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Abstract. We give an O(n log3 n) algorithm that, given an n-node directed planar graph with
arc capacities, a set of source nodes, and a set of sink nodes, finds a maximum flow from the sources
to the sinks. Previously, the fastest algorithms known for this problem were those for general graphs.
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1. Introduction. The maximum flow problem with multiple sources and sinks
in a directed graph with arc-capacities is, informally, to find a way to route a single
commodity from a given set of sources to a given set of sinks such that the total
amount of the commodity that is delivered to the sinks is maximum subject to each
arc carrying no more than its capacity. In this paper we study this problem in planar
graphs.

The study of maximum st-flow in planar graphs, when there is one source s
and one sink t, has a long history. In 1956, Ford and Fulkerson introduced the
max st-flow problem, gave a generic augmenting-path algorithm, and also gave a
particular augmenting-path algorithm for the case of a planar graph where s and
t are on the same face. Researchers have since published many algorithmic results
proving running-time bounds on max st-flow for (a) planar graphs where s and t are
on the same face, (b) undirected planar graphs where s and t are arbitrary, and (c)
directed planar graphs where s and t are arbitrary. The best bounds known are (a)
O(n) [20], (b) O(n log log n) [24], and (c) O(n log n) [3], where n is the number of
nodes in the graph.

Maximum flow in planar graphs with multiple sources and sinks was studied by
Miller and Naor [38]. They gave a divide-and-conquer algorithm for the case where
all the sinks and the sources are on the boundary of a single face. Plugging in the
linear-time shortest-path algorithm of Henzinger et al. [20] yields a running time of
O(n log n). Miller and Naor also gave an algorithm for the case where the sources
and the sinks reside on the boundaries of k different faces. Plugging in the the
O(n log n)-time single-source single-sink maximum flow algorithm of Borradaile and
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Klein [3] yields a running time of O(k2n log2 n). Miller and Naor show that, when
it is known how much of the commodity is produced/consumed at each source and
each sink, finding a consistent routing of flow that respects arc capacities can be
reduced to negative-length shortest paths [38], which can be solved in planar graphs
in O(n log2 n/ log log n) time [39].

However, the problem of maximum flow with multiple sources and sinks in planar
graphs without any additional restrictions remained open. In general (i.e., non-planar)
graphs, multiple sources and sinks can be reduced to the single-source single-sink case
by introducing an artificial source and sink and connecting them to all the sources
and sinks, respectively—but this reduction does not preserve planarity. For more than
twenty years since the problem was explicitly stated and considered [38], the fastest
known algorithm for computing multiple-source multiple-sink max-flow in a planar
graph has been to use this reduction in conjunction with a general maximum-flow
algorithm. Using Orlin’s algorithm for sparse graphs [41] leads to a running time of
O(n2/ log n). For integer capacities less than U , one could instead use the algorithm
of Goldberg and Rao [16], which leads to a running time of O(n1.5 log n logU). No
planarity-exploiting algorithm was known for the problem.

Our Result. The main result of this paper is an algorithm for the problem that
is optimal up to a small poly-logarithmic factor.

Theorem 1. There exists an algorithm that solves the maximum flow problem
with multiple sources and sinks in an n-node directed planar graph with arc capacities
in O(n log3 n) time.

In Section 5 we use our main result to show that there is an algorithm that solves
the maximum flow problem in an n-node directed planar graph with multiple sources
and sinks and with k nodes with finite capacity in O(k3n log3 n) time. We also show
that there is an algorithm that solves the maximum flow problem in a directed k-apex
graph in O(k3n log3 n) time.

Application to computer vision problems. Via the Max Flow, Min Cut Theo-
rem [12], solving a maximum flow problem also solves the corresponding minimum
cut problem. Multiple-source multiple-sink min-cut arises in addressing a family of
problems associated with the terms metric labeling [34], Markov Random Fields [15],
and Potts Model (see also [5, 21]). In low-level vision problems such as image restora-
tion, segmentation, stereo, and motion, the goal is to assign labels from a set to pixels
so as to minimize a penalty function. The penalty function is a sum of two parts.
One part, the data component, has a term for each pixel; the cost depends on the
discrepancy between the observed data for the pixel and the label chosen for it. The
other part, the smoothing component, penalizes neighboring pixels that are assigned
different labels.

For the binary case (when the set of available labels has size two), finding the
optimal solution is reducible to multiple-source multiple-sink min-cut [18]. For the
case of more than two labels, there is a powerful and effective heuristic [5] using very-
large-neighborhood [1] local search; the inner loop consists of solving the two-label
case. The running time for solving the two-label case is therefore quite important.
For this reason, researchers in computer vision have proposed new algorithms for
max flow and performed experimental studies comparing the run-times of different
max-flow algorithms on the instances arising in this context [4, 35].

For the (common) case where the underlying graph of pixels is the two-dimensional
grid graph, our result yields a theoretical speed-up for this important computer-
vision subroutine. The single-source, single-sink max-flow algorithm of Borradaile
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and Klein [3] was implemented by computer-vision researchers [42] and found to be
useful in computer vision and to be faster than competing algorithms.

Hochbaum [21] describes a special case of the penalty function in which the data
component is convex and the smoothing component is linear; in this case, she shows
that an optimal solution can be found in time O(T (m,n) + n logU) where U is the
maximum label, and T (m,n) is the time for finding a minimum cut in graph with
m edges and n vertices. She specifically mentions image segmentation, for which the
graph is planar.

Other applications. It is well-known how to reduce maximum matching in a bi-
partite planar graph to multiple-source, multiple-sink maximum flow. Our result is
the first planarity-exploiting (and first near-linear time) algorithm for this problem.
Multiple-source, multiple-sink maximum flow can also be used for finding orthogo-
nal drawings of planar graphs with a minimum number of bends [8] and uniformly
monotone subdivisions of polygons [45].

Techniques. To obtain our result, we employ a wide range of sophisticated algo-
rithmic techniques for planar graphs, some of which we adapted to our needs while
others are used unchanged. Our algorithm uses pseudoflows [17, 22] and a divide-and-
conquer scheme influenced by that of Johnson and Venkatesan [26] and that of Miller
and Naor [38]. We adapt a method for using shortest paths to solve max st-flow when
s and t are adjacent [19], and a data structure for implementing Dijkstra’s algorithm
in a dense distance graph derived from a planar graph [11]. Among the other tech-
niques we employ are: using cycle separators [37] recursively while keeping the bound-
ary nodes on a constant number of faces [33, 44, 11], an algorithm for single-source
single-sink maximum flow [3, 10], an algorithm for computing multiple-source shortest
paths [31, 6], a method for cancelling cycles of flow in a planar graph [28], an algorithm
for finding shortest paths in planar directed graphs with negative lengths [32, 39], and
a data structure for range queries in a Monge matrix [27, 13, 14].

One of the important new tools we develop is an efficient procedure for adjusting
a pseudoflow so as to ensure that there is no residual path from a vertex with positive
inflow on a path P to a vertex with positive outflow on P . This procedure has recently
found uses in efficient algorithms for other related problems. It is used in a nearly
linear time algorithm for computing single-source all sinks maximum flows in planar
graphs [36], and in a nearly linear time algorithm for constructing a data structure
capable of reporting, in constant time, the weight of any minimum st-cut in a surface
embedded graph [2].

1.1. Preliminaries. Planar graphs are those that can be drawn on the surface
of a sphere such that vertices map to points and edges map to line segments connecting
images of vertices and such that these line segments only intersect at vertices. The
connected regions of the sphere formed by the complement of the vertices and edges
are the faces of the graph. This is a geometric embedding. For the purposes of this
work, we need only a combinatorial embedding for a planar embedded graph which,
for every vertex, defines the cyclic order in which the edges adjacent to that vertex
are embedded.

For every planar embedded graph, there is a dual graph G∗ whose vertices are
the faces of G and whose edges connect vertices whose corresponding faces in G share
a boundary.

Let G = (V,E) be a planar embedded graph with node-set V and arc-set E. We
use the term arc to emphasize that edges are directed. The term edge is used when
the direction of an arc is not important. For each arc a in the arc-set E, we define
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two oppositely directed darts, one in the same orientation as a (which we sometimes
identify with a) and one in the opposite orientation [3]. We define rev(·) to be the
function that maps each dart to the corresponding dart in the opposite direction.
Since edges, arcs and darts of G are in a one to one correspondence with edges, arcs
and darts of the dual G∗, respectively, it is notationally convenient to equate the
edges, arcs and darts of G with the edges, arcs and darts of G∗. For an arc e = uv, we
say that u is the tail of e, and v is the head of v, and denote u = tail(e), v = head(e).
The same definition applies to darts. For a path P we define start(P ) and end(P ) to
be the first and last vertex in P , respectively.

