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Advanced Algorithms  
 
 
 

What is Efficient???? 
NP-Hardness, 

Coping with NP-hardness. 
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NP-Completeness Theory 

I can’t You’re fired 
Solve it in 

poly- time 

 I. 

II. 

Solve it in 

poly- time 

 

No one knows to do 

it. It is NP-hard! 
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NP-Completeness Theory 

• Explains why some problems are hard and 
probably not solvable in polynomial time. 

• Invented in the early 1970s (Karp, Cook, 
Levin). 

• Talks about the problems, independent of 
the implementation, the machine, or the 
algorithm. 
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Polynomial-Time Algorithms 

• Some problems are intractable:  
as they grow large, we are unable to solve 
them in reasonable time. 

• What constitutes reasonable time? 
Standard working definition: polynomial 
time 
– On an input of size n the worst-case running 

time is O(nk) for some constant k 
– Polynomial time: O(n2), O(n3), O(1), O(n log n)  
– Not in polynomial time: O(2n), O(nn), O(n!), 

O(nloglog n) 
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Polynomial-Time Algorithms 

• We define P to be the class of problems 
solvable in polynomial time. 
 

• Are all problems solvable in polynomial 
time? 
– No: Turing’s “Halting Problem” is not solvable by 

any computer, no matter how much time is given 
– Such problems are clearly intractable, not in P 



6 

So some problems cannot be solved 
at all 

All problems                                      Solvable  
problems  

We will explore the ‘solvable area’, and will 
distinguish between problems that can be 
solved efficiently and those that cannot be 
solved efficiently. 
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NP-Complete Problems 

• The NP-Complete problems are an 
interesting class of solvable problems 
whose status is unknown  
– No polynomial-time algorithm has been 

discovered for any NP-Complete problem. 

– No super-polynomial lower bound has been 
proved for any NP-Complete problem, either. 

• We call this the P = NP question 
– The biggest open problem in CS. 
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An NP-Complete Problem: 
Hamiltonian Cycle 

• An example of an NP-Complete problem: 
– A hamiltonian cycle in an undirected graph is a 

simple cycle that visits every vertex. 

– The hamiltonian-cycle problem: given a graph G, 
does it have a hamiltonian cycle? 

– A naïve algorithm for solving the hamiltonian-
cycle problem: check all paths.   

– Running time?  Exponential in size of G. 

 

v 
 
a HC 

Not a 

HC 
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P and NP 

– P = problems that can be solved in polynomial 
time 

– NP = problems for which a solution can be 
verified in polynomial time  = problems that 
can be solved in polynomial time by a non-
deterministic machine. 

– Unknown whether P = NP (most suspect not) 

• Hamiltonian-cycle problem is in NP: 
– Don’t know how to solve in polynomial time. 

– Easy to verify solution in polynomial time. 
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NP-Complete Problems 

• NP-Complete problems are the “hardest” 
problems in NP: 
– If any one NP-Complete problem can be solved 

in polynomial time… 
– …then every  problem in NP can be solved in 

polynomial time (which would show P = NP) 
 

– Thus: solve hamiltonian-cycle in O(n100) time, 
you’ve proved that P = NP.  Retire rich & 
famous. 
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NP Problems 

P 

NP-Complete NP 

For sure P NP 

But maybe P=NP ?? NP, P, NP-

Complete 
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Why Prove NP-completeness? 

• Though nobody has proven that P != NP, 
if you prove a problem is NP-Complete, 
most people accept that it is probably 
intractable. 

• Therefore it can be important to prove 
that a problem is NP-Complete 
– Don’t bother coming up with an efficient 

algorithm. 
– Can instead work on approximation 

algorithms. 
– Or try other ways to circumvent the problem 
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NP-Hard and NP-Complete Problems 

• important concept - reduction 
• P is polynomial-time reducible to Q (P p Q) 

if  given a black box that solves Q in 
polynomial time, it is possible solve P in 
polynomial time. 

• P is NP-complete if:  
– PNP and  
– Every problem R in NP is reducible to P  

R p P,  R  NP  
 

• Exercise: prove: 
If P p Q and P is NP-hard then Q is NP-
hard. 
 

NP-
Hard 
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Using Reductions 

• Given one NP-Complete problem, we can 
prove that many interesting problems are 
NP-Complete. This includes: 
– Graph coloring  

– Hamiltonian path/cycle 

– Knapsack problem 

– Traveling salesman 

– Job scheduling  

– Many, many, many more 
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Graph Coloring 

A problem that has lots of applications: 

- Resource Allocation  

- VLSI design 

- Parallel computing 

 
Definition: A coloring of a graph G(V,E) is a 
function c:V N such that for any edge 
(u,v)  E , c(v) c(u) 
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Graph Coloring 

Problem: Given a graph G, color 
G using the minimal number of 
colors. 

