Integer Programming (IP)

- An LP problem with an additional constraint that variables will only get an integral value, maybe from some range.
- BIP - binary integer programming: variables should be assigned only 0 or 1.
- Can model many problems.
- NP-hard to solve!

Example: Vertex Cover

Variables: for each $v \in V, x_{v}$ - is v in the cover? Minimize $\Sigma_{v} x_{v}$
Subject to:

$$
\begin{aligned}
& x_{i}+x_{j} \geq 1 \quad \forall_{\{i, j\} \in E} \\
& x_{v} \in\{0,1\}
\end{aligned}
$$

Weighted Vertex Cover

Input: Graph $G=(V, E)$ with non-negative weights $w(v)$ on the vertices.
Goal: Find a minimum-cost set of vertices S, such that all the edges are covered. An edge is covered iff at least one of its endpoints is in S.
Recall: Vertex Cover is NP-complete.
The best known approximation factor is $2-(\log \log |V| / 2 \log |V|)$.

Weighted Vertex Cover

Variables: for each $v \in \mathrm{~V}, \mathrm{x}(\mathrm{v})$ - is v in the cover?
$\operatorname{Min} \Sigma_{\mathrm{v} \in \mathrm{V}} \mathrm{w}(\mathrm{v}) \times(\mathrm{v})$
st.

$$
\begin{aligned}
& x(v)+x(u) \geq 1, \quad \forall(u, v) \in E \\
& x(v) \in\{0,1\} \quad \forall v \in V
\end{aligned}
$$

The LP Relaxation

This is not a linear program: the constraints of type $x(v) \in\{0,1\}$ are not linear. We got an LP with integrality constraints on variables - an integer linear programs (IP) that is NP-hard to solve.

However, if we replace the constraints $x(v) \in\{0,1\}$ by $x(v) \geq 0$ and $x(v) \leq 1$, we will get a linear program.

The resulting LP is called a Linear Relaxation of IP, since we relax the integrality constraints.

LP Relaxation of Weighted Vertex Cover

$\operatorname{Min} \Sigma_{v \in V} w(v) x(v)$
st.

$$
\begin{aligned}
& x(v)+x(u) \geq 1, \quad \forall(u, v) \in E \\
& x(v) \geq 0, \quad \forall v \in V \\
& x(v) \leq 1, \quad \forall v \in V
\end{aligned}
$$

LP Relaxation of Weighted Vertex Cover - example

Consider the case of a 3-cycle in which all weights are 1.

An optimal VC has cost 2 (any two vertices)
An optimal relaxation has cost 3/2 (for all three vertices $x(v)=1 / 2$)

The LP and the IP are different problems. Can we still learn something about Integral VC?

Why LP Relaxation Is Useful?

The optimal value of LP-solution provides a bound on the optimal value of the original optimization problem. OPT(LP) is always better than OPT(IP) (why?)

Therefore, if we find an integral solution within a factor r of OPT $_{L p}$, it is also an r approximation of the original problem.
It can be done by 'wise' rounding.

2-approx. for weighted VC

1. Solve the LP-Relaxation.

2. Let S be the set of all the vertices v with $x(v) \geq 1 / 2$. Output S as the solution.

Analysis: The solution is feasible: for each edge $e=(u, v)$, either $x(v) \geq 1 / 2$ or $x(u) \geq 1 / 2$

The value of the solution is: $\Sigma_{v \in s} w(v)=\Sigma_{\{v \mid x(v) \geq 1 / 2\}} w(v) \leq$ $\Sigma_{v \in v} w(v) 2 x(v)=2 O P T_{L P}$
Since $O P T_{L P} \leq O P T_{V C}$, the cost of the solution is \leq 2OPT $_{v c}$.

LP Duality

Consider LP: $\max \mathbf{c}^{\top} x$ s.t. $A x \leq b, x \geq 0$ n variables, m constraints

How large can the optimum $c^{\top} x$ be?
Consider a vector y of m variables.
If we demand that $\boldsymbol{y} \geq 0$ then $\boldsymbol{y}^{\top} A \boldsymbol{x} \leq \boldsymbol{y}^{\top} b$
If we demand that $\boldsymbol{c}^{\top} \leq \boldsymbol{y}^{\top} A$ then $\boldsymbol{c}^{\top} \boldsymbol{x} \leq \boldsymbol{y}^{\top} A \boldsymbol{x}$
So $\boldsymbol{c}^{\top} \boldsymbol{x} \leq \boldsymbol{y}^{\top} \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{y}^{\top} \mathbf{b}$ How small can $\boldsymbol{y}^{\top} b$ be?
minimize $b^{\top} y$ s.t. $A^{\top} y \geq c, y \geq 0$ (called the dual $L P$)

Duality

Primal: maximize $\boldsymbol{c}^{\top} x$ s.t. $A x \leq b, x \geq 0$
Dual: minimize $b^{\top} y$ s.t. $A^{\top} y \geq c, y \geq 0$

- In the primal, c is cost function and b was in the constraint. In the dual, their roles are swapped.
- Inequality sign is changed and maximization turned to minimization.

