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Solving NP-hard Problems on 
Special Instances 

I can’t 

You can assume 

the input is xxxxx 

Solve it in 

poly- time 

 

No Problem, here is a 

poly-time algorithm 
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Solving NP-hard Problems on 
Special Instances 

We are going to see that some problems 
that are NP-hard on general 
instances, can be solved efficiently 
when the instance has some special 
characteristics.  

Similarly, some problems that are hard 
to approximate, can be approximated 
with better ratio for some instances. 
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Solving NP-hard Problems on 
Special Instances 

Special instance =>    
 
Structural properties => 
 
Can be exploited to solve the problem 
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Trees 
• An undirected graph is a tree if it is 

connected and contains no cycles. 
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Alternative Definitions of 
Undirected Trees 

a. G is a tree (connected and contains no cycles). 

b. G is cycles-free, but if any new edge is added to G, a 
circuit is formed. 

c. For every two vertices there is a unique simple path 
connecting them. 

d. G is connected, but if any edge is deleted from G, G 
becomes diconnected. 
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Solving NP-hard Problems on Trees 

Some NP-hard problems can be solved in 
linear time on trees. 

Intuition: if we consider a subtree of the 
input, rooted at v, the solution to the 
problem restricted to this subtree only 
interacts with the rest of the graph 
through v.  

v 
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Solving Maximum Independent Set on 
Trees 

• Input: A tree T=(V,E) 

• Problem: What is the maximum size subset S  V  
such that no pair of vertices in S is connected by 
an edge. 

For general graphs, this is an NP-hard problem. 
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Solving MIS on Trees 

• Idea: Consider an edge e=(u,v) in G. In any 
independent set S of G, at most one of u 
and v is in S. In trees, for some edges, it 
will be easy to determine which of the two 
endpoints will be placed in the IS. 
 

• A leaf in a tree is a node with degree 1.  
• Property: Every tree has at least one leaf. 

(why?) 
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Structural Property of  
MIS on Trees 

• Claim: If T=(V,E) is a tree and v is a leaf of 
the tree, then there exists a maximum-size 
independent set that contains v. 

• Proof: In Class. 

 

• The algorithm is based on that claim: 
Repeatedly identify a leaf, add it to the IS, 
remove it and the vertex adjacent to it (+ 
incident edges) from the tree (in fact, it 
might become a forest).  
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Maximum Weighted IS on Trees. 

Assume each vertex has a positive weight wv 
The goal is to find an independent set S such that 

the total weight vS wv is maximized. 
When for all v, wv=1, we get the regular MIS 

problem. 

For arbitrary weights this is a different problem.  

7 

1 

1 

1 

1 

1 

1 

Picking the 
center is optimal. 
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Maximum Weighted IS on Trees. 

In particular, it is not ‘safe’ anymore to include a 
leaf in the solution. 

 

Let e=(u,v) be an edge such that v is a leaf. If wv ≥ 
wu, then it is safe to include it, but if wv < wu 

then by including u we gain more weight but we 
block other vertices (neighbors of u) from 
entering the MIS. 

 
We will see a polynomial time   

 algorithm for trees,    
 based on dynamic programming. 

2 2 5 

v 
u 
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Dynamic Programming 
 

•A strategy for designing algorithms.  

•A technique, not an algorithm. 

•The word “programming” is historical and 
predates computer programming. 

•Use when problem breaks down into 
recurring small sub-problems. 
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Recursive Solutions 

• Divide a problem into smaller subproblems 

• Recursively solve subproblems 

• Combine solutions of subproblems to get 
solution to original problem. 

 

•In some cases, the same subproblems are 
repeated, (as subproblems of more than 
one bigger problem). 
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Recursive Solutions  
 

• Occasionally, straightforward recursive solution 
takes too much time 

•Solving the same subproblems over and over again 

•Example: Fibonacci Numbers 

F(0) = 1 ; F(1) = 1 

F(n) = F(n − 1) + F(n − 2) 

 

             fib(n) 

      if (n < 2)  return 1 

       return fib(n-1) + fib(n-2) 

 

How much time does this take?  

 

 

Exponential! 
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Recursive Solutions  
 

• But how many different subproblems are there, for  
finding fib(n) ?  

• The recursion takes so much time because we are 
recalculating solutions to subproblems again and again. 

