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Abstract

In fault-tolerant distance labeling we wish to assign short labels to the vertices
of a graph G such that from the labels of any three vertices u, v, f we can infer the
u-to-v distance in the graph G \ {f}. We show that any directed weighted planar
graph (and in fact any graph in a graph family with O(

√
n)-size separators, such as

minor-free graphs) admits fault-tolerant distance labels of size O(n2/3). We extend
these labels in a way that allows us to also count the number of shortest paths, and
provide additional upper and lower bounds for labels and oracles for counting shortest
paths.

1 Introduction

Computing distances in graphs is one of the most basic and important problems in graphs theory,
both from theoretical and practical points of view. In this work we consider distance labeling
schemes, in which one preprocesses a network to assign labels to the vertices, so that the distance
between any two vertices u and v can be recovered from just the labels of u and v (and no other
information). The main criteria of interest are foremost the size of the label, and to a lesser
extent the time it takes to recover the distance from a given pair of labels (query time). Distance
labeling schemes are useful in the distributed setting, where it is advantageous to be able to infer
distances based only on local information such as the labels of the source and destination. This
is the case in communication networks or in disaster stricken areas, where communication with a
centralized entity is infeasible or downright impossible.

Considering the latter scenario of disaster management, it is not only likely that a disastrous
event makes communication with a centralized entity impossible, but also that parts of the
network are affected by the disaster, and that only shortest paths that avoid affected parts of
the network should be considered when computing distances. Forbidden-set distance labeling
schemes assign labels to vertices, so that, for any pair of vertices u and v, and any set F of failed
vertices, the length of a shortest u-to-v path that avoids all vertices in F can be recovered just
from the labels of u, v, and of the vertices in F . In this work we study forbidden-set distance
labeling schemes in directed planar networks. We also study the extension of such schemes to
capture not only the distance from u to v, but also the number of distinct u-to-v shortest paths.

For unweighted (i.e., unit-weight) graphs, we measure the label size in bits. For weighted
graphs and queries concerning lengths of the shortest paths, we assume that the distance between
any two nodes fits in a single machine words, and measure the label size in words. For queries
concerning the number of shortest paths, unless mentioned otherwise, we assume that the number
of shortest paths between any two nodes fits in a single machine word, and measure the label
size in words.
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1.1 Related work

Labeling schemes provide a clean and natural model for studying how to distribute information
about a graph. Problems considered in this model include adjacency [5–7,10,31,43], flows and
connectivity [28, 33, 37], and Steiner tree [42]. See [44] for a recent survey. We specifically focus
on distance labeling schemes.

Distance labeling schemes. Embedding distance information into labels was studied by
Graham and Pollack [25] in the 1970’s in what was termed the squashed cube model. In
2000, Peleg [41] formalized the notion of distance labeling schemes, and provided schemes
with polylogarithmic label size (number of bits) and query time for trees, interval graphs and
permutation graphs. Gavoille et al. [22] showed that for general graphs, the label size is Θ(n), and
for trees, Θ(log2 n). For (unit-weight) planar graphs they showed a lower bound of Ω(n1/3), and
an upper bound of O(

√
n log n) bits. The upper bound was recently improved to O(

√
n) [24], but

the rare polynomial gap between the lower and upper bound remains an interesting and important
open problem. For weighted planar graphs Gavoille et al. gave tight (up to polylogarithmic
factors) Θ̃(n1/2) upper and lower bounds.

Approximate distance labeling schemes. Since exact distance labels typically require
polynomial size labels [22], researchers have sought smaller labels that yield approximate distances.
Gavoille et al. [21] studied such labels for general graphs and various graph families. Specifically,
for planar graphs, they presented O(n1/3 log n)-bit labels that provide a 3-approximation of the
distance. In the same year, Gupta et al. [26] presented smaller 3-approximate labels, requiring
only O(log2 n) bits, and Thorup gave (1 + ε)-approximate labels of size O(log n/ε), for any fixed
ε > 0 [45]. The latter result was generalized to H-minor free graphs by Abraham and Gavoille
in [4].

Forbidden-set distance labeling schemes. Forbidden-set labels were introduced in the
context of routing labels by Feigenbaum et al. [18,19], and studied by several others [2,3,14,15,46].
Exact forbidden-set labeling schemes of polylogarithmic size are given in [15, 46] for graphs
of bounded treewidth or cliquewidth. For unweighted graphs of bounded doubling dimension,
forbidden-set labels with polylogarithmic size and (1+ε)-stretch are also known [3]. For undirected
planar graphs, and for any fixed ε > 0, Abraham et al. [2] presented a forbidden-set labeling
scheme of polylogarithmic size such that a (1 + ε)-approximation of the shortest path between
vertices u and v that avoids a set F of failed vertices can be recovered from the labels of u, v,
and the labels of the failed vertices in Õ(|F |2) time.1

Other related work. There are many other concepts related to distances in the presence of
failures. In the replacement paths problem we are given a graph along with a source and sink
vertices, and the goal is to efficiently compute all shortest paths between the source and the
destinations for every possible single-edge failure in the graph. In planar graphs this problem
can be solved in nearly linear time [16,36,47]. For the single source, single failure version of the
problem (i.e. when only the source vertex is fixed at construction time, and the query specifies
just the target and a single failed vertex), Baswana et al. [8] presented an oracle with size and
construction time O(n log4 n) that answers queries in O(log3 n) time. Building upon this oracle,
they then present an oracle of size Õ(n2/q) supporting arbitrary distance queries subject to a
single failure in time Õ(q) for any q ∈ [1, n1/2]. The authors of [13] show how to construct in
Õ(n) time an oracle of size Õ(n) that, given a source vertex u, a target vertex v, and a set F of
k faulty vertices, reports the length of a shortest u-to-v path in G \ F in Õ(

√
kn) time. They

further show that for any r ∈ [1, n] there exists an Õ(n
k+1

rk+1

√
nr)-size oracle that answers queries

1The Õ(·) notation suppresses logO(1) n factors.
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in time Õ(k
√
r). Recently, Italiano et al. [29] gave an oracle of size O(n log n) and construction

time O(n log2 n/ log logn) that supports reachability queries subject to a single failure in time
O(log n).

Another related concept is that of dynamic distance oracles. Here a graph is preprocessed so
as to efficiently support distance queries between arbitrary pairs of vertices as well as updates
to the graph. Updates may include deletion of edges or vertices (decremental updates), or also
addition of new edges and vertices (fully dynamic). Fakcharoenphol and Rao [17] presented
distance oracles that require Õ(n2/3) and Õ(n4/5) amortized time per update and query for
non-negative and arbitrary edge-weight updates respectively.2 The space required by these oracles
is O(n log n). The extensions of this result in [13, 30, 32, 34] yield a dynamic oracle that can
handle arbitrary edge weight updates, edge deletions and insertions (not violating the planarity
of the embedding) and vertex deletions, as well as answer distance queries, in Õ(n2/3) time each.

