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Advanced Algorithms  
 
 
 

Approximation Algorithms 



Pset guidelines 

• The thinking phase.  
This is when you think about the problem and try to understand how 
to solve it. This phase terminates when you understand how to 
answer the problems in the problem set.  

During this phase, unless otherwise stated, you may:  
– consult any source 

– Work with 2-3 friends (encouraged!) 

– you may not take anything with you other 
than your understanding. 
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Pset guidelines 

• The Writing phase.  
This is when you write your own solution. 

- you must write your solution independently and on 
your own. 

- you may not use any written material when writing 
your solution.  
E.g.: 
- Do not look at a website when writing your solution,  

- Do not use notes from your discussion with friends, 

- Do not look at last year's solutions when writing your solution 
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Approximation Algorithms 

• The fact that a problem is NP-complete 
doesn’t mean that we cannot find an 
approximate solution efficiently. 

• We would like to have some guarantee on 
the performance – how far are we from 
the optimal? 

• What is the best we can hope for 
(assuming P  NP)? 
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Approximation Algorithms 
(minimization) 

• In minimization problems:  
 
Alg is r-approximation if  
Alg(I)  rOPT(I) for any instance I. 
 

• In maximization problems:  
 
Alg is r-approximation if  
Alg(I)  (1/r)OPT(I) for any instance I. 

 



6 

Approximating Vertex Cover 

VertexCover(G=(V,E)): 

while (E)  

1. select an arbitrary edge (u,v) 

2. add both u and v to the cover 

3. delete all edges incident to either u or v 

1. This is a legal cover (why?) 

2. This is a 2-approximation; its size is at most 2 times 
OPT (the size of a minimum vertex cover). 

Proof: Let c be the number of iterations. The VC has size 
2c. The edges selected in step 1 form a matching of 
size c (why?). Even if we only need to cover these 
edges we need at least c vertices.  
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Approximating Vertex Cover 

A more natural algorithm: select in each iteration a 
vertex with maximum degree, add it to the cover 
and remove all its adjacent edges. 

 
Looks promising! 
 
However, the approximation ratio of this approach 

is not bounded: for any r there exists a graph 
for which the VC chosen by the algorithm is r-
times larger than the optimal VC 

Proof: In Class 
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Example 2: Approximation Algorithm 
for Euclidean Traveling Salesman 

Problem 

The Problem:  Given n points in the plane (corresponding to 
locations of n cities) find a shortest traveling salesman 
tour – that passes exactly once in each of the points. 

For each pair of cities a,b, we are given the distance  
dist(a,b) from a to b. 

In other words, the input is a weighted complete graph. 

b 
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Euclidean Traveling Salesman Problem 

Distances in the plane satisfy the triangle inequality: 
dist(a,b)  dist(a,c) + dist(c,b) 

It means that direct routes are always shorter than 
indirect routes. 

 
 
 
 
For this version, we will see a simple 2-approximation. 
we will find in poly-time a tour whose length is at most 
twice the optimal. 

b 

a 
c 



10 

Approximating Euclidean TSP 

Note:  The weight of a minimum spanning tree is always less 
than the weight of the optimal tour.  

Why? because by removing any edge from the optimal tour 
we get a spanning tree.  

We will use this property to obtain an approximate solution. 

a 

b c 

f e 

d 

Assume that this is our 
MST. Consider a DFS of 
this tree, let it be 
(w.l.o.g)  
a-b-e-b-f-b-a-c-a-d-a 
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Approximating Euclidean TSP 

a 

b c 

f e 

d 

• The DFS tour defines a spanning 
cycle of the graph. Each edge of 
the MST is used exactly twice. 
Hence, the length of this tour is 
twice the weight of the MST.  
However, we might visit some 
cities more than once.  

a 

b c 

f e 

d 

• To get a legal solution we 
make shortcuts (move in the 
next step to the next 
unvisited vertex). This can 
only reduce the total length 
of the path.  
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Approximating Euclidean TSP 

The resulting algorithm: 

1. Find a minimum spanning tree of points 

2. Convert to tour by following DFS and including edge in 
opposite direction when DFS backtracks. 

3. Construct shortcuts by taking direct routes instead 
of backtracking. 

 

The length of the resulting tour is at most 2 times the 
optimal (why?) this is a 2-approximation algorithm. 

2. Visit the vertices in pre-order of DFS. 
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Why 2-approximation 

• The DFS tour defines a spanning cycle of the graph. 
Each edge of the MST is used exactly twice.  

• Can we turn MST into a cycle without taking every 
edge of the MST twice? 
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Euler Tours 

• Euler tours “draw without lifting your pen from 
the paper” 

• An Euler tour in a graph is a tour of the graph that 
visits each edge exactly once. An Euler cycle begins and 
ends at the same vertex. 