Example: coloring with 4 colors. 
2 

1 

4 

3 

3 

1 

2 
1 

1 

2 

3 

1 

Example: same graph, 3 colors. 

Definition: The chromatic number 
of a graph (denoted (G)) is the 
minimal number of colors needed 
to color G. 
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Optimization v.s. Decision 

To simplify things, we will worry only about decision 
problems with a yes/no answer 

– Many problems are optimization/search 
problems, but we can often re-cast them as 
decision problems 

Example: Graph coloring. 

• Optimization problem: what is the minimal number 
of colors needed to color G?  

• Search problem: Can G be colored using k colors? 
If so, find a legal k-coloring.  

• Decision problem: Can G be colored using k colors? 
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Proving NP-Completeness 

• How do we prove a problem P is NP-Complete? 
– Pick a known NP-Complete problem A 
– Reduce A to B (show A p B, use B to solve A) 

• Describe a transformation that maps instances 
of A to instances of B, s.t. “yes” for A ⇔ “yes” 
for B 

• Prove the transformation works 
• Prove it runs in polynomial time 

– and yeah, prove B  NP 

• We need at least one problem for which NP-
hardness is known. Once we have one, we can start 
reducing it to many problem. 



19 

The SAT Problem 

• The first problems to be proved NP-
Complete was satisfiability (SAT): 
– Given a Boolean expression on n variables, can 

we assign values such that the expression is 
TRUE? 

– Ex: ((x1  x2)  ((x1  x3)  x4)) x2 
– The Cook-Levin Theorem: SAT is NP-Complete 

• Note: Argue from first principles, not 
reduction 

• Proof: not here 
(any computation can be described using SAT 
expressions) 
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Conjunctive Normal Form 

• Even if the form of the Boolean expression is 
simplified, the problem may be NP-Complete 
– Literal: an occurrence of a Boolean or its negation 

– A Boolean formula is in conjunctive normal form, or 
CNF, if it is an AND of clauses, each of which is an 
OR of literals 

• Ex: (x1  x2)  (x1  x3  x4)  (x5) 

3-CNF: each clause has exactly 3 distinct literals 

– Ex: (x1  x2  x3)  (x1  x3  x4)  (x5  x3  x4) 

– Note: true if at least one literal in each clause is true 
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The 3-CNF Problem 

• Theorem: Satisfiability of Boolean 
formulas in 3-CNF form (the 3-CNF 
Problem) is NP-Complete 
– Proof: not here 

• The reason we care about the 3-CNF 
problem is that it is relatively easy to 
reduce to others.  
– Thus, knowing that 3-CNF is NP-Complete we 

can prove many seemingly unrelated problems  
are NP-Complete. 

• Remark: 2-CNF is in P 
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The k-clique Problem 

• A clique in a graph G is a subset of vertices fully 
connected to each other, i.e. a complete subgraph 
of G. 

• The clique problem: how large is the maximum-size 
clique in a graph? 

• Can we turn this into a decision problem? 
• A: Yes, we call this the k-clique problem 
• Is the k-clique problem within NP? 
   Yes: Given a set of vertices, it is easy to verify 

that it is a clique of size k.   
 

4-clique: 
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3-CNF p Clique 

• How can we prove that k-clique is NP-hard? 
• We need to show that if we can solve k-

clique then we can solve a problem which is 
known to be NP-hard.  

• We will do it for 3-CNF: 
• Given a 3-CNF formula, we will transform it 

to an instance of k-clique (a graph and a 
number k), for which a k-clique exists iff 
the 3-CNF formula is satisfiable. 
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3-CNF p Clique 

• The reduction: 
– Let F = C1  C2  …  Ck be a 3-CNF 

formula with k clauses, each of which 
has 3 distinct literals. 

– For each clause, put three vertices in 
the graph, one for each literal. 

– Put an edge between two vertices if they 
are in different triples and their literals 
are consistent (i.e., not each other’s 
negation). 
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Construction by Example 

z)yx(z)yx(z)y(xF 

-x y z 

-z z 

y 

x 

-y 

-x 

G 

clause literal 

An edge means ‘these two literals do not 
contradict each other’. 
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Construction by Example 

z)yx(z)yx(z)y(xF 

-x y z 

-z z 

y 

x 

-y 

-x 

1z0,y1,x 

G 

Any clique of size k must include exactly one literal 
from each clause. 
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General Construction 


k

1i

3

1j
ijaF

 

 }x,x,,x,{xa nn11ij  where 

E)(V,G  where 

3}j1k,i1:{aV ij 

clausesofnumbertheisk

literals 

E = {{aij, ai’,j’}: ii’ and aij  ai’j’} 
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The Reduction Argument 

• We need to show 
– F satisfiable implies G has a clique of 

size k. 
• Given a satisfying assignment for F, for each 

clause pick a literal that is satisfied. Those 
literals in the graph G form a k-clique. 