Counting shortest paths. In the (non-faulty) counting version of shortest paths labeling,
given the labels of vertices s and t we wish to return the number of shortest s-to-t paths in G
(i.e. paths whose length is equal to d(s, t)). This problem (without faults) was recently studied
in [9] where labels3 of size Θ(

√
n) were constructed under the assumption that the number of

shortest paths between any two nodes fits in a constant number of machine words. In the general
case where the numbers consist of L bits, the obtained labels consist of O(

√
n · L) bits. As

already observed in [9], it is easy to construct an unweighted graph where L = n− 1 making the
labels consist of Θ(n1.5) bits, that is, more than in a naive encoding storing the whole graph in
every label. However, the following simple construction shows that we cannot hope to construct
labels consisting of o(n) bits without bounding L: given n bits b0, . . . , bn−1 we construct a graph
consisting of a path s = u0 − u1 − · · · − un−1 and another path v1 − v2 − · · · − vn = t in which
every edge is duplicated (i.e., there are two parallel edges between each pair vi, vi+1). Finally, for
every i = 0, . . . , n− 1 such that bi = 1, we add an edge ui − vi+1. Then the number of shortest
s-to-t paths is exactly

∑n−1
i=0 bi · 2n−1−i, and so by an encoding argument the total number of

bits in the labels of s and t must be at least n. Therefore, when counting shortest paths we
will measure the size of a label in the number of machine words, each long enough to store the
number of shortest paths between any two nodes in the graph.

We highlight one interesting application where our scheme for counting shortest s-to-t paths
that avoid nodes v1, v2, . . . , vk can be modified to obtain a better bound on the sizes of the labels
in bits. Say that instead of counting such shortest paths we would like to check if avoiding nodes
v1, v2, . . . , vk increases the length of the shortest path. In such case, we only need to check if the
number of shortest s-to-t paths that avoid nodes v1, v2, . . . , vk is nonzero. Because the number
of shortest paths is always at most 2n, by well known properties of prime numbers, choosing a
random prime p consisting of Θ(k · log n) bits guarantees that with high probability, for every
s, t, v1, v2, . . . , vk, the number of shortest paths counted modulo p is nonzero if and only if the
number of shortest paths is nonzero. Our scheme (as well as the scheme of [9]) can be used for
counting modulo p, so we obtain labels consisting of Õ(

√
n · k) bits for such queries.

1.2 Our results

• In Section 3 we present a single-fault distance labeling scheme (forbidden-set labeling
scheme for a set of cardinality 1). The label size is O(n2/3), the query time is Õ(

√
n), and

time to construct all labels is Õ(n5/3). Our labeling scheme extends (with no overhead in
the label size) to a labeling scheme for counting shortest paths (with a single fault).

2Though this is not mentioned in [17], the query time can be made worst case rather than amortized by
standard techniques.

3In [9], the authors actually considered the oracle version of the problem, but their solution can be easily
applied for labeling as well.
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• In Section 4 we extend the counting labels of [9] to the following fault-tolerant variant.
Given the labels of vertices s, t, v1, v2, . . . , vk, we wish to return the number of s-to-t paths
that avoid vertices v1, . . . , vk and whose length is equal to d(s, t) (the original s-to-t distance
in G). We show that the labeling of [9] (with labels of size Õ(

√
n)) actually works in this

more general setting. A naive query to such labeling takes Õ(
√
n · k2) time, we show how

to improve this to Õ(
√
n · k).

• In Section 5 we show a lower bound of Ω(
√
nL) on the label-size (in bits) for counting

shortest paths (without faults), in graphs in which the number of distinct shortest paths
between any two nodes consists of at most L bits.

• In Section 6 we show a lower bound on dynamic oracles for counting shortest paths,
conditioned on the hardness of online boolean matrix-vector multiplication. We prove that
for any dynamic shortest paths counting oracle in undirected planar graphs, either the
query time or the update time must be Ω(

√
n) (up to subpolynomial factors).

We focus on planar graphs but in fact all our results (except for the efficient preprocessing time
and query time in Section 3) hold for any graph family with O(

√
n)-size separators (such as H-

minor free graphs and bounded genus graphs). This is also the case for the standard (i.e. without
failures) labeling scheme of Gavoille et al. [22]. However, while their Õ(n1/2)-size labels are
obtained with a straightforward application of separators, our O(n2/3)-size (fault-tolerant) labels
are obtained with a non-standard and intricate use of separators.

A main open question that is left unanswered by our work is the existence of non-trivial
forbidden-set distance labels tolerating more than a single fault. Labels for approximate dis-
tances [2] also rely on separators, and do handle multiple failures. In the failure-free case, the
labels of [2] consist of distances to a small (logarithmic) sample of vertices on some separators,
called connections. To handle failures, the label of each vertex u also stores the failure-free labels
of the connections of u. This only increases the label-size by a polylogarithmic factor. In case of
exact distances, the size of the failure-free labels is Ω(

√
n), so this approach seems unsuitable.

Another natural open question is whether the gap between our O(n2/3)-size fault-tolerant
labels and the Õ(n1/2)-size labels without failures is actually required and tight. We observe
that the existing lower bound technique of Gavoille et al. cannot be extended to show a lower
bound above Ω(

√
n) for fault-tolerant labels. The reason is that their technique uses a global

argument showing that if we wish to encode the distances between a subset S of k ≤
√
n vertices

then all their labels together require size Ω(k2). However, even in the presence of (any number
of) failures, encoding distances can be done with total size Õ(k2) (simply store for every u, v ∈ S
the length of the shortest u-to-v path that is internally disjoint from S).

2 Preliminaries

Throughout the paper we consider as input a weighted directed planar graph G, embedded in
the plane. We assume that the input graph has no negative length cycles. We can transform

the graph in a standard way, in O(n log2 n
log logn) time, so that all edge weights are non-negative and

distances are preserved [40].

Separators and recursive decompositions. Miller [38] showed how to compute a Jordan
curve that intersects the graph at a set of nodes Sep(G) of size O(

√
n) and separates G into

two pieces with at most 2n/3 vertices each. Jordan curve separators can be used to recursively
separate a planar graph until pieces have constant size. The authors of [35] show how to obtain
a complete recursive decomposition tree T of G in O(n) time. T is a binary tree whose nodes
correspond to subgraphs of G (called pieces), with the root being all of G and the leaves being
pieces of constant size. We identify each piece P with the node representing it in T (we can
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thus abuse notation and write P ∈ T ), with its boundary ∂P (i.e. vertices that belong to some
separator along the recursive decomposition used to obtain P ), and with its separator Sep(P ).
We denote by T [P,Q] the P -to-Q path in T (and also use T (P,Q], T [P,Q), and T (P,Q)).

An r-division [20] of a planar graph, for r ∈ [1, n], is a decomposition of the graph into
O(n/r) pieces, each of size O(r), such that each piece P has O(

√
r) boundary vertices (denoted

∂P ). Another desired property of an r-division is that the boundary vertices lie on a constant
number of faces (called holes) of the piece. For every r larger than some constant, an r-division
with few holes is represented in the decomposition tree T of [35]. It is convenient to describe the
r-division by truncating T at pieces of size O(r), that also satisfy the other required properties.
We refer to those pieces (the leaves of T after truncation) as regions and denote by Ru the region
containing vertex u (if u belongs to multiple regions, we arbitrarily designate one of them as Ru).