•What if we store solutions to subproblems in a table, 
and only recalculated if the values are not in the table? 

 

 Fibonacci(n) 

 A[0] = 1; A[1] = 1 

 for i = 2 to n do A[i] = A[i-1] + A[i-2] 

 return A[n] 

 

1 1 2 3 5 8 … 

Only n-1 
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Dynamic Programming 

* Simple, recursive solution to a problem. 

* Straightforward implementation of recursion 
leads to exponential behavior, because of 
repeated subproblems. 

* Create a table of solutions to subproblems. 

* Fill in the table, in an order that guarantees 
that each time you need to fill in an entry, the 
values of the required subproblems have already 
been filled in. 
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Example: Most Profitable Tour 

• Assume that you need to travel from the bottom 
row of a chessboard to the top row. You can 
select your initial and final locations (anywhere 
on the bottom and top rows) 

• On each square (i,j) there are c(i,j) dollar-coins. 
 

4 3 12 7 1 

7 4 1 3 8 

3 18 4 7 13 

8 4 1 2 5 

6 9 5 3 4 

c(row, col) 

c(2,4)=2 

c(5,2)=3 

Start anywhere here 

stop anywhere here 
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Example: Most Profitable Tour 

• Whenever you visit a square you can pick up the 
money on it. 

• The amounts c(i,j) are known in advance.  
• From each square you can advance to the next row 

in all three directions (diagonally left, diagonally 
right, or straight forward)  

• You want to maximize your profit.    

 
4 3 12 7 1 

7 4 1 3 8 

3 18 4 7 13 

8 4 1 2 5 

6 9 5 3 4 

A possible tour. 
Profit = 40 
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Most Profitable Tour 

• Define q(i,j) as the maximum possible 
profit to reach square (i,j). 

• For any column j, q(1,j)=c(1,j). 

• For any column j  and i>1, 
q(i,j) = c(i,j)+max{q(i-1,j-1), q(i-1,j), q(i-1,j+1)}  

• Make sure you don’t leave the board: 
– if j<1 or j>n then q(i,j)= 0. 

• The goal: find maxj q(n,j) 
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Most Profitable Tour - 
Recursive solution: 

 main() 

    for j =1 to n 

    q[j]= maxProfit(n, j)  

return maxj q[j]. 

 

maxProfit(i, j)  

if j < 1 or j > n return 0  

if i = 1 return c(1, j)  

return max(maxProfit(i-1, j-1), maxProfit(i-1, j), 
maxProfit(i-1, j+1) ) + c(i,j) . 

 

• Time complexity: Exponential. 
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Most Profitable Tour: DP solution 

4 3 12 7 1 

7 4 1 3 8 

3 18 4 7 13 

8 4 1 2 5 

6 9 5 3 4 
17 13 10 7 9 

6 9 5 3 4 

20 35 17 17 22 

42 39 36 25 30 

46 45 51 43 31 

Input: Output: 

Time complexity: O(board size) 
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Dynamic Programming works! 

function maxProfit( )  //for the whole table! 
for j= 1 to n  
    q[1, j] = c(1, j)  
for i=1 to n  
   q[i, 0] = 0  
   q[i, n + 1] = 0  
for i=2 to n  
   for j= 1 to n  
      m = max(q[i-1, j-1], q[i-1, j], q[i-1, j+1])  
      q[i, j] = m + c(i, j)  
 

main() 
    maxProfit()  
return maxj q[n,j]. 
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Most Profitable Tour: DP solution 

Finding the actual path: 
• For each table (i,j) cell, remember which 

of the 3 cells (i-1,j-1), (i-1,j) , (i-1,j+1) 
contributed the maximum value 
 
 
 
 

 

46 45 51 43 31 

42 39 36 25 30 

20 35 17 17 22 

17 13 10 7 9 

6 9 5 3 4 

4 3 12 7 1 

7 4 1 3 8 

3 18 4 7 13 

8 4 1 2 5 

6 9 5 3 4 
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Example: Knapsack with bounded 
item values 

• Define A[i,p] = minimum weight of a subset 
of items 1,…,i whose total value is exactly p. 
(A[i,p] = ∞ if no such subset) 
i=1,…,n ; p=1, …, nB 
 

• Dynamic programming solution: 
– A[1,p] is easy to compute for all p. 

