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Abstract

We present an O(n1.5)-space distance oracle for directed planar graphs that answers distance
queries in O(log n) time. Our oracle both significantly simplifies and significantly improves the
recent oracle of Cohen-Addad, Dahlgaard and Wulff-Nilsen [FOCS 2017], which uses O(n5/3)-
space and answers queries in O(log n) time. We achieve this by designing an elegant and efficient
point location data structure for Voronoi diagrams on planar graphs.

We further show a smooth tradeoff between space and query-time. For any S ∈ [n, n2], we
show an oracle of size S that answers queries in Õ(max{1, n1.5/S}) time. This new tradeoff
is currently the best (up to polylogarithmic factors) for the entire range of S and improves by
polynomial factors over all the previously known tradeoffs for the range S ∈ [n, n5/3].

∗The first three authors are supported in part by Israel Science Foundation grants 794/13 and 592/17.



1 Introduction

Computing shortest paths is a classical and fundamental algorithmic problem that has received
considerable attention from the research community for decades. A natural data structure problem
in this context is to compactly store information about distances in a graph in such a way that
the distance between any pair of query vertices can be computed efficiently. A data structure that
support such queries is called a distance oracle. Naturally, there is a tradeoff between the amount of
space consumed by a distance oracle, and the time required by distance queries. Another quantity
of interest is the preprocessing time required for constructing the oracle.

Distance oracles in planar graphs. It is natural to consider the class of planar graphs in this
setting since planar graphs arise in many important applications involving distances, most notably in
navigation applications on road maps. Moreover, planar graphs exhibit many structural properties
that facilitate the design of very efficient algorithms. Indeed, distance oracles for planar graphs
have been extensively studied. These oracles can be divided into two groups: exact distance oracles
which always output the correct distance, and approximate distance oracles which allow a small
stretch in the distance output. For approximate distance oracles, one can obtain near-linear space
and near-constant query-time at the cost of a (1+ ε) stretch (for any fixed ε) [14–16,26,29]. In this
paper we focus on the tradeoff between space and query-time of exact distance oracles for planar
graphs.

Exact distance oracles. The following results as well as ours all hold for directed planar graphs
with real arc-lengths (but no negative length cycles). Djidjev [8] and Arikati et al. [1] obtained
distance oracles with the following tradeoff between space and query-time. For any S ∈ [n, n2],
they show an oracle with space S and query-time of O(n2/S2). For S ∈ [n4/3, n1.5], Djidjev’s oracle
achieves an improved bound of O(n/

√
S). This bound (up to polylogarithmic factors) was extended

to the entire range S ∈ [n, n2] in a number of papers [3, 6, 10, 22, 24]. Wulff-Nilsen [28] showed how
to achieve constant query-time with O(n2(log log n)4/ log n) space, improving the above tradeoff for
close to quadratic space. Very recently, Cohen-Addad, Dahlgaard, and Wulff-Nilsen [7], inspired
by the ideas of Cabello [4] made significant progress by presenting an oracle with O(n5/3) space
and O(log n) query-time. This is the first oracle for planar graphs that achieves truly subquadratic
space and subpolynomial query-time. They also showed that with S ≥ n1.5 space, a query-time of
O(n2.5/S1.5 log n) is possible. To summarize, prior to the results described in the current paper the
best known tradeoff was Õ(n/

√
S) query-time for space S ∈ [n, n1.5], Õ(n2.5/S1.5) query-time for

space S ∈ [n1.5, n5/3], and O(log n) query-time for S ∈ [n5/3, n2].

Our results and techniques. In this paper we show a distance oracle with O(n1.5) space and
O(log n) query-time. More generally, for any r ≤ n we construct a distance oracle with O(n1.5/

√
r+

n log r log(n/r)) space and O(
√
r log n log r) query-time. This improves the currently best known

tradeoffs for essentially the entire range of S: for space S ∈ [n, n1.5] we obtain an oracle with
Õ(n1.5/S) query-time, while for space S ∈ [n1.5, n2], our oracle has query-time of O(log n).

To explain our techniques we need the notion of an additively weighted Voronoi diagram on a
planar graph. Let P = (V,E) be a directed planar graph, and let S ⊆ V be a subset of the vertices,
which are called the sites of the Voronoi diagram. Each site u ∈ S has a weight ω(u) ≥ 0 associated
with it. The distance between a site u ∈ S and a vertex v ∈ V , denoted by d(u, v), is defined as
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ω(u) plus the length of the u-to-v shortest path in P . The additively weighted Voronoi diagram of
(S, ω) within P , denoted VD(S, ω), is a partition of V into pairwise disjoint sets, one set Vor(u) for
each site u ∈ S. The set Vor(u), which is called the Voronoi cell of u, contains all vertices in V that
are closer (w.r.t. d(·, ·)) to u than to any other site in S (assuming that the distances are unique).
There is a dual representation VD∗(S, ω) of a Voronoi diagram VD(S, ω) as a planar graph with
O(|S|) vertices and edges. See Section 2.

We obtain our results using point location in additively weighted Voronoi diagrams. This ap-
proach is also the one taken in [7]. However, our construction is arguably simpler and more elegant
than that of [7]. Our main technical contribution is a novel point location data structure for Voronoi
diagrams (see below). Given this data structure, the description of the preprocessing and query
algorithms of our O(n1.5)-space oracle are extremely simple and require a few lines each. In a
nutshell, the construction is recursive, using simple cycle separators. We store a Voronoi diagram
for each node u of the graph. The sites of this diagram are the vertices of the separator and the
weights are the distances from u to each site. To get the distance from u to v it suffices to locate
the node v in the Voronoi diagram stored for u using the point location data structure. Since the
cycle separator has O(

√
n) vertices, this yields an oracle requiring O(n1.5) space.

The oracles for the tradeoff are built upon this simple oracle by storing Voronoi diagrams for
just a subset of the nodes in a graph (the so called boundary vertices of an r-division). This requires
less space, but the query-time increases. This is because a node u now typically does not have a
dedicated Voronoi diagram. Therefore, to find the distance from u to v, we now we need to locate
v in multiple Voronoi diagrams stored for nodes in the vicinity of u.

As we mentioned above, our main technical tool is a data structure that supports point location
queries in Voronoi diagrams in O(log n) time. This is summarized in the following theorem.

Theorem 1. Let P be a directed planar graph with real arc-lengths, r vertices, and no negative
length cycles. Let S be a set of b sites that lie on a single face (hole) of P . We can preprocess P
in Õ(b · r) time and O(b · r) space so that, given the dual representation of any additively weighted
Voronoi diagram, V D∗(S, ω), we can extend it in O(b) time and space to support the following
queries. Given a vertex v of P , report in O(log b) time the site u such that v belongs to Vor(u).

A data structure for the same task was described in [7]. Our data structure is both significantly
simpler and more efficient. Roughly speaking, the idea is as follows. We prove that VD∗(S, ω) is
a ternary tree. This allows us to use a straightforward centroid decomposition of depth O(log b)
for point location. To locate the voronoi cell Vor(u) containing a node v we traverse the centroid
decomposition. At any given level of the decomposition we only need to known which of the three
subtrees in the next level contains Vor(u). To this end we associate with each centroid node three
shortest paths. These paths partition the plane into three parts, each containing exactly one of
the three subtrees. Identifying the desired subtree then boils down to determining the position of
v relative to these three shortest paths. We show that this can be easily done by examining the
preorder number of v in the shortest path trees rooted at three sites.

