
1

Advanced Algorithms

What is Efficient????
NP-Hardness,

Coping with NP-hardness.

2

NP-Completeness Theory

I can’t You’re fired
Solve it in

poly- time

 I.

II.

Solve it in

poly- time

No one knows to do

it. It is NP-hard!

http://cph.ing.dk/bagsiden/images/dilbert.gif
http://images.google.com/imgres?imgurl=www.wideopenwest.com/~awesley5155/img/dilbert.gif&imgrefurl=http://www.wideopenwest.com/~awesley5155/&h=191&w=196&prev=/images?q=dilbert&start=120&svnum=10&hl=en&lr=&ie=UTF-8&oe=UTF-8&sa=N
http://images.google.com/imgres?imgurl=www.isi.uu.nl/Education/ICT99/Images/dilbert.jpg&imgrefurl=http://www.isi.uu.nl/Education/ICT99/windows_text.htm&h=206&w=227&prev=/images?q=dilbert&start=40&svnum=10&hl=en&lr=&ie=UTF-8&oe=UTF-8&sa=N
http://images.google.com/imgres?imgurl=www.isi.uu.nl/Education/ICT99/Images/dilbert.jpg&imgrefurl=http://www.isi.uu.nl/Education/ICT99/windows_text.htm&h=206&w=227&prev=/images?q=dilbert&start=40&svnum=10&hl=en&lr=&ie=UTF-8&oe=UTF-8&sa=N
http://images.google.com/imgres?imgurl=www.imm.dtu.dk/~mzp/dilbert.gif&imgrefurl=http://www.imm.dtu.dk/~mzp/&h=140&w=140&prev=/images?q=dilbert&start=160&svnum=10&hl=en&lr=&ie=UTF-8&oe=UTF-8&sa=N

3

NP-Completeness Theory

• Explains why some problems are hard and
probably not solvable in polynomial time.

• Invented in the early 1970s (Karp, Cook,
Levin).

• Talks about the problems, independent of
the implementation, the machine, or the
algorithm.

4

Polynomial-Time Algorithms

• Some problems are intractable:
as they grow large, we are unable to solve
them in reasonable time.

• What constitutes reasonable time?
Standard working definition: polynomial
time
– On an input of size n the worst-case running

time is O(nk) for some constant k
– Polynomial time: O(n2), O(n3), O(1), O(n log n)
– Not in polynomial time: O(2n), O(nn), O(n!),

O(nloglog n)

5

Polynomial-Time Algorithms

• We define P to be the class of problems
solvable in polynomial time.

• Are all problems solvable in polynomial
time?
– No: Turing’s “Halting Problem” is not solvable by

any computer, no matter how much time is given
– Such problems are clearly intractable, not in P

6

So some problems cannot be solved
at all

All problems Solvable
problems

We will explore the ‘solvable area’, and will
distinguish between problems that can be
solved efficiently and those that cannot be
solved efficiently.

7

NP-Complete Problems

• The NP-Complete problems are an
interesting class of solvable problems
whose status is unknown
– No polynomial-time algorithm has been

discovered for any NP-Complete problem.

– No super-polynomial lower bound has been
proved for any NP-Complete problem, either.

• We call this the P = NP question
– The biggest open problem in CS.

8

An NP-Complete Problem:
Hamiltonian Cycle

• An example of an NP-Complete problem:
– A hamiltonian cycle in an undirected graph is a

simple cycle that visits every vertex.

– The hamiltonian-cycle problem: given a graph G,
does it have a hamiltonian cycle?

– A naïve algorithm for solving the hamiltonian-
cycle problem: check all paths.

– Running time? Exponential in size of G.

v

a HC

Not a

HC

9

P and NP

– P = problems that can be solved in polynomial
time

– NP = problems for which a solution can be
verified in polynomial time = problems that
can be solved in polynomial time by a non-
deterministic machine.