Let S ⊆ V be a set of nodes called sources, and let T ⊆ V − S be a set of nodes
called sinks.

A flow assignment f(·) is a real-valued function on darts satisfying antisymmetry:

f(rev(d)) = −f(d)

A capacity assignment c(·) is a real-valued function on darts.1 A flow assignment f(·)
respects the capacity of dart d if f(d) ≤ c(d). We call f(·) a pseudoflow if it respects
the capacities of all darts.

For a given flow assignment f(·), the net inflow (or just inflow) of node v is
inflowf (v) =

∑
dart d:head(d)=v f(d). An equivalent definition, in terms of arcs, is

inflowf (v) =
∑
a∈E:head(a)=v f(a) −

∑
a∈E:tail(a)=v f(a). The outflow of v is defined

as outflowf (v) = −inflowf (v). For a subset U ⊆ V , we denote the subset of nodes
of U with positive inflow by U+

f (i.e., U+
f = {v ∈ U : inflowf (v) > 0}). Similarly,

U−f = {v ∈ U : inflowf (v) < 0}. We will omit the flow assignment f when it is clear
from the context. For example, V + is the set of vertices in the entire graph whose
inflow is positive.

A flow assignment f(·) is said to obey conservation at node v if inflowf (v) = 0.
A feasible flow is a pseudoflow that obeys conservation at every node that is neither
a source nor a sink. That is, V + ⊆ {S∪T}, and V − ⊆ {S∪T}. A feasible circulation
is a pseudoflow that obeys conservation at all nodes. That is, V + = V − = ∅ holds
for any feasible circulation. The value of a feasible flow f(·) is the sum of the inflow
at all sinks,

∑
t∈T inflowf (t) or, equivalently, the sum of outflow at the sources. The

maximum flow problem is that of finding a feasible flow with maximum value.
For two flow assignments f ,f ′, the addition f+f ′ is the flow that assigns f(d)+

f ′(d) to every dart d. Given a flow assignment f (the current flow) and vertex sets
A and B, pushing flow from A to B means adding to f a flow f ′ whose sources (i.e.
nodes with negative inflow in f ′) are only in A and whose sinks (i.e., nodes with
positive inflow in f ′) are only in B.

1.2. Circulations and dual shortest paths. Let φ be a function assigning
real values to the faces of G. Let ρ be the flow defined by

(1) ρ(d) = φ(headG∗(d))− φ(tailG∗(d)) for all darts d

Note that here we used the notation equating darts of G with darts of G∗; The head
and tail of a dart d in G∗ are the faces to the right and left of the dart d in G,
respectively. This notation is used throughout the paper. We say that φ is a face

1In some applications capacities are specified for the arcs, not the darts. These can be translated
into capacities on darts by setting c(d) to be c(a) for the dart d with the same orientation as a, and
setting c(rev(d)) to be 0.
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potential that induces ρ. The inflow at any vertex v is inflowρ(v) =
∑

head(d)=v ρ(d) =∑
head(d)=v φ(headG∗(d))−φ(tailG∗(d)) = 0, where the last equality follows from the

fact that the darts whose head is v in G form the boundary of a face in G∗, which is
a cycle. Therefore, each term in the summation appears once with positive sign and
once with negative sign. This shows that a flow assignment induced by face potentials
obeys conservation at all nodes.

Let c be a capacity assignment in G. Let x be an arbitrary vertex of G∗. Define
the potential φ(y) of every vertex y of G∗ to be the x-to-y distance in G∗ (using the
capacities c as dart lengths). It is well known (cf. [38]) that the flow ρ induced by the
potential φ is a feasible circulation. This relation between feasible circulations and
dual shortest paths is crucially used in our algorithm.

1.3. Residual graphs and invariance of saturation. A residual path in G
is a path whose darts all have strictly positive capacities. For two sets of nodes A,B,
A

G→ B is used to denote the existence of some residual a-to-b path in G for some
nodes a ∈ A and b ∈ B. Conversely, A G9 B is used to denote that no such path
exists. The absence of residual paths is also called saturation. We will omit the graph
G when it is clear from the context.

The residual graph of G with respect to a flow assignment f(·) is the graph Gf
with the same arc-set, node-set, sources and sinks, and with capacity assignment cf (·)
such that for every dart d, cf (d) = c(d) − f(d). The operation of pushing a flow f ′

in graph Gf yields the graph Gf+f ′ .

It is well known that a feasible flow f in G is maximum if and only if S
Gf9 T .

We will use several invariants of saturation. Informally these invariants are: (1) a
circulation does not create any new residual paths, (2) If no augmenting path exists
from A to B, then a flow with sources only in A cannot create augmenting paths from
A to B, and (3) If no augmenting path exists from A to B, then a flow with sinks only
in B cannot create augmenting paths from A to B. These invariants are formalized
by the following lemmas.

Lemma 2. Let ρ be a circulation. Let u and v be nodes in a graph G. Then

u
G9 v ⇒ u

Gρ9 v.

Proof. Pushing a circulation does not change the amount of flow crossing any cut.
This implies that if there was no u-to-v residual path before ρ was pushed, then there
is none after ρ is pushed.

Lemma 3 (Sources Lemma). Let f be a flow with source set X. Let A,B be two
disjoint sets of nodes. Then

A ∪X G9 B ⇒ A
Gf9 B.

Proof. The flow f may be decomposed into a cyclic component (a circulation)
and an acyclic component. By Lemma 2, it suffices to show the lemma for an acyclic
flow f .

Suppose for the sake of contradiction that there exists a residual a-to-b simple
path P after f is pushed for some a ∈ A and b ∈ B. Let P ′ be the maximal suffix of
P that was residual before the push. Maximality implies that the dart d of P whose
head is start(P ′) was non-residual before the push, and f(rev(d)) > 0. The fact that
f(rev(d)) > 0 implies that before f was pushed there was a residual path Q from
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some node x ∈ X to head(d). Therefore, the concatenation of Q and P ′ was a x-to-b
residual path before the push, a contradiction.

Lemma 4 (Sinks Lemma). Let f be a flow with sink set X. Let A,B be two
disjoint sets of nodes. Then

A
G9 B ∪X ⇒ A

Gf9 B.

Proof. The proof is symmetric to the proof of the Sources Lemma. Again, by
Lemma 2, it suffices to show the lemma for an acyclic flow f . Suppose, for the sake
of contradiction, that there exists a residual a-to-b path P after f is pushed for some
a ∈ A and b ∈ B. Let P ′ be the maximal prefix of P that was residual before the push.
That is, the dart d of P whose tail is end(P ′) was non-residual before the push, and
f(rev(d)) > 0. The fact that f(rev(d)) > 0 implies that before f was pushed there
was a residual path Q from tail(d) to some node x ∈ X. Therefore, the concatenation
of P ′ and Q was a a-to-X residual path before the push, a contradiction.

For node sets W,Y,Z, we will use the notation sources-lemma(Z,W 9 Y ) to indicate
the use of the Sources Lemma to establish that if there are no W -to-Y and no Z-to-Y
residual paths, then there are no W -to-Y residual paths after a flow with source set
Z is pushed. We will use sinks-lemma(W 9 Y,Z) in a similar manner.

1.4. Converting a Pseudoflow into a Maximum Feasible Flow. Let f be
a pseudoflow in a graph G with node set V , sources S and sinks T . We say that a
pseudoflow is maximum when S ∪ V + Gf9 T ∪ V −. A maximum pseudoflow can be
converted into a maximum flow in O(m log n)-time for a graph with n nodes and m
edges [26, 43]. If G is planar, this can be done in linear time by first canceling flow
cycles using the technique of Kaplan and Nussbaum [28], and then by sending back
flow from V + to S, and into V − from T in topological sort order. We give the details
here.

First, the algorithm converts f to an acyclic pseudoflow in linear time [28]. That
is, after the conversion there is no cycle C such that f(d) > 0 for every dart d of
C. Since f is acyclic, the darts with a positive flow induce a topological ordering
on the nodes of the graph G. Let v be the last member of V + in the topological
ordering, and let d be an arbitrary dart that carries flow into v. We set f(d) to
max{f(d)− inflowf (v), 0}, and update f(rev(d)) accordingly. The flow assignment f

maintains the invariant S ∪V + Gf9 T ∪V − by sources-lemma({v},S ∪V + 9 T ∪V −).
Note that the vertex tail(d), which may now belong to V + has no residual paths to
T ∪ V − since that would imply v had a residual path to T ∪ V −. As long as v is in
V +, there must be a dart d which carries flow to v. By changing the flow on d we
cannot add to V + a new node that appears later than v in the topological ordering.
We repeat this process until V + is empty. Since we reduce the flow on each dart at
most once, this takes linear time. Next we handle V − while keeping the invariant
S ∪ V + Gf9 T ∪ V − in a symmetric way, by repeatedly fixing the first vertex of V − in
the topological ordering.