Roadmap. Theorem 1 is proved in Section 4 under a simplifying assumption that every site
belongs to its Voronoi cell. This suffices to design our distance oracle with space O(n1.5) and query-
time O(log n), which is done in Section 3, assuming that Theorem 1 holds. Section 5 describes
the improved space to query-time tradeoff. Finally, in Section 6 we describe how to remove the
simplifying assumption. Additional details and some omitted proofs appear in the appendix.
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2 Preliminaries

We assume that shortest paths are unique. This can be ensured in linear time by a random per-
turbation of the edge lengths [21, 23] or deterministically in near-linear time using lexicographic
comparisons [5,13]. It will also be convenient to assume that graphs are strongly connected; if not,
we can always triangulate them with bidirected edges of infinite length.

Separators in planar graphs. Given a planar embedded graph G, a Jordan curve separator is
a simple closed curve in the plane that intersects the embedding of G only at vertices. Miller [20]
showed that any n-vertex planar embedded graph has a Jordan curve separator of size O(

√
n) such

that the number of vertices on each side of the curve is at most 2n/3. In fact, the balance of 2/3
can be achieved with respect to any weight function on the vertices, not necessarily the uniform
one. Miller also showed that the vertices of the separator ordered along the curve can be computed
in O(n) time. An r-division [11] of a planar graph G, for some r ∈ (1, n), is a decomposition of G
into O(n/r) pieces, where each piece has at most r vertices and O(

√
r) boundary vertices (vertices

shared with other pieces). There is an O(n) time algorithm that computes an r-division of a planar
graph with the additional property that, in every piece, the number of faces of the piece that are
not faces of the original graph G is constant [18,27] (such faces are called holes).

Voronoi diagrams on planar graphs. Recall the definition of additively weighted Voronoi
diagrams VD(S, ω) from the introduction. We write just VD when the particular S and ω are not
important, or when they are clear from the context.

We restrict our discussion to the case where the sites S lie on a single face, denoted by h. We
work with a dual representation of VD(S, ω), denoted VD∗(S, ω) or simply VD∗. Let P ∗ be the
planar dual of P . Let VD∗0 be the subgraph of P ∗ consisting of the duals of edges uv of P such that u
and v are in different Voronoi cells. Let VD∗1 be the graph obtained from VD∗0 by contracting edges
incident to a degree-2 vertex one after the other until no degree 2 vertices remain. The vertices
of VD∗1 are called Voronoi vertices. A Voronoi vertex f∗ is dual to a face f such that the nodes
incident to f belong to at least three different Voronoi cells. In particular, h∗ (i.e., the dual vertex
corresponding to the face h to which all the sites are incident) is a Voronoi vertex. Each face of
VD∗1 corresponds to a cell Vor(vi), hence there are at most |S| Voronoi vertices, and, by sparsity of
planar graphs, the complexity (i.e., the number of nodes, edges and faces) of VD∗1 is O(|S|). Finally,
we define VD∗ to be the graph obtained from VD∗1 after replacing the node h∗ by multiple copies,
one for each incident edge. The original Voronoi vertices are called real. See Figure 1.

Given a planar graph P with r nodes and a set S of b sites on a single face h, one can compute
any additively weighted Voronoi diagram VD(S, ω) naively in Õ(r) time by adding an artificial
source node, connecting it to every site s with an edge of length ω(s), and computing the shortest
path tree. The dual representation VD∗(S, ω) can then be obtained in additional O(r) time by
following the constructive description above. There are more efficient algorithms [4, 12] when one
wants to construct many different additively weighted Voronoi diagrams for the same set of sites S.
The basic approach is to invest superlinear time in preprocessing P , but then construct VD(S, ω)
for multiple choices of ω in Õ(|S|) each instead of Õ(r). Since the focus of this paper is on the
tradeoff between space and query-time, and not on the preprocessing time, the particular algorithm
used for constructing the Voronoi diagrams is less important.
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Figure 1: A planar graph (black edges) with four sites on the infinite face together with the dual
Voronoi diagram VD∗ (in blue). The sites are shown together with their corresponding shortest
path trees (in turquoise, red, yellow, and green). Two of the Voronoi vertices (in blue) are real.

3 The Oracle

In this section we describe our distance oracle assuming Theorem 1. LetG be a directed planar graph
with non-negative arc-lengths. At a high level, our oracle is based on a recursive decomposition
of G into pieces using Jordan curve separators. Each piece P = (V,E) is a subgraph of G. The
boundary vertices of P are vertices of P that are incident (in G) to edges not in P . The holes of P
are faces of P that are not faces of G. Note that every boundary vertex of P is incident to some
hole of P .

A piece R = (V,E) is decomposed into two smaller pieces on the next level of the decomposition
as follows. We choose a Jordan curve separator C = (v1, v2, . . . , vk), where k = O(

√
|V |). This

separates the plane into two parts and defines two smaller pieces P and Q corresponding to, respec-
tively, the subgraphs of R inside and the outside of C. Every edge of R is assigned to either P or
Q. Thus, on every level of the recursive decomposition into pieces, an edge of G appears in exactly
one piece. The separators in levels congruent to 0 modulo 3 are chosen to balance the total number
of nodes. The separators in levels congruent to 1 modulo 3 are chosen to balance the number of
boundary nodes. The separators in levels congruent to 2 modulo 3 are chosen to balance the number
of holes. This guarantees that the number of holes in each piece is constant, and that the number of
vertices and boundary vertices decrease exponentially along the recursion. In particular, the depth
of the decomposition is logarithmic in |V |. These properties are summarized in the following lemma
whose proof is in the appendix.

Lemma 2. Choosing the separators as described above guarantees that (i) each piece has O(1) holes,
(ii) the number of nodes in a piece on the `-th level in the decomposition is O(n/c

`/3
1 ), for some

constant c1 > 1, (iii) the number of boundary nodes in a piece on the `-th level in the decomposition
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is O(
√
n/c

`/3
2 ), for some constant c2 > 1.

Preprocessing. We compute a recursive decomposition of G using Jordan separators as described
above. For each piece R = (VR, ER) in the recursive decomposition we perform the following
preprocessing. We compute and store, for each boundary node v of R, the shortest path tree TR

v in
R rooted at v. Additionally, we store for every node u of R the distance from v to u and the distance
from u to v in the whole G. For a non-terminal piece R, let P = (VP , EP ) and Q = (VQ, EQ) be
the two pieces into which R is separated. For every node u ∈ VQ and for every hole h of P we store
an additively weighted Voronoi diagram VD(Sh, ω) for P , where the set of sites Sh is the set of
boundary nodes of P incident to the hole h, and the additive weights ω correspond to the distances
in G from u to each site in Sh. We enhance each Voronoi diagram with the point location data
structure of Theorem 1. We also store the same information with the roles of Q and P exchanged.

Query. To compute the distance from u to v, we traverse the recursive decomposition starting
from the piece that corresponds to the whole initial graph G. Suppose that the current piece is
R = (V,E), which is partitioned into P and Q with a Jordan curve separator C. If v ∈ C then,
because the nodes of C are boundary nodes in both P and Q, we return the additive weight ω(v)
in the Voronoi diagram stored for u, which is equal to the distance from u to v in G. Similarly, if
u ∈ C then we retrieve and return the distance from u to v in the whole G. The remaining case is
that both u and v belong to a unique piece P or Q. If both u and v belong to the same piece on
the lower level of the decomposition, we continue to that piece. Otherwise, assume without loss of
generality that u ∈ Q and v ∈ P . Then, the shortest path from u to v must go through a boundary
node vi of P . We therefore perform a point location query for v in each of the Voronoi diagrams
stored for u and for some hole h of P . Let s1, . . . , sg be the sites returned by these queries, where
g = O(1) is the number of holes of P . The distance in G from u to si is ω(si), and the distance in
P from si to v is stored in TP

si . We compute the sum of these two terms for each si, and return the
minimum sum computed.

