Integer Programming (IP)

- An LP problem with an additional constraint that variables will only get an integral value, maybe from some range.
- BIP binary integer programming: variables should be assigned only 0 or 1.
- Can model many problems.
- NP-hard to solve!

Example: Vertex Cover

Variables: for each $v \in V$, $x_v - is v$ in the cover? Minimize $\Sigma_v x_v$ Subject to: $x_i + x_j \ge 1 \quad \forall_{\{i,j\} \in E}$ $x_v \in \{0,1\}$

Weighted Vertex Cover

- Input: Graph G=(V,E) with non-negative weights w(v) on the vertices.
- Goal: Find a minimum-cost set of vertices S, such that all the edges are covered. An edge is covered iff at least one of its endpoints is in S.

Recall: Vertex Cover is NP-complete.

The best known approximation factor is

2- (log log |V|/2 log|V|).

Weighted Vertex Cover

Variables: for each $v \in V$, x(v) - is v in the cover?

 $\begin{array}{ll} \mbox{Min } \Sigma_{v \in V} w(v) x(v) \\ \mbox{s.t.} \\ x(v) + x(u) \geq 1, \ \forall (u,v) \in E \\ \\ x(v) \in \{0,1\} \quad \forall v \in V \end{array}$

The LP Relaxation

This is **not** a linear program: the constraints of type $x(v) \in \{0,1\}$ are not linear. We got an LP with integrality constraints on variables – an **integer linear programs (IP)** that is NP-hard to solve.

However, if we replace the constraints $x(v) \in \{0,1\}$ by $x(v) \ge 0$ and $x(v) \le 1$, we will get a linear program.

The resulting LP is called a **Linear Relaxation** of IP, since we relax the integrality constraints.

LP Relaxation of Weighted Vertex Cover

$$\begin{array}{ll} \mbox{Min } \Sigma_{v \in V} w(v) x(v) \\ \mbox{s.t.} \\ x(v) + x(u) \geq 1, \ \forall (u,v) \in E \\ \\ x(v) \geq 0, \ \forall v \in V \\ x(v) \leq 1, \ \forall v \in V \end{array}$$

LP Relaxation of Weighted Vertex Cover - example

Consider the case of a 3-cycle in which all weights are 1.

An optimal VC has cost 2 (any two vertices)

An optimal relaxation has cost 3/2 (for all three vertices x(v)=1/2)

The LP and the IP are different problems. Can we still learn something about Integral VC?

Why LP Relaxation Is Useful?

The optimal value of LP-solution provides a bound on the optimal value of the original optimization problem. OPT(LP) is always better than OPT(IP) (why?)

Therefore, if we find an integral solution within a factor r of OPT_{LP} , it is also an r-approximation of the original problem.

It can be done by 'wise' rounding.

2-approx. for weighted VC

1. Solve the LP-Relaxation.

2. Let S be the set of all the vertices v with $x(v) \ge 1/2$. Output S as the solution.

Analysis: The solution is feasible: for each edge e=(u,v), either $x(v) \ge 1/2$ or $x(u) \ge 1/2$

The value of the solution is: $\Sigma_{v \in s} w(v) = \Sigma_{\{v | x(v) \ge 1/2\}} w(v) \le \Sigma_{v \in V} w(v) 2x(v) = 2OPT_{LP}$

Since $OPT_{LP} \leq OPT_{VC}$, the cost of the solution is $\leq 2OPT_{VC}$.

LP Duality

Consider LP: max $c^T x s.t$. $Ax \le b$, $x \ge 0$ n variables, m constraints

How large can the optimum $c^T x$ be?

