## Solving NP-hard Problems on Special Instances



No Problem, here is a poly-time algorithm

## Solving NP-hard Problems on Special Instances

We are going to see that some problems that are NP-hard on general instances, can be solved efficiently when the instance has some special characteristics.
Similarly, some problems that are hard to approximate, can be approximated with better ratio for some instances.

# Solving NP-hard Problems on Special Instances 

Special instance =>
Structural properties =>
Can be exploited to solve the problem

## Trees

- An undirected graph is a tree if it is connected and contains no cycles.



## Alternative Definitions of Undirected Trees

a. $G$ is a tree (connected and contains no cycles).
b. $G$ is cycles-free, but if any new edge is added to $G, a$ circuit is formed.
c. For every two vertices there is a unique simple path connecting them.
d. $G$ is connected, but if any edge is deleted from $G, G$ becomes diconnected.


## Solving NP-hard Problems on Trees

Some NP-hard problems can be solved in linear time on trees.
Intuition: if we consider a subtree of the input, rooted at $v$, the solution to the problem restricted to this subtree only interacts with the rest of the graph through v .


## Solving Maximum Independent Set on Trees

- Input: A tree $T=(V, E)$
- Problem: What is the maximum size subset $S \subseteq \mathrm{~V}$ such that no pair of vertices in $S$ is connected by an edge.


For general graphs, this is an NP-hard problem.

## Solving MIS on Trees

- Idea: Consider an edge $e=(u, v)$ in $G$. In any independent set $S$ of $G$, at most one of $u$ and $v$ is in S. In trees, for some edges, it will be easy to determine which of the two endpoints will be placed in the IS.
- A leaf in a tree is a node with degree 1.
- Property: Every tree has at least one leaf. (why?)


## Structural Property of MIS on Trees

- Claim: If $T=(V, E)$ is a tree and $v$ is a leaf of the tree, then there exists a maximum-size independent set that contains $v$.
- Proof: In Class.
- The algorithm is based on that claim: Repeatedly identify a leaf, add it to the IS, remove it and the vertex adjacent to it ( + incident edges) from the tree (in fact, it might become a forest).


## Maximum Weighted IS on Trees.

Assume each vertex has a positive weight $w_{v}$
The goal is to find an independent set $S$ such that the total weight $\Sigma_{v \in S} W_{v}$ is maximized.
When for all $v, w_{v}=1$, we get the regular MIS problem.
For arbitrary weights this is a different problem.


Picking the center is optimal.

## Maximum Weighted IS on Trees.

In particular, it is not 'safe' anymore to include a leaf in the solution.
 (2)

Let $e=(u, v)$ be an edge such that $v$ is a leaf. If $w_{v} \geq$ $w_{u}$, then it is safe to include it, but if $w_{v}<w_{u}$ then by including u we gain more weight but we block other vertices (neighbors of $u$ ) from entering the MIS.

We will see a polynomial time algorithm for trees,
 based on dynamic programming.

## Dynamic Programming

- A strategy for designing algorithms.
- A technique, not an algorithm.
-The word "programming" is historical and predates computer programming.
- Use when problem breaks down into recurring small sub-problems.


## Recursive Solutions

- Divide a problem into smaller subproblems
- Recursively solve subproblems
- Combine solutions of subproblems to get solution to original problem.
-In some cases, the same subproblems are repeated, (as subproblems of more than one bigger problem).


## Recursive Solutions

- Occasionally, straightforward recursive solution takes too much time
- Solving the same subproblems over and over again
-Example: Fibonacci Numbers
$F(0)=1 ; F(1)=1$
$F(n)=F(n-1)+F(n-2)$


## fib(n)

$$
\begin{aligned}
& \text { if }(n<2) \text { return } 1 \\
& \text { return fib }(n-1)+\text { fib }(n-2)
\end{aligned}
$$

How much time does this take? Exponential!

## Recursive Solutions

- But how many different subproblems are there, for finding fib(n)? Only n-1
- The recursion takes so much time because we are recalculating solutions to subproblems again and again.
-What if we store solutions to subproblems in a table, and only recalculated if the values are not in the table?

1| $1|2| 3|5| 8$...
Fibonacci(n)
$A[0]=1 ; A[1]=1$
for $\mathrm{i}=2$ to n do $A[i]=A[i-1]+A[i-2]$ return $A[n]$

## Dynamic Programming

* Simple, recursive solution to a problem.
* Straightforward implementation of recursion leads to exponential behavior, because of repeated subproblems.
* Create a table of solutions to subproblems.
* Fill in the table, in an order that guarantees that each time you need to fill in an entry, the values of the required subproblems have already been filled in.