Dense distance graphs and FR-Dijkstra. The dense distance graph of a set of vertices U
that lie on a constant number of faces of a planar graph H, denoted DDGH(U) is a complete
directed graph on the vertices of U . Each edge (u, v) has weight dH(u, v), equal to the length of
the shortest u-to-v path in H. DDGH(U) can be computed in time O((|U |2 + |H|) log |H|) using
the multiple source shortest paths (MSSP) algorithm [11,34]. Thus, computing DDGP (∂P ) over
all pieces of the recursive decomposition of G requires time O(n log2 n) and space O(n log n). We
next give a –convenient for our purposes– interface for FR-Dijkstra [17], which is an efficient
implementation of Dijkstra’s algorithm on any union of DDGs. The algorithm exploits the
fact that, due to planarity, certain submatrices of the adjacency matrix of DDGH(U) satisfy
the Monge property. (A matrix M satisfies the Monge property if, for all i < i′ and j < j′,
Mi,j +Mi′,j′ ≤Mi′,j +Mi,j′ [39].) The interface is specified in the following theorem, which was
essentially proved in [17], with some additional components and details from [32,40].

Theorem 1 ([17,32,40]). Given a set Y of DDGs, Dijkstra’s algorithm can be run on the union
of any subset of Y with O(N) vertices in total (with multiplicities) and an arbitrary set of O(N)
extra edges in time O(N log2N).

3 Single-Fault Labeling for Reporting Shortest Paths

Warm-up. As a warm-up, we first sketch a simple labeling scheme that assigns a label of size
O(n4/5) to each vertex. Consider an r-division for r = n4/5, and let R be the set of its regions.
The label of each vertex u consists of the following:

(a) The r-division R. Space: O(n/r).

(b) For each region R in the r-division, the length of the shortest path in G, among paths that
are internally disjoint from R, from u to

⋃
P∈R ∂P , and from

⋃
P∈R ∂P to u. There are

O(n/r) regions and for each of them we store O(n/r ·
√
r) distances. Space: O(n2/r3/2).

(c) The region Ru and the ∂Ru-to-∂Ru distances in G \ {u}. Space: O(r).

The space is thus O(n/r + n2/r3/2 + r) = O(n4/5).
Let us now consider a query (u, v, f), and assume, for simplicity, that no two of u, v and f

are contained in a single region. We have two cases. If there is a shortest u-to-v path in G \ {f}
that is vertex-disjoint from Rf , then the u-to-∂Rv distances among paths internally-disjoint from
Rf (item (b)), together with Rv, which is stored for v (item (c)), allow us to retrieve the length
of this path. In the other case, we employ the u-to-∂Rf distances among paths internally-disjoint
from Rf (item (b)), the information stored in item (c) for f , and the ∂Rf -to-v distances among
paths internally-disjoint from Rf (item (b)).

It is not difficult to combine this approach with the distance-labeling scheme of Gavoille et
al. [22] for the failure-free setting to obtain labels of size O(n3/4). (Item (b) has to be modified
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to store distances to separators of ancestors of Ru instead of distances to
⋃
P∈R ∂P , requiring

O(n3/2/r) space.) In the approach that we present below, we rely on separators in a more
sophisticated and delicate manner to obtain labels of size O(n2/3).

The label. Recall that an r-division is represented by a decomposition tree T , whose root
corresponds to G. The internal nodes of T correspond to pieces of G. The two children of a
piece P ∈ T are the subgraphs of P external and internal to Sep(P ). The leaves of T are the
regions of the r-division.

The label of each vertex u in G consists of the following information:

(i) The entire recursive decomposition tree T . Space: O(n/r).

(ii) For each region R in the r-division, the shortest path distances in G from u to ∂R among
paths that are internally disjoint from R. There O(n/r) regions and each of them has
O(
√
r) boundary nodes. Space: O(n/

√
r).

(iii) The region Ru and the ∂Ru-to-∂Ru distances in G \ {u}. Space: O(r).

(iv) For each piece P ∈ T with sibling Q, for each p ∈ ∂P \Q, the shortest path distance from
u to p in G \ (P ∪Q) ∪ {p}, and the shortest path distance from p to u in G \Q. Space:
O(

∑
P∈T ∂P ) = O(n/

√
r), c.f. [23].

(v) For each ancestor piece P of Ru in T , for each vertex p of Sep(P ) \ ∂P , the shortest path
distance from u to p among paths in P \ ∂P that are internally disjoint from Sep(P ), and
the shortest path distance in P \ ∂P from p to u. Space: O(

√
n), c.f. [23].

The overall space required by the above five items is O(n/r + n/
√
r + r + n/

√
r +
√
n), which is

O(n2/3) for r = n2/3.

The query. Upon query (u, v, f) we say that a path is a (u, v, f)-path if it is a u-to-v path in
G that avoids f , and we seek the shortest (u, v, f)-path, which we denote by S. Let X denote
the lowest node in T that is an ancestor of Rf and of at least one of {Ru, Rv}. Let us assume
without loss of generality that X is an ancestor of Ru. We return the minimum of the following
three:

1. S includes a vertex of ∂Rf .

The length of this path is found with a SSSP computation on the (non-planar) graph G1

whose vertices are u, v, and ∂Rf \ {f} and whose edges are in one-to-one correspondence
with the distances specified below, i.e. for each a-to-b distance, there is an edge from a to b
with length equal to that distance:

• the u-to-∂Rf \{f} distances from item (ii) in u’s label (or the u-to-∂Rf \{f} distances
in Rf \ {f}, which can be computed from item (iii), if Ru = Rf );

• the ∂Rf \ {f}-to-∂Rf \ {f} distances from item (iii) in f ’s label;

• the ∂Rf \{f}-to-v distances from item (ii) in v’s label (or the ∂Rf \{f}-to-v distances
in Rf \ {f}, which can be computed from item (iii), if Rv = Rf ).

2. S avoids Rf but includes a boundary vertex of some piece on T [X,Rf ].

The length of this path is found with a SSSP computation on the graph G2 whose vertices
are u, v, and ∂P of all nodes P that are siblings of some node Q on the X-to-Rf path in
T . The edges are in one-to-one correspondence with the u-to-∂P distances from item (iv)
in u’s label and the ∂P -to-v distances from item (iv) in v’s label.
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3. S avoids all boundary vertices of all the pieces on T [X,Rf ].

This is required only for the case where the lowest common ancestor of Ru and Rv is not
an ancestor of Rf (otherwise, it is an ancestor of X and a u-to-v path cannot avoid the
boundary vertices of X). The length of this path is found with a SSSP computation on
the graph G3 whose vertices are u, v, and Sep(P ) \ ∂P of all nodes P on T (X,Ru). The
edges are in one-to-one correspondence with the u-to-Sep(P ) distances from item (v) in
u’s label and the Sep(P )-to-v distances from item (v) in v’s label. If Ru = Rv, the shortest
path may not cross any of these separators; in that case the distance may be retrieved by a
single SSSP computation in Ru \ {f} (item (iii)).

Correctness. Let us consider the three options for the shortest (u, v, f)-path S (an illustration
is provided in Figure 1).