Consider a vector **y** of m variables. If we demand that $\mathbf{y} \ge 0$ then $\mathbf{y}^T A \mathbf{x} \le \mathbf{y}^T \mathbf{b}$ If we demand that $\mathbf{c}^T \le \mathbf{y}^T A$ then $\mathbf{c}^T \mathbf{x} \le \mathbf{y}^T A \mathbf{x}$

So $c^T x \le y^T A x \le y^T b$ How small can $y^T b$ be?

minimize $\mathbf{b}^{\mathsf{T}}\mathbf{y} \mathbf{s}.\mathbf{t}$. $\mathbf{A}^{\mathsf{T}}\mathbf{y} \ge \mathbf{c}$, $\mathbf{y} \ge \mathbf{0}$ (called the dual LP)

Duality

```
Primal: maximizec^T x s.t.Ax \le b, x \ge 0Dual:minimizeb^T y s.t.A^T y \ge c, y \ge 0
```

- In the primal, **c** is cost function and **b** was in the constraint. In the dual, their roles are swapped.
- Inequality sign is changed and maximization turned to minimization.

Dual:

minimize 2x + 3y

s.t x + $2y \ge 4$,

 $x, y \ge 0$

 $2x + 5y \ge 1$,

x - $3y \ge 2$,

 Primal:

 maximize
 4p +q + 2r

 s.t
 p + 2q + r
 ≤ 2,

 2p+ 5q - 3r ≤ 3,

Duality - general form

Primal	max c [⊤] x	min b [⊤] y	Dual
	≤ b _i	≥ 0	
Constraints	≥ b _i	≤ 0	Variables
	= b _i	unconstrained	
	≤ 0	$\leq c_{i}$	
Variables	≥ 0	$\ge c_i$	Constraints
	unconstrained	= c _i	

 $\begin{array}{l} \max \ \mathbf{c}^{\mathsf{T}} \mathbf{x} \ \mathbf{s}. \mathbf{t}. \ \mathbf{A} \mathbf{x} \leq \mathbf{b}, \ \mathbf{x} \geq \mathbf{0} \\ \text{If } \mathbf{y} \geq \mathbf{0} \ \text{ then } \mathbf{y}^{\mathsf{T}} \mathbf{A} \mathbf{x} \leq \mathbf{y}^{\mathsf{T}} \mathbf{b} \end{array}$

The Duality Theorem

Let P,D be an LP and its dual. If one has optimal solution so does the other, and their values are the same.

We only saw $c^T x \le y^T b$ (weak duality) The duality thm: $c^T x = y^T b$ (proof not here)

 Dual: the problem faced by a pharmacist who sells synthetic protein, trying to compete with peanut butter and steak

Simple Example

- The pharmacist wants to maximize the price p, subject to constraints:
 - synthetic protein must not cost more than protein available in foods.
 - price must be non-negative
 - revenue to druggist will be 4p
- Solution: $p = 3/2 \rightarrow objective value = 4p = 6$
- Not coincidence that it's equal the minimal cost in original problem.

What's going on?

- Notice: feasible sets completely different for primal and dual, but nonetheless an important relation between them.
- Duality theorem says that in the competition between the grocery and the pharmacy the result is always a tie.
- Optimal solution to primal tells consumer what to do.
- Optimal solution to dual fixes the natural prices at which economy should run.

Duality Theorem

Druggist's max revenue = Consumers min cost

Practical Use of Duality:

- Sometimes simplex algorithm (or other algorithms) will run faster on the dual than on the primal.
- Can be used to bound how far you are from optimal solution.
- Interplay between primal and dual can be used in designing algorithms
- Important implications for economists.

Max Flow LP and its dual

Consider the max st-flow LP (add an arc from t to s):

IP version of dual = min st-cut

$$\min \sum_{uv \in E} c_{uv} d_{uv} \quad s.t.$$

 $d_{uv} - p_u + p_v \ge 0 \quad \forall uv \in E$

$$p_s - p_t \ge 1$$

$$d_{uv} \in \{0,1\}, p_u \in \{0,1\}$$

Consider optimal solution $(d^*, p^*): p_s^* = 1, p_t^* = 0$ p^* naturally defines a cut: $S = \{v: p_v^* = 1\}, T = \{v: p_v^* = 0\}$ For $u \in S, v \in T:$ $d_{uv}^* = 1$ for other uv can have $d_{uv}^* = 0$ So objective function is capacity of an st-cut! Minimum achieved at the minimum st-cut.

