
1

Solving NP-hard Problems on
Special Instances

I can’t

You can assume

the input is xxxxx

Solve it in

poly- time

No Problem, here is a

poly-time algorithm

http://cph.ing.dk/bagsiden/images/dilbert.gif
http://images.google.com/imgres?imgurl=www.wideopenwest.com/~awesley5155/img/dilbert.gif&imgrefurl=http://www.wideopenwest.com/~awesley5155/&h=191&w=196&prev=/images?q=dilbert&start=120&svnum=10&hl=en&lr=&ie=UTF-8&oe=UTF-8&sa=N
http://images.google.com/imgres?imgurl=www.isi.uu.nl/Education/ICT99/Images/dilbert.jpg&imgrefurl=http://www.isi.uu.nl/Education/ICT99/windows_text.htm&h=206&w=227&prev=/images?q=dilbert&start=40&svnum=10&hl=en&lr=&ie=UTF-8&oe=UTF-8&sa=N
http://images.google.com/imgres?imgurl=www.imm.dtu.dk/~mzp/dilbert.gif&imgrefurl=http://www.imm.dtu.dk/~mzp/&h=140&w=140&prev=/images?q=dilbert&start=160&svnum=10&hl=en&lr=&ie=UTF-8&oe=UTF-8&sa=N

2

Solving NP-hard Problems on
Special Instances

We are going to see that some problems
that are NP-hard on general
instances, can be solved efficiently
when the instance has some special
characteristics.

Similarly, some problems that are hard
to approximate, can be approximated
with better ratio for some instances.

3

Solving NP-hard Problems on
Special Instances

Special instance =>

Structural properties =>

Can be exploited to solve the problem

4

Trees
• An undirected graph is a tree if it is

connected and contains no cycles.

E

A
B

C

D

G

F

E

A
B

C

D

G

F

E

A
B

C

D

G

F
Not
trees

5

Alternative Definitions of
Undirected Trees

a. G is a tree (connected and contains no cycles).

b. G is cycles-free, but if any new edge is added to G, a
circuit is formed.

c. For every two vertices there is a unique simple path
connecting them.

d. G is connected, but if any edge is deleted from G, G
becomes diconnected.

E

A
B

C

D

G

F

6

Solving NP-hard Problems on Trees

Some NP-hard problems can be solved in
linear time on trees.

Intuition: if we consider a subtree of the
input, rooted at v, the solution to the
problem restricted to this subtree only
interacts with the rest of the graph
through v.

v

7

Solving Maximum Independent Set on
Trees

• Input: A tree T=(V,E)

• Problem: What is the maximum size subset S V
such that no pair of vertices in S is connected by
an edge.

For general graphs, this is an NP-hard problem.

8

Solving MIS on Trees

• Idea: Consider an edge e=(u,v) in G. In any
independent set S of G, at most one of u
and v is in S. In trees, for some edges, it
will be easy to determine which of the two
endpoints will be placed in the IS.

• A leaf in a tree is a node with degree 1.
• Property: Every tree has at least one leaf.

(why?)

9

Structural Property of
MIS on Trees

• Claim: If T=(V,E) is a tree and v is a leaf of
the tree, then there exists a maximum-size
independent set that contains v.

• Proof: In Class.

• The algorithm is based on that claim:
Repeatedly identify a leaf, add it to the IS,
remove it and the vertex adjacent to it (+
incident edges) from the tree (in fact, it
might become a forest).

10

Maximum Weighted IS on Trees.

Assume each vertex has a positive weight wv
The goal is to find an independent set S such that

the total weight vS wv is maximized.
When for all v, wv=1, we get the regular MIS

problem.

For arbitrary weights this is a different problem.

7

1

1

1

1

1

1

Picking the
center is optimal.

11

Maximum Weighted IS on Trees.

In particular, it is not ‘safe’ anymore to include a
leaf in the solution.

Let e=(u,v) be an edge such that v is a leaf. If wv ≥
wu, then it is safe to include it, but if wv < wu

then by including u we gain more weight but we
block other vertices (neighbors of u) from
entering the MIS.

We will see a polynomial time

 algorithm for trees,
 based on dynamic programming.

2 2 5

v
u

12

Dynamic Programming

•A strategy for designing algorithms.