– A[i+1,p] = minimum of A[i,p] and  wi+1 + A[i,p-bi+1] 

• OPT = maximum p for which A[n,p] ≤ W 

• Running time?  
Number of cells in table A O(n2B) 
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Maximum Weighted IS on Trees. 

Assume each vertex has a positive weight wv 
The goal is to find an independent set S such that 

the total weight vS wv is maximized. 
When for all v, wv=1, we get the regular MIS 

problem. 

For arbitrary weights this is a different problem.  
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Picking the 
center is optimal. 
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Maximum Weighted IS on Trees. 

We will see a polynomial time algorithm for 
finding a MWIS on trees, based on 
dynamic programming. 

 What are the subproblems? 
 
We will construct subproblems by rooting the 

tree T at an arbitrary node r 
 

For a root r and any u r , parent(u) is the 
vertex preceding u on the path from r to u. 
The other neighbors of u are its children. 
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Maximum Weighted IS on Trees. 

* 

* 

r 

* 

The subproblems will be the problems on each of the 
subtrees rooted at children(r). 
Let Tu be the subtree of T rooted at u. 
The tree Tr is our original problem. 
If ur is a leaf then Tu consists of a single vertex. 
 

 

* = children(r) 
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Maximum Weighted IS on Trees. 

For each vertex u, we keep two values: 
 
Mout[u]: The maximum weight of an IS that does 
    not include u in the subtree Tu. 
 

Min[u]: The maximum weight of an IS that    
   includes u in the subtree Tu. 
 
Base case: For a leaf u, the subtree rooted at u 
contains the single vertex u, therefore: 
Mout[u] = 0 
Min[u] = wu 
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Maximum Weighted IS on Trees. 

For each vertex u that has children, the following 

recurrence defines the values of Mout[u] and Min[u]:  

Mout[u] = vchildren(u) max(Mout[v],Min[v]); 

Min[u] = wu + vchildren(u) Mout[v]; 

 

* 

* 

u 

* 

If u is out then 
the *’s can be in 
or out. If u is 
in, all *’s must 
be out. 

r 
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Maximum Weighted IS on Trees. 

The complete algorithm: 

Root the tree at a vertex r. 

For all vertices u of T in post-order 

    If u is a leaf: 
 Mout[u] = 0 
 Min[u] = wu 

    else 

 Mout[u] = vchildren(u) max(Mout[v],Min[v]); 

 Min[u] = wu + vchildren(u) Mout[v]; 

Return max(Mout[r],Min[r]); 

In post-order, a node 
is processed after all 
its children. 
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Maximum Weighted IS on Trees. 
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Running example: 

Assume g is the 
root 
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a b c d e f g h i j k 
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Min 

Mout 
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Facility Location 

The location of a set of facilities should be 
determined. These facilities serve clients and we 
want them to be as close as possible to the 
clients. 

facilities can be… 

• factories, warehouse, retailers, servers, antennas. 

  objective: min sum (or average) of distances. 

• hospitals, police stations, fire-stations 

   objective: min maximal distance. 
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Facility Location 

Various questions: 

• Where should a facility be? 

• How many facilities should we build? 

• How should demand be allocated? 

Problems can be more complex (adding constraints) 

• warehouse capacities 

• each client can be allocated to only one warehouse 

• different costs (transportation, holding, operating, 
set-up) 

• distance / service time 
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FL Network Problems 

1. Covering: how many facilities should be built so 
that each customer is within a given distance 
from its nearest facility? 

 Example: fire stations. 
2. Center Models (k-center problem) 
    Where to build k facilities so as to minimize the 

max distance between facilities and a customer 
(between a customer and its nearest facility). 

3. Median Models: (k-median problem) 
   Minimize the sum of distances between customers 

and their nearest facility. 
   Example: warehouse problem 
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Covering a Network 

Covering: how many facilities should be built so that 
each customer is within a given distance from its 
nearest facility? 

Possible problems: 

- Each client has its own requirement, or all clients 
have the same requirement. 

- Facilities can be located only on vertices or any 
point in the network. 

Theorem: The network covering problem is NP-hard. 

Proof: In class. 
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Covering a tree using a minimal 
number of facilities 

a 

f b 

e 

d 

c 

20 

14 

18 
12 

10 

When the network is a tree there is a simple algorithm 
to find an optimal solution to the covering problem.  