Back to LP Dual - still min-cut?

$$\min \sum_{uv\in E} c_{uv} d_{uv} \quad s.t.$$

 $d_{uv} - p_u + p_v \ge 0 \quad \forall uv \in E$

 $p_s - p_t \ge 1$ $0 \le d_{uv} \le 1, 0 \le p_u \le 1$

Dropping the upper bounds $d_{uv} \leq 1$, $p_u \leq 1$ cannot increase the objective value. We're back at the dual of the max-flow LP.

Can the objective function be improved when dropping the integrality constraints? In general - yes. This specific matrix has a special property called total unimodularity Such LPs have integral optimal solutions. So optimum of dual LP remains value of min st-cut By duality theorem: max-flow = min-cut

Complementary Slackness

Primal: max $\sum_{j=1}^{n} c_j \cdot x_j$ s.t. $\forall i \sum_{j=1}^{n} A_{ij} \cdot x_j \le b_i, x \ge 0$ **Dual:** min $\sum_{i=1}^{m} b_i \cdot y_i$ s.t. $\forall j \sum_{i=1}^{m} A_{ij} \cdot y_i \ge c_j, y \ge 0$

so $\forall j \ c_j x_j \leq (A^T y)_j x_j$ and $\forall i \ b_i y_i \geq (Ax)_i y_i$ for optimal solutions $c^T x^* = b^T y^*$ so $\sum_{j=1}^n c_j \cdot x_j^* = \sum_{j=1}^n (\sum_{i=1}^m A_{ij} \cdot y_i^*) \cdot x_j^* = \sum_{i=1}^m (\sum_{j=1}^n A_{ij} \cdot x_j^*) \cdot y_i^* = \sum_{i=1}^m b_i \cdot y_i^*$ so $\forall j \ c_j x_j^* = (A^T y)_j x_j^*$ and $\forall i \ b_i y_i^* = (Ax)_i y_i^*$ hence, $\forall j$ either $x_j^* = 0$ or $\sum_{i=1}^m A_{ij} \cdot y_i^* = c_j$ and $\forall i$ either $y_i^* = 0$ or $\sum_{j=1}^n A_{ij} \cdot x_j^* = b_i$ either a variable is zero or the corresponding

constraint in the dual is tight.

Weighted Vertex Cover (again)

$Min \ \Sigma_{v \in V} w_{v} \cdot x_{v}$	Max $\Sigma_{(u,v)\in E} 1 \cdot \mathbf{y}_{uv}$
s.t.	s.t.
$x_v + x_u \ge 1, \forall (u,v) \in E$	$\Sigma_{u:(u,v)\inE} y_{uv} \leq w_{v} \forall v \in V$
$\mathbf{x_v} \ge 0, \ \forall \mathbf{v} \in \mathbf{V}$	$y_e \ge 0$, $\forall e \in E$
$\mathbf{x}_{\mathbf{v}} \leq 1, \ \forall \mathbf{v} \in \mathbf{V}$	

Solve the relaxed dual problem. Let y^* be the solution. Complementary slackness tells us that if a dual constraint is not tight then corresponding x_v is zero. So set x_v to 0 unless constraint is tight.

Define
$$x_v = \begin{cases} 1 \text{ if } \sum_{(u,v) \in E} y_{uv}^* = w_v \\ 0 \text{ otherwise} \end{cases}$$

Weighted Vertex Cover (analysis)

$$x_{v} = \begin{cases} 1 \text{ if } \sum_{(u,v) \in E} y_{uv}^{*} = w_{v} \\ 0 \text{ otherwise} \end{cases}$$

Does the vector x define a vertex cover?