•A technique, not an algorithm.

•The word “programming” is historical and
predates computer programming.

•Use when problem breaks down into
recurring small sub-problems.

13

Recursive Solutions

• Divide a problem into smaller subproblems

• Recursively solve subproblems

• Combine solutions of subproblems to get
solution to original problem.

•In some cases, the same subproblems are
repeated, (as subproblems of more than
one bigger problem).

14

Recursive Solutions

• Occasionally, straightforward recursive solution
takes too much time

•Solving the same subproblems over and over again

•Example: Fibonacci Numbers

F(0) = 1 ; F(1) = 1

F(n) = F(n − 1) + F(n − 2)

 fib(n)

 if (n < 2) return 1

 return fib(n-1) + fib(n-2)

How much time does this take?

Exponential!

15

Recursive Solutions

• But how many different subproblems are there, for
finding fib(n) ?

• The recursion takes so much time because we are
recalculating solutions to subproblems again and again.

•What if we store solutions to subproblems in a table,
and only recalculated if the values are not in the table?

 Fibonacci(n)

 A[0] = 1; A[1] = 1

 for i = 2 to n do A[i] = A[i-1] + A[i-2]

 return A[n]

1 1 2 3 5 8 …

Only n-1

16

Dynamic Programming

* Simple, recursive solution to a problem.

* Straightforward implementation of recursion
leads to exponential behavior, because of
repeated subproblems.

* Create a table of solutions to subproblems.

* Fill in the table, in an order that guarantees
that each time you need to fill in an entry, the
values of the required subproblems have already
been filled in.

17

Example: Most Profitable Tour

• Assume that you need to travel from the bottom
row of a chessboard to the top row. You can
select your initial and final locations (anywhere
on the bottom and top rows)

• On each square (i,j) there are c(i,j) dollar-coins.

4 3 12 7 1

7 4 1 3 8

3 18 4 7 13

8 4 1 2 5

6 9 5 3 4

c(row, col)

c(2,4)=2

c(5,2)=3

Start anywhere here

stop anywhere here

18

Example: Most Profitable Tour

• Whenever you visit a square you can pick up the
money on it.

• The amounts c(i,j) are known in advance.
• From each square you can advance to the next row

in all three directions (diagonally left, diagonally
right, or straight forward)

• You want to maximize your profit.

4 3 12 7 1

7 4 1 3 8

3 18 4 7 13

8 4 1 2 5

6 9 5 3 4

A possible tour.
Profit = 40

19

Most Profitable Tour

• Define q(i,j) as the maximum possible
profit to reach square (i,j).

• For any column j, q(1,j)=c(1,j).

• For any column j and i>1,
q(i,j) = c(i,j)+max{q(i-1,j-1), q(i-1,j), q(i-1,j+1)}

• Make sure you don’t leave the board:
– if j<1 or j>n then q(i,j)= 0.

• The goal: find maxj q(n,j)

20

Most Profitable Tour -
Recursive solution:

 main()

 for j =1 to n

 q[j]= maxProfit(n, j)

return maxj q[j].

maxProfit(i, j)

if j < 1 or j > n return 0

if i = 1 return c(1, j)

return max(maxProfit(i-1, j-1), maxProfit(i-1, j),
maxProfit(i-1, j+1)) + c(i,j) .

• Time complexity: Exponential.

21

Most Profitable Tour: DP solution

4 3 12 7 1

7 4 1 3 8

3 18 4 7 13

8 4 1 2 5

6 9 5 3 4
17 13 10 7 9

6 9 5 3 4

20 35 17 17 22

42 39 36 25 30

46 45 51 43 31

Input: Output:

Time complexity: O(board size)

22

Dynamic Programming works!

function maxProfit() //for the whole table!
for j= 1 to n
 q[1, j] = c(1, j)
for i=1 to n
 q[i, 0] = 0
 q[i, n + 1] = 0
for i=2 to n
 for j= 1 to n
 m = max(q[i-1, j-1], q[i-1, j], q[i-1, j+1])
 q[i, j] = m + c(i, j)

main()
 maxProfit()
return maxj q[n,j].