## Example: Most Profitable Tour

- Assume that you need to travel from the bottom row of a chessboard to the top row. You can select your initial and final locations (anywhere on the bottom and top rows)
- On each square $(i, j)$ there are $c(i, j)$ dollar-coins.

stop anywhere here $\rightarrow$\begin{tabular}{|c|l|l|l|l|}
\hline 4 \& 3 \& 12 \& 7 \& 1 <br>
\hline 7 \& 4 \& 1 \& 3 \& 8 <br>
\hline 3 \& 18 \& 4 \& 7 \& 13 <br>
\hline 8 \& 4 \& 1 \& 2 \& 5 <br>
\hline 6 \& 9 \& 5 \& 3 \& 4 <br>
\hline

$\quad$


$\quad$| $c($ row, col) |
| :--- |
| $c(2,4)=2$ |
| $c(5,2)=3$ | <br>

Start anywhere here
\end{tabular}

## Example: Most Profitable Tour

- Whenever you visit a square you can pick up the money on it.
- The amounts $c(i, j)$ are known in advance.
- From each square you can advance to the next row in all three directions (diagonally left, diagonally right, or straight forward)
- You want to maximize your profit.

| A possible tour. <br> Profit $=40$ | 4 | 3 | 12 | 7 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 7 | 4 | 1 | 3 | 8 |  |
| 3 | 18 | 4 | 7 | 13 |  |
| 8 | 4 | 1 | 2 | 5 |  |
| 6 | 9 | 5 | 3 | 4 |  |



## Most Profitable Tour

- Define $q(i, j)$ as the maximum possible profit to reach square ( $\mathrm{i}, \mathrm{j}$ ).
- For any column $j, q(1, j)=c(1, j)$.
- For any column $j$ and $i>1$, $q(i, j)=c(i, j)+\max \{q(i-1, j-1), q(i-1, j), q(i-1, j+1)\}$
- Make sure you don't leave the board: - if $j<1$ or $j>n$ then $q(i, j)=0$.
- The goal: find $\max _{j} q(n, j)$


## Most Profitable Tour Recursive solution:

main()
for $j=1$ to $n$
$q[j]=\operatorname{maxProfit}(n, j)$
return $\max _{\mathrm{j}} \mathrm{q}[\mathrm{j}]$.
maxProfit(i, j)
if j < 1 or j > $n$ return 0
if $i=1$ return $c(1, j)$
return max(maxProfit(i-1, j-1), maxProfit(i-1, j), maxProfit $(i-1, j+1))+c(i, j)$.

- Time complexity: Exponential.


## Most Profitable Tour: DP solution

Input:

| 4 | 3 | 12 | 7 | 1 |
| :--- | :--- | :--- | :--- | :--- |
| 7 | 4 | 1 | 3 | 8 |
| 3 | 18 | 4 | 7 | 13 |
| 8 | 4 | 1 | 2 | 5 |
| 6 | 9 | 5 | 3 | 4 |

Time complexity: $O$ (board size)

## Dynamic Programming works!

function maxProfit() //for the whole table! for $\mathrm{j}=1$ to n

$$
q[1, j]=c(1, j)
$$

for $\mathrm{i}=1$ to n
$q[i, 0]=0$
$q[i, n+1]=0$

## main() <br> maxProfit() <br> return $\max _{\mathrm{j}} \mathrm{q}[\mathrm{n}, \mathrm{j}]$.

for $i=2$ to $n$
for $\mathrm{j}=1$ to n

$$
\begin{aligned}
& m=\max (q[i-1, j-1], q[i-1, j], q[i-1, j+1]) \\
& q[i, j]=m+c(i, j)
\end{aligned}
$$

## Most Profitable Tour: DP solution

Finding the actual path:

- For each table ( $i, j$ ) cell, remember which of the 3 cells $(i-1, j-1),(i-1, j),(i-1, j+1)$ contributed the maximum value

| 46 | 45 | 51 | 43 | 31 |
| :--- | :--- | :--- | :--- | :--- |
| 42 | 39 | 36 | 25 | 30 |
| 20 | 35 | 17 | 17 | 22 |
| 17 | 13 | 10 | 7 | 9 |
| 6 | 9 | 5 | 3 | 4 |


| 4 | 3 | 12 | 7 | 1 |
| :--- | :--- | :--- | :--- | :--- |
| 7 | 4 | 1 | 3 | 8 |
| 3 | 18 | 4 | 7 | 13 |
| 8 | 4 | 1 | 2 | 5 |
| 6 | 9 | 5 | 3 | 4 |