Analysis. First note that the query-time is O(log n) since, at each step of the traversal, we either
descend to a smaller piece in O(1) time or terminate after having found the desired distance in
O(log n) time by O(1) queries to a point location structure.

Next, we analyze the space. Consider a piece R with O(1) holes. Let n(R) and b(R) denote the
number of nodes and boundary nodes of R, respectively. The trees TR

u and the stored distances in
G require a total of O(b(R) · n(R)) space. Let R be further decomposed into pieces P and Q. We
bound the space used by all Voronoi diagrams created for R. Recall that every Voronoi diagram
and point location structure corresponds to a node u of P and a hole of Q, or vice versa. The size
of each additively weighted Voronoi diagram stored for a node of P is O(b(Q)), so O(n(P ) · b(Q))
for all nodes of P . The additional space required by Theorem 1 is also O(n(P ) · b(Q)). Finally, for
every node of R we record if it belongs to the Jordan curve separator used to further divide R, and,
if not, to which of the resulting two pieces it belongs. This takes only O(n(R)) space. The total
space for each piece R is thus O(n(R) · b(R)) plus O(n(P ) · b(Q) + n(Q) · b(P )) if R is decomposed
into P and Q.

We need to bound the sum of O(n(R) · b(R)) over all the pieces R. Consider all pieces
R1, R2, . . . , Rs on the same level ` in the decomposition. Because these pieces are edge-disjoint,∑

i n(Ri) = O(n). Additionally, b(Ri) = O(
√
n/c`) for any i, where c > 1, so

∑
iO(n(Ri) · b(Ri)) =
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O(n1.5/c`). Summing over all levels `, this is O(n1.5). The sum of O(n(P ) · b(Q)+n(Q) · b(P )) over
all pieces R that are decomposed into P and Q can be analysed with the same reasoning to obtain
that the total size of the oracle is O(n1.5).

Finally, we analyze the preprocessing time. For each piece R, the preprocessing of Theorem 1
takes Õ(n(R) · b(R)). Then, we compute O(n(R)) different additively weighted Voronoi diagrams
for R. Each diagram is built in Õ(n(R)) time, and its representation is extended in O(b(R)) time
to support point location with Theorem 1. The total preprocessing time for R is hence Õ((n(R))2),
which sums up to Õ(n2) overall by Lemma 2. We also need to compute the distances between pairs
of vertices in G. This can be also done in Õ(n2) total time by computing the shortest path tree
rooted at each vertex in Õ(n) [19].

4 Point Location in Voronoi Diagrams

In this section we prove Theorem 1. Let P be a piece (i.e., a planar graph), and S be a set of sites
that lie on a single face (hole) h of P .

Our goal is to preprocess P once in O(|P ||S|) time and space, and then, given any additively
weighted Voronoi diagram VD∗(S, ω) (denoted VD∗ for short), preprocess it in O(|S|) time and
space so as to answer point location queries in O(log |S|) time.

We assume that the hole h incident to all nodes in S is the external face. We assume that all
nodes of P ∗, except for h∗, have degree 3. This can be achieved by triangulating P with infinite
length edges. We also assume that all nodes incident to the external face belong to S and denote
them s1, s2, . . . , sb, according to their clockwise order on h. We assume b ≥ 3 (for any constant b
point location is trivial).

Recall that for a site u and a vertex v we define d(u, v) as ω(u) plus the length of the u-to-v
shortest path in P . We further assume that no Voronoi cell is empty. That is, we assume that, for
every pair of distinct sites u, u′ ∈ S, ω(u) < d(u′, u). If this assumption does not hold, let S′ be
the subset of the sites whose Voronoi cells are non empty. We can embed inside the hole h infinite
length edges between every pair of consecutive sites in S′, and then again triangulate with infinite
length edges. This results in a new face h′ whose vertices are the sites in S′. Replacing S with S′

and h with h′ enforces the assumption. Note that since this transformation changes P , it is not
suitable when working with Voronoi diagrams constructed by algorithms that preprocess P , such
as the ones in [4, 12] In Section 6 we prove Theorem 1 without this assumption.

4.1 Preprocessing for P

The preprocessing for P consists of computing shortest path trees Tv for every boundary node v ∈ S,
decorated with some additional information which we describe next. We stress that the additional
information does not depend on any weights ω (which are not available at preprocessing time).

Let Ti be the shortest path tree in P rooted at si. For a technical reason that will become clear
soon, we add some artificial vertices to Ti. For each face f of P other than h, we add an artificial
vertex vf whose embedding coincides with the embedding of the dual vertex f∗. Let yf be closest
vertex to si in P that is incident to f . We add a zero length arc yfvf to Ti. Note that vf is a leaf
of Ti. Let pi,f be the shortest si-to-vf path in Ti. We say that a vertex v of Ti is to the right (left)
of pi,f if the shortest si-to-v path emanates right (left) of pi,f . Note that, since vf is a leaf of Ti, v
is either right of pi,f , left of pi,f , or a vertex of pi,f ; the goal of adding the artificial vertices vf is to
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guarantee that these are the only options. The following proposition can be easily obtained using
preorder numbers and a lowest common ancestor (LCA) data structure [2] for Ti.

Proposition 3. There is a data structure with O(|P |) preprocessing time that can decide in O(1)
time if for a given query vertex v and query face f , v is right of pi,f , left of pi,f , or a vertex of pi,f .

We compute and store the shortest path trees Ti rooted at each site si, along with preorder
numbers and LCA data structures required by Proposition 3. This requires preprocessing time
Õ(|P ||S|) by computing each Ti in Õ(|P |) time [19], and can be stored in O(|P ||S|) space.

4.2 Handling a Voronoi diagram VD∗(S, ω)

We now describe how to handle an additively weighted Voronoi diagram VD∗ = VD∗(S, ω). This
consists of a preprocessing stage and a query algorithm. Handling VD∗ crucially relies on the fact
that, under assumption that each site is in its own Voronoi cell, VD∗ is a tree.

Lemma 4. VD∗ is a tree.

Proof. Suppose that VD∗ contains a cycle C∗. Since the degree of each copy of h∗ is one, the cycle
does not contain h∗. Therefore, since all the sites are on the boundary of the hole h, the vertices of
P enclosed by C∗ are in a Voronoi cell that contains no site, a contradiction.

To prove that VD∗ is connected, observe that in VD∗1, every Voronoi cell is a face (cycle) going
through h∗. Let C∗ denote this cycle. If C∗ is disconnected in VD∗ then, in VD∗1, C∗ must visit h∗

at least twice. But this implies that the cell corresponding to C∗ contains more than a single site,
contradiction our assumption. Thus, the boundary of every Voronoi cell is a connected subgraph of
VD∗. Since the boundaries of the cell of si and the cell of si+1 both contain the dual of the edge
sisi+1, it follows that the entire modified VD∗ is connected.

We briefly describe the intuition behind the design of the point location data structure. To find
the Voronoi cell Vor(s) to which a query vertex v belongs, it suffices to identify an edge e∗ of VD∗

that is adjacent to Vor(s). Given e∗ we can simply check which of its two adjacent cells contains v
by comparing the distances from the corresponding two sites to v. Our point location structure is
based on a centroid decomposition of VD∗ into connected subtrees, and on the ability to determine,
in constant time, which of the subtrees is the one that contains the desired edge e∗.

