)$ for each face ϕ

- flow on a_{i}
to represent sum of flows for all iterations of fixing step:

Flow Representation I/4

flow between endpoints of arc a_{i} of C can be represented by:

- face labels $d_{i}(\phi)$ for each face ϕ

- flow on a_{i}
to represent sum of flows for all iterations of fixing step:
- accumulate face labels over all iterations (linearity)

Flow Representation I/4

flow between endpoints of arc a_{i} of C can be represented by:

- face labels $d_{i}(\phi)$ for each face ϕ

- flow on a_{i}
to represent sum of flows for all iterations of fixing step:
- accumulate face labels over all iterations (linearity)
- explicitly store flow on arcs of separator C

Flow Representation I/4

flow between endpoints of arc a_{i} of C can be represented by:

- face labels $d_{i}(\phi)$ for each face ϕ
- flow on a_{i}
to represent sum of flows for all iterations of fixing step:
- accumulate face labels over all iterations (linearity)
- explicitly store flow on arcs of separator C
will show it suffices to store face labels for just the faces adjacent to separator C

Flow Representation 2/4

f_{0} - flow after recursive calls
f - flow on C's arcs up to current iteration
d - accumulated face labels up to current iteration

Flow Representation 2/4

f_{0} - flow after recursive calls
f - flow on C's arcs up to current iteration
d - accumulated face labels up to current iteration

Flow Representation 2/4

f_{0} - flow after recursive calls
f - flow on C's arcs up to current iteration
d - accumulated face labels up to current iteration

- for an arc a not on C, flow is:

$$
f_{0}(a)+d(\text { face right of } a)-d(\text { face left of } a)
$$

Flow Representation 2/4

f_{0} - flow after recursive calls
f - flow on C's arcs up to current iteration
d - accumulated face labels up to current iteration

- for an arc a not on C, flow is:

$$
f_{0}(a)+d(\text { face right of } a)-d(\text { face left of } a)
$$

- residual capacity of a is:

$$
c(a)-f_{0}(a)-d(\text { face right of } a)+d(\text { face left of } a)
$$

Flow Representation 2/4

f_{0} - flow after recursive calls
f - flow on C's arcs up to current iteration
d - accumulated face labels up to current iteration

- for an arc a not on C, flow is:

$$
f_{0}(a)+d(\text { face right of } a)-d(\text { face left of } a)
$$

- residual capacity of a is:

$$
c(a)-f_{0}(a)-d(\text { face right of } a)+d(\text { face left of } a)
$$

- length of dual of a is:

$$
c(a)-f_{0}(a)-d(\text { head of dual of } a)+d(\text { tail of dual of } a)
$$

Flow Representation 3/4

- length of dual of a is:
$c(a)-f_{0}(a)-d($ head of dual of $a)+d($ tail of dual of $a)$

Flow Representation 3/4

- length of dual of a is:
$c(a)-f_{0}(a)-d($ head of dual of $a)+d($ tail of dual of $a)$

Flow Representation 3/4

- length of dual of a is:

$c(a)-f_{0}(a)-d($ head of dual of $a)+d($ tail of dual of $a)$
- length of any dual path P that does not use dual arcs of C is:
$\sum c(a)-f_{0}(a)-d($ head of dual of $a)+d($ tail of dual of $a)$
$=d($ end of $P)-d($ start of $P)+\sum c(a)-f_{0}(a)$

Flow Representation 3/4

- length of dual of a is:

$c(a)-f_{0}(a)-d($ head of dual of $a)+d($ tail of dual of $a)$
- length of any dual path P that does not use dual arcs of C is:
$\sum c(a)-f_{0}(a)-d($ head of dual of $a)+d($ tail of dual of $a)$
$=d($ end of $P)-d($ start of $P)+\sum c(a)-f_{0}(a)$
- ignoring arcs of C, shortest paths are independent of d note: length of shortest path does change by $d($ end of $P)-d($ start of $P)$

Flow Representation 4/4

- $X=$ set of faces adjacent to separator C
= set of endpoints of dual arcs of C

Flow Representation 4/4

Flow Representation 4/4

- $X=$ set of faces adjacent to separator C
= set of endpoints of dual arcs of C
- H - dual graph without dual arcs of C

Flow Representation 4/4

- $X=$ set of faces adjacent to separator C
= set of endpoints of dual arcs of C
- H - dual graph without dual arcs of C

- any shortest path in dual graph can be decomposed into:
- shortest paths in H
- dual arcs of C

Flow Representation 4/4

- $X=$ set of faces adjacent to separator C
= set of endpoints of dual arcs of C
- H - dual graph without dual arcs of C

- any shortest path in dual graph can be decomposed into:
- shortest paths in H
- dual arcs of C
- precompute all-pair shortest paths between nodes of X in H
- can be done in $O(n \log n)$ time [Klein SODA’05]
- these shortest paths do not change
- for $x, y \in X$, length of x-to- y path changes by $d(x)-d(y)$

Flow Representation 4/4

- $X=$ set of faces adjacent to separator C
= set of endpoints of dual arcs of C
- H - dual graph without dual arcs of C

- any shortest path in dual graph can be decomposed into:
- shortest paths in H
- dual arcs of C
- precompute all-pair shortest paths between nodes of X in H
- can be done in $O(n \log n)$ time [Klein SODA'05]
- these shortest paths do not change
- for $x, y \in X$, length of x-to- y path changes by $d(x)-d(y)$
- suffices to maintain face labels for X and explicit flow for C

Efficient

Implementation

- precompute all-pair shortest paths between nodes of X in $H \quad O(n)$ pairs
- maintain:
- face labels for X
$O(\sqrt{n})$ faces
- explicit flow for C
$O(\sqrt{n})$ arcs
- can implement Dijkstra's algorithm with this representation in $O\left(\sqrt{n} \log ^{2} n\right)$ time using a modification of a data-structure of Fakcharoenphol and Rao [FOCS'OI]
running time: $O(\sqrt{n}) \cdot O\left(\sqrt{n} \log ^{2} n\right)=O\left(n \log ^{2} n\right)$

Back to the Entire Graph

- with compact representation we have:
- explicit flow f on all arcs of C

- accumulated face labels only for faces adjacent to C
- need to extend face labels to all faces
- can be done using one more shortest-path computation in the dual which takes linear time

Recall High-Level Algorithm

- find separator
- recursive problem (almost): eliminate residual paths
- from sources to sinks
- from sources to separator
- from separator to sinks
- eliminate residual paths from + to - on separator

- return flow from + to sources and from sinks to running time: $O\left(n \log ^{3} n\right)$

Open Questions/Directions

- can running time be improved? (bottleneck is Fakcharoenphol and Rao's data structure and its modification)
- can this technique be adapted to bounded-genus graphs?
- implementation

Thank You!