## Example: Knapsack with bounded item values

- Define $A[i, p]=$ minimum weight of a subset of items $1, \ldots$, , whose total value is exactly $p$. ( $A[i, p]=\infty$ if no such subset)
$i=1, \ldots, n ; p=1, \ldots, n B$
- Dynamic programming solution:
- $A[1, p]$ is easy to compute for all $p$.
- $A[i+1, p]=$ minimum of $A[i, p]$ and $w_{i+1}+A\left[i, p-b_{i+1}\right]$
- OPT = maximum $p$ for which $A[n, p] \leq W$
- Running time?

Number of cells in table $A O\left(n^{2} B\right)$

## Maximum Weighted IS on Trees.

Assume each vertex has a positive weight $w_{v}$
The goal is to find an independent set $S$ such that the total weight $\Sigma_{v \in S} W_{v}$ is maximized.
When for all $v, w_{v}=1$, we get the regular MIS problem.
For arbitrary weights this is a different problem.


Picking the center is optimal.

## Maximum Weighted IS on Trees.

We will see a polynomial time algorithm for finding a MWIS on trees, based on dynamic programming.

- What are the subproblems?

We will construct subproblems by rooting the tree $T$ at an arbitrary node $r$

For a root $r$ and any $u \neq r$, parent( $u$ ) is the vertex preceding $u$ on the path from $r$ to $u$. The other neighbors of $u$ are its children.

## Maximum Weighted IS on Trees.



The subproblems will be the problems on each of the subtrees rooted at children( $r$ ).
Let $T_{u}$ be the subtree of $T$ rooted at $u$.
The tree $T_{r}$ is our original problem.
If $u \neq r$ is a leaf then $T_{u}$ consists of a single vertex.

## Maximum Weighted IS on Trees.

For each vertex $u$, we keep two values:
$M_{\text {out }}[u]$ : The maximum weight of an IS that does not include $u$ in the subtree $T_{u}$.
$M_{\text {in }}[u]$ : The maximum weight of an IS that includes $u$ in the subtree $T_{u}$.

Base case: For a leaf $u$, the subtree rooted at $u$ contains the single vertex $u$, therefore:
$M_{\text {out }}[u]=0$
$M_{i n}[u]=w_{u}$

## Maximum Weighted IS on Trees.

For each vertex $u$ that has children, the following recurrence defines the values of $M_{\text {out }}[u]$ and $M_{i n}[u]$ :
$M_{\text {out }}[u]=\Sigma_{v \in \text { children( } u)} \max \left(M_{\text {out }}[v], M_{\text {in }}[v]\right)$;
$M_{\text {in }}[u]=w_{u}+\Sigma_{v \in \operatorname{children}(u)} M_{\text {out }}[v]$;


If $u$ is out then the *'s can be in or out. If $u$ is in, all *'s must be out.

## Maximum Weighted IS on Trees.

The complete algorithm:
Root the tree at a vertex $r$.
For all vertices $u$ of $T$ in post-order
If $u$ is a leaf:
$M_{\text {out }}[u]=0$
$M_{i n}[u]=w_{u}$

In post-order, a node is processed after all its children.
else

$$
M_{\text {out }}[u]=\Sigma_{v \in \operatorname{child} \operatorname{ren}(u)} \max \left(M_{\text {out }}[v], M_{\text {in }}[v]\right) ;
$$

$$
M_{i n}[u]=w_{u}+\Sigma_{\mathrm{v} \in \operatorname{children}(u)} M_{\text {out }}[\mathrm{v}] ;
$$

Return $\max \left(M_{\text {out }}[r], M_{\text {in }}[r]\right)$;

## Maximum Weighted IS on Trees.

Running example: Assume $g$ is the root


|  | $a$ | $b$ | $c$ | $d$ | $e$ | $f$ | $g$ | $h$ | $i$ | $j$ | $k$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| order |  |  |  |  |  |  |  |  |  |  |  |
| $M_{\text {in }}$ |  |  |  |  |  |  |  |  |  |  |  |
| $M_{\text {out }}$ |  |  |  |  |  |  |  |  |  |  | 31 |

## Facility Location

The location of a set of facilities should be determined. These facilities serve clients and we want them to be as close as possible to the clients.
facilities can be...