The total running time is O(n), and since V +, V − are both empty, we get from

the invariant S ∪ V + Gf9 T ∪ V − that the resulting pseudoflow is a maximum flow.

1.5. Cycle Separators for Embedded Planar Graphs. Miller [37] gave a
linear-time algorithm that, given a triangulated two-connected n-node planar em-
bedded graph G with non-negative node weights, finds a simple cycle, called a cycle
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separator, consisting of at most 2
√
2
√
n nodes, such that at most 2/3 of the total

weight is strictly enclosed by the cycle, and at most 2/3 of the total weight is not
enclosed. Short balanced separator are useful as the basis of divide and conquer algo-
rithms, such as the algorithm described in the current paper. The basic idea is to split
the original problem into two subproblems in the interior and exterior of the cycle
separator. These subproblems are solved recursively. Since the separator is balanced,
the depth of the recursion is O(log n). The fact that the separator is short (i.e., con-
sists of O(

√
n) nodes) is important for being able to efficiently combine the recursive

solutions into a solution to the original problem. Cycle separators are particularly
useful because the interaction between the solutions obtained recursively is structured
along a single simple cycle. This can be exploited to obtain faster algorithms.

1.6. Overview of the algorithm. Consider the following naïve recursive ap-
proach for finding a maximum multiple-source multiple-sink flow: split the input
graph G in two using a simple cycle separator C and recursively solve the maximum-
flow instances induced by each of the two subgraphs. After the two recursive calls
have been executed, in each of the two subgraphs there is no residual path from any
source to any sink. However, there may still exist residual paths from sources in one
subgraph to sinks in the other subgraph. If the algorithm further ensures that in each
of the two subgraphs there is no residual path from any source to C and from C to
any sink, then, since C is a separator, there is no residual path from any source to
any sink in G. The caveat is that a flow assignment that saturates all such residual
paths might not be feasible; To saturate all such residual paths, the vertices of the
cycle C might have nonzero net inflow/outflow.

The algorithm must therefore solve the following, slightly more general problem
in each of the two subgraphs: it must find a pseudoflow such that there is no residual
path from a source to a sink or to C and no residual path from C to a sink. We
emphasize again that the pseudoflow is not necessarily a feasible flow since the vertices
of the cycle C are allowed to have nonzero net inflow/outflow. The formulation of
the problem solved by the algorithm needs, in fact, to be even more general. This is
because deeper recursive calls must take into account not only the cycle separator C
in the current recursive call, but also cycle separators of earlier recursive calls. For
this overview of the algorithm we ignore this complication. The recursive approach is
described in detail in Section 2.

After the two recursive calls, there is no residual path from any source to any sink
in G. However, the pseudoflow computed by the two recursive calls is not a maximum
pseudoflow since there might be residual paths from vertices with positive inflow to
vertices with positive outflow. The only such vertices are those of the cycle separator
C. The algorithm uses a procedure BalancePath that adjusts the pseudoflow so as
to ensure that there is no residual path in G from a vertex of with positive inflow to a
vertex with positive outflow. Once this procedure completes its work, the pseudoflow
can be turned into a maximum flow in linear time, as described in Section 1.4.

The core of the algorithm is the procedure BalancePath. This procedure in-
volves a series of |C| − 1 max-flow computations in G. Since |C| is O(

√
n), the

challenge is carrying out all these max-flow computations in near-linear time. One of
the main novel ideas in our work is that the procedure uses a succinct representation
to keep track of the changes to the pseudoflow. The succinct representation does not
explicitly store changes to those arcs of the graph not in C, but is nevertheless able
to carry out augmentations. The basis for this representation is the relation between
primal circulations and dual shortest paths described in Section 1.2. The procedure
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also makes use of an adaptation of Fakcharoenphol and Rao’s efficient implementa-
tion of Dijkstra’s algorithm [11]. The representation and procedure are described in
Section 3.

2. Flow by divide and conquer. In this section we describe the divide-and-
conquer algorithm MSMSMaxFlow in terms of three subprocedures. We will show
that the algorithm is correct assuming the correctness of the subprocedures. As
we mentioned in the overview in Section 1.6, the problem solved by the recursive
algorithm is more general than the multiple-source multiple-sink max flow problem.
In addition to the sets S and T of sources and sinks, the algorithm is given as input
a set A of vertices, and is required to produce a pseudoflow that obeys conservation
everywhere except at vertices of S, T , or A, and such that there are no residual paths
from any source to any sink, from any source to any vertex of A, and from any vertex
of A to any sink. Each vertex in the set A is the result of contracting a cycle separator
used in an earlier recursive call.2 To solve the maximum flow problem with multiple
sources and sinks, we apply algorithm MSMSMaxFlow with A = ∅.

Algorithm 1 MSMSMaxFlow(G, c,S,T ,A)
Input: a directed planar graph G with non-negative capacities c, a set S of source
nodes, a set T of sink nodes, a set A = {a1, . . . , ak} of size at most six.
Output: a pseudoflow f obeying conservation everywhere except S ∪ T ∪ A, such
that S

Gf9 T , S
Gf9 A, A

Gf9 T .

1: add zero-capacity arcs to triangulate and two-connect G (required for simple cycle
separators)

2: find a balanced (alternately w.r.t. |G| and |A|) cycle separator C in G
3: ensure that C contains no sources, sinks or nodes of A
4: P ← C − {e}, where e is an arbitrary edge of C
5: contract all the edges of P , turning e into a self loop incident to the only remaining

node v of C
6: let G1 and G2 be the subgraphs of G strictly enclosed and not enclosed by e,

respectively
7: f ← MSMSMaxFlow(G1, c|G1, S ∩G1, T ∩G1, (A ∩G1) ∪ {v})
8: f ← f + MSMSMaxFlow(G2, c|G2, S ∩G2, T ∩G2, (A ∩G2) ∪ {v})
9: uncontract the edges of P

10: f ← BalancePath(G,P, c,f)
11: for i = 1, 2, . . . , |A|
12: f ← FromCycleLimitedMaxFlow(G, c,f , C, ai)
13: f ← ToCycleLimitedMaxFlow(G, c,f , ai, C)
14: (un)push positive excess from C+ and negative excess to C−
15: return f

The graph is divided using an O(
√
n)-size cycle separator C. If C contains a

source u we introduce an artificial node u′ and artificial arc u′u with high capacity
and designate u′ a source instead of u (Line 3). Clearly, we can embedded u′ and the
arc u′u without violating the planarity of the graph. Sinks and nodes of A on C are
handled similarly. This allows us to assume, for simplicity of presentation, that no
nodes of C are sources, sinks or nodes of A.

2It is possible to devise a similar algorithm with a simpler recursive structure. Its running time,
however, is slower by a polylogarithmic factor. See [40] for details.
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All but one edge e of the cycle C are contracted. Thus, the only remaining edge
of C is the self loop e, and the only remaining node of C is the node v incident to
e.3 The node v is added to the set A so that, in the recursive calls, v represents
the cycle C. In order to bound the running time, we maintain that |A| ≤ 6. We do
so by balancing the separator with respect to |A| every other recursive call (Line 2).
Since each recursive call increases the size of A by at most 1, and every two recursive
calls |A| decreases by a factor of 2/3, the algorithm ensures that |A| < 6 at all times.
This is similar to previous uses of cycle separators (for example, Fakcharoenphol and
Rao [11] or Klein and Subramanian [33]) where the number of holes introduced by
the separating cycles is bounded.

The algorithm then recurses on the subgraph embedded on each side of the self-
loop formed by e. After the recursive calls, the algorithm uncontracts the edges of C.
We will show that, at this stage, there are no residual paths from sources to sinks,
from sources to nodes of A and from nodes of A to sinks (Lemma 6). However, the
flow is not a valid output for MSMSMaxFlow since flow may not be conserved at
the nodes of C. We cannot simply push flow back from nodes of C with excess inflow
to the sources and from the sinks to nodes of C with excess outflow. There are three
reasons this does not work. First, if there is a residual path from a node of C with
excess inflow to a node of C with excess outflow, doing so will create a source-to-sink
residual path. Second, if there is a residual path from a node of C with excess inflow
to a node of A, doing so will create a source-to-A residual path. Third, if there is
a residual path from a node of A to a node of C with excess outflow, doing so will
create an A-to-sink residual path.