Suppose not. Then $x_s = x_t = 0$ for some edge (s,t). Then $\sum_{(u,s)\in E} y_{us}^* < w_s$ and $\sum_{(u,t)\in E} y_{ut}^* < w_t$. But y_{st}^* only appears in these two constraints, so we can increase y_{st}^* without violating any constraint, contradicting optimality of y^* .

Weighted Vertex Cover (analysis)

Linear Programming -Summary

- Of great practical importance:
 - LPs model important practical problems
 - production, manufacturing, network design, flow control, resource allocation.
 - solving an LP is often an important component of solving or approximating the solution to an integer linear programming problem.
- Can be solved in poly-time, the simplex algorithm works very well in practice.
- Use packages, you really do not want to roll your own code here.

Randomized Algorithms

Textbook:

Randomized Algorithms, by Rajeev Motwani and Prabhakar Raghavan.

Randomized Algorithms

- A Randomized Algorithm uses a random number generator.
 - its behavior is determined not only by its input but also by the values chosen by RNG.
 - It is impossible to predict the output of the algorithm.
 - Two executions can produce different outputs.

Why Randomized Algorithms?

- Efficiency
- Simplicity
- Reduction of the impact of bad cases!
- Fighting an adversary.

Types of Randomized Algorithms

- Las Vegas algorithms
 - Answers are always correct, running time is random
 - In analysis: bound expected running time

• Monte Carlo algorithms

- Running time is fixed, answers may be incorrect
- In analysis: bound error probabilities

Randomized Algorithms

• Where do random numbers come from?

- Sources of Entropy: physical phenomena, user's mouse movements, keystrokes, atmospheric noise, lava lamps.
- Pseudo-random generators: take a few "good" random bits and generate a lot of "fake" random bits.
 - Most often used in practice
 - Output of pseudorandom generator should be "indistinguishable" from true random

We will see (up to random decisions):

- 1. A randomized approximation Algorithm for determining the value of $\Pi.$
- 2. A Randomized algorithm for the selection problem.
- 3. A randomized data structure.
- 4. Analysis of random walk on a graph.
- 5. A randomized graph algorithm.

7

 π = 4 * points in circle/points

Determining π

Note : a point is in the circle if its distance from $(\frac{1}{2}, \frac{1}{2}) < r$

Determining π - Results

n	Output π
1	0.0
2	4.0
4	3.0
64	3.0625
1024	3.1640625
16384	3.1279296
131072	3.1376647
1048576	3.1411247

Real $\pi = 3.14159265$

If we wait long enough will it produce an arbitrarily accurate value?

Basic Probability Theory (a short recap)

- Sample Space Ω :
 - Set of possible outcome points
- Event $A \subseteq \Omega$:
 - A subset of outcomes
- Pr[A]: probability of an event
 - For every event A: $Pr[A] \in [0,1]$
 - If $A \cap B = \emptyset$ then $Pr[A \cup B] = Pr[A] + Pr[B]$
 - $\Pr[\Omega] = 1$

Basic Probability Theory (a short recap)

- Random Variable X:
 - Function from event space to $\ensuremath{\mathbb{R}}$
- Example:
 - $\Omega = \{ v = (g_1, g_2, \dots, g_n) \mid g_i \in [0, 100] \}$
 - Events:
 - $A = \{v = (g_1, g_2, \dots, g_n) \mid \forall i: g_i \in [60, 100]\}^{\prime}$
 - $B = \{v = (g_1, g_2, \dots, g_n) \mid \exists i, j, k : g_i, g_j, g_k \in [60, 100]\}$
 - Random variables
 - $X_i 1$ if student i passed, 0 if not
 - $X=X_1+\ldots+X_n$ number of passing students
 - Y Average grade

Possible grades

for entire class

At least three

passed

Everyone

passed