• Well known that an undirected graph contains an Euler 
cycle iff (1) it is connected and (2) each vertex has even 
degree. 

• Easy to construct Euler tours efficiently. 
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Why 2-approximation 

• The DFS tour defines a spanning cycle of the graph. 
Each edge of the MST is used exactly twice.  

• Can we turn MST into a cycle without taking every edge 
of the MST twice?  

• Taking each edge twice guarantees that the degree of 
every vertex is even, so there a spanning Euler cycle. 

• Why double all edges? To guarantee an Euler cycle, we 
only need to fix vertices whose degree is odd. 

• How many such vertices? 

• Just pair odd-degree MST vertices in the cheapest way. 
Hopefully, this weighs much less than OPT.  
How to pair? 

 

An even number! 
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Maximum Matchings 

• a matching in a graph G=(V,E): a set of 
edges M from E such that each vertex in 
V is incident to at most one edge of M. 

• a maximum matching in G: a matching of 
maximum cardinality 

• a minimum weight matching in a weighted 
graph: a maximum matching of minimum 
total weight. 

• Finding a minimum weight matching can 
be done in poly-time. 
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Why 2-approximation 

• The DFS tour defines a spanning cycle of the graph. 
Each edge of the MST is used exactly twice.  

• Can we construct a TSP cycle that does not use every 
edge of the MST twice? 

• Taking each edge twice guarantees that the degree of 
every vertex is even, so there a spanning Euler cycle. 

• Why double all edges? To guarantee an Euler cycle, we 
only need to fix vertices whose degree is odd. 

• How many such vertices? An even number! 

• Just pair odd-degree MST vertices in the lightest way. 
Hopefully, M weighs much less than optimal solution.  
How? Use a minimum weight maximum matching. 
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Christofides’ Algorithm 

1. Find an MST T. 

2. Find a minimum weight matching M in 
the subgraph induced by odd-degree 
vertices in T. 

3. Find an Eulerian tour of T U M.  
does one always exist? 

4. Make shortcuts. 
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Christofides, Example (1) 
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Christofides, Example (2) 
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Christofides, Example (3) 
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The MST + minimum 
weight matching of 
the odd-degree 
vertices. 

        Euler tour on 
these edges 

Christofides, Example (4) 
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Apply shortcuts. 

The final tour: 

Christofides, Example (5) 



24 

Christofides algorithm has a provable 
performance guarantee 

Theorem: Christofides algorithm finds a tour of 
length at most 3/2 optimal. 

Proof:  

• weight of MST  OPT 

• weight of matching  OPT/2 (next slide) 

• shortcuts don’t cost 
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Christophedes analysis (cont’) 

green vertices: odd-degree 
vertices in MST. (their # is 
even) 

Any Optimal TSP tour (dotted 
line) visits these vertices in 
some order. 

In red: Shortcuts of optimal 
TSP through these vertices. 

In bold red: The light half of 
the shortcuts. 
 

A minimum weight matching is not heavier than the 
bold shortcuts  ½ OPT. 
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Metric TSP  

• Saw a 3/2-approx. algorithm for Euclidean TSP. 
• Where did we use the fact that the instance is 

Euclidean? 
• Only in triangle inequality! 

 
• The algorithms we saw work for any metric, not just 

the Euclidean one. 
 
 



27 

Non-Metric TSP 

When did we use the assumption that for all a,b,c 
dist(a,b)  dist(a,c) + dist(c,b) ? 

Is it really needed? 

Yes – get ready for our first non-approximability 
result! 

Theorem: For any constant c, if there is a 
polynomial time c-approximation algorithm for 
TSP then P=NP.  
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Non-Metric TSP 

Proof: Reduction from the Hamiltonian cycle 
problem. Assume that TSP is c-approximable. 

There exists an algorithm A that gets a TSP 
instance G’ and returns a TS tour whose cost 
is at most c times the optimal. 

In particular, if G’ has a TS tour of cost n, A 
finds a tour of cost at most cn. 

We will use algorithm A to solve the Hamiltonian-
cycle decision problem. 
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Non-Metric TSP 
Given G=(V,E) and the question “Is there a HC in G” we 

construct a TSP instance G’,  such that if there is a 
HC in G then there is a TS tour of cost at most n in G’, 
and if there is no HC in G then the minimum TS tour 
has cost greater than cn. 

G’=(V,E’) is a clique. 
The weight of edges in E is 1 
The weight of any additional edge is c·n. 
• A HC in G corresponds to a TSP tour of weight n. 
• Any tour that uses one or more additional edges has 

cost > cn. 

G G’ 1 
40 

40 
1 

1 

1 
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Example 3: Bin Packing 

The input: A sequence of items (numbers), a1,a2,…,an, 
such that for all i, 0 < ai <1 

The goal: ‘pack’ the items in bins of size 1.      
Use as few bins as possible. 