1. S includes a vertex of ∂Rf . Let a (resp. b) denote the first (resp. last) vertex of S that
belongs to ∂Rf \ {f}. The path S can be partitioned into a u-to-a prefix, an a-to-b infix,
and a b-to-v suffix. All three subpaths are represented in G1, and all paths represented in
G1 do not include f .

2. S avoids Rf but includes a boundary vertex of some piece on T [X,Rf ]. First observe that
all u-to-v paths in G2 avoid some (not necessarily proper) ancestor of Rf and therefore also
avoid f . To see that S is represented in G2, let Q denote the unique piece on T (X,Rf ] such
that S avoids Q but visits its sibling P (such a piece Q must exist because S avoids Rf
but visits some piece on T [X,Rf ]). Since S visits P it must visit some vertex of ∂P . Let p
be the first such vertex of S. Partition S into a shortest u-to-p path in G \ (Q ∪ P ) ∪ {p}
and a shortest p-to-v path in G \Q. These two subpaths are represented in G2.

3. S avoids all boundary vertices of all the pieces on T [X,Rf ]. If S does not visit ∂Ru (and
thus Ru = Rv) then we find S with an SSSP computation in Ru \ {f}. Otherwise, S
visits a separator vertex in of some piece that is a proper ancestor of Ru. Let P be the
rootmost such piece. Since S avoids ∂X we have that S is restricted to X and hence P
is a descendant of X. In fact, P must be a proper descendant of X (otherwise, S visits
Sep(X) and therefore visits the boundary of both child-pieces of X including the one on
T [X,Rf ], a contradiction). We therefore have that P ∈ T (X,Ru) and S is restricted to
P . Also observe that S avoids ∂P because otherwise S must visit a separator vertex of
some ancestor of P , contradicting P being rootmost. Let p be the first vertex of S that
belongs to Sep(P ). S can be decomposed into a shortest path from u to p in P \ ∂P that is
internally disjoint from Sep(P ), and a suffix that is a shortest path from p to v in P \ ∂P ;
S is thus represented in G3. To see that no path represented in G3 contains f , observe
that P may contain f , but since Rf is not a descendant of P , f must be a vertex of ∂P
and so is not visited by any path represented in G3.

We thus arrive at the following result.

Theorem 2. Given a directed planar graph G of size n, with real edge-lengths, we can assign an
O(n2/3)-size label to each vertex of G such that upon query (u, v, x), where u, v, x ∈ V (G), the
length of the shortest u-to-v path in G \ {x} can be retrieved from the labels of u, v and x.

Remark. Let us note, that any graph G of size n from a family of graphs that hereditarily
admits O(

√
n)-size separators (such as H-minor free graphs and bounded genus graphs) can be

recursively decomposed so that we get an r-division (perhaps not with the few-holes property).
As our labeling scheme does not require the few-holes property, Theorem 2 actually applies to
any such graph family.
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(a) Case 1.

Rf

X
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Q
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(b) Case 2.

Rf

X
P

u

p

v

(c) Case 3.

Figure 1: An illustration of the 3 different cases that arise for the query. In the figures we assume
that u, v 6∈ Rf and the different colors in each path represent its decomposition as defined in the
proof of correctness. In the figure for Case 2, the blue piece denotes Rf , while the siblings of its
ancestors in T (X,Rf ] are denoted by different scales of gray; the deeper the piece is in T , the
darker its color. Piece Q is denoted be the red-dashed rectangle. For Case 3, the setting is the
same and in our illustration P is the child of X that is not an ancestor of Rf . Sep(P ) is denoted
by green.

Extension for counting. We now show how to extend our single-fault labeling from reporting
u-to-v shortest paths in G \ {f} to counting the number of u-to-v shortest paths in G \ {f}.
Our modification does not increase the label size (assuming that each number we store fits into
a single word, see the discussion in the introduction). However, the efficient query algorithm
cannot be applied, leading to Õ(n2/3) query time.

In order to extend the labeling scheme for counting, for every u-to-v shortest path distance
which is stored in our label, we also store the number of such u-to-v shortest paths. The
change in query time is that instead of the SSSP computations on G1, G2, G3 we use an SSSP
computation that counts shortest paths. That is, for each edge in Gi there is a value representing
its multiplicity (the value we added to the label), and we want to compute the number of shortest
paths with respect to the multiplicities. This extension can be achieved by a trivial extension to
Dijkstra’s algorithm, resulting in Õ(n2/3) query time (In contrast, FR-Dijkstra has no known
extension for counting shortest paths). The following lemma proves the correctness of our labeling
scheme.

Lemma 3. Every shortest path from u to v in G \ {f} is represented exactly once in the query
graphs G1, G2, G3.

Proof. The same argument as in the correctness subparagraph proves that every shortest path is
represented at least once in the query graphs. It remains to show that every path is represented
at most once. Let us consider the three cases for a shortest (u, v, f)-path:

1. S includes a vertex of ∂Rf . S is not represented in G2, G3 because every path that is
represented there must avoid an ancestor of Rf . S is represented exactly once in G1 because
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it has a unique decomposition into subpaths S1S2S3 where S1 is from u to the first vertex
b1 of S in ∂Rf , S2 is from b1 to the last vertex b2 of S in ∂Rf , and S3 is from b2 to v.

2. S avoids Rf but includes a boundary vertex of some piece on T [X,Rf ]. S is not represented
in G1 because all the paths that are represented there touch Rf , it is also not represented
in G3 since every path there avoids all boundary vertices of all pieces in T [X,Rf ]. To prove
that S is represented in G2 exactly once we again show that S can be uniquely decomposed
into three subpaths in G2. Let P be the sibling of some piece Q ∈ T [X,Rf ] s.t. S visits
P , and let p ∈ ∂P ∩ S. If P is not the deepest such piece, then S also visits Q but the
edge (p, v) in G2 counts only paths in G \ Q, hence S is not represented as a u − p − v
path in G2. If P is the deepest such piece but p is not the first vertex in ∂P that S visits,
then the u-to-p subpath of S is not represented as an edge (u, p) in G2 since only paths in
G \ (P ∪Q) ∪ {p} are.

3. S avoids all boundary vertices of all the pieces on T [X,Rf ]. S is not represented in G1, G2

because every path that is represented there touches some piece in T [X,Rf ]. It is counted
exactly once in G3 by a similar argument to case 2 above: S is counted once in G3 by
the first separator vertex that S visits in the rootmost piece that it visits. Finally, in
the case where Ru = Rv = Rf , we perform Dijkstra (with its extension for counting) on
Ru \ ∂Ru.

Efficient queries for planar graphs. We can easily achieve Õ(n2/3) query-time, since this is
the size of the graphs that we construct and can thus perform Dijkstra for SSSP computations.
This query time applies to any graph family with

√
n-size separators, such as minor-free graphs.

On planar graphs, in order to perform queries more efficiently we have to assume random access
to the labels of vertices u, v and x; retrieving them would require O(n2/3) time. We present an
Õ(
√
n)-time query algorithm for planar graphs at the expense of increasing the labels’ size by

polylogarithmic factors.
Let us now formally state the main result of [8].

