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Advanced Algorithms 
Linear Programming 

Reading: 
CLRS, Chapter29 (2nd ed. onward). 
“Linear Algebra and Its Applications”, by Gilbert 
Strang, chapter 8 
“Linear Programming”, by Vasek Chvatal 
“Introduction to Linear Optimization”, by Dimitris 
Bertsimas and John Tsitsiklis 
•Lecture notes by John W. Chinneck: 
http://www.sce.carleton.ca/faculty/chinneck/po.html 

http://www.sce.carleton.ca/faculty/chinneck/po.html
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An Example: The Diet Problem 
• A student is trying to decide on lowest cost diet 

that provides sufficient amount of protein, with two 
choices: 
– steak: 2 units of protein/kg, $3/kg 
– peanut butter: 1 unit of protein/kg, $2/kg 

• In proper diet, need 4 units protein/day. 
Let x  = # kgs peanut butter/day in the diet. 
Let y  = # kgs steak/day in the diet.   

Goal:  minimize  2x + 3y (total cost) 
subject to constraints: 
   x + 2y t 4 
   x t 0,  y t 0 

This is an LP- formulation 
of our problem 
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An Example: The Diet Problem 

• This is an optimization problem. 
• Any solution meeting the nutritional demands is 

called a feasible solution 
• A feasible solution of minimum cost is called the 

optimal solution. 

Goal:  minimize  2x + 3y (total cost) 
subject to constraints: 
   x + 2y t 4 
   x t 0,  y t 0 
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Linear Programming 

• The process of optimizing a linear objective 
function subject to a finite number of linear 
constraints. 

• The word “programming” is historical and predates 
computer programming. 

• Example applications: 
– airline crew scheduling 
– manufacturing and production planning 
– telecommunications network design 

• “Few problems studied in computer science have 
greater application in the real world.” 
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Linear Program - Definition 
A linear program is a problem with n variables 

x1,…,xn, that has: 
1. A linear objective function, which must be 
      minimized/maximized. Looks like: 
          min (max) c1x1+c2x2+… +cnxn 
2. A set of m linear constraints. A constraint  

looks like:  
           ai1x1 + ai2x2 + … + ainxn d bi (or t or =) 
 
Note: the values of the coefficients ci, ai,j are 

given in the problem input. 
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LP – Matrix form 
max cTx  s.t. 
      Ax ≤ b 
 
x – vector of n variables 
c – vector of n objective function coefficients 
A – m-by-n matrix 
b – vector of dimension m 
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Geometric intuition 
x= peanut butter, y = steak 

x+2y=4 

y=0 

x=0 

feasible set 

min  2x + 3y s.t. 
   x + 2y t 4 
   x t 0,  y t 0 
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Feasible Set 
• Each linear inequality divides n-dimensional 

space into two halfspaces, one where the 
inequality is satisfied, and one where it’‛s 
not. 

• Feasible Set : solutions to a family of 
linear inequalities. 
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Feasible Set 
• Each linear inequality divides n-dimensional space into 

two halfspaces, one where the inequality is satisfied, 
and one where it’‛s not. 
 

• The feasible set is the intersection of the halfspaces 
where all inequalities are satisfied. 
 

• An intersection of halfspaces is called a convex 
polyhedron. So the feasible set is a convex polyhedron. 
 

• Fact: every point 𝑝 in a convex polytope can be 
represented as a convex combination of the vertices 𝑣௜ 
of the polytope. 

𝑝 =   ∑ 𝜆௜𝑣௜         (0 ≤ 𝜆௜ ≤ 1  ;   ∑𝜆௜= 1) 
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Feasible set! 

x 

y 

feasible set 

An Example 
with 6 

constraints. 

Feasible set 
is bounded 
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The Feasible Set 
• Feasible set is a convex polyhedron.  
• A bounded and nonempty polyhedron is called a 

convex polytope. 

There are 3 cases: 
• feasible set is empty (problem is not feasible) 
• Feasible set is unbounded 
• Feasible set is bounded and nonepmty (a polytope) 

 
 

• First two cases very uncommon for real problems in 
economics and engineering. 
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Lines of constant  
objective function 

x+2y=4 

x 

y 

feasible set 

2x+3y=6 
2x+3y=0 

Opt: 
x=0,y=2 

Minimal price of 
daily amount of 
protein unit = 6 

2x+3y=15 

min  2x + 3y s.t. 
   x + 2y t 4 
   x t 0,  y t 0 
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The optimal objective value 
There are 3 cases: 
• feasible set is empty (problem is not feasible) 

 
• cost function is unbounded on feasible set. 