Example: The input: 1/2, 1/3, 2/5, 1/6, 1/5, 2/5.  

Optimal packing in two bins: 

(1/2, 1/3, 1/6), (2/5, 2/5, 1/5). 

Legal packing in three bins: 

(1/2, 1/3), (2/5, 1/6, 1/5), (2/5)  
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Approximating Bin Packing 

Next-fit Algorithm:  
1. Open an active bin. 
2. For all i=1,2,…,n : 

– If possible, place ai in the current active bin; 
– Otherwise, open a new active bin and place ai in it. 

 
Example: The input: {0.3, 0.9, 0.2}.  
Next-fit packing (three bins): (0.3), (0.9), (0.2). 
 
Theorem: Next-fit is 2-approximation to BP 
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Approximating Bin Packing 

Theorem: Let h be the number of bins used by Next Fit.     
       h < 2OPT. 

Proof:  

* OPT ≥ iai (why?).  
 
** The sum of sizes of items in two consecutive bins is 
greater than 1 (otherwise, can put them together).  
 
Suppose h ≥ 2OPT. By **, the sum of items in the first 
2OPT bins is greater than OPT, contradicting *. 
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Approximating Bin Packing 

Is the analysis tight?  

Consider an instance with 4n items {1/2, 1/2n, 
1/2, 1/2n, …}. 

Next-fit will put any two consecutive items in a 
bin. 

Total number of bin used: 2n. 

An optimal packing in n+1 bins: n bins, each with 
1/2+1/2, one bin for the tiny items.  

The ratio: 2n/(n+1)  2 As n grows.  
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Approximating Bin Packing 

First fit algorithm: place the next item in the first 
open bin that can accommodate it. Open a new bin 
only if no open bin has enough room. 

Theorem: hff  1.7opt +2  (proof not here) 

 

First fit Decreasing: sort the items from largest to 
smallest. Run FF according to the resulting order.  

Theorem: hffd  1.222opt + 1 (proof not here) 
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Example 4: The Knapsack problem 

• You are about to go to a camp.   
• There are many items you want to pack.  
• You have one knapsack. The total weight you 
can carry is some fixed number W.  
• Every item in your list has some weight, wi, and 
some value (benefit), bi, that measures how 
much you really need it.  
• You need to pack the knapsack in a way that 
maximizes the total value of the packed items.  
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The Knapsack problem 
 

Item #    Weight    Value 
    1               1            8 
    2              3            6 
    3              5            5 
    4              4            6 

Max 
weight 
=8 

A possible packing: Items 2 and 3. Value: 11 

An optimal packing: Items 1,2,4. Value: 20 

 

The Knapsack problem is NP-hard. 

http://www.scouting.org.za/clipart/backpack.gif
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Greedy Algorithm for Knapsack 

1. Consider the items in order of non-increasing 
bi/wi ratio 

 b1/w1  b2/w2  …   bn/wn 
2. Add items to the knapsack as long as there is 

space. 
 
Time Complexity: 
O(n log n)  (for sorting) 
O(n) for packing loop.  O(n log n) 
 
What’s wrong with this algorithm? 
Finds optimal packing if dividing items were OK. 
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Greedy Algorithm for Knapsack 

Claim: The approximation ratio of Greedy is not 
bounded. 

Proof: To get ratio c, consider the following 
instance: 

There are two items:   
     b1= 2, w1= 1  
     b2= 2c, w2= 2c  
  
Greedy packs only the first item, value = 2. 
Optimal: Pack the second item, value=2c 
Ratio = c. 
 

The knapsack has 
volume W = 2c 
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Improved Algorithm for Knapsack 

Take the maximum of Greedy and the largest value 
that fits by itself (the most profitable item). 

 
Theorem: The above algorithm is a 2-approximation. 
Proof: Suppose no weight of a single item exceeds W 

(these items can be removed in preprocessing), 
and that b1/w1  b2/w2  …   bn/wn 

Let B be the largest value, and let G be the value computed 
by the greedy algorithm. 

Let j be the first item that the greedy algorithm rejects 
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Improved Algorithm for Knapsack 

ALG = max(B, G)  (B + G)/2 
 
G =                       (item j is the first to be rejected) 
 
 
B  bj                            (B is the most profitable) 
 
 
G+B               >   OPT 
 
 
 ALG > OPT/2 




1-j

1i
ib




j

1i
ib

Because the first j 
items have the largest 
‘profit density’ 
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Is Knapsack really hard? 

• The problem is NP-hard 

• What if values were specified in unary? 
(equivalently, what if values are bounded by a 
polynomial in n, the number of items) 

• We’ll see we can solve the problem exactly!  