Preprocessing. The preprocessing consists of just computing a centroid decomposition of VD∗.
A centroid of an n-node tree T is a a node u ∈ T such that removing u and replacing it with copies,
one for each edge incident to u, results in a set of trees, each with at most n+1

2 edges. A centroid
always exists in a tree with more than one edge. In every step of the centroid decomposition of VD∗,
we work with a connected subtree T ∗ of VD∗. Recall that there are no nodes of degree 2 in VD∗.
If there are no nodes of degree 3, then T ∗ consists of a single edge of VD∗, and the decomposition
terminates. Otherwise, we choose a centroid f∗, and partition T ∗ into the three subtrees T ∗0 , T ∗1 , T ∗2
obtained by splitting f∗ into three copies, one for each edge incident to f∗. Clearly, the depth of
the recursive decomposition is O(log |S|). The decomposition can computed in O(|S|) time and be
represented as a ternary tree, which we call the decomposition tree, in O(|S|) space.
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Point location query. We first describe the structure that gives rise to the efficient query, and
only then describe the query algorithm. Consider a centroid f∗ used at some step of the decompo-
sition. Let si0 , si1 , si2 denote the three sites adjacent to f∗, listed in clockwise order along h. Let
f be the face of P whose dual is f∗. Let y0, y1, y2 be the three vertices of f , such that yj is the
vertex of f in Vor(sij ). Let e∗j be the edge of V D∗ incident to f∗ that is on the boundary of the
Voronoi cells of sij and sij−1 (indices are modulo 3). Let T ∗j be the subtree of T that contains e∗j .
Let pj denote the shortest sj-to-vf path. Note that the vertex preceding vf in pj is yj . See Figure 2
(right).

f ∗

si0

si1

si2

y0

y1

y2

f ⇤

y0

y1

y2

si0

si1

si2

p0

p1

p2
e1

e2

e0

Figure 2: Illustration of the setting and proof of Lemma 5. Left: A decomposition of VD∗ (shown
in blue) by a centroid f∗ into three subtrees, and a corresponding partition of P into three regions
delimited by the paths pi (shown in red, yellow, and turquoise). Right: a schematic illustration of
the same scenario.

Lemma 5. Let s be the site such that v ∈ Vor(s). If T ∗ contains all the edges of VD∗ incident to
Vor(s), and if v is closer to site sij than to sites sij−1 , sij+1 (indices are modulo 3), then one of the
following is true:

• s = sij ,

• v is to the right of pj and all the boundary edges of Vor(s) are contained in T ∗j ,

• v is to the left of pj and all the boundary edges of Vor(s) are contained in T ∗j+1.

Proof. In the following, let rev(q) denote the reverse of a path q. See Figure 2 for an illustration of
the proof.

Let p be the shortest path from sij to v. If p is a subpath of pj , then s = sij . Assume that p
emanates right of pj (the other case is symmetric). First observe that the path consisting of the
concatenation pj ◦ rev(pj−1) intersects VD∗ only at f∗. This is because, apart from the artificial
arc yjvf , each shortest path pj is entirely contained in the Voronoi cell of sj . Therefore, none of the
subtrees T ∗j′ contains an edge dual to pj ◦ rev(pj−1). Since the path pj ◦ rev(pj−1) starts on h, ends
on h and contains no other vertices of h, it partitions the embedding into two subgraphs, one to the
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right of pj ◦ rev(pj−1), and the other to its left. Since e∗j is the only edge of T ∗ that emanates right
of pj ◦ rev(pj−1), the only edges of T ∗ in the right subgraph are those of T ∗j .

Next observe that p does not cross pj (since shortest paths from the same source do not cross),
and does not cross pj−1 (since v is closer to sij than to sij−1). Since we assumed p emanates right
of pj , the only edges of T ∗ whose duals belong to p are edges of T ∗j . Consider the last edge e∗ of
p that is not strictly in Vor(s). If e∗ does not exist then p consists only of edges of Vor(sij ), so
s = sij . If e∗ does exist then it is an incident to Vor(s). By the statement of the lemma all edges of
VD∗ incident to Vor(s) are in T ∗. Therefore, by the discussion above, e∗ ∈ T ∗j . We have established
that some edge of VD∗ incident to Vor(s) is in T ∗j . It remains to show that all such edges are in
T ∗j . The only two Voronoi cells that are partitioned by the path pj ◦ rev(pj−1) are Vor(sij ) and
Vor(sij−1). Since v is closer to sij than to sij−1 , s 6= sij−1 . Hence either s = sij , or all the edges of
VD∗ incident to Vor(s) are in T ∗j .

We can finally state and analyze the query algorithm. We have already argued that, to locate
the Voronoi cell Vor(s) to which v belongs, it suffices to show how to find an edge e∗ incident to
Vor(s). We start with the tree T ∗ = VD∗ which trivially contains all edges of VD∗ incident to
Vor(s). We use the notation from Lemma 5. Note that we can determine in constant time which of
the three sites sij is closest to v by explicitly comparing the distances stored in the shortest path
trees T ∗j . We use Proposition 3 to determine, in constant time, whether v is right of pj , left of pj ,
or a node on pj . In the latter case, by Lemma 5, we can immediately infer that v is in the Voronoi
cell of sij . In the former two cases we recurse on the appropriate subtree containing all the edges of
VD∗ incident to Vor(s). The total time is dominated by the depth of the centroid decomposition,
which is O(log |S|).

5 The Tradeoff

In this section we generalize the construction presented in Section 3 to yield a smooth tradeoff
between space and query-time. In the following, an MSSP data structure refers to Klein’s multiple-
source shortest paths data structure [17]. From now on we assume that all arc-lengths are non-
negative. This can be ensured with a standard transformation that computes shortest paths from a
designated source node in O(n log2 n) time [19] and then appropriately modifies all lengths to make
them non-negative while keeping the same shortest paths.

5.1 Preprocessing

The data structure achieving the tradeoff is recursive using Jordan curve separators as described in
Section 3; at each recursive level we have a piece R = (VR, ER), which is decomposed by a Jordan
curve separator C into P = (VP , EP ) and Q = (VQ, EQ), where C is chosen to balance the number of
nodes, the number of boundary nodes, or the number of holes, depending on the remainder modulo
3 of the recursive level. The main difference compared to the oracle of Section 3 is that we do not
store an additively weighted Voronoi diagram of P for each node u in Q (and similarly we do not
store a diagram of Q for each node of P ). Instead, we use an r-division to decrease the number
of stored Voronoi diagrams by a factor of

√
r. Additionally, we stop the decomposition when the

number of vertices drops below r. More specifically, for every non-terminal piece R in the recursive
decomposition such that n(R) > r that is decomposed into P and Q with a Jordan curve separator
C, we store the following:
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1. For each hole h of P , an MSSP data structure capturing the distances in P from all the
boundary nodes of P incident to h to all nodes of P . The MSSP data structure is augmented
with predecessor and preorder information (see below).

2. An r-division for Q, denoted DQ, with O(1) MSSP data structures for each piece of DQ, one
for each hole of the piece. All the boundary nodes of Q (in particular, all nodes of C) are
considered as boundary nodes of DQ (see below).

3. For each boundary node u of DQ, and for each boundary node v of P , the distance dG(u, v)
from u to v in G, and also the distance dG(v, u) from v to u in G.

4. For each boundary node u of DQ, and for each hole h of P , an additively weighted Voronoi
diagram VD(Sh, ω) for P , where the set of sites Sh is the set of boundary nodes of P incident
to the hole h, and the additive weights ω correspond to the distances in G from u to each site
in Sh. We enhance each Voronoi diagram with the point location data structure of Theorem 1.