 
• cost has a minimum (or maximum) on feasible set. 
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Optimal value occurs at some 
vertex of the feasible set! 

x 

y 

feasible set 

(if problem is bounded) 
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Optimal solution always at a vertex  
The linear cost function defines a family of parallel 
hyperplanes (lines in 2D, planes in 3D, etc.).  
 
Want to find one of minimum cost. 
 
If exists, must occur at a vertex of the feasible set. 
 
Proof: Let p be any point in the feasible set. 
Write 𝑝 =   ∑ 𝜆௜𝑣௜         (0 ≤ 𝜆௜ ≤ 1  ;   ∑𝜆௜= 1) 
By linearity of the objective function z,  
z 𝑝 =   ∑ 𝜆௜𝑧(𝑣௜) ≤ 𝑧 𝑣௠௔௫ , where 𝑣௠௔௫ is the vertex 
that maximizes z.  
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Standard Form of a Linear 
Program. 

max cTx     s.t. 
      Ax ≤  b 
         x ≥  0 

maximize          ෍𝑐௝𝑥௝

௡

௝ୀଵ

   

subject  to: 
 
    ∑ 𝑎௜௝𝑥௝௡

௝ୀଵ ≤ 𝑏௜          𝑖 = 1…𝑚   
                                          𝑥௝≥ 0                𝑗 = 1…𝑛    
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Converting to Standard Form 

minimize          ෍𝑐௝𝑥௝

௡

௝ୀଵ

   

subject  to: 
 
    ∑ 𝑎ଵ௝𝑥௝௡

௝ୀଵ ≥ 𝑏ଵ         
 
    ∑ 𝑎ଶ௝𝑥௝௡

௝ୀଵ = 𝑏ଶ   
 
    
 

maximize          ෍−𝑐௝𝑥௝

௡

௝ୀଵ

   

subject  to: 
 
    ∑ −𝑎ଵ௝𝑥௝௡

௝ୀଵ ≤ −𝑏ଵ         
 
    ∑ 𝑎ଶ௝𝑥௝௡

௝ୀଵ ≤ 𝑏ଶ   
 
    ∑ −𝑎ଶ௝𝑥௝௡

௝ୀଵ ≤ −𝑏ଶ   
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Solving LP 
• There are several algorithms that solve any 

linear program optimally. 
¾The Simplex method (to be discussed) 
¾The Ellipsoid method 
¾The interior point method 

• These algorithms can be implemented in 
various ways. 

• There are many existing software packages 
for LP. 

• LP can be used as a “black box” for solving 
various optimization problems. 
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LP formulation: another example 

Bob’‛s bakery sells bagels and muffins. 
To bake a dozen bagels Bob needs 5 cups of 

flour, 2 eggs, and one cup of sugar. 
To bake a dozen muffins Bob needs 4 cups of 

flour, 4 eggs and two cups of sugar. 
Bob can sell bagels for 10$/dozen and muffins 

for 12$/dozen. 
Bob has 50 cups of flour, 30 eggs and 20 cups 

of sugar. 
How many bagels and muffins should Bob bake 

in order to maximize his revenue? 



20 

LP formulation: Bob’‛s bakery 

Maximize cT�x 
s.t.    Ax d b 
         x t 0. 

           Bagels  Muffins   
Flour      5           4                            
Eggs       2           4 
Sugar     1           2 
 
 
 

       5   4 

      A =     2  4 

       1   2 

Revenue  10        12 

Avail. 
50 
30 
20 

Maximize 10x1+12x2 

s.t.    5x1+4x2 d 50 
         2x1+4x2 d 30 
          x1+2x2 d 20 
         x1 t 0, x2 t 0 

c= 10
12  b=

50
30
20
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In class exercise: 
Write the maximum flow problem an LP 

 
Input: directed graph G=(V,E) with non-negative arc 

 capacities c(e),  
  source and sink vertices s,t 

 
Output: maximum flow from s to t in G. 
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Towards the Simplex Method 
The Toy Factory Problem (TFP): 
A toy factory produces dolls and cars. 
Danny, a new employee, is hired. He can produce 2 cars 

and 3 dolls a day. However, the packaging machine 
can only pack 4 items a day. The company’‛s profit 
from each doll is 10$ and from each car is 15$. What 
should Danny be asked to do? 