- factories, warehouse, retailers, servers, antennas.
objective: min sum (or average) of distances.
- hospitals, police stations, fire-stations objective: min maximal distance.



## Facility Location

Various questions:
-Where should a facility be?

- How many facilities should we build?
- How should demand be allocated?

Problems can be more complex (adding constraints)

- warehouse capacities
- each client can be allocated to only one warehouse
- different costs (transportation, holding, operating, set-up)
- distance / service time


## FL Network Problems

1. Covering: how many facilities should be built so that each customer is within a given distance from its nearest facility?
Example: fire stations.
2. Center Models (k-center problem)

Where to build k facilities so as to minimize the max distance between facilities and a customer (between a customer and its nearest facility).
3. Median Models: (k-median problem)

Minimize the sum of distances between customers and their nearest facility.
Example: warehouse problem

## Covering a Network

Covering: how many facilities should be built so that each customer is within a given distance from its nearest facility?
Possible problems:

- Each client has its own requirement, or all clients have the same requirement.
- Facilities can be located only on vertices or any point in the network.

Theorem: The network covering problem is NP-hard.
Proof: In class.


## Covering a tree using a minimal number of facilities

When the network is a tree there is a simple algorithm to find an optimal solution to the covering problem.


Input: A weighted tree, each vertex i needs to be within some distance $s_{i}$ from a center. $s_{a}=10 ; s_{b}=5$; $s_{c}=3 ; s_{d}=14 ; s_{e}=15 ; s_{f}=8$

## Covering a tree.

Output: location of centers. Centers can be opened anywhere on the tree (also on edges).
Goal: A cover with minimal number of centers.


$$
\begin{aligned}
& s_{a}=10 \\
& s_{b}=5 \\
& s_{\mathrm{c}}=3 \\
& s_{\mathrm{d}}=14 \\
& s_{e}=15 \\
& s_{\mathrm{f}}=8
\end{aligned}
$$

## Covering a tree.

Output: location of centers. Centers can be opened anywhere on the tree (also on edges).
Goal: A cover with minimal number of centers.


Step 1: attach a "string" of length $s_{i}$ to vertex $i$.
Mark all the vertices as non-processed (green).

## Covering a tree.

Step 2: pick an arbitrary leaf $v$, 'stretch' its string towards its neighboring vertex $u$. If it reaches $u$, $s_{u}=\min \left(s_{u}\right.$, excess). If it doesn't reach $u$, add a facility.


$$
\begin{aligned}
& s_{a}=10 \\
& s_{b}=5 \\
& s_{c}=3 \\
& s_{d}=14 \\
& s_{e}=15 \\
& s_{f}=8
\end{aligned}
$$

Example: select d for active leaf. Stretch the string towards $f$. Excess $=4$, update $s_{f}=14-10=4$.

## Covering a tree.



Step 3: remove $v$ and the edge ( $u, v$ ) from the graph (color them gray).
If the graph is not empty, go to step 2.

## Covering a tree.

$$
v=e, s_{e}=15, \text { Excess }=3
$$


$s_{f}$ is reduced from 4 to 3

## Covering a tree.


$v=f . s_{f}=3$, No Excess.
Place a center along $f$-b. 3 units from $f$

## Covering a tree.


$v=a . s_{a}=10$, No Excess.
Check if $a$ is already covered by any center (no) Place a center along $a-b$.

## Covering a tree.


$v=b . s_{b}=5$, No Excess.
Check if $b$ is already covered by any center (yes!)

## Covering a tree.


$v=c . s_{c}=3$, No active neighbor
Check if $c$ is already covered by any center (no)
can place a center anywhere along ( $c-b$ ) within distance 3 from c

The whole graph is covered (gray) using 3 centers.

## In class exercise: find an optimal covering.



## Covering a tree.

Theorem: The algorithm produces an optimal solution. I.e., it uses the minimal possible number of centers.

Proof: In class.

## Partition Problems

The partition problem:
Input: a set of $n$ numbers, $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$,
such that $\sum_{a \in A} a=2 B$.
Output: Is there a subset $S$ ' of $A$ such that
$\sum_{a \in A^{\prime}} a=B$ ?
Example: $A=\{5,5,7,3,1,9,10\} ; B=20$
A possible partition:
$A^{\prime}=\{10,5,5\}, \quad A-A^{\prime}=\{7,3,1,9\}$
The Partition Problem is NP-hard.
But what if the numbers are powers of 2?

## Solving Partition for power-of 2 Instances.

Input: a set of $n$ numbers, all are of the form $2^{c}$, for some integer $c$, such that $\sum_{a \in A} a=2 B$.