We also store the same information with the roles of Q and P exchanged. For a terminal piece R,
i.e. when n(R) ≤ r, instead of further subdividing R we revert to the oracle of Fakcharoenphol and
Rao [10], which needs O(n(R) log n(R)) space, answers a query in O(

√
n(R) log2 n(R)) time, and

can be constructed in O(n(R) log2 n(R)) time. We also construct an r-division DR for R together
with the MSSP data structures. The boundary nodes of R are considered as boundary nodes of
DR. For each boundary node u ∈ ∂DR, and for each boundary node v ∈ R, we store the distance
dG(u, v) from u to v in G and, for each hole of R, an enhanced additively weighted Voronoi diagram
VD(Sh, ω) for R, where the set of sites Sh is the set of boundary nodes of R incident to the hole h,
and the additive weights ω correspond to the distances in G from u to each site in Sh.

The MSSP data structure in item 1 is a modification of the standard MSSP of Klein [17], where
we change the interface of the persistent dynamic tree representing the shortest path tree rooted
at the boundary nodes of R incident to h, as stated by the following lemma whose proof is in the
appendix.

Lemma 6. Consider a directed planar embedded graph on n nodes with non-negative arc-lengths,
and let v1, v2, . . . , vs be the nodes on the boundary of its infinite face, in clockwise order. Then, in
O(n log n) time and space, we can construct a representation of all shortest path trees Ti rooted at
vi, that allow answering the following queries in O(log n) time:

• for a vertex vi and a vertex v ∈ V , return the length of the vi-to-v path in Ti.

• for a vertex vi and vertices u, v ∈ V , return whether u is an ancestor of v in Ti.

• for a vertex vi and vertices u, v ∈ V , return whether u occurs before v in the preorder traversal
of Ti.

In the r-division in item 2 we extend the set of boundary nodes ∂DQ of DQ to also include all the
boundary nodes of Q. In more detail, DQ is obtained from Q by the same recursive decomposition
process as the one used to partition G; on every level of the recursive decomposition we choose a
Jordan curve separator as to balance the total number of nodes, boundary nodes, or holes, depending
on the remainder of the level modulo 3, and terminate the recursion when the number of nodes in
a piece is O(r) and the number of boundary nodes is O(

√
r). Every piece of DQ consists of O(r)

nodes and, because the boundary nodes of Q are incident to O(1) holes, its O(
√
r) boundary nodes
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are incident to O(1) holes. Because of the boundary nodes inherited from Q, the number of pieces in
DQ is not O(n(Q)/r), and |∂DQ| is not O(n(Q)/

√
r). We will analyze |∂DQ| later. The MSSP data

structures in item 2 stored for every piece of DQ are the standard structures of Klein. The distances
in item 3 are stored explicitly. The point location mechanism used for the Voronoi diagrams in
item 4 is the one described in Section 4 with the following important modification. Instead of
storing the shortest path trees rooted at every site of the Voronoi diagram explicitly to report
distances, preorder numbers, and ancestry relations in O(1) time, use the MSSP data structure
stored in item 1. Clearly, with such queries one can implement Proposition 3 in O(log(|P |)) time
instead of O(1).

5.2 Query

To compute the distance from u to v, we traverse the recursive decomposition starting from the
piece that corresponds to the whole initial graph G as in Section 3. Eventually, we reach a piece
R = (VR, ER) such that u, v ∈ VR and either n(R) ≤ r, or n(R) > r and R is decomposed into P
and Q with a Jordan curve separator C such that either u ∈ C, or v ∈ C, or u and v are separated
by C.

We first consider the case when n(R) > r. If u ∈ C or v ∈ C then, because the nodes of C
are boundary nodes the r-divisions DP and DQ, the distance from u to v in G can be extracted
from item 3. Otherwise, u and v are separated by C, and we assume without loss of generality that
u ∈ Q and v ∈ P . Let Q′ be the piece of the r-division DQ that contains u. Any path from u to v
must visit a boundary node of Q′. Thus, we can iterate over the boundary nodes u′ of Q′, retrieve
dQ′(u, u

′) (from the MSSP data structure in item 2), and then, for each hole h of P , use the Voronoi
diagram VD(Sh, ω) for P (item 4) to find the node v′ ∈ Sh that minimizes dG(u′, v′) + dP (v

′, v)
(computed from item 3 and item 1). The minimum value of dQ′(u, u′)+ dG(u

′, v′)+ dP (v
′, v) found

during this computation corresponds to the shortest path from u to v.
The remaining possibility is that n(R) ≤ r. Then the shortest path from u to v either visits

some boundary node of R or not. To check the former case, we proceed similarly as above: we find
the piece R′ of the r-division DR that contains u, iterate over the boundary nodes u′ of Q′, retrieve
dR′(u, u

′), and use the Voronoi diagram VD(Sh, ω) for R to find the node v′ ∈ Sh that minimizes
dG(u

′, v′) + dP (v
′, v). To check the latter case, we query the oracle of Fakcharoenphol and Rao [10]

stored for R, and return the minimum of these two distances.

5.3 Analysis

For a piece R, we denote by n(R) and b(R) the number of nodes and boundary nodes of R, respec-
tively. We first analyze the query-time. In O(log n) time we reach the appropriate piece R. Then,
we iterate over O(

√
r) boundary nodes. For each of them, we first spend O(log r) time to retrieve the

distance from u to u′. Then, we need O(log(b(P )) log(n(P ))) time to query the Voronoi diagram.
If n(R) ≤ r, this changes into O(log(b(R)) log(n(R))) and additional O(

√
n(R) log2(n(R))) =

O(
√
r log2 r) time for the oracle of Fakcharoenphol and Rao [10]. Thus, the total query-time is

O(
√
r log2 n).
We bound the space required by the data structure for a piece R which is divided into pieces P

and Q. Each MSSP data structure in item 1 requires O(n(P ) log(n(P ))) space, and there are O(1) of
them. Representing the r-division DQ and the MSSP data structures for all the pieces in item 2 can
be done within O(n(Q) log r) space. Then, for every boundary node of DQ the distances in item 3
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and the O(1) Voronoi diagrams in item 4 can be stored in O(b(P )) space. Thus, we need to analyze
the total number of boundary nodes ofD. As we explained above, |∂DQ| would be simply O(n(Q)/r)
if not for the additional boundary nodes of Q. We claim that |∂DQ| = O(n(Q)/

√
r + b(Q)).

To prove the claim we slightly modify the reasoning used by Klein, Mozes, and Sommer [18]
to bound the total number of boundary nodes in an r-division without additional boundary ver-
tices. They analyzed the same recursive decomposition process of a planar graph Q on n nodes by
separating to balance the number of nodes, boundary nodes, or holes, depending on the remainder
modulo 3 of the current level.1 Let T be a tree representing this process, and x̂ be the root of T .
Every node x of T corresponds to a piece. For example, the piece corresponding to the root x̂ is all
of Q. We denote by n(x) and b(x) the number of nodes and boundary nodes, respectively, of the
piece corresponding to x. Define Sr to be the set of rootmost nodes y of T such that n(y) ≤ r.