Step 1: Describe the problem as an LP problem. 
Let x1,x2 denote the number of cars and dolls produced 

by Danny. 

http://images.google.co.il/imgres?imgurl=http://all-bratz-stuff.onlineenterprise.net/images/bratz-sweet-dreamz-yasmin.jpg&imgrefurl=http://www.all-bratz-stuff.com/&h=215&w=215&sz=9&hl=en&start=13&tbnid=gB1AU1bWS6_eNM:&tbnh=106&tbnw=106&prev=/images?q=bratz&svnum=10&hl=en&lr=&rls=GGLJ,GGLJ:2006-31,GGLJ:en&sa=N
http://images.google.co.il/imgres?imgurl=http://shop.sproutsoup.com/products/wooden-toy-zoom3.jpg&imgrefurl=http://shop.sproutsoup.com/wooden-toy-car.cfm&h=151&w=300&sz=14&hl=en&start=14&tbnid=p1GgXSYTMJwSgM:&tbnh=58&tbnw=116&prev=/images?q=toy+car&svnum=10&hl=en&lr=&rls=GGLJ,GGLJ:2006-31,GGLJ:en
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The Toy Factory Problem 
Let x1,x2 denote the number of cars and dolls produced 

by Danny. 
Objective:  
 Max z=15x1+10x2 

s.t           x1 d 2 
            x2 d 3 
        x1+x2 d 4 
        x1 t 0 
                x2 t 0  

Feasible 
region x1+x2=4 

x1 

x1=2 

x2=3 

x2 
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The Toy Factory Problem 

Feasible 
region 

x1+x2=4 

x1 

x1=2 

x2=3 

x2 Constant profit 
lines –  They 
are always 
parallel to each 
other.  
We are looking 
for the best 
one that still 
‘touches’‛ the 
feasible region. 

z=15 

z=30 z=40 
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Important Observations: 

Feasible 
region 

x1+x2=4 

x1 

x1=2 

x2=3 

x2 

1. We already know that the optimum occurs at a 
vertex 

z=50 

It might be that the 
objective line is parallel 
to a constraint.  
(e.g. z=15x1+15x2). 
 
In this case there are 
many optimal solutions, 
in particular there is 
one at a vertex.  
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Important Observations: 

2. If the objective function at a vertex is not 
smaller than that of any of its adjacent vertices, 
then it is optimal. (i.e., local optimum is also global) 

Feasible 
region 

x1+x2=4 

x1 

x1=2 

x2=3 

x2 

z=50 

3.  There is a finite number of vertices. 

The Simplex method: 
Travel along the 
vertices till a local 
maximum!!! 
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The Simplex Method 

Phase 1 (start-up): Find Any vertex. In standard 
LPs the origin can serve as the start-up vertex. 
(why?) 

Phase 2 (iterate): Repeatedly move to a better 
adjacent vertex until no further better adjacent 
vertex can be found. The optimum is at the final 
vertex. 
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Example: The Toy Factory Problem 

Phase 1: start at (0,0) 
Objective value = Z(0,0)=0 
Iteration 1: Move to (2,0). 
Z(2,0)=30. An Improvement 
Iteration 2: Move to (2,2) 
Z(2,2)=50. An Improvement 
Iteration 3: Consider moving 

to (1,3), Z(1,3)=45 < 50. 
Conclude that (2,2) is 
optimum! 

Feasible 
region 

x1+x2=4 

x1 

x1=2 

x2=3 

x2 

(0,0) (2,0) 

(2,2) 

(1,3) 

Objective: z=15x1+10x2 
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Finding CornerPoints Algebraically 

The simplex method is easy to follow graphically. But 
how is it implemented in practice? 

Notes:  
• At a vertex a subset of the inequalities are 

equalities. 
• It is easy to find the intersection of linear 

equalities (solutio to a system of equations). 
• We will add slack variables – to determine which 

inequality is active and which is not active  
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Adding Slack Variables 
Let s1,s2,s3 be the slack variables 
 
Objective:  Max z=15x1+10x2 
s.t           x1+s1 = 2 
            x2 +s2 = 3 
        x1+x2 +s3 = 4 
 x1, x2, s1, s2, s3 t 0 
                 
n – number of (original) variables 
m – number of inequalities 
Number of slack variables is m (one for each inequality) 

 
m equations, n+m variables. Setting n vars uniquely 

determines the values of the other variables. 
A vertex: n variables (slack or original) are zero. 
 