23

Most Profitable Tour: DP solution

Finding the actual path:
• For each table (i,j) cell, remember which

of the 3 cells (i-1,j-1), (i-1,j) , (i-1,j+1)
contributed the maximum value

46 45 51 43 31

42 39 36 25 30

20 35 17 17 22

17 13 10 7 9

6 9 5 3 4

4 3 12 7 1

7 4 1 3 8

3 18 4 7 13

8 4 1 2 5

6 9 5 3 4

24

Example: Knapsack with bounded
item values

• Define A[i,p] = minimum weight of a subset
of items 1,…,i whose total value is exactly p.
(A[i,p] = ∞ if no such subset)
i=1,…,n ; p=1, …, nB

• Dynamic programming solution:
– A[1,p] is easy to compute for all p.

– A[i+1,p] = minimum of A[i,p] and wi+1 + A[i,p-bi+1]

• OPT = maximum p for which A[n,p] ≤ W

• Running time?
Number of cells in table A O(n2B)

25

Maximum Weighted IS on Trees.

Assume each vertex has a positive weight wv
The goal is to find an independent set S such that

the total weight vS wv is maximized.
When for all v, wv=1, we get the regular MIS

problem.

For arbitrary weights this is a different problem.

7

1

1

1

1

1

1

Picking the
center is optimal.

26

Maximum Weighted IS on Trees.

We will see a polynomial time algorithm for
finding a MWIS on trees, based on
dynamic programming.

 What are the subproblems?

We will construct subproblems by rooting the

tree T at an arbitrary node r

For a root r and any u r , parent(u) is the
vertex preceding u on the path from r to u.
The other neighbors of u are its children.

27

Maximum Weighted IS on Trees.

*

*

r

*

The subproblems will be the problems on each of the
subtrees rooted at children(r).
Let Tu be the subtree of T rooted at u.
The tree Tr is our original problem.
If ur is a leaf then Tu consists of a single vertex.

* = children(r)

28

Maximum Weighted IS on Trees.

For each vertex u, we keep two values:

Mout[u]: The maximum weight of an IS that does
 not include u in the subtree Tu.

Min[u]: The maximum weight of an IS that
 includes u in the subtree Tu.

Base case: For a leaf u, the subtree rooted at u
contains the single vertex u, therefore:
Mout[u] = 0
Min[u] = wu

29

Maximum Weighted IS on Trees.

For each vertex u that has children, the following

recurrence defines the values of Mout[u] and Min[u]:

Mout[u] = vchildren(u) max(Mout[v],Min[v]);

Min[u] = wu + vchildren(u) Mout[v];

*

*

u

*

If u is out then
the *’s can be in
or out. If u is
in, all *’s must
be out.

r

30

Maximum Weighted IS on Trees.

The complete algorithm:

Root the tree at a vertex r.

For all vertices u of T in post-order

 If u is a leaf:
 Mout[u] = 0
 Min[u] = wu

 else

 Mout[u] = vchildren(u) max(Mout[v],Min[v]);

 Min[u] = wu + vchildren(u) Mout[v];

Return max(Mout[r],Min[r]);

In post-order, a node
is processed after all
its children.

31

Maximum Weighted IS on Trees.

2

1
4

6

1

8 9

2
5

3

7

Running example:

Assume g is the
root

g

i

e b

a

c
d

f

j
k

h

a b c d e f g h i j k
order

Min

Mout

32

Facility Location

The location of a set of facilities should be
determined. These facilities serve clients and we
want them to be as close as possible to the
clients.

facilities can be…

• factories, warehouse, retailers, servers, antennas.

 objective: min sum (or average) of distances.

• hospitals, police stations, fire-stations

 objective: min maximal distance.

33

Facility Location

Various questions:

• Where should a facility be?

• How many facilities should we build?

• How should demand be allocated?

Problems can be more complex (adding constraints)

• warehouse capacities

• each client can be allocated to only one warehouse

• different costs (transportation, holding, operating,
set-up)

• distance / service time

34

FL Network Problems

1. Covering: how many facilities should be built so
that each customer is within a given distance
from its nearest facility?

 Example: fire stations.
2. Center Models (k-center problem)
 Where to build k facilities so as to minimize the

max distance between facilities and a customer
(between a customer and its nearest facility).