– Unknown whether P = NP (most suspect not)

• Hamiltonian-cycle problem is in NP:
– Don’t know how to solve in polynomial time.

– Easy to verify solution in polynomial time.

10

NP-Complete Problems

• NP-Complete problems are the “hardest”
problems in NP:
– If any one NP-Complete problem can be solved

in polynomial time…
– …then every problem in NP can be solved in

polynomial time (which would show P = NP)

– Thus: solve hamiltonian-cycle in O(n100) time,
you’ve proved that P = NP. Retire rich &
famous.

11

NP Problems

P

NP-Complete NP

For sure P NP

But maybe P=NP ?? NP, P, NP-

Complete

12

Why Prove NP-completeness?

• Though nobody has proven that P != NP,
if you prove a problem is NP-Complete,
most people accept that it is probably
intractable.

• Therefore it can be important to prove
that a problem is NP-Complete
– Don’t bother coming up with an efficient

algorithm.
– Can instead work on approximation

algorithms.
– Or try other ways to circumvent the problem

13

NP-Hard and NP-Complete Problems

• important concept - reduction
• P is polynomial-time reducible to Q (P p Q)

if given a black box that solves Q in
polynomial time, it is possible solve P in
polynomial time.

• P is NP-complete if:
– PNP and
– Every problem R in NP is reducible to P

R p P,  R  NP

• Exercise: prove:
If P p Q and P is NP-hard then Q is NP-
hard.

NP-
Hard

14

Using Reductions

• Given one NP-Complete problem, we can
prove that many interesting problems are
NP-Complete. This includes:
– Graph coloring

– Hamiltonian path/cycle

– Knapsack problem

– Traveling salesman

– Job scheduling

– Many, many, many more

15

Graph Coloring

A problem that has lots of applications:

- Resource Allocation

- VLSI design

- Parallel computing

Definition: A coloring of a graph G(V,E) is a
function c:V N such that for any edge
(u,v)  E , c(v) c(u)

16

Graph Coloring

Problem: Given a graph G, color
G using the minimal number of
colors.

Example: coloring with 4 colors.
2

1

4

3

3

1

2
1

1

2

3

1

Example: same graph, 3 colors.

Definition: The chromatic number
of a graph (denoted (G)) is the
minimal number of colors needed
to color G.

17

Optimization v.s. Decision

To simplify things, we will worry only about decision
problems with a yes/no answer

– Many problems are optimization/search
problems, but we can often re-cast them as
decision problems

Example: Graph coloring.

• Optimization problem: what is the minimal number
of colors needed to color G?

• Search problem: Can G be colored using k colors?
If so, find a legal k-coloring.

• Decision problem: Can G be colored using k colors?

18

Proving NP-Completeness

• How do we prove a problem P is NP-Complete?
– Pick a known NP-Complete problem A
– Reduce A to B (show A p B, use B to solve A)

• Describe a transformation that maps instances
of A to instances of B, s.t. “yes” for A ⇔ “yes”
for B

• Prove the transformation works
• Prove it runs in polynomial time

– and yeah, prove B  NP

• We need at least one problem for which NP-
hardness is known. Once we have one, we can start
reducing it to many problem.

19

The SAT Problem

• The first problems to be proved NP-
Complete was satisfiability (SAT):
– Given a Boolean expression on n variables, can

we assign values such that the expression is
TRUE?

– Ex: ((x1  x2)  ((x1  x3)  x4)) x2
– The Cook-Levin Theorem: SAT is NP-Complete

• Note: Argue from first principles, not
reduction

• Proof: not here
(any computation can be described using SAT
expressions)

20

Conjunctive Normal Form

• Even if the form of the Boolean expression is
simplified, the problem may be NP-Complete
– Literal: an occurrence of a Boolean or its negation

– A Boolean formula is in conjunctive normal form, or
CNF, if it is an AND of clauses, each of which is an
OR of literals

• Ex: (x1  x2)  (x1  x3  x4)  (x5)

3-CNF: each clause has exactly 3 distinct literals

– Ex: (x1  x2  x3)  (x1  x3  x4)  (x5  x3  x4)

– Note: true if at least one literal in each clause is true

21

The 3-CNF Problem

• Theorem: Satisfiability of Boolean
formulas in 3-CNF form (the 3-CNF
Problem) is NP-Complete
– Proof: not here

• The reason we care about the 3-CNF
problem is that it is relatively easy to
reduce to others.
– Thus, knowing that 3-CNF is NP-Complete we

can prove many seemingly unrelated problems
are NP-Complete.