– G has a clique of size k implies F is 
satisfiable. 
• Given a k-clique in G, assign TRUE to each 

literal in the clique. This yields a satisfying 
assignment to F (why?). 
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Clique to Assignment 

)()()( zyxzyxzyxF 

-x y z 

-z z 

y 

x 

-y 

-x 

1,0  zy

G 
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The Vertex Cover Problem 

• A vertex cover for a graph G is a set of 
vertices incident to every edge in G 

• The vertex cover problem: what is the 
minimum size vertex cover in G? 

• Restated as a decision problem: does a 
vertex cover of size k exist in G? 

• Theorem: vertex cover is NP-Complete 
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Vertex Cover (Example) 

A vertex cover of size 5 A vertex cover of size 4 
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Vertex Cover is NP-Complete 

• First, show vertex cover in NP (How?) 

• Next, reduce k-clique to vertex cover: 
– The complement GC of a graph G contains exactly 

those edges not in G 

– Given (G,k), in input for the clique problem 

– Compute GC in polynomial time 

G Gc 
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Clique p Vertex Cover 

Claim 1: If G has a clique of size k, then GC 
has a vertex cover of size |V| - k  

Claim 2: If GC has a vertex cover of size |V|-
k, then G has a clique of size k 

Proofs: easy (Complexity course) 

 

G Gc 
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The Traveling Salesman Problem: 

• A well-known optimization problem: 
– Optimization variant: a salesman must travel to n 

cities, visiting each city exactly once and finishing 
where he begins.  How to minimize travel time? 

– Model as complete graph with cost c(i,j) to go from 
city i to city j 

• How would we turn this into a decision 
problem? 
– Answer: ask if there exists a path with cost < k  
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The Traveling Salesman 
Problem: 

• Asides:  
– TSPs (and variants) have enormous 

practical importance 
• E.g., for shipping and freighting companies 

• Lots of research into good approximation 
algorithms 

– Made famous as a DNA computing 
problem 
• Adleman used DNA to solve a 7-city instance 

[1994] 
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Other NP-Complete Problems 

• Partition: Given a set of integers, 
whose total sum is 2S, can we 
partition them into two sets, each 
adds up to S?  

• Subset-sum: Given a set of integers, 
does there exist a subset that adds 
up to some desired targetT ? 
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Independent Set 

• Input: A graph G=(V,E), k 

• Problem: Is there a subset S of V of size at least 
k such that no pair of vertices in S has an edge 
between them. 

• Maximum independent set problem: find a 
maximum size independent set of vertices. 

Maximal 
independent set 

Maximum 
independent set 
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Steiner Tree 

• Input: A graph G=(V,E), a subset T of the 
vertices V, and a bound B 

• Problem: Is there a tree connecting all the 
vertices of T of total weight at most B? 

   
• Application: Network design and wiring 

layout. 
• The case T=V is polynomially solvable (this 

is the MST problem). 
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Exact Cover 

• Input: A set U= {u1,u2,…un} and subsets 

 

 
• Output: Determine if there is a set of 

disjoint sets that union to U, that is, a set 
X such that: 
 
 
                                                              ∅ 

US,,S,S m21 

US

SSimplies ji andXji,

m},{1,2,X

Xi
i

ji












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Example of Exact Cover 

i}h,g,f,e,d,c,b,{a,U

i}g,{d,i},h,{f,i},h,{e,h},f,{b,d},{b,g},f,{a,e},c,{a,

i}g,{d,h},f,{b,e},c,{a,

Exact Cover: 
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Bin Packing 

• Input: A set of numbers                              
and numbers B (capacity) and K (number of 
bins).  

• Output: Determine if A can be partitioned 
into S1, S2,…, SK such that for all i 

}a,,a,{aA m21 

B.a
iSj

j 

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Bin Packing Example 

• A = {2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5} 

• B = 10, K = 4 

• Bin Packing: 

– 3, 3, 4 

– 2, 3, 5 

– 5, 5 

– 2, 4, 4 

 
Perfect fit! 
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Coping with NP-hardness 

• O.K,  I know that a problem is NP-
hard. 
What should I do next? 

• First, stop looking for an efficient 
algorithm. 