The first problem is corrected by saturating residual paths from nodes of C with
excess inflow to nodes of C with excess outflow. This is the most challenging problem
of the three, because correcting it requires computing a flow with multiple sources
(nodes of C with excess inflow) and multiple sinks (nodes of C with excess outflow).
We cannot afford to achieve this by an additional recursive call, because then the
running time will no longer be nearly linear. Saturating these residual paths is done
by the procedure BalancePath. This procedure is given in Section 3; the interface
is:

BalancePath(G,P, c,f0):
Input a directed planar graph G, simple path P , capacity function

c, and a pseudoflow f0
Output a pseudoflow f such that

(i) f − f0 satisfies conservation everywhere but P

(ii) P+
f

Gf9 P−f
Run time O(n log n+ |P |2 log2 n)

The second problem is corrected by saturating residual paths from nodes of C
with excess inflow to the nodes of A. Since |A| < 6, we can afford to handle each node
ai of A separately. This is done by iterating over the nodes ai of A and using the
procedure FromCycleLimitedMaxFlow to push as much excess flow as possible
from C to ai. This is still challenging because, although the procedure involves only
a single sink (the node ai), it involves multiple sources (nodes of C). The details of
this procedure are given in Section 4 and the interface is:

FromCycleLimitedMaxFlow(G, c,f0, C, t):

3The remaining self loop has no particular significance. We do not contract e to avoid discussion
of contractions of self loops and complications thereof.
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Input a directed planar graph G with capacities c, a pseudoflow f0,
a simple cycle C, a sink t

Assumes no node of C⊕ has negative inflow w.r.t. f0 where C⊕
is the set of nodes of C reachable from C+

f0
via residual paths

(C⊕ = {v ∈ C : C+
f0

Gf0→ v})
Output a pseudoflow f s.t.

(i) f − f0 obeys conservation everywhere but C⊕ ∪ {t}
(ii) no node of C⊕ has negative inflow w.r.t. f

(iii) C+
f

Gf9 t

Run time O(n log n+ |C|2 log2 n).
A similar procedure ToCycleLimitedMaxFlow is called to push flow from ai

to C in order to correct the third problem.
Next the algorithm pushes back flow from any nodes of C with positive inflow

to S ∪ A and pushes flow back from T ∪ A into any nodes of C with negative inflow
(Line 14) using the technique described in Section 1.4. This ensures that the only
imbalances are at S, T and A.

Running time. The number of nodes of the separator cycle C used to partition G
into G1 and G2 is O(

√
|G|). Therefore, each invocation of BalancePath, FromCy-

cleLimitedMaxFlow and ToCycleLimitedMaxFlow in G takes O(|G| log |G|+
|C|2 log2 |G|) = O(|G| log2 |G|) time. A standard analysis of the recurrence (e.g., [11])
shows that the algorithm runs in O(n log3 n) time.

2.1. Correctness of MSMSMaxFlow. We will show that at the end of the
MSMSMaxFlow we have a maximum pseudoflow. More specifically, we will show:

Theorem 5. Upon termination of MSMSMaxFlow:
(i) f is a pseudoflow;
(ii) f obeys conservation everywhere except at S, T and A;

(iii) S
Gf9 T, S

Gf9 A,A
Gf9 T .

The remainder of this section will prove this theorem. We assume for this purpose
that the sub-procedures are correct. It is easy to see that f is a pseudoflow at every
stage in the algorithm as capacity constraints are never violated. Also, f obeys
conservation everywhere except at S, T , and A and C. We therefore only need to
argue that conservation will be attained at C and that maximality is achieved.

Lemma 6. At any time in the running of the algorithm after the execution of
line 8 and before the execution of line 14, S 9 T ∪A ∪ C, and A ∪ C ∪ S 9 T .

Proof. The properties hold just after line 8 by the properties of the recursive calls,
by induction on the size of the graph, and by the fact that any residual path between
G1 and G2 would consist of a residual path to C and a residual path from C. Note
that, because of the contractions in line 5, at this time the cycle C consists of just the
node v. The nonexistence of residual paths w.r.t. v in the recursive calls implies the
nonexistence of residual paths w.r.t. any node of C after the contractions are undone
in line 9.

Therefore, just after line 9, there is a cut separating S from T ∪ A ∪ C that is
saturated (i.e., S 9 T∪A∪C). BalancePath only pushes flow between vertices of C
and FromCycleLimitedMaxFlow and ToCycleLimitedMaxFlow only pushes
flow between the nodes of A and C. It follows by sinks-lemma(S 9 T ∪A∪C,C ∪A)
that S 9 T ∪A ∪ C at any point after line 8 and before line 14.
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A similar argument shows A ∪ C ∪ S 9 T , giving the lemma.

Let fi denote the flow assignment at the beginning of iteration i of the loop in
line 11. Let C⊕i be the set of nodes of C that are reachable via residual paths from
some node of C with positive inflow at the beginning of iteration i of the loop in

line 11. I.e., C⊕i = {v ∈ C : C+
Gfi→ v}. Likewise define C	i as the set of nodes

of C that have residual paths to some node of C with negative excess at that time

(i.e., C	i = {v ∈ C : v
Gfi→C−}). Note that, since a node has a (trivial) residual

path to itself, C+ ⊆ C⊕ with respect to any flow. We will show that after this loop
has terminated, we will have C+ 9 C−, C+ 9 A, and A 9 C−. Combined with
Lemma 6, and pushing back in/outflow excesses, we will get Theorem 5.

We will show that C+ 9 C−, C+ 9 A, and A 9 C−, by proving this property
(iteratively) for C⊕i and C	i . In order to do so, we will need to relate C⊕i to C⊕j for
i 6= j:

Lemma 7. For all i < j, C⊕j ⊆ C
⊕
i and C	j ⊆ C

	
i .

Proof. It suffices to show that, for all i, C⊕i+1 ⊆ C⊕i and C	i+1 ⊆ C	i . We show
the former. The proof of the analogous claim for C	i+1 is similar.

Since, by their definition, neither FromCycleLimitedMaxFlow nor ToCy-
cleLimitedMaxFlow create new vertices with inflow excess, C+

i+1 ⊆ C
+
i . It there-

fore suffices to show that no new nodes become reachable from C+
i during the execu-

tion of lines 12 and 13.
The flow pushed in iteration i of line 12 has sources only in C⊕i . Therefore, by

sources-lemma(C⊕i , C
⊕
i 9 V (C)−C⊕i ), immediately after line 12 C⊕i 9 V (C)−C⊕i

is maintained. The flow pushed in iteration i of line 13 has sinks only in C	i ⊆
V (C) − C⊕i . Therefore, by sinks-lemma(C⊕i 9 V (C) − C⊕i , C

	
i ), C

⊕
i 9 V − C⊕i is

maintained immediately after line 13 is executed.

Lemma 8. Just after line 12 in iteration i, C⊕i 9 C	i , C
⊕
i+1 9 {a1, . . . , ai},

{a1, . . . , ai−1} 9 C	i and just after line 13 in iteration i, C⊕i 9 C	i , C
⊕
i+1 9

{a1, . . . , ai}, {a1, . . . , ai}9 C	i+1.

Proof. Since BalancePath guarantees that C+ 9 C−, we have that just after
line 10, C⊕1 9 C	1 , for otherwise there would be a residual path from C+ to C⊕1 to
C	1 to C− (a contradiction).

The flow pushed in line 12 has sources only in C⊕i so just after line 12
• C⊕i 9 C	i by sources-lemma(C⊕i , C

⊕
i 9 C	i )

• C⊕i+1 9 ai since C⊕i+1 ⊆ C⊕i (Lemma 7), and by definition of FromCycle-
LimitedMaxFlow

• C⊕i+1 9 {a1, . . . , ai−1} since C⊕i+1 ⊆ C⊕i (Lemma 7), C⊕i 9 {a1, . . . , ai−1}
(inductively), and by sources-lemma(C⊕i , C

⊕
i 9 {a1, . . . , ai−1})

• {a1, . . . , ai−1}9 C	i inductively and by sources-lemma(C⊕i , {a1, . . . , ai−1}9
C	i )

Likewise, the flow pushed in line 13 has sinks only in C	i , so
• C⊕i 9 C	i by sinks-lemma(C⊕i 9 C	i , C

	
i )

• C⊕i+1 9 {a1, . . . , ai} by sinks-lemma(C⊕i+1 9 {a1, . . . , ai}, C	i )
• ai 9 C	i+1 by definition of ToCycleLimitedMaxFlow
• {a1, . . . , ai−1}9 C	i+1 since C

	
i+1 ⊆ C

	
i (Lemma 7), {a1, . . . , ai−1}9 C	i (by

what is true after line 12), and by sinks-lemma({a1, . . . , ai−1}9 C	i , C
	
i )
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Proof of Theorem 5. Since every addition to f during the algorithm respects ca-
pacities of all darts, f is a pseudoflow at all times. Inductively, the only nodes that do
not obey conservations after the recursive calls are those of S, T and A. Subsequent
changes to f only violate conservation on the nodes of C and A. Therefore, just
before line 14, conservation is only violated at S, T,A, and C.