Theorem 4 ([8]). Given a weighted directed planar graph G of size n and a source s ∈ V (G),
we can construct in O(n log4 n) time an O(n log4 n)-size data structure, that upon query (v, x),
for v, x ∈ V (G), returns the s-to-v distance in G \ {x} in time O(log n).

C ases 2 & 3. G2 and G3 are of size O(
√
n) and they can be constructed in O(

√
n) time

from the labels of u, v and f . We can compute SSSPs in these graphs in O(
√
n log n) time

using Dijkstra’s algorithm. We handle the subcase of Case 3 in which Ru = Rv and the sought
shortest path does not cross ∂Ru as follows. The label of u additionally stores the single-source
single-failure distance oracle of Theorem 4 for graph Ru \ (∂Ru \ {u}) and source u. It occupies
Õ(r) = Õ(n2/3) additional space. Upon query, we simply query this oracle with (v, x).

C ase 1. This is the only involved case, as G1 can be of size Θ(r) = Θ(n2/3) and we aim at
performing SSSP computations in time Õ(

√
n). Let us note that the distances of u to ∂Rf \ {f}

in the case that Ru = Rf can be computed in time Õ(
√
r) = Õ(n1/3) if we have stored the oracle

of Theorem 4 for graph Ru and source u in the label of u. The case Rv = Rf can be treated
analogously.

In order to perform efficient SSSP computations we resort to FR-Dijkstra (Theorem 1). We
first make a minor modification to item (iii) of the label so that the Monge property required
for FR-Dijkstra is satisfied: instead of storing ∂Ru-to-∂Ru distances in G \ {u}, we instead
store ∂Ru-to-∂Ru distances in R \ {u} and ∂Ru-to-∂Ru distances in G \ ((R \ ∂R) ∪ {u}). This
ensures that the set of vertices over which the DDGs are built lie on a constant number of
faces of the reference graph. The size of the label is unaffected by this modification. We can
then use Theorem 1 in a straightforward way to compute the sought shortest path in time
Õ(
√
r) = Õ(n1/3).
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Efficient preprocessing for planar graphs. The labels can be naively constructed in O(n2)
time. This is true for any graph family with

√
n-size separators. For the case of planar graphs,

we now show that the construction time can be improved to Õ(n5/3).
The complete recursive decomposition of G, required for item (i), can be computed in O(n)

time [35]. For the rest of the items, we use MSSP data structure for an appropriate subgraph of
G, or of the reverse graph of G, i.e. G with all its edges reversed.

The multiple-source shortest paths (MSSP) data structure [34] represents all shortest path
trees rooted at the vertices of a single face g in a planar graph. It can be constructed in O(n log n)
time, requires O(n log n) space, and can report any distance between a vertex of f and any
other vertex in the graph in O(log n) time. Using a simple modification of the underlying graph,
presented in [13], we can ensure that MSSP returns the length of the shortest path that is
internally disjoint from a prespecified subset of the vertices of g.

To compute the information required for item (ii) of the labels, we build an MSSP data
structure for the reverse graph of G \ (R \ ∂R) for each piece R in the r-division and each of
the O(1) holes g on which the vertices of ∂R lie. We then query the sought distances. The time
required to construct the MSSP data structures is Õ(n2/r) = Õ(n4/3) and the time required for
computing the distances is Õ(n2/

√
r) = Õ(n5/3). The precomputations for items (iii), (iv) and

the first part of item (v) can be done analogously –for item (iii) we store the distances described
in the description of the efficient query implementation.

For the second part of item (v), we can not make use of MSSP, as the shortest path from u to
p ∈ Sep(P ) is allowed to cross Sep(P ). We can instead build an Õ(|P |)-size exact distance oracle
for P \∂P in Õ(|P |3/2) time that answers distance queries in Õ(|P |ε) time, for any constant ε > 0
([12]); we pick ε = 1/6. We then query this oracle for the all distances we need to compute in
P \ ∂P . Over all pieces, the preprocessing time is Õ(n3/2) and the sought distances are retrieved
in Õ(n3/2 · n1/6) = Õ(n5/3)

To wrap up, the global preprocessing time is Õ(n5/3) and is upper bounded by the total size
of the labels up to polylogarithmic factors.

4 Labeling for Counting Shortest Paths

In this section we design labels such that given the labels of any k + 2 vertices s, t, v1, v2, . . . , vk,
we should return the number of s-to-t paths that avoid vertices v1, . . . , vk and whose length is
equal to d(s, t) (the original s-to-t distance in G). Note that this is the same as returning the
number of shortest s-to-t paths in G \ {v1, v2, . . . , vk} only if the length of the shortest s-to-t
path does not change when {v1, v2, . . . , vk} fail. We show that the labeling of [9] (with labels of
size O(

√
n)) actually works in this more general setting and show how to perform a query in

Õ(
√
n · k) time. We assume in this section that edge weights are strictly positive.

The label. We first compute a complete recursive decomposition of G. The label of each
vertex v in G then consists of the following information:

(i) For each ancestor piece P of v, for every u ∈ Sep(P ), the number p1(v, u) and length
d1(v, u) of all v-to-u shortest paths in P \ Sep(P ) ∪ {u}.

(ii) For each ancestor piece P of v, for every u ∈ Sep(P ), the number p2(u, v) and length
d2(u, v) of all u-to-v shortest paths in P \ ∂P .

In what follows, in the case that u is in many separators of ancestor pieces of v, when referring
to d1(v, u), p1(v, u), d2(u, v) and p2(u, v) we mean the values computed for the rootmost such
piece.
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The query - without faults. When there are no faulty vertices, every s-to-t shortest path Q
in G is uniquely determined by a piece P in the recursive decomposition and a vertex u ∈ Sep(P ).
The piece P is the rootmost ancestor piece of s in the recursive decomposition s.t. Q visits
Sep(P ) and therefore does not visit ∂P . Such a piece P must be an ancestor of both s and t.
The vertex u ∈ Sep(P ) is the first vertex of Sep(P ) visited by Q. Q can thus be decomposed
into a prefix Q1 in P \ Sep(P ) ∪ {u} from s to u, and a suffix Q2 in P \ ∂P from u to t. For
every possible u we have the number of such Q1 in (i) of s and the number of such Q2 in (ii)
of t. We therefore add the term p1(s, u) · p2(u, t) to the answer. However, we only wish to add
this term if d(s, u) + d(u, t) = d(s, t) (otherwise, we are counting non-shortest paths). We have
d(s, u) + d(u, t) from the labels of s and t. We compute d(s, t) as follows. Let A[v] be the union
of separator vertices of all ancestors of v. Then

d(s, t) = min
u∈A[s]∩A[t]

(d1(s, u) + d2(u, t)), (1)

and the overall query is computed as

paths(s, t) =
∑

u∈A[s]∩A[t] s.t
d1(s,u)+d2(u,t)=d(s,t)

p1(s, u) · p2(u, t) (2)

It takes Õ(
√
n) time to perform such query because there are O(

√
n) vertices in A[s] ∩A[t]

and for each of them we perform Õ(1) calculations. We also compute d(s, t) beforehand in Õ(
√
n)

time.