Dual:
minimize $2 x+3 y$
s.t $x+2 y \geq 4$,
$2 x+5 y \geq 1$,
$x-3 y \geq 2$,
$x, y \geq 0$

Primal:
maximize $4 p+q+2 r$
s.t $p+2 q+r \leq 2$,
$2 p+5 q-3 r \leq 3$,
$p, q, r \geq 0$

Duality - general form

Primal	$\max c^{\top} x$	$\min b^{\top} y$	Dual
Constraints	$\leq b_{i}$	≥ 0	
	$\geq b_{i}$	≤ 0	Variables
	$=b_{i}$	unconstrained	
Variables	≤ 0	$\leq c_{i}$	
	≥ 0	$\geq c_{i}$	Constraints
	unconstrained	$=c_{i}$	

$$
\begin{aligned}
& \max c^{\top} x \text { s.t. } A x \leq b, x \geq 0 \\
& \text { If } y \geq 0 \text { then } y^{\top} A x \leq y^{\top} b
\end{aligned}
$$

The Duality Theorem

Let P, D be an LP and its dual.
If one has optimal solution so does the other, and their values are the same.

We only saw $c^{\top} x \leq y^{\top} b \quad$ (weak duality)
The duality thm: $\boldsymbol{c}^{\top} \boldsymbol{x}=\boldsymbol{y}^{\top} b$ (proof not here)

Simple Example

- Diet problem: minimize $2 x+3 y \quad$ Butter

$$
\begin{aligned}
& \text { subject to } x+2 y \geq 4, \\
& x \geq 0, y \geq 0
\end{aligned}
$$

- Dual problem: maximize $4 p$ subject to $p \leq 2$,
$2 p \leq 3$,
$p \geq 0$
- Dual: the problem faced by a pharmacist who sells synthetic protein, trying to compete with peanut butter and steak

Simple Example

- The pharmacist wants to maximize the price p, subject to constraints:
- synthetic protein must not cost more than protein available in foods.
- price must be non-negative
- revenue to druggist will be 4p
- Solution: $p=3 / 2 \rightarrow$ objective value $=4 p=6$
- Not coincidence that it's equal the minimal cost in original problem.

What's going on?

- Notice: feasible sets completely different for primal and dual, but nonetheless an important relation between them.
- Duality theorem says that in the competition between the grocery and the pharmacy the result is always a tie.
- Optimal solution to primal tells consumer what to do.
- Optimal solution to dual fixes the natural prices at which economy should run.

Duality Theorem

Druggist's max revenue $=$ Consumers \min cos \dagger
Practical Use of Duality:

- Sometimes simplex algorithm (or other algorithms) will run faster on the dual than on the primal.
- Can be used to bound how far you are from optimal solution.
- Interplay between primal and dual can be used in designing algorithms
- Important implications for economists.

Max Flow LP and its dual

Consider the max st-flow LP (add an arc from t to s):

$$
\begin{array}{lc}
\max f_{t s} \text { s.t. } & \min \sum_{u v \in E} c_{u v} d_{u v} \text { s.t. } \\
f_{u v} \leq c_{u v} \forall u v \in E & d_{u v}-p_{u}+p_{v} \geq 0 \quad \forall u v \in E \\
\sum_{u v \in E} f_{u v}-\sum_{v u \in E} f_{v u} \leq 0 & \forall v \in V \\
f_{u v} \geq 0 & p_{s}-p_{t} \geq 1 \\
& d_{u v} \geq 0, p_{u} \geq 0
\end{array}
$$

IP version of dual $=\min s t-c u t$

$$
\begin{gathered}
\min \sum_{u v \in E} c_{u v} d_{u v} \text { s.t. } \\
d_{u v}-p_{u}+p_{v} \geq 0 \quad \forall u v \in E \\
p_{s}-p_{t} \geq 1 \\
d_{u v} \in\{0,1\}, p_{u} \in\{0,1\}
\end{gathered}
$$

Consider optimal solution $\left(d^{*}, p^{*}\right): p_{s}^{*}=1, p_{t}^{*}=0$ p^{*} naturally defines a cut: $S=\left\{v: p_{v}^{*}=1\right\}, T=\left\{v: p_{v}^{*}=0\right\}$ For $u \in S, v \in T: \quad d_{u v}^{*}=1$ for other $u v$ can have $d_{u v}^{*}=0$ So objective function is capacity of an st-cut! Minimum achieved at the minimum st-cut.