By Lemma 6 S 9 C, and C 9 T just before line 14 is executed. By Lemma 8
with i = |A| we have C⊕|A| 9 C	|A|, C

⊕
|A|+1 9 A, and A 9 C	|A|+1 just before line 14

is executed. Since the set C+ (C−) of nodes of C with positive (negative) inflow
just before line 14 is executed is a subset of C⊕|A|+1 (C	|A|+1), and since, by Lemma 7,
C⊕|A|+1 ⊆ C

⊕
|A|, we have C+ 9 C−, C+ 9 A, and A9 C−.

We have shown that C+ 9 T ∪A∪C− just before line 14 is executed. Therefore,
the flow pushed back from C+ in line 14 must be pushed to S. Similarly, we have
shown that C+ ∪ S ∪A9 C−, so the flow pushed to C− must be pushed from T .

Let f+ and f− be the flow pushed back from C+, and the flow pushed back into
C−, respectively, in line 14. Just before line 14 is executed we have S 9 A ∪ T ∪ C
and A ∪ C 9 T (by Lemma 6), and C+ 9 C− ∪ A and A 9 C− (by Lemma 8).
Consider first the effect of f+:

• S 9 A ∪ T ∪ C− by sources-lemma(C+, S 9 A ∪ T ∪ C−)
• A9 T ∪ C− by sources-lemma(C+, A9 T ∪ C−)

Next consider the effect of f−:
• S 9 T ∪A by sinks-lemma(S 9 T ∪A,C−)
• A9 T by sinks-lemma(A9 T,C−)

This shows that upon termination, S 9 T ∪ A and A 9 T . Since any excess inflow
or outflow at nodes of C is eliminated when line 14 is executed, the pseudoflow upon
termination satisfies conservation everywhere except S, T,A.

3. Balancing the flow on a path. In this section we present an efficient im-
plementation of the balancing procedure which, roughly speaking, given a path P
with nodes having positive, negative, or zero inflow, pushes excess flow between the
nodes of the path so that eventually there are no residual paths from nodes of P
with positive inflow to nodes of P with negative inflow. We emphasize that the pro-
cedure pushes flow in the entire graph, but that this flow only violates conservation
at the nodes of the path P . Put in other words, the only nodes whose excess flow
changes are those of the path P . We begin by describing an abstract algorithm for
the balancing procedure and argue its correctness (Section 3.1). We then present
an inefficient implementation of this procedure using Hassin’s method for computing
st-planar flows (Section 3.2); this will introduce key ideas for our efficient balancing
procedure (Section 3.3).

Our balancing procedure resembles a technique used by Venkatesan and John-
son [26]. Let M be the sum of capacities of all of the darts of G. The algorithm
first increases the capacities of the darts of the path P and their reverses by M and
processes the nodes of P in order: p1, p2, . . . , pk+1. In iteration i, to processes pi:

• Restore the capacities of the darts pipi+1 and pi+1pi: Reduce the ca-
pacities of pipi+1 and pi+1pi by M (i.e., return their capacities back to their
original capacities) and change the flow on these darts such that their ca-
pacities are respected (i.e., if the flow on these darts exceeds their original
capacity, reduce the flow. This changes the flow excess at pi and pi+1).

• Eliminate as much excess flow at pi as possible: Balance the flow excess
at pi as much as possible by pushing flow (in the entire graph) from pi+1 to
pi (if inflow(pi) < 0) or from pi to pi+1 (if inflow(pi) > 0). Only push up to
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|inflow(pi)| units of flow.
After doing so, one of the following three holds: (i) the flow is conserved at pi, (ii)
inflow(pi) > 0 and there are no residual paths from pi to any of the other nodes of P
(since the large capacities on darts between unprocessed nodes of P allow flow to be
forwarded to pi+1), or (iii) inflow(pi) < 0 and there are no residual paths to pi from
any of the other nodes of P .

3.1. Correctness of abstract balancing procedure. We now argue that the
abstract balancing procedure satisfies the requirements in the definition of Balan-
cePath. Namely, it produces a pseudoflow f such that

(i) f − f0 satisfies conservation everywhere but P

(ii) P+
f

Gf9 P−f
Clearly the flow always satisfies conservation everywhere except at nodes of P since
the abstract procedure only pushes flow between nodes of P . We show that the
procedure achieves the property P+ 9 P− inductively. Let Pi be the prefix subpath
of P that ends in the ith vertex, pi.

Lemma 9. At the end of iteration i of the balancing procedure we have the invari-
ants:

(i) P+
i 9 (P − Pi), (ii) (P − Pi) 9 P−i , and (iii) P+

i 9 P−i

Proof. By induction on the iteration number of the loop. For i = 0 the invariants
are trivially satisfied. We assume the invariants hold at the beginning of the ith
iteration (namely P+

i−1 9 (P − Pi−1), (P − Pi−1) 9 P−i−1 and P+
i−1 9 P−i−1) and we

show that they still hold at the end of the ith iteration.
If flow at pi is conserved at the end of the ith iteration then P+

i−1 = P+
i and P−i−1 =

P−i . We get the lemma by the inductive hypothesis and by (i) sinks-lemma(P+
i−1 9

(P − Pi−1), {pi, pi+1}), (ii) sources-lemma({pi, pi+1}, (P − Pi−1) 9 P−i−1), and (iii)
sinks-lemma(P+

i−1 9 P−i−1, {pi, pi+1}).
If pi has positive inflow at the end of iteration i, then, since we only push as much

flow as there is inflow at pi at the start of iteration i, the flow pushed must have
been a maximum flow from pi to pi+1. Since the capacities of the darts in P −Pi are
sufficiently large, the maximality of the flow implies pi 9 (P − Pi). P+

i−1 9 (P − Pi)
is achieved since Pi−1 ⊂ Pi, and sinks-lemma(P+

i−1 9 (P − Pi−1), pi+1). This shows
invariant (i).

Since in this case P−i = P−i−1, by the inductive hypothesis ((P − Pi−1) 9 P−i−1),
and by sources-lemma(pi, (P − Pi−1) 9 P−i−1), we get (P − Pi) 9 P−i , completing
the proof of invariant (ii).

For invariant (iii), since pi ∈ (P − Pi−1), we have by the inductive hypothesis
pi 9 P−i−1, as well as P+

i−1 9 P−i−1 at the start of iteration i. These two properties
remain true at the end of iteration i by sources-lemma(pi, pi 9 P−i−1) and sinks-
lemma(P+

i−1 9 P−i−1, pi), respectively. This proves invariant (iii) since in this case
P+
i = P+

i−1 ∪ {pi} and P
−
i = P−i−1.

The case of negative inflow at pi is similar.

3.2. An inefficient implementation for pushing flow. In this section, we
give an inefficient implementation for balancing the flow on a path P . This will
facilitate the explanation of the efficient procedure in the next section. The idea is
based on Hassin’s algorithm for maximum flow in planar graphs between adjacent
vertices and shortest path computations in the dual graph.
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3.2.1. Hassin’s algorithm for maximum st-planar flow. A planar graph is
st-planar if nodes s and t are incident to the same face. Hassin [19] gave an algorithm
for computing a maximum flow from s to t in an st-planar graph. We briefly describe
this algorithm here since we will use it to push flow in BalancePath.

Hassin’s algorithm starts by embedding in G an artificial, infinite capacity arc
a from t to s in a face common to both s and t. It then computes shortest-path
distances in G∗: φ[f ] is the distance to face f (of G) from the face (in G) to the right
of a, using capacities as dart lengths. Consider the flow:

(2) ρ[d] = φ[headG∗(d)]− φ[tailG∗(d)] for all darts d

That is, ρ is the feasible circulation induced by the face potential vector φ. It can be
shown that, after removing the artificial arc a from G, ρ is a maximum feasible flow
from s to t in G. For our purposes, we require a maximum flow of value at most x
rather than a maximum flow; it is not difficult to see that setting the capacity of the
artificial arc a to x instead of infinity results in the desired limited maximum flow [30].