The query - with faults. We begin with an Õ(
√
n · k2) time query and then improve this

to Õ(
√
n · k). We order the faulty vertices in the increasing order of their distances from s in

G, and index them v1, . . . , vk accordingly. For convenience we refer to s as v0 and to t as vk+1.
Denote by R[j] the number of s-to-vj shortest paths in G that avoid v1, . . . , vj−1. Denoting by
paths(vi, vj) the number of vi-to-vj shortest paths in G we obtain the recurrence:

R[j] = paths(s, vj) −
∑

i<j s.t.
d(s,vi)+d(vi,vj)=d(s,vj)

R[i] · paths(vi, vj) (3)

To see why this recurrence holds, it suffices to show that every shortest path Q in G from s to
vj that visits at least one of v1, . . . , vj−1 is counted in the second term exactly once. It is clear
that every such path Q is counted at least once, because it can be decomposed into a prefix
composed of a shortest path from s to the first vi that Q visits (i.e. is counted by R[i]) and a
suffix composed of a vi-to-vj path (i.e. counted by paths(vi, vj)). To see why every path Q is
counted at most once, notice that every such path Q visits the faulty vertices monotonically with
respect to their ordering. In other words, if Q visits some vi and then some vj then i < j. This
holds because if vi is on a shortest path from s to vj then d(s, vi) < d(s, vj), and by our ordering
of the faulty vertices i < j. Since R[i] only counts paths that are internally disjoint from failed
vertices, the only time Q is counted is when we count paths of the form s vi  vj , where vi is
the first faulty vertex Q visits.

Given R[1], . . . , R[j − 1] we can compute R[j] in Õ(
√
n · j) using the recurrence. For each

faulty vertex vi with i < j we perform a paths(vi, vj) query as described above which takes
Õ(
√
n) time, so the overall complexity is Õ(

√
n · k2).

Improved query time. We now show how to improve the query time from Õ(
√
n · k2) to

Õ(
√
n · k). In order to achieve this, we cannot afford to compute paths(vi, vj) for every pair i, j.

Instead, we will express R[j] as a summation over O(
√
n) terms that we can compute in Õ(1)

time.
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By combining equations (2) and (3), and since paths(s, vj) can be computed in Õ(
√
n) time, we

get that computing R[j] boils down to computing the following double summation:∑
i<j s.t.

d(s,vi)+d(vi,vj)=d(s,vj)

R[i]
∑

u∈A[vi]∩A[vj ] s.t
d1(vi,u)+d2(u,vj)=d(vi,vj)

p1(vi, u) · p2(u, vj) (4)

The above sum counts all s-to-vj shortest paths Q that can be decomposed into three parts:
Q1 - a shortest s-to-vi path in G (for some vi) that avoids v1, . . . , vi−1.
Q2 - a shortest vi-to-u path in P \ Sep(P ) ∪ {u} for some u ∈ Sep(P ), where P is defined as the
rootmost ancestor of vi s.t. Q touches Sep(p) (u is the first vertex of Sep(P ) in Q2).
Q3 - a shortest u-to-vj path in P \ ∂P .
We use the same decomposition into Q1, Q2, Q3 but sum the terms differently. Denoting
D(s, u) = mini(d(s, vi) + d1(vi, u)) we compute:∑

u∈A[vj ] s.t.
D(s,u)+d2(u,vj)=d(s,vj)

p2(u, vj)
∑

i<j s.t. u∈A[vi] and
d(s,vi)+d1(vi,u)=D(s,u)

R[i] · p1(vi, u) (5)

Let us explain equation (5). Denote the inner summation term (in blue) as Fj(u). Fj(u)
counts the number of combinations for Q1Q2 by iterating over every faulty vertex vi where i < j
and u ∈ A[vi]. For a fixed vi, the number of such combinations is R[i] · p1(vi, u). Among all
Q1Q2 combinations, we only want to sum combinations Q1Q2 that have length d(s, u). Ideally,
this could be imposed by adding the condition d(s, vi) + d1(vi, u) = d(s, u) to the inner sum.
However, we cannot compute d(s, u) because we do not have the label of u. Instead, we add the
condition d(s, vi) + d1(vi, u) = D(s, u) where D(s, u) = mini(d(s, vi) + d1(vi, u)) (observe that
D(s, u) ≥ d(s, u)). This condition is easy to check using d1(vi, u) stored in the label of vi and
the value d(s, vi) which can be computed beforehand using equation (1). The counting remains
correct because in the outer sum we check that D(s, u) + d2(u, vj) = d(s, vj) which only holds if
D(s, u) = d(s, u) (because when D(s, u) > d(s, u) then by the triangle inequality we have that
D(s, u) + d2(u, vj) > d(s, u) + d2(u, vj) ≥ d(s, vj)). Note that even if D(s, u) = d(s, u) it may be
that D(s, u) + d2(u, vj) > d(s, vj). This happens in the case that there are no s-to-vj shortest
paths that visit u. In other words, we check that a path Q1Q2Q3 is shortest by verifying that
d(s, vi) + d1(vi, u) + d2(u, vj) = d(s, vj). This is true iff D(s, u) = d(s, u) and d2(u, vj) = d(u, vj)
which means that Q1Q2Q3 is indeed a shortest path.

Observe that in the inner sum we consider only i < j. This is because for i ≥ j none of the
paths from s to vj that visit vi is shortest due to the ordering of the faulty vertices.

As for the outer sum, it counts the number of Q3 paths for every u ∈ A[vj ]. Overall, we
iterate over every u ∈ A[vj ] and multiply Fj(u) (the number of Q1Q2 paths) by p2(u, vj) (the
number of Q3 paths) and obtain the answer.

Overall, in the j’th iteration we compute R[j] using the Fj(u) values according to equation
(5). Notice that Fj+1(u) is either equal to Fj(u) or to Fj(u) +R[j] · p1(vj , u). We can therefore
compute Fj+1(u) for every u ∈ A[vj ] using the just computed R[j] and Fj(u). This takes total
Õ(
√
n) time and Õ(

√
n · k) time over all the k + 2 iterations.

In order to check the distance restrictions in the summations we precompute d(s, vj) for every
0 ≤ j ≤ k + 1 and D(s, u) for every u ∈

⋃
0≤i≤k+1A[vi]. The former (d(s, vj)) is computed using

(1), and the latter (D(s, u)) is computed by iterating over every i and u ∈ A[vi] and maintaining
the minimum value for each D(s, u). The precomputation of D(s, u) and d(s, vj) therefore takes
Õ(
√
n · k) time.

5 A Lower Bound on Labeling for Counting Shortest Paths

In this section we prove the following lower bound on labeling schemes for counting shortest
paths (without faults) in graphs such that the number of distinct shortest paths between any
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two nodes consists of at most L bits.
The proof is a modification of the approach of Gavoille et al. [22] for standard distance

labeling. Their proof proceeds by assigning weights to the edges of a
√
n ×
√
n grid graph so

that the shortest path from the i-th node in the first column to the j-th node in the first row
consists of j − 1 horizontal edges, followed by i− 1 vertical edges. Then, the proof hides a single
bit in every intersection by creating or not a shortcut. The shortest paths defined above are still
of the same form, up to using the shortcut in case it exists: horizontal edges, possibly a shortcut,
and then vertical edges.