3. Median Models: (k-median problem)
 Minimize the sum of distances between customers

and their nearest facility.
 Example: warehouse problem

35

Covering a Network

Covering: how many facilities should be built so that
each customer is within a given distance from its
nearest facility?

Possible problems:

- Each client has its own requirement, or all clients
have the same requirement.

- Facilities can be located only on vertices or any
point in the network.

Theorem: The network covering problem is NP-hard.

Proof: In class.
4

1

2 2
3

1

1

1 2

1

5
1

2

1

36

Covering a tree using a minimal
number of facilities

a

f b

e

d

c

20

14

18
12

10

When the network is a tree there is a simple algorithm
to find an optimal solution to the covering problem.

Input: A weighted tree, each vertex i needs to be
within some distance si from a center. sa=10 ; sb=5 ;
sc=3 ; sd=14 ; se=15 ; sf=8

37

Covering a tree.

a

f b

e

d

c

20

14

18
12

10

Output: location of centers. Centers can be opened
anywhere on the tree (also on edges).

Goal: A cover with minimal number of centers.

sa=10
sb=5
sc=3
sd=14
se=15
sf=8

38

Covering a tree.

a

f b

e

d

c

20

14

18
12

10

Output: location of centers. Centers can be opened
anywhere on the tree (also on edges).

Goal: A cover with minimal number of centers.

sa=10
sb=5
sc=3
sd=14
se=15
sf=8

Step 1: attach a "string" of length si to vertex i.

Mark all the vertices as non-processed (green).

10

5

8

15

14

3

39

Covering a tree.

a

f b

e

d

c

20

14

18
12

10

Example: select d for active leaf. Stretch the
string towards f. Excess=4, update sf =14-10=4.

sa=10
sb=5
sc=3
sd=14
se=15
sf=8

Step 2: pick an arbitrary leaf v, ‘stretch’ its string
towards its neighboring vertex u. If it reaches u,
su = min (su, excess). If it doesn’t reach u, add a
facility.

10

5

8

5 3

14

40

Covering a tree.

a

f b

e c

20

14

18
12

Step 3: remove v and the edge (u,v) from the graph
(color them gray).

If the graph is not empty, go to step 2.

10

5

15 3

4

d
10

41

Covering a tree.

a

f b

c

20

14

18

10

5

3

3

v=e, se=15, Excess=3

e

12

d
10

sf is reduced from 4 to 3

15

42

Covering a tree.

a

f b

c

20

14

18

10

5

3

v=f. sf=3, No Excess.

Place a center along f-b. 3 units from f

e

12

d
10

3 17

43

Covering a tree.

a

f b

c

20

14

18

10

5

3

v=a. sa=10, No Excess.

Check if a is already covered by any center (no)

Place a center along a-b.

e

12

d
10

44

Covering a tree.

a

f b

c

20

14

18

5

3

v=b. sb=5, No Excess.

Check if b is already covered by any center (yes!)

e

12

d
10

45

Covering a tree.

a

f b

c

20

14

18

3

v=c. sc=3, No active neighbor
Check if c is already covered by any center (no)

can place a center anywhere along (c-b) within
distance 3 from c

The whole graph is covered (gray) using 3 centers.

e

12

d
10

46

In class exercise: find an optimal
covering.

b

f d

h

g

c

10

14

11
3

7 8
3

sa=18, sb=5, sc=10, sd=2,
se=5, sf=4, sg=10, sh=6

a

e

47

Covering a tree.

Theorem: The algorithm produces an optimal
solution. I.e., it uses the minimal possible
number of centers.

Proof: In class.

48

Partition Problems

The partition problem:
Input: a set of n numbers, A ={a1, a2,…, an},
such that aA a = 2B.
Output: Is there a subset S’ of A such that
aA’ a= B?
Example: A={5, 5, 7,3, 1, 9, 10}; B=20
A possible partition:
A’={10,5,5}, A-A’={7,3,1,9}

The Partition Problem is NP-hard.
But what if the numbers are powers of 2?

49

Solving Partition for power-of 2
Instances.

Input: a set of n numbers, all are of the form
2c, for some integer c, such that aA a = 2B.

Output: Is there a subset S’ of A such that
aA’ a= B?

Example: A={32, 16, 16,8,4,2,2}; B=40
A possible partition:
A’={32,8}, A-A’={16,16,4,2,2}

50

Solving Partition for power-of 2
Instances.