3.2.2. Using Hassin’s algorithm. We use Hassin’s algorithm to push flow in
each iteration. The change to the flow in iteration i is a flow between the endpoints
pi and pi+1 of the ith dart, di, of P . This flow can be represented as the sum of a
circulation ρi and a flow on di and rev(di). The former is the circulation in Hassin’s
algorithm, and the latter represents the adjustment to the circulation that results from
removing the artificial arc in Hassin’s algorithm. In preparation for giving an efficient
implementation, we represent the circulations implicitly by their corresponding face
potentials φi. By linearity of Eq. (2), the sum φ =

∑i
j=1 φj is the face potential

vector that induces a circulation ρ. The final flow on darts not in P is just the flow
assigned to them by this circulation. The final flow on darts in P is given by a flow
that we maintain explicitly plus this circulation.

Refer to Algorithm 2, InefficientBalancePath. Throughout we maintain an
explicit flow assignment f and a potential φ that represents the circulation ρ. The net
flow on a dart d, denoted netflow(d), is given by f [d] + ρ[d] = f [d] +φ[headG∗(d)]−
φ[tailG∗(d)]. Given the vectors f and φ, netflow(d) can be computed in constant
time. The imbalance at a vertex p of P is always computed with respect to netflow;
we represent this by inflow(p), which can be computed on demand. However, for
the efficient implementation in the next section, we will explicitly maintain an array
representing inflow. Updates to an entry of this array can clearly be made in constant
time when f [d] for a dart d of P incident to p is updated. Updates to f [d] always
take the flow represented by the circulation ρ[d] = φ[headG∗(d)] − φ[tailG∗(d)] into
account (e.g. line 7).

In our use of Hassin’s algorithm for pushing flow, instead of using an artificially
introduced arc a from t to s, we use an existing dart d from the source to the sink
(d is either di or rev(di), depending on the value of inflow(pi)). In order for this
to work, the capacity of d must be zero (as is indeed the case for rev(a) in Hassin’s
algorithm). We achieve this by either saturating d or pushing |inflow(pi)| units of flow
and balancing pi (line 10).

The core of Hassin’s algorithm is implemented in lines 14– 15. The flow we find via
dual-shortest-path potentials (line 14) is a circulation rather than a maximum flow.
In Hassin’s algorithm it is converted to a maximum flow by removing the artificial
arc a. In our implementation the convertion is done by removing the flow from the
dart rev(d) (line 15). Note that we explicitly represent the flow on di and rev(di)
separately from the potentials used to represent the circulations (line 18).
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Algorithm 2 InefficientBalancePath
Input: directed planar graph G, simple path P with nodes p1, p2, . . . , pk+1 and darts
d1, d2, . . . , dk, capacity function c and pseudoflow f0
Output: pseudoflow f s.t. (i) f − f0 satisfies conservation everywhere but P , and
(ii) P+ 9 P−

1: f ← f0
2: c[d]← c[d] +M for all darts d of P ∪ rev(P )
3: φ[f ]← 0 for all faces f of G initialize potentials representing circulation

4: for i = 1, 2, . . . , k
5: c[di]← c[di]−M , c[rev(di)]← c[rev(di)]−M return capacities back to their original

6: if netflow(di) > c[di] then
7: f [di]← c[di]−φ[headG∗(di)] +φ[tailG∗(di)] , f [rev(di)]← −f [di] and adjust

the flow accordingly

8: if inflow(pi) > 0 then d← di else d← rev(di) determine the direction to push flow

9: c = c[d]− f [d]− φ[headG∗(d)] + φ[tailG∗(d)] residual capacity of d

10: f [d]← f [d] + min(c[d]− netflow(d), |inflow(pi)|), f [rev(d)]← −f [d] balance on

d as much as possible

11: if |inflow(pi)| > 0 then
12: `[d′]← c[d′]− netflow(d′) for each dart d′ of G lengths are residual capacities

13: `[rev(d)]← |inflow(pi)| limit the amount of flow we push in balancing

14: φi ← shortest-path distances in G∗ from headG∗(d) with lengths given by `
15: f [d]← f [d] + φi[tailG∗(d)], f [rev(d)]← −f [(d)] compensate for flow φi pushes

on rev(d)

16: φ = φ+ φi accumulate the current circulation

17: return netflow

3.3. An efficient implementation of BalancePath. In this section, we give
an efficient implementation for the abstract balancing procedure that runs in time
O(n log n+ |P |2 log2 n). We first review the necessary tools.

3.3.1. Price functions and reduced lengths. For a directed graph G with
dart-lengths `(·), a price function is a function φ from the nodes of G to the reals. For
a dart d, the reduced length with respect to φ is `φ(d) = `(d)+φ(tail(d))−φ(head(d)).
We say that a price function reduces the lengths.

Price functions can be useful for converting a shortest-path problem involving
positive and negative lengths to one involving only non-negative edge lengths [25]. For
example, single-source distances reduce lengths to be non-negative. This can be useful
in multiple-source shortest path computations: for an arbitrary node r, let φ(v) be the
r-to-v distance in G with respect to `(·); then for every arc uv, φ(v) ≤ φ(u) + `(uv),
so `φ(uv) ≥ 0. Here we assume that all distances are finite (i.e., that all nodes are
reachable from r).4 Note that shortest paths with respect to ` remain shortest with
respect to the reduced length `φ (the length of each path are shifted by the difference
of potentials of its endpoints). Therefore, shortest paths in G can now be computed
using Dijkstra’s algorithm, rather than by slower methods that can handle negative
lengths.

4This assumption is w.l.o.g. since we can always add arcs with sufficiently large lengths to make
all nodes reachable without affecting the shortest paths in the graph.
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3.3.2. Fakcharoenphol and Rao’s Dijkstra implementation. Fakcharoen-
phol and Rao [11] described a data structure that can be used in a procedure to
efficiently implement Dijkstra’s algorithm among the vertices of a cycle separator in a
planar graph. We adapt this procedure to maintain dual distances between faces ad-
jacent to the path we are balancing; these distances will give us the potential function
that defines the set of circulations used in the inefficient implementation. We use a
variant of Fakcharoenphol and Rao’s procedure that additionally uses a price function
that reduces lengths to be non-negative. Specifically, this data structure gives:

FRDijkstra(H,X,D, P, `, v, φ):
Input a planar graph H, a subset of nodes X, a table D storing the

pairwise distances in H among X, a set of darts P (not neces-
sarily in H and P ∪H not necessarily planar) whose endpoints
are nodes in X with lengths ` and a node v ∈ X, a price function
φ for the nodes of X

Assumes the nodes of X are on the boundary of a single face of
H and in clockwise order around the boundary of this face, φ
reduces ` and D to be non-negative

Output the distances in H ∪P from v to every node in X w.r.t. the
lengths reduced by φ

Run time O(|X| log2 |X|+ |P | log |X|)
The procedure of Fakcharoenphol and Rao partitions the table D into several sub-

tables {Dα}α that correspond to distances between pairs of disjoint sets of nodes of X,
where each set consists of nodes that are consecutive in X. Fakcharoenphol and Rao
use, for each such subtable Dα, a data structure supporting range minimum queries
of the form minj1≤j≤j2{Dα[i, j]} for every i, j1, j2 in O(log |X|) time [11, footnote on
p. 884]. Without the price function, this can be achieved using a range-search tree [9]
for every row i of Dα. However, a range-search tree would first need to compute the
O(|X|2) reduced lengths of D. Instead, we use Monge range-query data structures,
due to Kaplan et al. [27], which can be constructed from the table D in O(|X| log |X|)
time, and answer queries of the desired form in O(log |X|) time.

3.3.3. The procedure for efficiently balancing a path. Finally, we describe
the efficient implementation. Refer to Algorithm 3, BalancePath. As in the inef-
ficient implementation, the procedure will maintain the total flow as the sum of a
circulation ρ and a flow assignment f that differs from the input flow f0 only on
the darts of P ∪ rev(P ). Initially f is set equal to f0. The circulation ρ will be
represented by a face-potential vector φ. However, we will show that it suffices to
maintain just those entries φX (line 6) of φ that correspond to faces incident to P .
In the pseudocode we highlight the changes from InefficientBalancePath.