Theorem 5. Any labeling scheme for counting shortest paths in planar graphs such that the
number of distinct shortest paths between any two nodes consists of at most L bits requires labels
consisting of Ω(

√
nL) bits.

Proof. Let us consider a
√
m×

√
m grid graph, weighted as in the proof of Gavoille et al. from

[22]. In every intersection, instead of a single s-to-t shortcut, we introduce an O(L)-size gadget
– essentially the one described in the introduction, in our proof that labels of o(n) bits cannot
exist if L is unbounded.

More specifically, suppose that we are given L− 1 bits b0, . . . , bL−2. Each edge of the gadget
will have weight equal to 1/L times the weight of the shortcut in the proof of Gavoille et al. The
gadget consists of a path s = u0−u1−· · ·−uL−1 and another path v1−v2−· · ·−vL = t in which
every edge is duplicated (i.e., there are two parallel edges between each pair vi, vi+1). Finally, for
every i = 0, . . . , L− 2 such that bi = 1, we add an edge ui − vi+1. The number of shortest s-to-t
paths in the gadget is exactly

∑L−2
i=0 bi · 2L−1−i. Note that this number is congruent to 0 modulo

2. The size of the graph is n = Θ(mL).
Now, the number of shortest paths from the i-th node in the first column to the j-th node in

the first row is 1 if all bi’s are equal to 0 for the gadget at intersection (i, j); otherwise it is equal
to

∑L−2
i=0 bi · 2L−1−i. Hence, each pair (i, j) allows us to recover Θ(L) distinct bits. Thus, the

labels must consist of Ω((
√
m− 1)2L/(2

√
m− 1)) = Ω(

√
mL) = Ω(

√
nL) bits.

We leave the problem of closing the gap between this Ω(
√
nL) lower bound and the O(

√
nL)

upper bound open for further investigation.

6 A Lower Bound on Dynamic Oracles for Counting Shortest
Paths

In this section we consider dynamic oracles for counting shortest paths (without faults) in
undirected planar graphs. That is, data structures that can support queries for counting shortest
paths as well as updates to the edge weights. We show a lower bound conditioned on the hardness
of Online Boolean Matrix-Vector Multiplication (OMv):

Conjecture 6 (OMv Conjecture, [27]). For every ε > 0, there is no O(N3−ε)-time algorithm
that given an N ×N boolean matrix M and a stream of boolean vectors v1, . . . , vN computes the
products Mvi online (i.e. computes Mvi before seeing vi+1).

Based on the above conjecture, we prove that for any dynamic shortest paths counting oracle
in undirected planar graphs, either the query time or the update time must be Ω(

√
n) (up to

subpolynomial factors).

Theorem 7. A dynamic shortest paths counting oracle in undirected n-vertex planar graphs with
amortized query time q(n) and update time u(n) cannot have q(n) + u(n) = O(n1/2−ε) for any
ε > 0 unless the OMv conjecture is false. This holds even if we only allow edge-weight increments
and decrements by 1.
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Proof. Our proof follows closely the proof of Abboud-Dahlgaard [1] for dynamic oracles reporting
(i.e. not counting) shortest paths. There are a few subtle differences, but the main difference
is that [1] was based on min-plus vector-matrix multiplication while ours is based on standard
vector-matrix multiplication.

Encoding the matrix as a grid. We consider a
√
n×
√
n boolean matrix M (i.e. N =

√
n

in Conjecture 6) and encode it using a (
√
n+ 1)× (

√
n+ 1) grid GM . For convenience, we index

the rows and columns of M as 1, . . . ,
√
n and the rows and columns of GM as 0, . . . ,

√
n. The

grid GM contains:

1. All horizontal edges of the form ((i, j), (i, j + 1)) except for ((0, j), (0, j + 1)) (i.e. except
for the first grid row). All these edges have the same weight

√
n.

2. All vertical edges of the form ((i, j), (i+ 1, j)) except for ((i,
√
n), (i+ 1,

√
n)) (i.e. except

for the last grid column). The weight of edge ((i, j), (i+ 1, j)) is j + 1.

3. If Mi,j = 1 we add an edge ei,j = ((i− 1, j − 1), (i, j)) with weight
√
n+ j.

Denote the vertices of the first row (0, j) as sj and vertices of the last column (i,
√
n) as

ti. Consider the shortest sj-to-ti path. It is easy to see that if Mi,j+1 = 0 then this path is
(1) unique, (2) composed of a vertical prefix and and a horizontal suffix, and (3) is of length√
n(
√
n− j) + i(j + 1). If however Mi,j+1 = 1 then there are exactly two such shortest paths

(one using ei,j and the other using ((i− 1, j − 1), (i, j − 1)) followed by ((i, j − 1), (i, j))) both of
length

√
n(
√
n− j) + i(j + 1).

The zero matrix grid. We would like to make the length of the above shortest paths
independent of i and j. We define another (

√
n+ 1)× (

√
n+ 1) grid G0 that has no diagonal

edges and contains:

1. All horizontal edges of the form ((i, j), (i, j + 1)) except for ((0, j), (0, j + 1)) (i.e. except
for the first grid row). All these edges have the same weight

√
n.

2. All vertical edges of the form ((i, j), (i+ 1, j)) except for ((i, 0), (i+ 1, 0)) (i.e. except for
the first grid column). The weight of edge ((i, j), (i+ 1, j)) is

√
n− j + 1.

Denote the vertices of the first column (i, 0) of G0 as s′i and vertices of the first row (0, j) of
G0 as t′j . The graph G on which we build the oracle is obtained by connecting the two grids
G0 and GMt (the grid representation of the transpose of M). This is done by adding edges
bi = (ti, s

′
i) of weight w(bi) = (

√
n+ 1)(

√
n− i) for every 1 ≤ i ≤

√
n.

The reduction. In order to solve the OMv problem, for each query vector v[1, . . . ,
√
n], if v is

the all-zero vector we simply output an all-zero vector. Otherwise, we (1) reset the weight w(bi)
of every bi to be (

√
n+ 1)(

√
n− i), (2) for every i, if v[i] = 0 we increase the weight of bi by 1,

and (3) for every index 0 ≤ j <
√
n we query the oracle for the number of shortest paths from sj

to t′j+1. Finally, we decrease the oracle’s answer by the number of 1’s in v and assign this value
as the j’th entry in the result Mv.

To see why the above procedure correctly calculates Mv, first note that the j’th entry in Mv
is exactly the number of indices 1 ≤ i ≤

√
n s.t. ei,j is present in GMt and v[i] = 1. The length of

the shortest path from sj to t′j+1 through an edge bk is d(sj , tk) +w(bk) + d(s′k, t
′
j+1) = 2n+ 2

√
n.