Input: A weighted tree, each vertex i needs to be 
within some distance si from a center. sa=10 ; sb=5 ; 
sc=3 ; sd=14 ; se=15 ; sf=8 
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Covering a tree. 

a 

f b 

e 

d 

c 

20 

14 

18 
12 

10 

Output: location of centers. Centers can be opened 
anywhere on the tree (also on edges). 

Goal: A cover with minimal number of centers. 

sa=10  
sb=5  
sc=3 
sd=14  
se=15 
sf=8 
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Covering a tree. 

a 

f b 

e 

d 

c 

20 

14 

18 
12 

10 

Output: location of centers. Centers can be opened 
anywhere on the tree (also on edges). 

Goal: A cover with minimal number of centers. 

sa=10  
sb=5  
sc=3 
sd=14  
se=15 
sf=8 

Step 1: attach a "string" of length si to vertex i. 

Mark all the vertices as non-processed (green). 
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Covering a tree. 

a 

f b 

e 

d 

c 

20 

14 

18 
12 

10 

Example: select d for active leaf. Stretch the 
string towards f. Excess=4, update sf =14-10=4. 

sa=10  
sb=5  
sc=3 
sd=14  
se=15 
sf=8 

Step 2: pick an arbitrary leaf v, ‘stretch’ its string 
towards its neighboring vertex u. If it reaches u, 
su = min (su, excess). If it doesn’t reach u, add a 
facility. 

10 

5 

8 

5 3 

14 
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Covering a tree. 

a 

f b 

e c 

20 

14 

18 
12 

Step 3: remove v and the edge (u,v) from the graph 
(color them gray). 

If the graph is not empty, go to step 2. 

 

10 

5 

15 3 

4 

d 
10 
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Covering a tree. 

a 

f b 

c 

20 

14 

18 

10 

5 

3 

3 

v=e,  se=15,  Excess=3 

e 

12 

d 
10 

sf is reduced from 4 to 3 

15 
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Covering a tree. 

a 

f b 

c 

20 

14 

18 

10 

5 

3 

v=f.  sf=3,  No Excess. 

Place a center along f-b. 3 units from f 

e 

12 

d 
10 

3 17 
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Covering a tree. 

a 

f b 

c 

20 

14 

18 

10 

5 

3 

v=a.  sa=10,  No Excess. 

Check if a is already covered by any center (no) 

Place a center along a-b. 

e 

12 

d 
10 
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Covering a tree. 

a 

f b 

c 

20 

14 

18 

5 

3 

v=b.  sb=5,  No Excess. 

Check if b is already covered by any center (yes!) 

e 

12 

d 
10 
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Covering a tree. 

a 

f b 

c 

20 

14 

18 

3 

v=c.  sc=3,  No active neighbor 
Check if c is already covered by any center (no) 

can place a center anywhere along (c-b) within 
distance 3 from c 

The whole graph is covered (gray) using 3 centers. 

e 

12 

d 
10 
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In class exercise: find an optimal 
covering. 

b 

f d 

h 

g 

c 

10 

14 

11 
3 

7 8 
3 

sa=18,  sb=5,  sc=10,  sd=2,  
se=5,  sf=4,  sg=10,  sh=6 

a 

e 
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Covering a tree. 

Theorem: The algorithm produces an optimal 
solution. I.e., it uses the minimal possible 
number of centers. 

Proof: In class. 
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Partition Problems 

The partition problem:  
Input: a set of n numbers, A ={a1, a2,…, an}, 
such that aA a = 2B. 
Output: Is there a subset S’ of A such that 
aA’ a= B?  
Example: A={5, 5, 7,3, 1, 9, 10};   B=20 
A possible partition:  
A’={10,5,5},  A-A’={7,3,1,9} 
 
The Partition Problem is NP-hard. 
But what if the numbers are powers of 2? 
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Solving Partition for power-of 2 
Instances. 

Input: a set of n numbers, all are of the form 
2c, for some integer c, such that aA a = 2B. 
 
Output: Is there a subset S’ of A such that 
aA’ a= B?  
 
Example: A={32, 16, 16,8,4,2,2};   B=40 
A possible partition:  
A’={32,8},  A-A’={16,16,4,2,2} 
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Solving Partition for power-of 2 
Instances. 