Output: Is there a subset $S^{\prime}$ of $A$ such that $\sum_{a \in A^{\prime}} a=B$ ?

Example: $A=\{32,16,16,8,4,2,2\} ; \quad B=40$
A possible partition:
$A^{\prime}=\{32,8\}, \quad A-A^{\prime}=\{16,16,4,2,2\}$

## Solving Partition for power-of 2 Instances.

An Algorithm:
Sort the items such that $a_{1} \geq a_{2} \geq \ldots \geq a_{n}$
$S_{1}=S_{2}=\varnothing$;
$s_{1}=s_{2}=0$;
for $i=1$ to $n$
if $s_{1}>s_{2}$ add $a_{i}$ to $S_{2}, s_{2}+=a_{i}$
else add $a_{i}$ to $S_{1}, s_{1}+=a_{i}$.
if $s_{1}=s_{2}$ output "Partition exists"
else output "No Partition".

## Solving Partition for power-of 2 Instances.

Example:
64,32,16,16,4,2,1 - No partition
64,32,16,16,4,2,1,1 - Partition.
Just to make sure, the same method doesn't work for arbitrary instances:
32,17,16,16,8,8,1 - Partition (but not by the algorithm).

Time Complexity: $O(n \log n$ ) - for sorting

## Solving Partition for Power-of 2 Instances- Correctness Proof

Theorem: There is a partition if and only if the algorithm finds one.
Proof:

1. Clearly, if the algorithm produces a partition, it exists.
2. We prove that if the algorithm does not produce a partition, then a partition does not exist.

Claim (simple property): Let $A_{1}, A_{2}$ be two sets of power- 2 integers, such that each integer is $\geq 2^{v}$. Then $\sum_{a \in A 1} a-\sum_{a \in A 2} a$ is a multiple of $2^{v}$.

## Solving Partition for Power-of 2 Instances- Correctness Proof

Let $\sum_{a \in A} a=2 B$.
Assume that the algorithm does not find a partition.
Then at some point, one set has volume at least $B$.
Consider the time when a set is about to become larger than $B$. At this time, some item, of size $2^{v}$, is considered, and the remaining volume in both bins is less than $2^{v}$.


## Solving Partition for Power-of 2 Instances- Correctness Proof

Assume that a partition exists. Then we can exchange subsets $A_{1} \subseteq S_{1}, A_{2} \subseteq S_{2}$ to fix the partition produced by the algorithm. Since all integers so far are $\geq 2^{v}$, The difference $\left|A_{1}-A_{2}\right|$ is at least $2^{v}$ (it is a non-zero multiple of $2^{v}$ ). Therefore at least one of the sets overflows. A contradiction!


## Interval Graphs

- An Interval Graph is the intersection graph of a set of intervals on the real line.


## Example Interval Graphs



## Interval Graphs



Vertices: Intervals
Edges: between intersecting intervals

Many resource- allocation problems can be modeled as theoretical interval graph problems.

Some Problems that are NP-hard on general graphs can be solved efficiently on interval graphs.

## Maximum Independent Set - Warm up

- Problem: get your money's worth out of a amusement park
- Buy a wristband that lets you onto any ride
- Lots of rides, each starting and ending at different times
- Your goal: ride as many rides as possible
- Another, alternative goal that we don't solve here: maximize time spent on rides
- Welcome to the activity selection problem


## Activity-Selection

- Formally:
- Given a set $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ of $n$ activities $s_{i}=$ start time of activity $i$
$f_{i}=$ finish time of activity $i$
- Find max-size subset $A$ of non-conflicting activities

- Assume (w.l.o.g) that $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$


## Activity-Selection - A DP solution

Try each possible activity k.
Recursively find activities ending before $k$ starts and after $k$ ends.
Turn this into a DP


## Activity-Selection - A DP solution

Define:
$S_{i j}=\left\{a_{k} \in S: f_{i} \leq s_{k}<f_{k} \leq s_{j}\right\}$
The subset of activities that can start after $a_{i}$ finishes and finish before $a_{j}$ starts.
Remark: we add 'dummy activities' $a_{0}$ with $f_{0}=0$
And $a_{n+1}$ with $s_{n+1}=\infty$


Examples: $S_{2,9}=\{4,6,7\} ; S_{1,8}=\{2,4\} ; S_{0,10}=S$

## Activity-Selection - A DP solution

Define:
$C[i, j]=$ maximal number of activities from $S_{i j}$ that can be selected.

$$
C[i, j]= \begin{cases}0 & \text { if } S_{i j}=\varnothing \\ \max _{a_{k} \in S_{i j}}\{c[i, k]+c[k, j]+1\} & \text { if } S_{i j} \neq \varnothing\end{cases}
$$

In words: if $S_{i j}$ is not empty, then for any activity $k$ in $S_{i j}$ we check what is the best we can do if $k$ is selected.