Precomputing distances. We start by computing distances that will be invariant
throughout the algorithm in lines 1 to 3. We use dart-lengths inherited from residual
capacities. The distances we precompute are distances in the dual between nodes
X∗ that are endpoints of darts of P (i.e. corresponding to the faces adjacent to P ).
We compute distances in the graph H∗ obtained from G∗ by removing the darts of
P . Note that deleting P in the dual is the same as contracting the darts of P in
the primal. In the primal, this results in a single vertex v and every face that was
adjacent to P is now adjacent to v (Figure 1). In the dual v is a face and X∗ are
nodes on the boundary of that face. We get:

Observation 10. The nodes X∗ are adjacent to a single face in H∗.
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Algorithm 3 BalancePath
Input: directed planar graph G, simple path P with nodes p1, p2, . . . , pk+1 and darts
d1, d2, . . . , dk, capacity function c and pseudoflow f0
Output: pseudoflow f s.t. (i) f − f0 satisfies conservation everywhere but P , and
(ii) P+ 9 P−

1: X∗ ← set of endpoints in the planar dual G∗ of the darts of P
2: H∗ ← subgraph of G∗ with the darts of P removed
3: D∗ ← table of pairwise distances in H∗ between nodes of X∗ w.r.t.

the lengths c− f0
4: f ← f0
5: c[d]← c[d] +M for all darts d of P ∪ rev(P )
6: φX [x]← 0 for all nodes x of X∗
7: for i = 1, 2, . . . , k
8: c[di]← c[di]−M , c[rev(di)]← c[rev(di)]−M
9: if netflow(di) > c[di] then f [di] ← c[di] − φ[headG∗(di)] + φ[tailG∗(di)] ,

f [rev(di)]← −f [di]
10: if inflow(pi) > 0 then d← di else d← rev(di)
11: c = c[d]− f [d]− φ[headG∗(d)] + φ[tailG∗(d)]
12: f [d]← f [d] + min(c[d]− netflow(d), |inflow(pi)|), f [rev(d)]← −f [d]
13: if |inflow(pi)| > 0 then
14: `[d′]← c[d′]− netflow(d′) for each dart d′ of P ∪ rev(P ) lengths of darts of P

are residual capacities

15: `[rev(d)]← |inflow(pi)|
16: φXi (·)←FRDijkstra(H∗, X∗,D∗, P, `, headG∗(d),φX) compute the balancing

circulation

17: f [d]← f [d] + φXi [tailG∗(d)], f [rev(d)]← −f [(d)] compensate for flow φX
i pushes

on rev(d)

18: φX ← φX + φXi accumulate the current circulation

19: χ← shortest-path distances in G∗ from any vertex x using lengths c[d]− f [d]
20: f ′[d]← f [d] + χ[headG∗(d)]− χ[tailG∗(d)] for every dart d ∈ G
21: return f ′

Limiting computation to faces adjacent to P . The main difference between the in-
efficient and efficient algorithms is that rather than computing the entire dual shortest-
path tree to implement Hassin’s algorithm (line 14 of InefficientBalanceFlow)
we only compute distances to nodes inX∗ (line 16 of BalanceFlow). We do so using
FRDijkstra, made possible by the precomputed distances D and Observation 10.
We now argue why this is sufficient.

The flow on a dart d in the primal is

(3) f [d] + φ[headG∗(d)]− φ[tailG∗(d)].

Therefore the residual capacity of d is

(4) (c[d]− f [d])− φ[headG∗(d)] + φ[tailG∗(d)]

which is its reduced length `φ[d] with respect to the length `(·) and price function φ.
Suppose that d belongs to H∗, i.e. d is not one of the darts of P ∪ rev(P ). The

procedure never changes f [d], so f [d] = f0[d]. Therefore `(d) = c[d] − f0[d]. These



18 G. BORRADAILE, P. N. KLEIN, S. MOZES, Y. NUSSBAUM, AND C. WULFF-NILSEN

Fig. 1. The left diagram shows part of the graph G and some edges of its dual G∗. Edges of
G are solid blue. Edges of P are bold. Dual edges are double lined red. The dual edges of P are in
double lined dashed red. The nodes of X∗ are star-shaped. The right diagram shows the situation
after deleting the dual edges of P in order to obtain H∗. The nodes of X∗ are on the boundary of
a single face of H∗.

lengths are known at the beginning of the procedure’s execution. The reduced length
of an X∗-to-X∗ path Q = d′1, d

′
2, · · · , d′j in H∗ is

(5)
j∑
i=1

(`(d′i)− φ[headG∗(d′i)] + φ[tailG∗(d′i)]) =

(
j∑
i=1

`(d′i)

)
−φ[end(Q)] +φ[start(Q)].

Therefore, for any nodes x, y ∈ X∗, the x-to-y distance in H∗ w.r.t. the residual
capacity is given by D∗[x, y]−φ[y]+φ[x]. Since the procedure maintains the restriction
of φ to nodes of X∗, this distance can be obtained in constant time. The flow of all
darts not in H∗ (i.e., the darts of P and their reverses) is maintained explicitly, so
the residual capacity of each such dart can also be obtained in constant time.

It follows from the above discussion that the potential function φX computed by
FRDijkstra in line 16 of the efficient implementation is the restriction to X∗ of the
potential function φ that would have been computed by the inefficient implementation.
Therefore, the net flow maintained by BalanceFlow is the same as that maintained
by InefficientBalanceFlow.

In order to output the net flow for all darts in G (not just in P ), we need to
know the entire potential function φ rather than just its restriction φX . Observe,
however, that any pseudoflow that differs from f by a circulation is a valid output of
BalancePath since a circulation does not change the inflow at any node, nor does
it introduce residual paths between nodes that are not connected by a residual path
in Gf . It therefore suffices to find any feasible circulation χ in Gf . This can be done
by computing shortest paths in G∗ w.r.t. the lengths c − f from an arbitrary node
x ∈ G∗ (line 19).

Avoiding negative-lengths shortest paths. Note that while netflow always respects
capacities, f may not (as the circulations influence netflow). Therefore the lengths
used for the shortest-path computation in line 19 may be negative. We show that it
is not necessary to use a generic negative-lengths shortest-path algorithm. While this
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will not improve the running time of MSMSMaxFlow, it will improve the running
time of BalanceFlow. We also think doing so is more elegant. We replace line 19
with:

1: `[d′]← c[d′]− f [d′] for every d′ ∈ P ∩ rev(P ) these lengths may be

negative

2: x← arbitrary node in X∗
3: ψX ← FRDijkstra(H∗, X∗,D∗, P, `, x,φX) ` reduced by φX are

non-negative

4: χ[y]←∞ for every node y of G∗
5: χ[y]← ψX [y]− φX [x] + φX [y] for every y ∈ X∗
6: `[d]← c[d]− f0[d] for every dart d /∈ P
7: χ[y] ← shortest path distance in G∗ from x to y using dart-

lengths ` for every y /∈ X∗
In line 3 we compute distances from x to every node in X∗ w.r.t. the lengths

` reduced by φX , which are non-negative. By the same argument as in Eq. (5),
the potentials for faces adjacent to P computed in line 5 are correct. The dart-
lengths computed in line 6 correspond to residual capacities with respect to f because
f [d] = f0[d] for every dart d /∈ P . These lengths are non-negative since f0 is a
pseudoflow. Since the distances to every node in X∗ have already been computed
and the negative length darts have both endpoints in X∗, we can initialize Dijkstra’s
algorithm with these values and compute the remaining distances without worrying
about negative-length darts.

Running time. Let n be the number of nodes in G.
Since the nodes in X∗ are the nodes adjacent to a single face, we can implicitly

compute D∗ using the multiple-source shortest-path algorithm due to Klein [31] in
O(n log n) time and populate the entries of D∗ in O(k2 log n) time.

The execution of each iteration is dominated by the call to FRDijkstra, which
takes O(k log2 k) time. Since there are k iterations, all iterations take a total of
O(k2 log2 k) time.

The running time for computing χ by the method that avoids negative-length
shortest path computations takes O(k log2 k+n) time, using the linear-time shortest-
path algorithm of Henzinger et al. [20]. The total running time of BalanceFlow is
therefore O(n log n+ k2 log2 n) as desired.

4. Pushing excess inflow from a cycle. In this section we describe the proce-
dure FromCycleLimitedMaxFlow that pushes excess inflow from a cycle to a node
not on the cycle, Algorithm 4. Since the procedure ToCycleLimitedMaxFlow is
very similar, we omit its description.