An Algorithm: 
Sort the items such that a1≥ a2 ≥… ≥ an 

S1 = S2 = ;  
s1=s2=0; 
for i = 1 to n 
 if s1>s2 add ai to S2, s2+=ai 
 else add ai to S1, s1+=ai.  
if s1=s2 output “Partition exists”   
else output “No Partition”. 
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Solving Partition for power-of 2 
Instances. 

Example: 
64,32,16,16,4,2,1 – No partition 
64,32,16,16,4,2,1,1 – Partition. 
 
Just to make sure, the same method 

doesn’t work for arbitrary instances: 
32,17,16,16,8,8,1 – Partition (but not by 

the algorithm). 
 
Time Complexity: O(n log n) – for sorting 
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Solving Partition for Power-of 2 
Instances- Correctness Proof 

Theorem: There is a partition if and only if the 
algorithm finds one. 

Proof: 
1. Clearly, if the algorithm produces a partition, it 

exists.  
2. We prove that if the algorithm does not produce 

a partition, then a partition does not exist. 
 
Claim (simple property): Let A1, A2 be two sets of 

power-2 integers, such that each integer is  2v.  
Then aA1 a - aA2 a is a multiple of 2v. 
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Solving Partition for Power-of 2 
Instances- Correctness Proof 

Let aA a = 2B. 
Assume that the algorithm does not find a partition. 
Then at some point, one set has volume at least B. 
Consider the time when a set is about to become 
larger than B. At this time, some item, of size 2v, is 
considered, and the remaining volume in both bins is 
less than 2v. 

S1 

S2 

<2v 

<2v 

2v 

B 
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Solving Partition for Power-of 2 
Instances- Correctness Proof 

Assume that a partition exists. Then we can exchange 
subsets A1S1, A2S2 to fix the partition produced by 
the algorithm. Since all integers so far are  2v , The 
difference |A1-A2| is at least 2v (it is a non-zero multiple 
of 2v). Therefore at least one of the sets overflows.  
A contradiction!  B 

S1 

S2 

<2v 

<2v 

A1 

A2 

S1 

S2 

<2v 

<2v 

|A1-A2|≥2v 

|A1-A2|≥2v 
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Interval Graphs 

• An Interval Graph is the intersection graph 
of a set of intervals on the real line.  
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Interval Graphs 

1 

2 

3 

5 

7 

8 

6 

4 

Many resource- allocation 
problems can be modeled 
as theoretical interval 
graph problems.  

Some Problems that are NP-hard on general graphs can 
be solved efficiently on interval graphs. 

1 

2 3 

4 

8 
7 

6 

5 

Vertices: Intervals 

Edges: between 
intersecting intervals 
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Maximum Independent Set – Warm up 

• Problem: get your money’s worth out of a 
amusement park 
– Buy a wristband that lets you onto any ride 

– Lots of rides, each starting and ending at 
different times 

– Your goal: ride as many rides as possible 
• Another, alternative goal that we don’t solve here: 

maximize time spent on rides 

• Welcome to the activity selection problem 
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Activity-Selection 

• Formally: 
– Given a set S = {a1, a2,…,an} of n activities 
 si = start time of activity i 
 fi = finish time of activity i 
– Find max-size subset A of non-conflicting 

activities 
 

 Assume (w.l.o.g) that f1  f2  …  fn 

1 

2 

3 

5 

7 

8 

6 

4 9 
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Activity-Selection – A DP solution  

 

Try each possible activity k. 

Recursively find activities ending before k starts and 
after k ends. 

Turn this into a DP 

1 
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6 

4 9 
0 10 
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Activity-Selection – A DP solution  

Define: 

Sij = {ak S : fi  sk < fk  sj} 

The subset of activities that can start after ai 
finishes and finish before aj starts. 

Remark: we add ‘dummy activities’ a0 with f0=0 

And an+1 with sn+1= 

Examples: S2,9 = {4,6,7} ; S1,8 = {2,4} ; S0,10 = S 

1 

2 

3 

5 

7 

8 

6 

4 9 
0 10 
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Activity-Selection – A DP solution  

Define: 

C[i,j]= maximal number of activities from Sij that can 
be selected.  

   0                                   if Sij =  

   max {c[i,k] + c[k,j] + 1}   if Sij  
C[i,j] = 

akSij 

In words: if Sij is not empty, then for any activity k in 
Sij we check what is the best we can do if k is 
selected. 