Feasible 
region x1+x2=4 

x1 

x1=2 

x2=3 

x2 

Objective:  Max z=15x1+10x2 
s.t           x1    = 2 
            x2    = 3 
        x1+x2    = 4 
 x1, x2 t 0 

s1=0 

s2=0 

s3=0 
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Adding Slack Variables 

Feasible 
region x1+x2=4 

x1 

x1=2 

x2=3 

x2 

x1=0 
x2=0 

x1=0 
s2=0 

s2=0 
s3=0 

s1=0 
s3=0 

s1=0 
x2=0 

x1 + s1 = 2 
x2 + s2 = 3 
x1+x2 +s3 = 4 
x1, x2, s1, s2, s3 t 0 
 
Moving between 
vertices: Decide 
which two variables 
are set to zero. 
 

s1=0 

s2=0 

s3=0 
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The Simplex Method - Definitions 

Nonbasic variable: a variable currently set to zero by 
the simplex method. 
Basic variable: a variable that is not currently set to 
zero by the simplex method. 
The values of basic variable is determined by the 
nonbasic variables 
A basis: The current set of basic variables. 
 
If a slack variable is nonbasic (i.e., is set to zero), 
the corresponding constraint is active. 
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The Simplex Method 
In two adjacent vertices, the basis is identical 
except for one member. 
Example: 

Feasible 
region x1+x2=4 

x1 

x1=2 

x2=3 

x2 Nonbasic 
set: {s1,s3} 

Basic set: 
{x1,x2,s2} 
 

Nonbasic 
set: {s2,s3} 

Basic set: 
{x1,x2,s1} 
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The Simplex Method 
At each step - swap a pair of basic and nonbasic variables 
 
The variable that enters the basic set is the one that 
yields the greatest improvement to the objective function. 

Feasible 
region x1+x2=4 

x1 

x1=2 

x2=3 

x2 Moving to a 
new vertex:  
x1 enters the 
basic set, s1 
leaves the 
basic set 
 

Current vertex 

x1=x2=0 

Objective: z=15x1+10x2 

x1 + s1 = 2 
x2 + s2 = 3 
x1+x2 +s3 = 4 
x1, x2, s1, s2, s3 t 0 

s1 = 2-x1 
s2 = 3- x2  
s3 = 4-x1-x2 
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The Simplex Method – more details 
Phase 1 (start-up): Initial vertex.  

Phase 2 (iterate):  

1. Can the current objective value be improved by 
swapping a basic variable? If not - stop. 

2. Select nonbasic variable to enter basic set:  
choose the nonbasic variable that gives the fastest 
rate of increase in the objective function value. 

3. Find the leaving basic variable – as we increase the 
chosen nonbasic variable, the value of the basic 
variables changes. Move the first one to become 
zero to the nonbasic set. (aka minimum ratio test). 

4. Update the equations to reflect the new basic 
feasible solution. 



36 

The Simplex Method – example (1) 
Objective:  
 Max z=15x1+10x2 
s.t             x1+s1 = 2 
            x2 +s2 = 3 
        x1+x2 +s3 = 4 
 x1, x2, s1, s2, s3 t 0  
 

Phase 2 (iterate):  

1. Are we optimal? NO, z’‛s value can increase by 
increasing both x1 and x2.  

2. Select entering nonbasic variable: x1 has a better 
rate of improving the objective value (15 > 10).  

Phase 1 (start-up):  
 
Initial vertex: x1=0, x2=0 
 
 
 
 
 
 

Basic Variable Constraint 

s1= 2-x1 
s2= 3-x2 
s3= 4-x1-x2 
z= 15x1+10x2 
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The Simplex Method – example (2) 
3. Select the leaving basic variable: The minimum ratio 

test. We ask: which constraint most limits the increase 
in the value of the entering basic variable (will first 
reduce to zero as the value of x1 increases)? 

Answer: For s1 the ratio is 2/1=2, for s2 the ratio is infinite, 
for s3 the ratio is 4/1=4. s1 has the smallest ratio. 

 
 
 

 

4. Update the equations to reflect the new basic feasible 
solution: x1=2, x2=0, s1=0, s2=3, s3=2. z=30.  
Nonbasic set = {s1, x2},  Basic set = {x1 , s2, s3},  

End of iteration 1. 