• Next, you might insist on finding an 
optimal solution (knowing that this 
might take a lot of time), or you can 
look for solutions that are 
satisfactory but not optimal.  
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Techniques for Dealing with  
NP-complete Problems 

• Exactly 
– backtracking, branch and bound, 

dynamic programming. 

• Approximately 
– approximation algorithms with 

performance guarantees. 
– heuristics with good average results. 

• Change the problem (impose more 
structure on instances / solutions) 
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Advanced Algorithms  
 
 
 

Approximation Algorithms 
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Approximation Algorithms 

• The fact that a problem is NP-complete 
doesn’t mean that we cannot find an 
approximate solution efficiently. 

• We would like to have some guarantee 
on the performance – how far are we 
from the optimal? 

• What is the best we can hope for 
(assuming P  NP)? 
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Approximation Algorithms with 
Additive Error. 

• For few NP-hard problems, there are 
approximation algorithms that produce an 
almost optimal solution – one that is far 
only by an additive constant from the 
optimal.  

• Minimization problems: Alg(I)  opt(I) + c 

• Maximization problems: Alg(I)  opt(I) – c 

• Example: Edge coloring. 
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Edge Coloring 

• An Edge-coloring of a graph G=(V,E) is an assignment, 
c, of integers to the edges such that if e1 and e2 
share an endpoint then c(e1)  c(e2).  
 
 
 

• Let  be the maximal degree of some vertex in G. 
• It is known that for any graph the minimal number of 

colors required to edge-color G is  or +1.  
• It is NP-hard to distinguish between these two cases. 
• There exists a poly-time algorithm that colors any 

graph G with at most +1 colors. 
• For this algorithm Alg(I)  OPT(I) + 1. 
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r-approximation Algorithms 

• Approximations with guaranteed 
additive error are rare. 

• All approximation algs we are going to 
see are factor-r approximations: 
– Vertex cover 
– Traveling salesman 
– Bin packing 
– Knapsack 

• An algorithm Alg is an r-approximation 
if, for any input, the solution that Alg 
outputs is within factor r from the 
optimal. (r  1) 



50 

Approximation Algorithms 
(minimization) 

• In minimization problems: Alg is r-approximation if 
Alg(I)  rOPT(I) for any instance I. 

Example 1: Traveling Salesman is a minimization 
problem (the goal is to find a tour with minimal 
cost). If we have an algorithm, A, that finds, for 
any graph, a tour whose cost is at most 5 times 
the optimal, then A is 5-approximation to TSP. 

Example 2: Minimum Spanning Tree is a minimization 
problem (the goal is to find an ST with minimal 
cost). The optimal algorithms we know are 1-
approximate. 
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Approximation Algorithms 
(maximization) 

• In maximization problems: Alg is r-approximation if 
Alg(I)  (1/r)opt(I) for any instance I. 

Example: Maximum clique is a maximization problem 
(the goal is to find a clique with maximum size). If 
we have an algorithm, A, that finds, for any graph, a 
clique whose size is at least (log n)2/n  times the 
optimal, then A is n/(log n)2-approximation to clique. 

(remark: best known ratio for clique is n (log log n)2/(log n)3  

) 
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Reminder: Matching 
 (to be used soon) 

• Definition: a matching in a graph G is a 
subset M of E such that the degree of 
each vertex in G’=(V’,M) is 0 or 1.  

• Example: M={(a,d),(b,e)} is a matching. 

                 S={(a,d), (c,d)} is not a matching. 

b 

e 
d 

c 

a 
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Example 1: Vertex Cover 

• Given G=(V,E), find a minimum sized 
subset W of V such that for every (v,u) in 
E, at least one of v or u is in W. 

• Vertex Cover is NP-Hard. 

• We are willing to end up with a vertex 
cover W which is not of minimum size. But, 
we don’t want it to be too large and we 
want to be able to find it in polynomial 
time. 
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Approximating Vertex Cover 

VertexCover(G=(V,E)): 

while (E)  

1. select an arbitrary edge (u,v) 

2. add both u and v to the cover 

3. delete all edges incident to either u or v 

1. This is a legal cover (why?) 

2. This is a 2-approximation; its size is at most 2 
times OPT (the size of a minimum vertex cover). 

Proof: Let c be the number of iterations. The VC has 
size 2c. The edges selected in step 1 form a 
matching of size c (why?). Even if we only need to 
cover these edges we need at least c vertices.  
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Approximating Vertex Cover 

A more natural algorithm: select in each 
iteration a vertex with maximum degree, add 
it to the cover and remove all its adjacent 
edges. 

 
Looks promising! 
 
However, the approximation ratio of this 

approach is not bounded: for any r there 
exists a graph for which the VC chosen by 
the algorithm is r-times larger than the 
optimal VC 

Proof: In Class 