An Algorithm:
Sort the items such that a1≥ a2 ≥… ≥ an

S1 = S2 = ;
s1=s2=0;
for i = 1 to n
 if s1>s2 add ai to S2, s2+=ai
 else add ai to S1, s1+=ai.
if s1=s2 output “Partition exists”
else output “No Partition”.

51

Solving Partition for power-of 2
Instances.

Example:
64,32,16,16,4,2,1 – No partition
64,32,16,16,4,2,1,1 – Partition.

Just to make sure, the same method

doesn’t work for arbitrary instances:
32,17,16,16,8,8,1 – Partition (but not by

the algorithm).

Time Complexity: O(n log n) – for sorting

52

Solving Partition for Power-of 2
Instances- Correctness Proof

Theorem: There is a partition if and only if the
algorithm finds one.

Proof:
1. Clearly, if the algorithm produces a partition, it

exists.
2. We prove that if the algorithm does not produce

a partition, then a partition does not exist.

Claim (simple property): Let A1, A2 be two sets of

power-2 integers, such that each integer is 2v.
Then aA1 a - aA2 a is a multiple of 2v.

53

Solving Partition for Power-of 2
Instances- Correctness Proof

Let aA a = 2B.
Assume that the algorithm does not find a partition.
Then at some point, one set has volume at least B.
Consider the time when a set is about to become
larger than B. At this time, some item, of size 2v, is
considered, and the remaining volume in both bins is
less than 2v.

S1

S2

<2v

<2v

2v

B

54

Solving Partition for Power-of 2
Instances- Correctness Proof

Assume that a partition exists. Then we can exchange
subsets A1S1, A2S2 to fix the partition produced by
the algorithm. Since all integers so far are 2v , The
difference |A1-A2| is at least 2v (it is a non-zero multiple
of 2v). Therefore at least one of the sets overflows.
A contradiction! B

S1

S2

<2v

<2v

A1

A2

S1

S2

<2v

<2v

|A1-A2|≥2v

|A1-A2|≥2v

55

Interval Graphs

• An Interval Graph is the intersection graph
of a set of intervals on the real line.

56

Interval Graphs

1

2

3

5

7

8

6

4

Many resource- allocation
problems can be modeled
as theoretical interval
graph problems.

Some Problems that are NP-hard on general graphs can
be solved efficiently on interval graphs.

1

2 3

4

8
7

6

5

Vertices: Intervals

Edges: between
intersecting intervals

57

Maximum Independent Set – Warm up

• Problem: get your money’s worth out of a
amusement park
– Buy a wristband that lets you onto any ride

– Lots of rides, each starting and ending at
different times

– Your goal: ride as many rides as possible
• Another, alternative goal that we don’t solve here:

maximize time spent on rides

• Welcome to the activity selection problem

58

Activity-Selection

• Formally:
– Given a set S = {a1, a2,…,an} of n activities
 si = start time of activity i
 fi = finish time of activity i
– Find max-size subset A of non-conflicting

activities

 Assume (w.l.o.g) that f1 f2 … fn

1

2

3

5

7

8

6

4 9

59

Activity-Selection – A DP solution

Try each possible activity k.

Recursively find activities ending before k starts and
after k ends.

Turn this into a DP

1

2

3

5

7

8

6

4 9
0 10

60

Activity-Selection – A DP solution

Define:

Sij = {ak S : fi sk < fk sj}

The subset of activities that can start after ai
finishes and finish before aj starts.

Remark: we add ‘dummy activities’ a0 with f0=0

And an+1 with sn+1=

Examples: S2,9 = {4,6,7} ; S1,8 = {2,4} ; S0,10 = S

1

2

3

5

7

8

6

4 9
0 10

61

Activity-Selection – A DP solution

Define:

C[i,j]= maximal number of activities from Sij that can
be selected.

 0 if Sij =

 max {c[i,k] + c[k,j] + 1} if Sij
C[i,j] =

akSij

In words: if Sij is not empty, then for any activity k in
Sij we check what is the best we can do if k is
selected.