Based on this formula we can write a DP algorithm 
whose time complexity is O(n3) 
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Greedy Choice Property 

• The activity selection problem exhibits the greedy 
choice property: 
– Locally optimal choice  globally optimal 

solution 

• Theorem: if S is an activity selection instance 
sorted by finish time, then there exists an optimal 
solution A  S such that {a1}  A 

• Proof: Given an optimal solution B that does not 
contain a1, replace the first activity in B with a1. 
The resulting solution is feasible (why?), it has the 
same number of activities as B, and it includes a1. 
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Activity Selection: 
A Greedy Algorithm 

• So actual algorithm is simple: 
– Sort the activities by finish time 
– Schedule the first activity 
– Then schedule the next activity in sorted list 

which starts after previous activity finishes 
– Repeat until no more activities 

• Time complexity: O(n log n) 
• Intuition is even more simple: 

– Always pick the earliest to finish ride available 
at the time. 
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Back to MIS in Interval Graphs 

Property: Any Interval graph has an interval 
representation in which all interval endpoints are 
distinct integers and this representation is 
computable in poly-time. 

Proof: Not Here 

Therefore: Activity selection = MIS: Given an 
instance of MIS in an interval graph: 
1. convert it into an interval representation 

2. solve the activity selection problem 

Note: An independent set in the graph is equivalent 
to a feasible set of activities. 

 



Generalization – graphs similar to 
trees 

• What does it mean for a graph to be similar to a 
tree? 

• Easier: what does it mean for a graph to be similar 
to a path? 

• Many possible answers. Here is one. 

65 



Path decomposition 

• We can build a path using the following operations: 

• Start with an empty graph 

• Introduce a vertex 

• introduce an edge 

• Forget a vertex 

66 

a b c d 

a b 

Introduce a 

Introduce b 

Introduce ab 

Forget a Introduce c 

Introduce bc 

b c 

Forget b Introduce d 

Introduce cd 

c d 



Path decomposition 

• This is called a path decomposition 

• Two decompositions of the same path 
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a b c d 

a b b c c d 

a b c d 



Pathwidth 

• The width of the decomposition is one less than 
the size of the largest bin. 
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Pathwidth 

• The pathwidth of a graph G is the minimum width 
of a path decomposition of G. 
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Tree decomposition 

• Same as path decomposition 
– Start with an empty graph 

– Introduce a vertex 

– introduce an edge 

– Forget a vertex 

• Also allow: 
– Join two bags together 
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Alternative Definition 

• Path decomposition P of G : a path of bags s.t.: 
– Every vertex of G is in some bag. 

– Every edge of G is in some bag. 

– For every vertex v of G, the bags containing v are 
connected in P. 
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Alternative Definition 

• Tree decomposition T of G : a tree of bags s.t.: 
– Every vertex of G is in some bag. 

– Every edge of G is in some bag. 

– For every vertex v of G, the bags containing v are 
connected in P. 
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Treewidth 

• The treewidth of G is the smallest width of a tree 
decomposition of G. 
 
 

• What is the treewidth of a tree? 

• What is the treewidth of a clique of size k? 
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Remember? 
Maximum Weighted IS on Trees. 

* 

* 

r 

* 

* = children(r) 

Mout[u]: The maximum weight of an IS that does 
    not include u in the subtree Tu. 
 

Min[u]: The maximum weight of an IS that    
   includes u in the subtree Tu. 
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Maximum Weighted IS on a graph 
with small treewidth 

For every bag B and every subset U of the vertices of B: 
 
M[B,U] = max. IS on the subgraph induced by all vertices 
in all bags in the TB that includes all vertices in U and 
does not include any vertex in B-U. 

B1 B2 B3 

B4 

B5 
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Maximum Weighted IS on a graph 
with small treewidth 

To compute M[B,U]: 
- For a leaf B: 

 M[B,U] = w(U) if U is indep. (-∞ otherwise) 
 

- For internal node B: 
- If U is not indep. In B,  -∞  

 

- 𝑤 𝑈 +  max 𝑌{𝑀 𝐶, 𝑌 − 𝑤(𝑈 ∩ 𝑌)}𝐶 𝑐ℎ𝑖𝑙𝑑 𝑜𝑓 𝐵  
 

where Y is a subset of C that agrees with U  
(i.e., Y∩B = U ∩ C) 
 
Running time: O(n2treewidth) 

 