Basic Variable Constraint Bound on Increase 

s1= 2-x1 x1≤2 
s2= 3-x2 No limit 
s3= 4-x1-x2 x1≤4 
z= 15x1+10x2 

Basic Variable Constraints 

x1= 2-s1 
s2= 3-x2 
s3= 2-x2+s1  
z= 30-15s1+10x2 

x1=2-s1 
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The Simplex Method – example (3) 
Phase 2 (iteration 2):  

1. Are we optimal? NO, z’‛s value can increase by increasing the 
value of x2. (z = 30-15s1+10x2) 

2. Select entering nonbasic variable: the only candidate is x2.  
3. Select the leaving basic variables: The minimum ratio test. For x1 

the ratio is infinite, for s2 the ratio is 3/1=3, for s3 the ratio is 
2/1=2. s3 has the smallest ratio. 
 
 
 
 
 

4. Update the equations to reflect the new basic feasible solution: 
x1=2, x2=2, s1=0, s2=1, s3=0. z=50.  Nonbasic set = {s1, s3},  Basic 
set = {x1 , s2, x3},  

End of iteration 2. 

Basic 

Variable 

Constraints Bound on 

Increase 

x1= 2-s1 No limit 
s2= 3-x2 x2≤3 
s3= 2-x2+s1  x2≤2 
z= 30-15s1+10x2 

Basic 

Variable 

Constraints 

x1= 2-s1 
s2= 1+s3-s1 
x2= 2-s3+s1  
z= 50-5s1-10s3 

x2=2-s3+s1 
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The Simplex Method – example (4) 
Phase 2 (iteration 3):  

1. Are we optimal? YES, z’‛s value cannot increase.  
(z=50-5s1-10s3) 

End of example. 
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Simplex Algorithm:  
Another Example 

Maximize    2x1 + 8x2 

subject to  10x1+ 4x2 d 77   
                  x1 + 8x2 d  40 
    x1 , x2 t 0. 
 
Solution: In Class 
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The Simplex Algorithm 
 • Does the simplex algorithm always terminate? 

• We improve the objective function at every step, 
so we don’‛t visit the same vertex twice. 
• How many vertices are there? 
• How many different basis sets are there?  

•  𝑛 +𝑚
𝑛  i.e., an exponential number…  

 
• Indeed, the simplex algorithm is not polynomial. 
• However, it is polynomial on most inputs and is 
fast in practice. 
• The ellipsoid and interior point methods are 
polynomial. 



42 

Remarks 
• For simplicity, we assumed that the matrix A is non-
singular (otherwise omit linearly dependent 
constraints) 
• If the value of some basic variable happens to 
already be zero,  a simplex step may not increase the 
objective function. This is called a degenerate step. 
Need to handle these cases properly to make sure the 
algorithm doesn’‛t cycle forever.  
We do not worry about degenerate steps in this class. 
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Example: Vertex Cover 

Write the minimum vertex cover problem as a 
linear program 
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Example: Vertex Cover 

Variables: for each v�V, xv – is v in the cover? 
Minimize 6vxv   
Subject to:  xi + xj  t 1   �{i,j}� E   
    xv � {0,1} 
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Integer Programming (IP) 

• An LP problem with an additional constraint 
that variables will only get an integral 
value, maybe from some range. 

• BIP – binary integer programming: variables 
should be assigned only 0 or 1. 

• Can model many problems. 
• NP-hard to solve! 

 



46 

BIP Example:  Set Cover 

Input: a Collection S1, S2,…,Sn of subsets of 
{1,2,3,…,m} a cost pi for set Si. 

Output: A collection of subsets whose union is 
{1,2,…,m}. 

Objective: Minimum total cost of selected subsets. 
 
Variables: For each subset, xi – is subset Si selected 

for the cover? 
Minimize  ¦i pi·xi   
Subject to: xi� {0,1} 

       
∀𝑗 = 1…𝑚: ෍ 𝑥௜

௜:௝∈ௌ೔

≥ 1 
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BIP Example: Shortest Path 
Given a directed graph G(V,E), s,t � V and 

nonnegative length pe for each edge e. 
 
Variables: For each edge, xe – is e in the path? 
 
Minimize  ¦e pe·xe    
Subject to: xe� {0,1} 

        ¦ v x(s,v) - ¦ u x(u,s) t  1 
        ¦ u x(u,t) - ¦ v x(t,v) t  1 
 �u �V-{s,t}:   ¦ p� x(u,p) -¦ q� x(q,u)=  0 
      

At least 1 more 
edge leaving s 
than entering 

At least 1 more 
edge entering t 

than leaving 

All other nodes 
have same number 
of edges entering 

and leaving 
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BIP example: Single machine 
scheduling of interval jobs. 