Lemma 7.
∑

x∈Sr
b(x) = O(n(Q)/

√
r + b(Q))

Proof. For a node x of T and a set S of descendants of x such that no node of S is an ancestor
of any other, define L(x, S) := −n(x) +∑y∈S n(y). Essentially, L(x, S) counts the number of new
boundary nodes with multiplicities created when replacing x by all pieces in S. Lemma 8 in [18]
states that L(x̂, Sr) = O(n/

√
r). I.e., the number of new boundary nodes (with multiplicities)

created when replacing the single piece Q by the pieces in Sr is O(n(Q)/
√
r). We assume that each

node of Q has constant degree (this can be guaranteed with a standard transformation). Thus, each
boundary vertex of Q appears in a constant number of pieces in Sr. Since the number of boundary
vertices in Q is b(Q), the lemma follows.

Let S′r(x) be the set of rootmost descendants y of x such that b(y) ≤ c′
√
r, where c′ is a fixed

known constant. The r-division found by the recursive decomposition process is S′r =
⋃

x∈Sr
S′r(x).

Indeed, each piece x in S′r has n(x) ≤ r, b(x) ≤ c′
√
r, and O(1) holes. This is true by definition of

S′r, even though, instead of starting with a graph with no boundary nodes, we start with a graph
containing b(Q) boundary nodes incident to O(1) holes.

The following claim is proved in Lemma 9 of [18].

Lemma 8 (Lemma 9 of [18]). |S′r(x)| ≤ max{1, 40b(x)
c′
√
r
}

Corollary 9. |∂DQ| = O(n(Q)/
√
r + b(Q))

Proof.

|∂DQ| ≤
∑
x∈S′r

b(x) ≤ c′√r
∑
x∈Sr

|S′r(x)| ≤ c′
√
r

(
|Sr|+

40

c′
√
r

∑
s∈Sr

b(x)

)
= O(n(Q)/

√
r + b(Q)).

Here, the first inequality follows by definition of DQ and S′r. The second inequality follows by
definition of S′r(x) and by the fact that for any x ∈ S′r, b(x) ≤ c′

√
r. The third inequality follows by

Lemma 8. The last inequality follows from the fact that |Sr| = O(n(Q)/r), and from Lemma 7.

We have shown that, starting the recursive decomposition of Q with b(Q) boundary nodes inci-
dent to O(1) holes, we obtain an r-division D consisting of pieces containing O(r) nodes and O(

√
r)

1In [18] simple cycle separators are used (rather than Jordan curve separators), and thus every piece along the
recursion needs to be re-triangulated. The analysis of the number of boundary nodes, however, is the same.
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boundary nodes incident to O(1) holes, and O(n(Q)/
√
r + b(Q)) boundary nodes overall. Conse-

quently, the space required by the data structure for a piece R with n(R) > r that is separated into
pieces P and Q is O(n(P ) log(n(P )+n(Q) log r+n(Q)/

√
r+b(Q))b(P )), plus a symmetric term with

the roles of P and Q exchanged. If n(R) ≤ r the space is O(n(R) log(n(R))+(n(R)/
√
r+b(R))b(R)).

Overall, O(n(R) log(n(R)) sums up O(n log n log(n/r)). On the `-th level of the decomposition,
O(n(P )/

√
r · b(Q) + n(Q)/

√
r · b(P )) sums up to O(n1.5/(

√
r · c`)), so O(n1.5/

√
r) over all levels.

O(b(P ) · b(Q)) can be bounded by O(b(Q) · √n), so we only need to bound the total number of
boundary nodes in all pieces of the recursive decomposition of the whole graph. For the terminal
pieces R, it directly follows from Lemma 7 (with Q being the entire graph G) that the total number
of boundary nodes is O(n/

√
r), but we also need to analyse the non-terminal pieces. Because the

size of a piece decreases by a constant factor after at most three steps of the recursive decomposition
process, it suffices to bound only the total number of boundary nodes for pieces in the sets Sri , for
ri = r · 2i, i = 0, 1, . . . , log(n/r). By applying Lemma 7, with r = ri and Q = G we get that the
total number of boundary nodes for pieces in Sri is O(n/

√
ri), which sums up to O(n/

√
r) over all i.

Thus, the sum of O(b(P ) · b(Q)) over all non-terminal pieces O(n1.5/
√
r). For all terminal pieces R,

O(n(R)/
√
r ·b(R)) adds up to O(n1.5/

√
r). O(b(R)·b(R)) can be bounded by O(b(R)·√n), which we

have already shown to be O(n1.5/
√
r) overall. Thus, the total space is O(n1.5/

√
r+n log n log(n/r)).

The preprocessing time can be analyzed similarly as in Section 3, except that now we need to
compute only O(n(P )/

√
r+ b(P )) Voronoi diagrams for P , each in Õ(n(P )) time. As shown above,

the overall number of boundary nodes is O(n/
√
r), so this is Õ(n2/

√
r) total time. Additionally, we

need to compute the distance between pairs of vertices of P in G (item 3). One of these vertices is
always a boundary node of the r-division, so overall we need Õ(n/

√
r) single-source shortest paths

computations in G, which takes Õ(n2/
√
r) total time. Additionally, we need to construct the oracles

when n(R) ≤ r in O(n log2 r) total time. Thus, the total construction time is Õ(n2/
√
r) overall.

5.4 Improved query-time

The final step in this section is to replace log2 n with log n · log r in the query-time. This is done by
observing that the augmented MSSP data structure takes linear space, but for smaller values of r
we can actually afford to store more data. In the appendix we show the following lemma.

Lemma 10. For any r ∈ [1, n], the representation from Lemma 6 can be modified to allow answer-
ing queries in O(log r) time in O(s · n/√r + n log r) space after O(s · n/√r log r + n log n) time
preprocessing.

This decreases the query-time to O(
√
r log n log r) at the expense of increasing the space taken

by the MSSP data structures in item 1 to O(n(P )/
√
r · b(P ) + n(P ) log r). Summing over all levels

` and including the space used by all other ingredients, this is O(n1.5/
√
r + n log r log(n/r)).

6 Removing the Assumption on Sites

We now remove the assumption that all the vertices on the hole h are sites of the Voronoi diagram
whose Voronoi cells are non-empty. Recall that VD∗(S, ω) is obtained from V D∗1 by replacing h∗

with multiple copies, one copy h∗e for each edge e of VD∗0(S, ω) incident to h∗. Consider the proof of
Lemma 4. The argument showing that VD∗(S, ω) contains no cycles still holds. However, because
now vertices incident to the hole are not necessarily sites, the argument showing connectivity fails,
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and indeed, VD∗(S, ω) might be a forest. We turn the forest VD∗ into a tree V̂D
∗
by identifying

certain pairs of copies of h∗ as follows. Consider the sequence Eh of edges of VD∗ incident to h∗,
ordered according to their clockwise order on the face h. Each pair of consecutive edges e, e′ in Eh

delimits a subpath Q of the boundary walk of h. Note that Q belongs to a single Voronoi cell of
some site s ∈ S . If Q does not contain s we connect the two copies h∗e and h∗e′ with an artificial
edge. We denote the resulting graph by V̂D

∗
. See Figure 3.

Figure 3: Left: a Voronoi diagram VD∗ (blue) forms a forest. Right: the tree V̂D
∗
obtained by

adding three artificial edges (thicker blue lines).

Lemma 11. V̂D
∗
is a tree.

Proof. We show that V̂D
∗
is connected and has no cycles. Consider the Voronoi cell of a site s ∈ S.