Based on this formula we can write a DP algorithm whose time complexity is $O\left(n^{3}\right)$

## Greedy Choice Property

- The activity selection problem exhibits the greedy choice property:
- Locally optimal choice $\Rightarrow$ globally optimal solution
- Theorem: if $S$ is an activity selection instance sorted by finish time, then there exists an optimal solution $A \subseteq S$ such that $\left\{a_{1}\right\} \in A$
- Proof: Given an optimal solution $B$ that does not contain $a_{1}$, replace the first activity in $B$ with $a_{1}$. The resulting solution is feasible (why?), it has the same number of activities as $B$, and it includes $a_{1}$.


## Activity Selection: A Greedy Algorithm

- So actual algorithm is simple:
- Sort the activities by finish time
- Schedule the first activity
- Then schedule the next activity in sorted list which starts after previous activity finishes
- Repeat until no more activities
- Time complexity: $O(n \log n)$
- Intuition is even more simple:
- Always pick the earliest to finish ride available at the time.


## Back to MIS in Interval Graphs

Property: Any Interval graph has an interval representation in which all interval endpoints are distinct integers and this representation is computable in poly-time.
Proof: Not Here
Therefore: Activity selection = MIS: Given an instance of MIS in an interval graph:

1. convert it into an interval representation
2. solve the activity selection problem

Note: An independent set in the graph is equivalent to a feasible set of activities.

## Generalization - graphs similar to trees

- What does it mean for a graph to be similar to a tree?
- Easier: what does it mean for a graph to be similar to a path?
- Many possible answers. Here is one.


## Path decomposition

- We can build a path using the following operations:
- Start with an empty graph
- Introduce a vertex
- introduce an edge
- Forget a vertex



## Path decomposition

- This is called a path decomposition
- Two decompositions of the same path
(a) (b)
c
(d)



## Pathwidth

- The width of the decomposition is one less than the size of the largest bin.



## Pathwidth

- The pathwidth of a graph $G$ is the minimum width of a path decomposition of $G$.


Width 2


## Tree decomposition

- Same as path decomposition

- Start with an empty graph
- Introduce a vertex
- introduce an edge
- Forget a vertex
(b)

C


- Also allow:
- Join two bags together



## Alternative Definition

- Path decomposition $P$ of $G$ : a path of bags s.t.:
- Every vertex of $G$ is in some bag.
- Every edge of $G$ is in some bag.
- For every vertex $v$ of $G$, the bags containing $v$ are connected in $P$.


P

## Alternative Definition

- Tree decomposition $T$ of $G$ : a tree of bags s.t.:
- Every vertex of $G$ is in some bag.
- Every edge of $G$ is in some bag.
- For every vertex $v$ of $G$, the bags containing $v$ are connected in $P$.


T

## Treewidth

- The treewidth of $G$ is the smallest width of a tree decomposition of $G$.
- What is the treewidth of a tree?
- What is the treewidth of a clique of size $k$ ?


## Remember? Maximum Weighted IS on Trees.


$M_{\text {out }}[u]$ : The maximum weight of an IS that does not include $u$ in the subtree $T_{u}$.
$M_{\text {in }}[u]$ : The maximum weight of an IS that includes $u$ in the subtree $T_{u}$.

## Maximum Weighted IS on a graph with small treewidth



For every bag $B$ and every subset $U$ of the vertices of $B$ :
$M[B, U]=$ max. IS on the subgraph induced by all vertices in all bags in the TB that includes all vertices in $U$ and does not include any vertex in B-U.

## Maximum Weighted IS on a graph with small treewidth

To compute $M[B, U]$ :

- For a leaf B:
$M[B, U]=w(U)$ if $U$ is indep. ( $-\infty$ otherwise)
- For internal node B:
- If $U$ is not indep. In $B,-\infty$
- $w(U)+\sum_{C \text { child of } B} \max _{Y}\{M[C, Y]-w(U \cap Y)\}$
where $Y$ is a subset of $C$ that agrees with $U$ (i.e., $Y \cap B=U \cap C$ )

Running time: $O\left(n 2^{\text {treewidth }}\right)$