• Schedule jobs (activities) on a single processor 
• Each job can be scheduled in one of a finite 

collection of allowed time intervals 
• Scheduling job j at interval I imposes w(I) 

load, and yields a profit p(I) 
• Find a maximum profit subset of intervals, at 

most one interval per job, such that the total 
load at each time is at most 1. 

• Variables: xI – for each possible interval I. 
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Single Machine Scheduling : 

 Activity9 

 Activity8 
 Activity7 
 Activity6 
 Activity5 
 Activity4 
 Activity3 
 Activity2 
 Activity1 
                                                                                                                                                                                                      

       

       Maximize                                       
s.t  For each interval I: 

  For each time t:    
  For each activity A:      
 
 

¦ �
I

IxIp )(
}1,0{�Ix

¦
�d

d�
)()(:

1)(
IetIsI

IxIw

1d¦
�AI

Ix
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Solving IPs is NP-Hard 
What can we do? 

• Heuristics 
• Approximation algorithms 
• Exploit special structure 
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Solving IP using Branch and Bound 
(described for maximization problems) 

1. Set Z*=-f (“incumbent value”), 
Current node=root 

2. Bound: Solve relaxed LP problem 
1. If infeasible, prune.  

Else, let U be the objective value.  
• U is an upper bound on OPT. 

2. If U < Z*, prune. Else, 
3. If all variables are integral: 

Update Z* to new value. (prune) 
3. Branch: Select a leaf with a non-

integral variable, x*, branch into two 
sub-LPs: xd ¬ x*¼ and xt ª x*º. 

Dakin’‛s Algorithm 

x1+x2 ≤ 6 
9x1+5x2 ≤ 45 

Z=8x1+5x2 

x1+x2≤6 
9x1+5x2≤45 

x1≤3 

(x1=3.75, x2=2.25): U=41.25 

x1+x2≤6 
9x1+5x2≤45 

x1≥4 
(x1=3,x2=3): U=39 

Z*=39 
(x1=4,x2=1.8): U=41 

x1+x2≤6 
9x1+5x2≤45 

x1≥4 
x2≤1 

x1+x2≤6 
9x1+5x2≤45 

x1≥4 
x2≥2 

Infeasible (x1=4.444,x2=1): 
U=40.5555 

Animated Solution 

http://optlab-server.sce.carleton.ca/POAnimations2007/MILP.html
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More Branch and Bound examples 

 
Branch according to the binary value of a variable example. 
 

Maximize    8x1 + 5x2 
subject to  x1+ x2 d 6   
                  9x1 + 5x2 d  45 
 x1 , x2 t 0 and integers.                                        Solution 

http://optlab-server.sce.carleton.ca/POAnimations2007/BranchAndBound.html
http://optlab-server.sce.carleton.ca/POAnimations2007/MILP.html
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 Weighted Vertex Cover 

Input: Graph G=(V,E) with non-negative 
weights w(v) on the vertices. 

Goal: Find a minimum-cost set of vertices S, 
such that all the edges are covered. An 
edge is covered iff at least one of its 
endpoints is in S. 

Recall: Vertex Cover is NP-complete.  
   The best known approximation factor is      
   2- (log log |V|/2 log|V|). 
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Weighted Vertex Cover 
Variables: for each v�V, x(v) – is v in the 

cover? 
 
Min  6v�V w(v)x(v) 
s.t. 
 x(v) + x(u) t 1,  �(u,v)�E   
 
 x(v) � {0,1}   �v�V 
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The LP Relaxation 

This is not a linear program: the constraints of type 
x(v) � {0,1} are not linear. We got an LP with integrality 

constraints on variables – an integer linear programs 

(IP) that is NP-hard to solve. 
 
However, if we replace the constraints x(v) � {0,1} 
by x(v)t 0 and x(v) d 1, we will get a linear program. 
 
The resulting LP is called a Linear Relaxation of 
IP, since we relax the integrality constraints. 
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LP Relaxation of Weighted Vertex 
Cover 

 
Min  6v�V w(v)x(v) 
s.t. 
 x(v) + x(u) t 1,  �(u,v)�E   
 
  x(v) t 0,  �v�V 
    x(v) d 1,  �v�V 
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LP Relaxation of Weighted Vertex 
Cover - example 

Consider the case of a 3-cycle in 
which all weights are 1. 