Based on this formula we can write a DP algorithm
whose time complexity is O(n3)

62

Greedy Choice Property

• The activity selection problem exhibits the greedy
choice property:
– Locally optimal choice globally optimal

solution

• Theorem: if S is an activity selection instance
sorted by finish time, then there exists an optimal
solution A S such that {a1} A

• Proof: Given an optimal solution B that does not
contain a1, replace the first activity in B with a1.
The resulting solution is feasible (why?), it has the
same number of activities as B, and it includes a1.

63

Activity Selection:
A Greedy Algorithm

• So actual algorithm is simple:
– Sort the activities by finish time
– Schedule the first activity
– Then schedule the next activity in sorted list

which starts after previous activity finishes
– Repeat until no more activities

• Time complexity: O(n log n)
• Intuition is even more simple:

– Always pick the earliest to finish ride available
at the time.

64

Back to MIS in Interval Graphs

Property: Any Interval graph has an interval
representation in which all interval endpoints are
distinct integers and this representation is
computable in poly-time.

Proof: Not Here

Therefore: Activity selection = MIS: Given an
instance of MIS in an interval graph:
1. convert it into an interval representation

2. solve the activity selection problem

Note: An independent set in the graph is equivalent
to a feasible set of activities.

Generalization – graphs similar to
trees

• What does it mean for a graph to be similar to a
tree?

• Easier: what does it mean for a graph to be similar
to a path?

• Many possible answers. Here is one.

65

Path decomposition

• We can build a path using the following operations:

• Start with an empty graph

• Introduce a vertex

• introduce an edge

• Forget a vertex

66

a b c d

a b

Introduce a

Introduce b

Introduce ab

Forget a Introduce c

Introduce bc

b c

Forget b Introduce d

Introduce cd

c d

Path decomposition

• This is called a path decomposition

• Two decompositions of the same path

67

a b c d

a b b c c d

a b c d

Pathwidth

• The width of the decomposition is one less than
the size of the largest bin.

68

a b b c c d

a b c d

Width 1

Width 3

Pathwidth

• The pathwidth of a graph G is the minimum width
of a path decomposition of G.

69

Width 1 a b c d

a b c d

e f g

a b

e

b c

f

c d

g

Width 2

Tree decomposition

• Same as path decomposition
– Start with an empty graph

– Introduce a vertex

– introduce an edge

– Forget a vertex

• Also allow:
– Join two bags together

70

a b c d

a b b c

c d

e f f c

c

c

Forget b

Forget f

Join

Alternative Definition

• Path decomposition P of G : a path of bags s.t.:
– Every vertex of G is in some bag.

– Every edge of G is in some bag.

– For every vertex v of G, the bags containing v are
connected in P.

71

a b c d

e f g

a b

e

b c

f

c d

g

G

P

Alternative Definition

• Tree decomposition T of G : a tree of bags s.t.:
– Every vertex of G is in some bag.

– Every edge of G is in some bag.

– For every vertex v of G, the bags containing v are
connected in P.

72

a b c d

e f g

a b

e

b c

f

c d

g

G

T

Treewidth

• The treewidth of G is the smallest width of a tree
decomposition of G.

• What is the treewidth of a tree?

• What is the treewidth of a clique of size k?

73

74

Remember?
Maximum Weighted IS on Trees.

*

*

r

*

* = children(r)

Mout[u]: The maximum weight of an IS that does
 not include u in the subtree Tu.

Min[u]: The maximum weight of an IS that
 includes u in the subtree Tu.

75

Maximum Weighted IS on a graph
with small treewidth

For every bag B and every subset U of the vertices of B:

M[B,U] = max. IS on the subgraph induced by all vertices
in all bags in the TB that includes all vertices in U and
does not include any vertex in B-U.

B1 B2 B3

B4

B5

76

Maximum Weighted IS on a graph
with small treewidth

To compute M[B,U]:
- For a leaf B:

 M[B,U] = w(U) if U is indep. (-∞ otherwise)

- For internal node B:
- If U is not indep. In B, -∞

- 𝑤 𝑈 + max 𝑌{𝑀 𝐶, 𝑌 − 𝑤(𝑈 ∩ 𝑌)}𝐶 𝑐ℎ𝑖𝑙𝑑 𝑜𝑓 𝐵

where Y is a subset of C that agrees with U
(i.e., Y∩B = U ∩ C)

Running time: O(n2treewidth)