This value is independent of both j and k, so for each 1 ≤ k ≤
√
n we have a unique shortest

path through bk if ek,j+1 is absent in G or exactly two shortest paths if ek,j+1 is present in G.
In step (2), when we increase by 1 the edges bi corresponding to entries in v where v[i] = 0,
paths going through these bi’s are longer than paths going through other bi’s and are therefore
not shortest (we made sure that v is not all-zero). Hence, every bi that corresponds to v[i] = 1
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contributes 1 +M t
i,j+1 to the number of shortest paths from sj to t′j+1, and by subtracting the

number of 1’s in v we obtain the correct answer.
Overall, for each vector we perform O(

√
n) updates and queries, so overall we perform

O(n) updates and queries. If each update/query takes O(n0.5−ε) time then we get overall
O(n1.5−ε) = O(N3−ε/2) contradicting Conjecture 6.
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first-order model-checking. Journal of Combinatorial Optimization, 21(1):19–46, 2009.
doi:10.1007/s10878-009-9260-7.

[15] Bruno Courcelle and Andrew Twigg. Constrained-path labellings on graphs of bounded
clique-width. Theory of Computing Systems, 47(2):531–567, 2010. doi:10.1007/

s00224-009-9211-9.

[16] Yuval Emek, David Peleg, and Liam Roditty. A near-linear-time algorithm for computing
replacement paths in planar directed graphs. ACM Trans. Algorithms, 6(4):64:1–64:13, 2010.
doi:10.1145/1824777.1824784.

[17] Jittat Fakcharoenphol and Satish Rao. Planar graphs, negative weight edges, shortest paths,
and near linear time. J. Comput. Syst. Sci., 72(5):868–889, 2006. doi:10.1016/j.jcss.

2005.05.007.

[18] Joan Feigenbaum, David R. Karger, Vahab S. Mirrokni, and Rahul Sami. Subjective-cost
policy routing. In 1st WINE, pages 174–183, 2005. doi:10.1007/11600930\_18.

[19] Joan Feigenbaum, David R. Karger, Vahab S. Mirrokni, and Rahul Sami. Subjective-cost
policy routing. Theor. Comput. Sci., 378(2):175–189, 2007. doi:10.1016/j.tcs.2007.02.
020.

[20] Greg N. Frederickson. Fast algorithms for shortest paths in planar graphs, with applications.
SIAM J. Comput., 16(6):1004–1022, 1987. doi:10.1137/0216064.

[21] Cyril Gavoille, Michal Katz, Nir A. Katz, Christophe Paul, and David Peleg. Approximate
distance labeling schemes. In 9th ESA, pages 476–487, 2001. doi:10.1007/3-540-44676-1\
_40.
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graphs. CoRR, abs/1611.06529, 2016. arXiv:1611.06529.

[25] R. L. Graham and H. O. Pollak. On embedding graphs in squashed cubes. In Y. Alavi,
D. R. Lick, and A. T. White, editors, Graph Theory and Applications, pages 99–110, Berlin,
Heidelberg, 1972. Springer Berlin Heidelberg.

[26] Anupam Gupta, Amit Kumar, and Rajeev Rastogi. Traveling with a pez dispenser (or,
routing issues in MPLS). In 42nd FOCS, pages 148–157, 2001. doi:10.1109/SFCS.2001.
959889.

[27] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak.
Unifying and strengthening hardness for dynamic problems via the online matrix-vector
multiplication conjecture. In 47th STOC, pages 21–30, 2015. doi:10.1145/2746539.

2746609.

[28] Tai-Hsin Hsu and Hsueh-I Lu. An optimal labeling for node connectivity. In 20th ISAAC,
2009. doi:10.1007/978-3-642-10631-6\_32.

16

http://dx.doi.org/10.1007/s10878-009-9260-7
http://dx.doi.org/10.1007/s00224-009-9211-9
http://dx.doi.org/10.1007/s00224-009-9211-9
http://dx.doi.org/10.1145/1824777.1824784
http://dx.doi.org/10.1016/j.jcss.2005.05.007
http://dx.doi.org/10.1016/j.jcss.2005.05.007
http://dx.doi.org/10.1007/11600930_18
http://dx.doi.org/10.1016/j.tcs.2007.02.020
http://dx.doi.org/10.1016/j.tcs.2007.02.020
http://dx.doi.org/10.1137/0216064
http://dx.doi.org/10.1007/3-540-44676-1_40
http://dx.doi.org/10.1007/3-540-44676-1_40
http://dx.doi.org/10.1016/j.jalgor.2004.05.002
http://dx.doi.org/10.1137/1.9781611975031.34
http://arxiv.org/abs/1611.06529
http://dx.doi.org/10.1109/SFCS.2001.959889
http://dx.doi.org/10.1109/SFCS.2001.959889
http://dx.doi.org/10.1145/2746539.2746609
http://dx.doi.org/10.1145/2746539.2746609
http://dx.doi.org/10.1007/978-3-642-10631-6_32


[29] Giuseppe F. Italiano, Adam Karczmarz, Nikos Parotsidis. Planar Reachability Under Single
Vertex or Edge Failures Giuseppe F. Italiano, Adam Karczmarz, Nikos Parotsidis. In 32nd
SODA, pages 2739-2758, 2021. doi:10.1137/1.9781611976465.163.

[30] Giuseppe F. Italiano, Yahav Nussbaum, Piotr Sankowski, and Christian Wulff-Nilsen.
Improved algorithms for min cut and max flow in undirected planar graphs. In 43rd STOC,
pages 313–322, 2011. doi:10.1145/1993636.1993679.

[31] Sampath Kannan, Moni Naor, and Steven Rudich. Implicit representation of graphs. SIAM
Journal on Discrete Mathematics, 5(4):596–603, 1992. doi:10.1137/0405049.

[32] Haim Kaplan, Shay Mozes, Yahav Nussbaum, and Micha Sharir. Submatrix maximum
queries in monge matrices and partial monge matrices, and their applications. ACM Trans.
Algorithms, 13(2):26:1–26:42, 2017. doi:10.1145/3039873.

[33] Michal Katz, Nir A. Katz, Amos Korman, and David Peleg. Labeling schemes for flow and
connectivity. SIAM J. Comput., 34(1):23–40, 2004. doi:10.1137/S0097539703433912.

[34] Philip N. Klein. Multiple-source shortest paths in planar graphs. In 16th SODA, pages
146–155, 2005. URL: http://dl.acm.org/citation.cfm?id=1070432.1070454.

[35] Philip N. Klein, Shay Mozes, and Christian Sommer. Structured recursive separator
decompositions for planar graphs in linear time. In 45th STOC, pages 505–514, 2013.
doi:10.1145/2488608.2488672.

[36] Philip N. Klein, Shay Mozes, and Oren Weimann. Shortest paths in directed planar graphs
with negative lengths: A linear-space O(n log2 n)-time algorithm. ACM Trans. Algorithms,
6(2):30:1–30:18, 2010. doi:10.1145/1721837.1721846.

[37] Amos Korman. Labeling schemes for vertex connectivity. ACM Trans. Algorithms, 6(2):39:1–
39:10, 2010. doi:10.1145/1721837.1721855.

[38] Gary L. Miller. Finding small simple cycle separators for 2-connected planar graphs. In
16th STOC, pages 376–382, 1984. doi:10.1145/800057.808703.
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