An optimal VC has cost 2 (any two 
vertices) 

An optimal relaxation has cost 3/2 
(for all three vertices x(v)=1/2)  

½ 

½ 

½ 
The LP and the IP are different 
problems. Can we still learn 
something about Integral VC? 
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Why LP Relaxation Is Useful ?  

The optimal value of LP-solution provides a 
bound on the optimal value of the original 
optimization problem. OPT(LP) is always 
better than OPT(IP) (why?) 

Therefore, if we find an integral solution 
within a factor r of OPTLP, it is also an r-
approximation of the original problem. 

It can be done by ‘wise’‛ rounding. 



Nemhauser Trotter Theorem 
 

(a)There is always an optimal solution 
to Vertex Cover LP that sets 
variables to {0  , ଵ

ଶ
, 1}. 

(b)For any {0  , ଵ
ଶ
, 1}–solution there is a 

matching from the 1-vertices to the 
0-vertices, saturating the 1-vertices 
(i.e., every 1-vertex is matched).  



Nemhauser Trotter Proof 

<
𝟏
𝟐

 

>
𝟏
𝟐

 

𝟏
𝟐

 

𝟎 

𝟏 

+ϵ +ϵ 

-ϵ -ϵ -ϵ 



2-approx. For Vertex Cover 
Nemhauser-Trotter: 
There is an optimal solution to Vertex 
Cover LP that sets variables to {0  , ଵ

ଶ
, 1}. 

⇒  2-approx algorithm: 
 
Find optimal solution x* to LP relaxatoin.  
Let y(v)=1 if x*(v)≠0. y(v) = 0 otherwise. 
 
y is a solution for VC IP (why?) 
 
6 w(v)y(v) ≤ 6 w(v)2x(v) = 2OPTLP ≤ 2OPT 
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Even if we do not know the 
Nemhauser-Trotter thm! 

1. Solve the LP-Relaxation. 

2. Let S be the set of all the vertices v with x(v) t 1/2. 
Output S as the solution. 

Analysis: The solution is feasible: for each edge e=(u,v), 
either x(v) t1/2 or x(u) t1/2 

The value of the solution is: 6v�s w(v) = 6{v|x(v) t1/2} w(v) d 
6v�V w(v)2x(v) =2OPTLP 

Since OPTLP d OPTVC, the cost of the solution is d 
2OPTVC. 
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LP Duality 
Consider LP: max cTx s.t. Ax d b, x t 0 
n variables, m constraints 
 
How large can the optimum be? 
 
Take a vector y of m variables.  
If y t 0     then yTAx d yTb 

If cT d yTA  then cTx d yTAx 

 
So cTx d yTAx d yTb 

How small can yTb be? 
 
minimize bTy s.t. ATy t c, y t 0  (called the dual LP) 
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Primal: maximize  cTx s.t.  Ax  d b, x t 0 
Dual:    minimize   bTy s.t. ATy t c, y t 0  
 
• In the primal, c is cost function and b was in the 

constraint. In the dual, their roles are swaped. 
• Inequality sign is changed and minimization turns 

to maximization. 
Dual:  
minimize 2x + 3y 
s.t  x   +  2y t 4,   
      2x +  5y t 1,  
      x   -  3y t 2,   
      x, y t 0 

Primal:  
maximize  4p +q + 2r     
 
s.t   p + 2q + r   d 2,  
      2p+ 5q - 3r d 3,   

      p,q,r t 0 

 

Duality 
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 Duality – general form 

Dual Min bTy Max cTx Primal  
t 0 d bi 

Variables d 0 t bi Constraints 

unconstrained = bi 

d ci d 0 

Constraints t ci t 0 Variables 

= ci unconstrained 

max cTx s.t. Ax d b, x t 0 
If y t 0  then yTAx d yTb 
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The Duality Theorem 

Let P,D be an LP and its dual. 
If one has optimal solution so does the 
other, and their values are the same. 
 