• Remark: 2-CNF is in P

22

The k-clique Problem

• A clique in a graph G is a subset of vertices fully
connected to each other, i.e. a complete subgraph
of G.

• The clique problem: how large is the maximum-size
clique in a graph?

• Can we turn this into a decision problem?
• A: Yes, we call this the k-clique problem
• Is the k-clique problem within NP?
 Yes: Given a set of vertices, it is easy to verify

that it is a clique of size k.

4-clique:

23

3-CNF p Clique

• How can we prove that k-clique is NP-hard?
• We need to show that if we can solve k-

clique then we can solve a problem which is
known to be NP-hard.

• We will do it for 3-CNF:
• Given a 3-CNF formula, we will transform it

to an instance of k-clique (a graph and a
number k), for which a k-clique exists iff
the 3-CNF formula is satisfiable.

24

3-CNF p Clique

• The reduction:
– Let F = C1  C2  …  Ck be a 3-CNF

formula with k clauses, each of which
has 3 distinct literals.

– For each clause, put three vertices in
the graph, one for each literal.

– Put an edge between two vertices if they
are in different triples and their literals
are consistent (i.e., not each other’s
negation).

25

Construction by Example

z)yx(z)yx(z)y(xF 

-x y z

-z z

y

x

-y

-x

G

clause literal

An edge means ‘these two literals do not
contradict each other’.

26

Construction by Example

z)yx(z)yx(z)y(xF 

-x y z

-z z

y

x

-y

-x

1z0,y1,x 

G

Any clique of size k must include exactly one literal
from each clause.

27

General Construction


k

1i

3

1j
ijaF

 

 }x,x,,x,{xa nn11ij  where

E)(V,G  where

3}j1k,i1:{aV ij 

clausesofnumbertheisk

literals

E = {{aij, ai’,j’}: ii’ and aij  ai’j’}

28

The Reduction Argument

• We need to show
– F satisfiable implies G has a clique of

size k.
• Given a satisfying assignment for F, for each

clause pick a literal that is satisfied. Those
literals in the graph G form a k-clique.

– G has a clique of size k implies F is
satisfiable.
• Given a k-clique in G, assign TRUE to each

literal in the clique. This yields a satisfying
assignment to F (why?).

29

Clique to Assignment

)()()(zyxzyxzyxF 

-x y z

-z z

y

x

-y

-x

1,0  zy

G

30

The Vertex Cover Problem

• A vertex cover for a graph G is a set of
vertices incident to every edge in G

• The vertex cover problem: what is the
minimum size vertex cover in G?

• Restated as a decision problem: does a
vertex cover of size k exist in G?

• Theorem: vertex cover is NP-Complete

31

Vertex Cover (Example)

A vertex cover of size 5 A vertex cover of size 4

32

Vertex Cover is NP-Complete

• First, show vertex cover in NP (How?)

• Next, reduce k-clique to vertex cover:
– The complement GC of a graph G contains exactly

those edges not in G

– Given (G,k), in input for the clique problem

– Compute GC in polynomial time

G Gc

33

Clique p Vertex Cover

Claim 1: If G has a clique of size k, then GC
has a vertex cover of size |V| - k

Claim 2: If GC has a vertex cover of size |V|-
k, then G has a clique of size k

Proofs: easy (Complexity course)

G Gc

34

The Traveling Salesman Problem:

• A well-known optimization problem:
– Optimization variant: a salesman must travel to n

cities, visiting each city exactly once and finishing
where he begins. How to minimize travel time?