• Such problems are called weakly NP-hard. 

• A problem that is NP-hard even when all 
numbers are written in unary is called strongly 
NP-hard 
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Pseudo-polynomial algorithm for 
Knapsack 

• Define A[i,p] = minimum weight of a subset of 
items 1,…,i whose total value is exactly p. 
(A[i,p] = ∞ if no such subset) 
i=1,…,n ; p=1, …, nB 
 

• Dynamic programming solution: 
– A[1,p] is easy to compute for all p. 

– A[i+1,p] = minimum of A[i,p] and  wi+1 + A[i,p-bi+1] 

• OPT = maximum p for which A[n,p] ≤ W 

• Running time? O(n2B) - poly(n) if B is poly(n) 
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Better than a const-factor  

• So far we saw only approximation algorithms 
with a constant approximation ratio. 

• For some problems we can get closer to the 
optimum. In fact – as close as we wish (but pay 
in running time). 

• Welcome to APPROXIMATION SCHEMES 

       

        
 



45 

PTAS –  
Polynomial Time Approximation Schemes 

A polynomial time approximation scheme is an algorithm 
which takes as input an additional parameter, .  
For any fixed , it runs in polynomial time (in n, the size 
of the instance), and produces a solution whose value is  
at least (1-)OPT for maximization problems  
(at most (1+)OPT for minimization problems). 
 
Note: The dependency of the running time on  is 
arbitrary (e.g. n1/ is okay, since  is considered a fixed 
constant) 
 
This gives a clear trade-off between running time 
and quality of approximation.  
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PTAS for Knapsack 

• OPT ≥ B.  

• There are at most n items in solution 

• Therefore, an optimal solution of an instance in 
which each value is off by at most B/n, will 
deviate from OPT by at most B ≤ OPT. 

 

Let K = B/n 

Let bi* = ⌊bi/K⌋ 

Return optimal solution of b* instance 
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PTAS for Knapsack - Analysis 

• b* are integers bounded by ⌊B/K⌋ = ⌊n/⌋ 

• So the running time is O(n3/). 

 

• For any item i, Kbi* = K⌊bi/K⌋ ≥ K(bi/K -1) = bi – K 

• So for any subset S,  
K 𝑏𝑖

∗
𝑖∈𝑆 ≥  𝑏𝑖 − 𝐾𝑖∈𝑆 ≥  𝑏𝑖 − 𝑛𝐾𝑖∈𝑆  
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PTAS for Knapsack - Analysis 

• K 𝑏𝑖
∗

𝑖∈𝑆 ≥  𝑏𝑖 − 𝐾𝑖∈𝑆 ≥  𝑏𝑖 − 𝑛𝐾𝑖∈𝑆  

• Consider the optimal subset O and the subset 
O* returned by the algorithm 

  𝑏𝑖𝑖∈𝑂∗ ≥ K 𝑏𝑖
∗

𝑖∈𝑂∗             since bi ≥ Kbi* 

                 ≥ 𝐾  𝑏𝑖
∗

𝑖∈𝑂              since O* is optimal for bi* 

             ≥  𝑏𝑖 − 𝑛𝐾𝑖∈𝑂         by ineq. at top 

             = 𝑂𝑃𝑇 − 𝑛𝐾 

                 ≥ 𝑂𝑃𝑇 − 𝑛
𝜖𝐵

𝑛
≥ 𝑂𝑃𝑇 − 𝑛

𝜖𝑂𝑃𝑇

𝑛
= 𝑂𝑃𝑇(1 − 𝜖) 

 

 



Problems that do not admit a PTAS  
the PCP Theorem 

 

• MAX-3SAT: Given a 3CNF formula, determine the maximum 
number of clauses that can be satisfied simultaneously. 

• There is a 7/8-approx. for MAX-3SAT. Can we do better? 
 

• Theorem [PCP theorem]: 
There exists a polynomial-time algorithm that, given a 3CNF 
formula x, outputs a 3CNF formula f(x) such that: 
 

x satisfiable                   f(x) satisfiable 

x not satisfiable          no assignment satisfies more  
                                         than 90% of the clauses of f(x) 
 

• Proof in advanced complexity classes 

 



Problems that do not admit a PTAS  
the PCP Theorem 

• Theorem [PCP theorem]: 
There exists a polynomial-time algorithm that, given a 3CNF 
formula x, outputs a 3CNF formula f(x) such that: 
 

x satisfiable                   f(x) satisfiable 

x not satisfieable          no assignment satisfies more  
                                         than 90% of the clauses of f(x) 
 

• Consequently, unless P = NP, there is no 0.9-approximation 
algorithm  for MAX-3SAT (why?) 

• Unless P = NP, no PTAS for MAX-3SAT 

• Basis for many hardness-of-approximation results 

 
 