Back to LP Dual - still min-cut?

 $\min \sum_{u v \in E} c_{u v} d_{u v}$ s.t.$d_{u v}-p_{u}+p_{v} \geq 0 \quad \forall u v \in E$

$$
p_{s}-p_{t} \geq 1
$$

$$
0 \leq d_{u v} \leq 1,0 \leq p_{u} \leq 1
$$

Dropping the upper bounds $d_{u v} \leq 1, p_{u} \leq 1$ cannot increase the objective value. We're back at the dual of the max-flow LP.

Can the objective function be improved when dropping the integrality constraints? In general - yes.
This specific matrix has a special property called total unimodularity Such LPs have integral optimal solutions.
So optimum of dual LP remains value of min st-cut
By duality theorem: max-flow $=\min -c u t$

Complementary Slackness

Primal: max $\sum_{j=1}^{n} c_{j} \cdot x_{j}$
s.t. $\forall i \sum_{j=1}^{n} A_{i j} \cdot x_{j} \leq b_{i}, x \geq 0$

Dual: $\quad \min \sum_{i=1}^{m} b_{i} \cdot y_{i}$
s.t. $\forall j \sum_{i=1}^{m} A_{i j} \cdot y_{i} \geq c_{j}, y \geq 0$

So $\forall j c_{j} x_{j} \leq\left(A^{T} y\right)_{j} x_{j}$ and $\forall i b_{i} y_{i} \geq(A x)_{i} y_{i}$ for optimal solutions $c^{T} x^{\star}=b^{T} y^{\star}$ So
$\sum_{j=1}^{n} c_{j} \cdot x_{j}^{\star}=\sum_{j=1}^{n}\left(\sum_{i=1}^{m} A_{i j} \cdot y_{i}^{\star}\right) \cdot x_{j}^{\star}=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} A_{i j} \cdot x_{j}^{\star}\right) \cdot y_{i}^{\star}=\sum_{i=1}^{m} b_{i} \cdot y_{i}^{\star}$
so $\forall j c_{j} x_{j}^{\star}=\left(A^{T} y\right)_{j} x_{j}^{\star}$ and $\forall i b_{i} y_{i}^{\star}=(A x)_{i} y_{i}^{\star}$
hence, $\forall j$ either $x_{j}^{\star}=0$ or $\sum_{i=1}^{m} A_{i j} \cdot y_{i}^{\star}=c_{j}$ and

$$
\forall i \text { either } y_{i}^{\star}=0 \text { or } \sum_{j=1}^{n} A_{i j} \cdot x_{j}^{\star}=b_{i}
$$

either a variable is zero or the corresponding constraint in the dual is tight.

Weighted Vertex Cover (again)

$\operatorname{Min} \Sigma_{v \in V} w_{v} \cdot x_{v}$
s.t.

$$
\begin{aligned}
& x_{v}+x_{u} \geq 1, \quad \forall(u, v) \in E \\
& x_{v} \geq 0, \quad \forall v \in V
\end{aligned}
$$

$\operatorname{Max} \Sigma_{(u, v) \in E} 1 \cdot y_{u v}$
s.t.

$$
\begin{aligned}
& \Sigma_{\mathrm{u}:(\mathrm{u}, \mathrm{v}) \in \mathrm{E}} \mathrm{yuv} \leq \mathrm{w}_{\mathrm{v}} \quad \forall \mathrm{v} \in \mathrm{~V} \\
& \mathrm{y}_{\mathrm{e}} \geq 0, \quad \forall e \in \mathrm{E}
\end{aligned}
$$

Solve the relaxed dual problem. Let y^{*} be the solution. Complementary slackness tells us that if a dual constraint is not tight then corresponding x_{v} is zero. So set x_{v} to 0 unless constraint is tight.

Define $x_{v}=\left\{\begin{array}{l}1 \text { if } \sum_{(u, v) \in E} y_{u v}^{*}=w_{v} \\ 0 \text { otherwise }\end{array}\right.$

Weighted Vertex Cover (analysis)

$x_{v}=\left\{\begin{array}{l}1 \text { if } \sum_{\substack{(u, v) \in E \\ 0 \text { otherwise }}} y_{u v}^{*}=w_{v}\end{array}\right.$

Does the vector x define a vertex cover?