We only saw cTx d yTb     (weak duality) 
The duality thm: cTx = yTb (proof not here) 
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Simple Example 
• Diet problem:  minimize 2x + 3y 
     subject to x+2y t 4,   
     x t 0, y t 0 
• Dual problem: maximize    4p  
   subject to   p d 2,  
     2p d 3,  
     p t 0 
• Dual: the problem faced by a pharmacist who 

sells synthetic protein, trying to compete with 
peanut butter and steak 

Steak 

Peanut 
Butter 
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Simple Example 
• The pharmacist wants to maximize the price p, 

subject to constraints: 
– synthetic protein must not cost more than protein 

available in foods. 
– price must be non-negative  
– revenue to druggist will be 4p 

• Solution:  p = 3/2  Æ  objective value = 4p = 6 
• Not coincidence that it’‛s equal the minimal 

cost in original problem.   
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What’‛s going on? 
• Notice: feasible sets completely different for 

primal and dual, but nonetheless an important 
relation between them. 

• Duality theorem says that in the competition 
between the grocery and the pharmacy the result is 
always a tie. 

• Optimal solution to primal tells consumer what to do. 
• Optimal solution to dual fixes the natural prices at 

which economy should run. 
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Duality Theorem 
Druggist’‛s max revenue = Consumers min cost 
 
Practical Use of Duality: 
• Sometimes simplex algorithm (or other 

algorithms) will run faster on the dual than 
on the primal. 

• Can be used to bound how far you are from 
optimal solution. 

• Interplay between primal and dual can be 
used in designing algorithms 

• Important implications for economists. 
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Max Flow LP and its dual 
Consider the max st-flow LP (add an arc from t to s): 

 
max   𝑓௧௦     𝑠. 𝑡. 
 
𝑓௨௩ ≤ 𝑐௨௩        ∀𝑢𝑣 ∈ 𝐸 
 
෍ 𝑓௨௩
௨௩∈ா

− ෍ 𝑓௩௨
௩௨∈ா

≤ 0        ∀𝑣 ∈ 𝑉 

 
𝑓௨௩ ≥ 0 
 
 

 

min   ෍ 𝑐௨௩𝑑௨௩
௨௩∈ா

    𝑠. 𝑡. 

 
𝑑௨௩ − 𝑝௨ + 𝑝௩ ≥ 0        ∀𝑢𝑣 ∈ 𝐸 

 
𝑝௦ − 𝑝௧ ≥ 1 

 
𝑑௨௩ ≥ 0  , 𝑝௨ ≥ 0 
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IP version of dual = min st-cut 

min   ෍ 𝑐௨௩𝑑௨௩
௨௩∈ா

    𝑠. 𝑡. 

 
𝑑௨௩ − 𝑝௨ + 𝑝௩ ≥ 0        ∀𝑢𝑣 ∈ 𝐸 

 
𝑝௦ − 𝑝௧ ≥ 1 

 
𝑑௨௩ ∈ 0,1 , 𝑝௨ ∈ {0,1} 

Consider optimal solution 𝑑∗, 𝑝∗ :   𝑝௦ = 1, 𝑝௧ = 0 
𝑝∗ naturally defines a cut: 𝑆 = {𝑣:   𝑝௩∗ = 1}, 𝑇 = {𝑣:   𝑝௩∗ = 0} 
For 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑇:            𝑑௨௩∗ = 1 for other u𝑣 can have 𝑑௨௩∗ = 0 
So objective function is capacity of the minimum st-cut! 



73 

Back to LP Dual – still min-cut? 
min   ෍ 𝑐௨௩𝑑௨௩

௨௩∈ா

    𝑠. 𝑡. 

 
𝑑௨௩ − 𝑝௨ + 𝑝௩ ≥ 0        ∀𝑢𝑣 ∈ 𝐸 

 
𝑝௦ − 𝑝௧ ≥ 1 

 
0 ≤ 𝑑௨௩ ≤ 1, 0 ≤ 𝑝௨ ≤ 1 

Dropping the upper bounds 𝑑௨௩ ≤ 1, 𝑝௨ ≤ 1 cannot  
increase the objective value. 
 
Can the objective function be improved when dropping  
the integrality constraints? In general – yes.  
This specific matrix has a special property called total unimodularity 
Such LPs have integral optimal solutions. 
So optimum of dual LP remains value of min st-cut 
By duality theorem: max-flow = mim-cut 
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Linear Programming -Summary 
• Of great practical importance to solve 

linear programs: 
– they model important practical problems 

• production, manufacturing, network design, flow 
control, resource allocation. 

– solving an LP is often an important component 
of solving or approximating the solution to an 
integer linear programming problem. 

• Can be solved in poly-time, the simplex 
algorithm works very well in practice.  

• Use packages, you really do not want to roll 
your own code here. 