In VD∗1 (i.e., before splitting h∗) the boundary of this cell is a non-self-crossing cycle C∗. Consider
the restriction of C to edges incident to h∗. Consider two consecutive edges e, e′ in the restriction.
If e and e′ are not consecutive in C∗ (i.e., if e and e′ do not meet at h∗), then they remain connected
in VD∗ (i.e., after splitting h∗). If e and e′ are consecutive on C∗, then they are also consecutive in
Eh, so they become disconnected in VD∗, but get connected again in V̂D

∗
. This is true unless the

subpath Q of the face h delimited by e and e′ contains s, but this only happens for one pair of edges
in C∗. Therefore, since C∗ was 2-connected (a cycle) in VD∗1, it is 1-connected in V̂D

∗
. Now, since

adjacent Voronoi cells share edges, the boundaries of any two adjacent Voronoi cells are connected.
It follows from the fact that the dual graph of V̂D

∗
is connected that the boundaries of all cells are

connected after the identification step.
Assume that V̂D

∗
contains a cycle C∗. Then C∗ must also be a cycle in VD∗1. Since every

cycle in VD∗1 contains h∗ and encloses at least one site, C∗ contains a copy of h∗ and encloses
at least one site. Consider a decomposition of C∗ into maximal segments between copies of h∗.
By construction of V̂D

∗
, whenever two segments of C∗ are connected with an artificial edge, the

segment of the boundary of h delimited by these two segments and enclosed by C∗ does not contain
a site. Since all the sites are on the boundary of h, it follows that C∗ does not enclose any sites, a
contradiction.

We next describe how to extend the point location data structure. First observe that since V̂D
∗

is a tree, it has a centroid decomposition. In VD∗, the copies of h∗ are all leaves. In V̂D
∗
each copy

of h∗ is incident to at most two artificial edges. Hence the maximum degree in V̂D
∗
is still 3. If
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the centroid of V̂D
∗
is not a copy of h∗ then Lemma 5 holds. We need a version of Lemma 5 for

the case when the centroid is a copy of h∗ with degree greater than 1 (i.e., incident to one or two
artificial edges). This is in fact a simpler version of Lemma 5. The difference between a copy of h∗

and a Voronoi vertex f∗ is that f∗ is a triangular face incident to three specific vertices y0, y1, y2,
whereas h∗ is incident to all vertices of the hole h. Recall that we connect two copies h∗e and h∗e′ if
the segment Q of the boundary of h delimited by the edges e and e′ belongs to the Voronoi cell of
a site s but does not contain s. When we add this artificial edge, we associate with h∗e and with h∗e′
an arbitrary primal vertex y on Q. Thus, each copy f of h∗ is associated with at most two primal
vertices.

We describe the case where the centroid of T ∗ is a copy ĥ∗ of h∗ with degree 3. The case of
degree 2 and one associated vertex is similar. In the case of degree 3, ĥ∗ is incident to one edge
e1 ∈ Eh, and to two artificial edges which we denote e0, and e2, so that the counterclockwise order
of edges around ĥ∗ is e0, e1, e2. Removing ĥ∗ breaks T ∗ into three subtrees. Let T ∗j be the subtree
of T ∗ rooted at the endpoint of ej that is not ĥ∗. Recall that, since the degree of ĥ∗ is 3, it has
two associated vertices, y0, y1, where yj belongs to the subpath of the boundary of h delimited by
ej and ej+1. Let sij be the site such that yj belongs to Vor(sij ). Let pj be the shortest path from
sij to yj . See Figure 4.

ĥ⇤e0 e2

e1y0 y1

Figure 4: Illustration of the case when the centroid is a copy ĥ∗ of h∗ of degree three. ĥ∗ has two
incident artificial edges (e0, e2), and one Voronoi edge (e1). The two vertices y0, y1 associated with
ĥ∗ are shown, as well as the shortest paths p0 and p1.

Lemma 12. Let s be the site such that v ∈ Vor(s). If T ∗ contains all the edges of V̂D
∗
incident

to Vor(s), and if v is closer to site sij than to site sij+1 (indices are modulo 2), then one of the
following is true:

• s = sij ,

• v is to the left of pj and all the edges of V̂D
∗
incident to Vor(s) are contained in T ∗j ,
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• v is to the right of pj and all the edges of V̂D
∗
incident to Vor(s) are contained in T ∗j+1.

Proof. Observe that all the edges of pj belong to Vor(sij ), while for every i ∈ {0, 1, 2}, the duals of
edges of T ∗i have endpoints in two different Voronoi cells. Therefore, the paths pj do not cross the
trees T ∗i . Since p0 and p1 are paths that start and end on the boundary of h and do not cross each
other, they partition G into three subgraphs {Gi}2i=0. Let G0 be the subgraph to the left of p0, G1

the subgraph to the right of p0 and to the left pf p1, and G2 the graph to the right of p1. It follows
from the above that each subtree T ∗i belongs to the subgraph Gi.

The remainder of the proof is almost identical to that of Lemma 5. Let p be the shortest path
from sij to v. If p is a subpath of pj then s = sij . Otherwise, assume p emanates left of p0 (the
other cases are similar). Consider the last edge e∗ of p that is not strictly in Vor(s). If e∗ does
not exist then s = si0 . If it does exist, then it must be en edge of T ∗0 . Since the only Voronoi cell
partitioned by p0 is that of si0 , either s = si0 , or all edges of V̂D

∗
incident to Vors belong to T ∗0 .
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A Missing Proofs

Lemma 2. Choosing the separators as described above guarantees that (i) each piece has O(1) holes,
(ii) the number of nodes in a piece on the `-th level in the decomposition is O(n/c

`/3
1 ), for some

constant c1 > 1, (iii) the number of boundary nodes in a piece on the `-th level in the decomposition
is O(

√
n/c

`/3
2 ), for some constant c2 > 1.

Proof. The number of holes increases by at most one in every recursive call, but decreases by a
constant multiplicative factor every 3 recursive calls, and is initially equal to 0, so part (i) easily
follows. The number of nodes never increases, and decreases by a constant multiplicative factor every
3 recursive calls, and is initially equal to n, so part (ii) follows. The situation with the number of
boundary nodes is slightly more complex, because it increases by O(

√
n) in every recursive call, and

decreases by a constant multiplicative factor every 3 recursive calls, where n is the number of nodes
in the current piece. For simplicity, we analyze a different process, in which the number of boundary
nodes decreases by a constant multiplicative factor and then increases by O(

√
n) in every recursive

call. The asymptotic behavior of these two processes is identical. Thus, we want to analyze the
following recurrence:

b(`+ 1) = b(`)/c+

√
n

(c′)`
.

for some constants c, c′ > 1. Then

b(`+ 1) =
∑̀
i=0

√
n

ci(c′)`−i
=

√
n

(c′)`

∑̀
i=0

(
c′

c
)i.

We consider two cases:

1. c′ ≤ c, then b(`+ 1) ≤ √n `
(c′)`
≤

√
n

(
√
c′)`

for ` large enough.

2. c′ > c, then b(`+ 1) = O(
√
n

c`
).

In both cases, b(`) = O(
√
n

c`2
) for some constant c2 > 1 as claimed.

Lemma 6. Consider a directed planar embedded graph on n nodes with non-negative arc-lengths,
and let v1, v2, . . . , vs be the nodes on the boundary of its infinite face, in clockwise order. Then, in
O(n log n) time and space, we can construct a representation of all shortest path trees Ti rooted at
vi, that allow answering the following queries in O(log n) time:

• for a vertex vi and a vertex v ∈ V , return the length of the vi-to-v path in Ti.

• for a vertex vi and vertices u, v ∈ V , return whether u is an ancestor of v in Ti.

• for a vertex vi and vertices u, v ∈ V , return whether u occurs before v in the preorder traversal
of Ti.