Suppose not. Then $x_{s}=x_{t}=0$ for some edge (s, t).
Then $\sum_{(u, s) \in E} y_{u s}^{*}<w_{s}$ and $\sum_{(u, t) \in E} y_{u t}^{*}<w_{t}$.
But $y_{s t}^{*}$ only appears in these two constraints, so we can increase $y_{s t}^{*}$ without violating any constraint, contradicting optimality of y^{*}.

Weighted Vertex Cover (analysis)

Linear Programming -Summary

- Of great practical importance:
- LPs model important practical problems
- production, manufacturing, network design, flow control, resource allocation.
- solving an LP is often an important component of solving or approximating the solution to an integer linear programming problem.
- Can be solved in poly-time, the simplex algorithm works very well in practice.
- Use packages, you really do not want to roll your own code here.

Randomized Algorithms

Textbook:

Randomized Algorithms, by Rajeev Motwani and Prabhakar Raghavan.

Randomized Algorithms

- A Randomized Algorithm uses a random number generator.
- its behavior is determined not only by its input but also by the values chosen by RNG.
- It is impossible to predict the output of the algorithm.
- Two executions can produce different outputs.

Why Randomized Algorithms?

- Efficiency
- Simplicity
- Reduction of the impact of bad cases!
- Fighting an adversary.

Types of Randomized Algorithms

- Las Vegas algorithms
- Answers are always correct, running time is random
- In analysis: bound expected running time
- Monte Carlo algorithms
- Running time is fixed, answers may be incorrect \dagger
- In analysis: bound error probabilities

Randomized Algorithms

-Where do random numbers come from?

- Sources of Entropy: physical phenomena, user's mouse movements, keystrokes, atmospheric noise, lava lamps.
- Pseudo-random generators: take a few "good" random bits and generate a lot of "fake" random bits.
- Most often used in practice
- Output of pseudorandom generator should be "indistinguishable" from true random

We will see (up to random decisions):

1. A randomized approximation Algorithm for determining the value of Π.
2. A Randomized algorithm for the selection problem.
3. A randomized data structure.
4. Analysis of random walk on a graph.
5. A randomized graph algorithm.

Determining π

$$
0,1 \quad 1,1
$$

Square area $=1$
Circle area $=\pi / 4$
The probability that a random point in the square is in the circle $=\pi / 4$

$\pi=4^{*}$ points in circle/points

Determining π

def findPi (points): incircle $=0$

for i in 1 to points: $x=$ random ()$/ /$ float in $[0,1]$
$y=$ random()
if $\left.(x-1 / 2)^{2}+(y-1 / 2)^{2}<0.25\right)$
incircle $=$ incircle +1
return 4.0 * incircle / points

Note : a point is in the circle if its distance from $(1 / 2,1 / 2)<r$

Determining π - Results

n	Output π	Real $\pi=3.14159265$
1	0.0	
2	4.0	
4	3.0	
64	3.0625	If we wait long
1024	3.1640625	enough will it produce
16384	3.1279296	an arbitrarily
131072	3.1376647	accurate value?
1048576	3.1411247	

Basic Probability Theory (a short recap)

- Sample Space Ω :
- Set of possible outcome points
- Event AS:

- A subset of outcomes
- $\operatorname{Pr}[A]$: probability of an event
- For every event A: Pr[A] $][0,1]$
- If $\mathrm{A} \cap \mathrm{B}=\varnothing$ then $\operatorname{Pr}[\mathrm{A} \cup \mathrm{B}]=\operatorname{Pr}[\mathrm{A}]+\operatorname{Pr}[\mathrm{B}]$
$-\operatorname{Pr}[\Omega]=1$

Basic Probability Theory (a short recap)

- Random Variable X:
- Function from event space to \mathbb{R}
- Example:
- $\Omega=\left\{\mathrm{v}=\left(\mathrm{g}_{1}, \mathrm{~g}_{2}, \ldots \mathrm{~g}_{\mathrm{n}}\right) \mid \mathrm{g}_{\mathrm{i}} \in[0,100]\right\}$

- Events:
- $\mathrm{A}=\left\{\mathrm{v}=\left(\mathrm{g}_{1}, \mathrm{~g}_{2}, \ldots \mathrm{~g}_{\mathrm{n}}\right) \mid \forall \mathrm{i}: \mathrm{g}_{\mathrm{i}} \in[60,100]\right\}$
,100]\}
- Random variables
- $\mathrm{X}_{\mathrm{i}}-1$ if student i passed, 0 if not

At least three passed

- $\mathrm{X}=\mathrm{X}_{1}+\ldots+\mathrm{X}_{\mathrm{n}}$ - number of passing students
- Y-Average grade