Recall that C⊕ consists of all nodes of C reachable via residual paths from the
nodes of C+

f0
. Thus, there is an output flow that involves no darts incident to nodes in

C −C⊕. It follows that restricting the computation to the graph obtained from G by
deleting the nodes in C − C⊕ (line 1) does not restrict the computed flow. After the
deletion, introducing darts between consecutive nodes of C⊕ (line 2) will not violate
planarity. The idea is to use a single-source single-sink maximum flow algorithm to
push the excess flow from C⊕ to t. This is done by contracting C⊕ so that turns
into a single node s (line 3). Then in line 4 a maximum st-flow is computed using
the single-source single-sink algorithm in [3]. As in Algorithm 1, this feasible flow
is a pseudoflow in the uncontracted graph, and may contain residual paths between
nodes with positive and negative flow excess. The procedure therefore balances the
flow along C⊕ (line 6). Let f be the flow pushed by the procedure up until just
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Algorithm 4 FromCycleLimitedMaxFlow(G, c,f0, C, t)
Input: a directed planar graph G with capacities c, a pseudoflow f0, a simple cycle
C, a sink t.
Assumes: no node of C⊕ has negative inflow w.r.t. f0 where C⊕ is the set of nodes

of C reachable from C+
f0

via residual paths (C⊕ = {v ∈ C : C+
f0

Gf0→ v})
Output: a pseudoflow f s.t. (i) f − f0 obeys conservation everywhere but

C⊕ ∪ {t}, (ii) no node of C⊕ has negative inflow w.r.t. f , and (iii) C+
f

Gf9
t.
1: delete the nodes of C − C⊕
2: introduce 0-capacity darts to create a path P that visits the nodes of C⊕ according

to their cyclic order on C
3: contract the darts of P , collapsing C⊕ into the single node s
4: f ← maximum st-flow w.r.t. capacities c− f0
5: uncontract the edges of P
6: f ←BalancePath(G,P, c,f0 + f)− f0
7: push back flow in f to nodes of C⊕ whose inflow is negative
8: return f0 + f

after line 6. Some nodes of C⊕ may have negative inflow with respect to f + f0.
Since there may not be such nodes with respect to the pseudoflow returned by the
procedure, line 7 pushes back excess flow in f from t to these nodes so as to make
their inflow zero. This is done using the procedure of Section 1.4.

Correctness. Any flow that is pushed by the algorithm originates at C⊕ and
terminates at C⊕ ∪ {t}. Therefore, f − f0 violates conservation only at C⊕ ∪ {t}.

After uncontracting P , f is a maximum C⊕-to-t flow in G w.r.t. the residual
capacities c − f0. However, some of the nodes of C⊕ may now have negative inflow
w.r.t. f0+f . BalancePath reroutes the flow among the nodes of C⊕ so that, w.r.t.
f0 + f , there are no residual paths from nodes of C⊕ with positive inflow to nodes
of C⊕ with negative inflow. This implies that any node of C⊕ that still has negative
inflow has pushed too much flow to t. Line 7 modifies f to push back such excess
flow so that no node of C⊕ has negative inflow w.r.t. f0 + f . We can do so by only
pushing back flow of f (rather than flow of f0 + f) since no node of C⊕ has negative
inflow w.r.t. f0.

By maximality of the flow pushed in line 4, just after line 4 is executed there
are no C⊕-to-t residual paths. Clearly, this remains true when the capacities of the
artificial darts are set to zero. In line 6 flow is pushed among the nodes of C⊕,
so by sources-lemma(C⊕, C⊕ 9 t), there are no C⊕-to-t residual paths after line 6
either. Moreover, by definition of BalancePath, there are no C⊕+ -to-C⊕− residual
paths immediately after line 6 is executed (where C⊕+ (C⊕− ) is the set of nodes of C⊕
with positive (negative) inflow at that time). Line 7 pushes flow into C⊕− , making
all the nodes of C⊕− obey conservation. By sinks-lemma(C⊕+ 9 t, C⊕− ) there are no
C⊕+ -to-t residual paths upon termination of the procedure. Note that line 7 does not
change the set C⊕+ as it only pushes as much flow from t to C⊕− as required to make
the inflow at the nodes of C⊕− zero. Since C⊕+ is the set of nodes of C with positive
inflow upon termination, the procedure is correct.

Running time. Note that we can find C⊕, the set of nodes reachable from C+
f0

via
residual paths in linear time. The flow in line 4 can be computed in O(n log n) time
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using a single-source single-sink maximum flow algorithm [3]. The push back in line 7
can be done in linear time (Section 1.4). The running time of the procedure is therefore
dominated by the call to BalancePath in line 6 which takes O(n log n+ |C|2 log2 n)
time.

5. Extensions: node capacities and apices. In this section we use the frame-
work of Hochstein and Weihe [23] to extend our algorithm for planar graphs with
multiple sources and sinks from the previous sections. First, we give a maximum flow
algorithm for directed planar graphs with multiple sources and sinks and with node
capacities. The algorithm runs in O(k3n log3 n) time, where k is the number of nodes
with finite capacities. Second, we give a maximum flow algorithm for planar graphs
with k apices which also runs in O(k3n log3 n) time. As far as we know, there is no
previous algorithm that exploits planarity to handle node capacities with multiple
sources and multiple sinks or apices. The best previously known solution is to use the
recent maximum flow algorithm for general graphs of Orlin [41] to get an O(n2/ log n)
time bound for maximum flow in a planar graph with multiple sources, multiple sinks
and node capacities, and O(kn2) time bound for a graph with k apices.

In the maximum flow problem with node capacities we extend the capacity as-
signment c(·) also to nodes of the input graph, and for each node v we require that∑
a∈E:head(a)=v f(a) ≤ c(v). As in the multiple-sources multiple-sinks maximum flow

problem, this extension of the maximum flow problem also has a simple reduction
which does not preserve the planarity of the graph. Khuller and Naor [29] were the
first to study the maximum st-flow in planar graphs with node capacities. Kaplan
and Nussbaum [28] showed a reduction from the problem with node capacities to the
standard maximum st-flow problem which does preserve the planarity of the graph.
However, this reduction works only for a single source and a single sink.

A graph is a k-apex graph if there is a subset of k vertices (the apices) whose
removal leaves a planar graph. We will assume that we know the apices a priori.
Chambers and Eppstein [7] suggested that an algorithm for the maximum flow prob-
lem in k-apex graphs could be a possible building block towards a maximum flow
algorithm for minor-closed families of graphs.

The standard reduction [12] for the maximum flow problem with node capacities
replaces each node v with finite capacity with two uncapacitated nodes vin and vout,
every arc uv with an arc uvin with the same capacity, and every arc vu with an arc
voutu with the same capacity, and in addition it adds a new arc vinvout with capacity
c(v). The resulting graph is not planar. However, the set of vertices {vout | c(v) <∞}
is an apex set. Therefore, a solution for the maximum flow problem in k-apex graphs
implies a solution for the maximum problem in a planar graph with k nodes of finite
capacities.

Hochstein and Weihe [23] gave a framework for flow in planar graphs using the
Push-Relabel algorithm of Goldberg and Tarjan [17]. We describe this framework
here. Let G = (V,E) be a graph with a single source s and a single sink t, where V
is divided into two subsets V × and V0; V × are the stop nodes and include s and t.
Hochstein and Weihe define a complete graph K× over the stop nodes and compute
maximum flow from s to t in K× using the Push-Relabel algorithm. In short,
the Push-Relabel algorithm assigns a label to each node; initially the label of s
is n and the labels of the other nodes are 0; the algorithm picks a node with excess
inflow, as long as there is such a node, and pushes as much excess inflow as possible
from this node to adjacent nodes with lower labels; if there is no way to push the
excess from the node the algorithm increases the label of the node. Each time that
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the Push-Relabel algorithm pushes flow along an arc uv in K×, we implement this
step by pushing flow in the original graph G. We do this by pushing flow from u
to v in the subgraph of the residual graph of G induced by V0 ∪ {u, v}. When the
Push-Relabel algorithm on K× halts, the flow from s to t in G is maximum. The
Push-Relabel algorithm with the FIFO node selection rule for a graph with k nodes
requires O(k3) Push steps and O(k2) Relabel steps. The Relabel step consists
only of scanning the nodes adjacent to the current node, so all the Relabel steps
can be done in O(k3) total time. Therefore, the running time of the algorithm of
Hochstein and Weihe is O(k3T (n)) where T (n) is the time to push flow from u ∈ V ×
to v ∈ V × in the subgraph of G induced by V0 ∪ {u, v}.

In our case, we let V × be the set of apices. We push flow from the source apex u
to the sink apex v in the 2-apex graph induced by V0∪{u, v} using MSMSMaxFlow.
First, if the dart uv exists in the graph then saturate this dart, and remove it until
the end of the Push step. We replace the source apex u with a set of source nodes,
such that every node that was adjacent to u is adjacent to a unique source of the
set. Similarly, we replace the sink apex v with a set of sinks, one for each adjacent
node. The resulting graph is planar, and its size remains O(n), so we can find the
flow in O(n log3 n) time. Note that MSMSMaxFlow sends a maximum flow, while
the amount of flow that the Push step pushes is bounded by the excess of the current
active node in the Push-Relabel algorithm. However, if the amount of maximum
flow is greater than the excess of the active node we can simply push back flow using
the procedure of Section 1.4.

Corollary 11. The maximum flow problem in a directed k-apex graph with n
nodes and a given set of k apexes can be solved in O(k3n log3 n) time.

Corollary 12. The maximum flow problem with multiple sources, multiple sinks,
and node capacities in an n-nodes directed planar graph with k nodes with finite ca-
pacity can be solved in O(k3n log3 n) time.
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