Proof. We proceed as in the original implementation of MSSP, that is, we represent every Ti with a
persistent link-cut tree. We present some of the details, understanding them is required to explain
how to implement the queries.
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In MSSP, we start with constructing T1 with Dijkstra’s algorithm in O(n log n) time. Then, we
iterate over i = 2, 3, . . . , s. The current Ti is maintained with a persistent link-cut tree of Sleator
and Tarjan [25]. The gist of MSSP is that every edge of the graph goes in and out of the shortest
path tree at most once, and that we can efficiently retrieve the edges that should be removed from
and added to Ti−1 to obtain Ti (in O(log n) time per edge). Thus, if we are able to remove or insert
an edge from Ti−1 in O(log n) time, the total update time is O(n log n). With a link-cut tree, we can
indeed remove or insert edge in such time (note that we prefer the worst-case version instead of the
simpler implementation based on splay trees). We make our link-cut tree partially persistent with
a straightforward application of the general technique of Driscoll et al. [9]. This requires that the
in-degree of the underlying structure is O(1), which is indeed the case if the degrees of the nodes in
the graph (and hence in every Ti) are O(1). This can be guaranteed by replacing a node of degree
d > 4 by a cycle on d nodes, where every node has degree 3. We now verify that the in-degree is
O(1) for such a structure by presenting a high-level overview of link-cut trees.

The edges of a rooted tree are partitioned into solid and dashed. There is at most one solid
edge incoming into any node, so we obtain a partition of the tree into node-disjoint solid paths. For
every solid path, we maintain a balanced search tree on a set of leaves corresponding to the nodes
of the path in the natural top-bottom order when read from left to right. To obtain a worst-case
time bound, Sleator and Tarjan use biased binary trees. Every node stores a pointer to the leaf in
the corresponding biased binary tree, and additionally the topmost node of a heavy path stores a
pointer to its parent in the represented tree (together with the cost of the corresponding edge). The
nodes of every biased binary tree store standard data (a pointer to the left child, the right child,
and the parent) and, additionally, every inner node (that corresponds to a fragment of a solid path)
stores the total cost of the corresponding fragment. An additional component of the link-cut tree is
a complete binary tree on n leaves corresponding to the nodes of the tree (called 1, 2, . . . , n). This
is required, so that we can access a node of the tree on demand in O(log n) time, as random access
is not allowed in this setting. The access pointer points to the root of the complete binary tree.
Now we can indeed verify that the in-degree of the structure is O(1).

Assuming that a representation of every Ti with a partially persistent link-cut tree is available,
we can answer the queries as follows.

First, consider calculating the distance from vi to some v ∈ V . We retrieve the access pointer of
Ti and navigate the complete binary tree to reach the node v. Then, we navigate up in the link-cut
representation of Ti starting from v. In every step, we traverse a biased binary tree starting from
a leaf corresponding to some ancestor u of v. Conceptually, this allows us to jump to the topmost
node of the solid path containing u. While doing so, we accumulate the total cost of the prefix of
that solid path ending at u. Then, we follow the pointer from the topmost node of the current solid
path to reach its parent in Ti, add its cost to the answer, and continue in the next biased binary
tree. It is easy to see that in the end we obtain the total cost of the path from v to the root of Ti,
and by the properties of biased binary trees the total number of steps is O(log n).

Second, consider checking if u is an ancestor of v in Ti. We navigate in the link-cut representation
of Ti starting from u and marking the visited solid paths (in more detail, every solid path stores a
timestamp of the most recent visit; the timestamps are not considered a part of the original partially
persistent structure and the current time is increased after each query). Then, we navigate starting
from v, but stop as soon as we reach a solid path already visited in the previous step. For u to be
an ancestor of v, this must be the path containing u, and furthermore u must be on the left of v in
the corresponding biased binary tree. This can be all checked in O(log n) time.
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Third, consider checking if u occurs before v in the preorder traversal of Ti. By proceeding as
in the previous paragraph we can identify the LCA of u and v, denoted w. Assuming that w 6= u
and w 6= v, we can also retrieve the edge outgoing from w leading to the subtree containing u, and
similarly for v, in O(log n) total time. We can also retrieve the edge incoming to w from its parent
in O(1) additional time. Then, we check the cyclic order on the edges incident to w in the graph
to determine if u comes before v in the preorder traversal of Ti (this is so that we do not need to
think about an embedding of Ti while maintaining the link-cut representation).

Lemma 6. Consider a directed planar embedded graph on n nodes with non-negative arc-lengths,
and let v1, v2, . . . , vs be the nodes on the boundary of its infinite face, in clockwise order. Then, in
O(n log n) time and space, we can construct a representation of all shortest path trees Ti rooted at
vi, that allow answering the following queries in O(log n) time:

• for a vertex vi and a vertex v ∈ V , return the length of the vi-to-v path in Ti.

• for a vertex vi and vertices u, v ∈ V , return whether u is an ancestor of v in Ti.

• for a vertex vi and vertices u, v ∈ V , return whether u occurs before v in the preorder traversal
of Ti.

Proof. We construct an r-division R of the graph. The structure consists of parts: micro components
and macro component.

Consider a shortest path tree Ti. We construct a new (smaller) tree T ′i as follows. First, mark
in Ti vi and all boundary nodes of R. Then, T ′i is the tree induced by the marked nodes in Ti
(in other words: for any two marked nodes we also mark their LCA in Ti, and then construct T ′i
by connecting every marked node to its first marked ancestor with an edge of length equal to the
total length of the path connecting them in Ti. Then, |T ′i | = O(n/

√
r). Intuitively, T ′i gives us a

high-level overview of the whole Ti. We augment it with the usual preorder numbers and LCA data
structure. We call this the macro component.

For every piece Rj of R, consider the subgraph of Ti consisting of all edges belonging to Rj .
This subgraph is a collection of trees rooted at some of the boundary nodes of Rj . We represent
this forest Ti,j with a persistent link-cut forest. While sweeping through the nodes v1, v2, . . . , vs,
every edge of the graph goes in and out of the shortest path tree at most once. Hence, every edge
of Rj goes in and out of Ti,j at most once. Thus, the persistent link-cut representation of Ti,j
takes O(|R| log |R|) time and space. To answer a query concerning Ti,j , we first need to retrieve the
corresponding version of the link-cut forest. This can be done with a predecessor search, if we store
a sorted list of the values of i together with a pointer to the corresponding version, in O(log r) time,
as there are at most O(|R|) versions. Then, a query concerning Ti,j can be answered in O(log r)
time.

We claim that combining the micro and macro components allows us to answer any query in
O(log r) time. Consider calculating the distance from vi to some v ∈ V . We retrieve the piece Rj

containing v and, by using the micro component, find the root r of the tree containing v in the
forest Ti,j together with the distance from r to v in O(log r) time. Then, r is a boundary node,
so the macro component allows us to find the distance from vi to r in O(1) time. Other queries
can be processed similarly by first look at the pieces containing u and v, then replacing them by
appropriate boundary nodes, and finally looking at the macro component.

The total space is clearly O(n log r) to represent all the micro components, and O(s · n/√r)
for the macro component. To bound the preprocessing time, observe that constructing the macro
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component requires extracting O(n/
√
r) nodes from the persistent link-cut representation of Ti. If,

instead of accessing them one by one, we work with all of them at the same time, can be seen to
take O(n/

√
r log r) time by the convexity of log.

22


	Introduction
	Preliminaries
	The Oracle
	Point Location in Voronoi Diagrams
	Preprocessing for P
	Handling a Voronoi diagram VD*(S,)

	The Tradeoff
	Preprocessing
	Query
	Analysis
	Improved query-time

	Removing the Assumption on Sites
	Missing Proofs