– Model as complete graph with cost c(i,j) to go from
city i to city j

• How would we turn this into a decision
problem?
– Answer: ask if there exists a path with cost < k

35

The Traveling Salesman
Problem:

• Asides:
– TSPs (and variants) have enormous

practical importance
• E.g., for shipping and freighting companies

• Lots of research into good approximation
algorithms

– Made famous as a DNA computing
problem
• Adleman used DNA to solve a 7-city instance

[1994]

36

Other NP-Complete Problems

• Partition: Given a set of integers,
whose total sum is 2S, can we
partition them into two sets, each
adds up to S?

• Subset-sum: Given a set of integers,
does there exist a subset that adds
up to some desired targetT ?

37

Independent Set

• Input: A graph G=(V,E), k

• Problem: Is there a subset S of V of size at least
k such that no pair of vertices in S has an edge
between them.

• Maximum independent set problem: find a
maximum size independent set of vertices.

Maximal
independent set

Maximum
independent set

38

Steiner Tree

• Input: A graph G=(V,E), a subset T of the
vertices V, and a bound B

• Problem: Is there a tree connecting all the
vertices of T of total weight at most B?

• Application: Network design and wiring

layout.
• The case T=V is polynomially solvable (this

is the MST problem).

39

Exact Cover

• Input: A set U= {u1,u2,…un} and subsets

• Output: Determine if there is a set of

disjoint sets that union to U, that is, a set
X such that:

 ∅

US,,S,S m21 

US

SSimplies ji andXji,

m},{1,2,X

Xi
i

ji













40

Example of Exact Cover

i}h,g,f,e,d,c,b,{a,U

i}g,{d,i},h,{f,i},h,{e,h},f,{b,d},{b,g},f,{a,e},c,{a,

i}g,{d,h},f,{b,e},c,{a,

Exact Cover:

41

Bin Packing

• Input: A set of numbers
and numbers B (capacity) and K (number of
bins).

• Output: Determine if A can be partitioned
into S1, S2,…, SK such that for all i

}a,,a,{aA m21 

B.a
iSj

j 


42

Bin Packing Example

• A = {2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5}

• B = 10, K = 4

• Bin Packing:

– 3, 3, 4

– 2, 3, 5

– 5, 5

– 2, 4, 4

Perfect fit!

43

Coping with NP-hardness

• O.K, I know that a problem is NP-
hard.
What should I do next?

• First, stop looking for an efficient
algorithm.

• Next, you might insist on finding an
optimal solution (knowing that this
might take a lot of time), or you can
look for solutions that are
satisfactory but not optimal.

44

Techniques for Dealing with
NP-complete Problems

• Exactly
– backtracking, branch and bound,

dynamic programming.

• Approximately
– approximation algorithms with

performance guarantees.
– heuristics with good average results.

• Change the problem (impose more
structure on instances / solutions)

45

Advanced Algorithms

Approximation Algorithms

46

Approximation Algorithms

• The fact that a problem is NP-complete
doesn’t mean that we cannot find an
approximate solution efficiently.

• We would like to have some guarantee
on the performance – how far are we
from the optimal?

• What is the best we can hope for
(assuming P  NP)?

47

Approximation Algorithms with
Additive Error.

• For few NP-hard problems, there are
approximation algorithms that produce an
almost optimal solution – one that is far
only by an additive constant from the
optimal.

• Minimization problems: Alg(I)  opt(I) + c

• Maximization problems: Alg(I)  opt(I) – c

• Example: Edge coloring.

48

Edge Coloring

• An Edge-coloring of a graph G=(V,E) is an assignment,
c, of integers to the edges such that if e1 and e2
share an endpoint then c(e1)  c(e2).

• Let  be the maximal degree of some vertex in G.
• It is known that for any graph the minimal number of

colors required to edge-color G is  or +1.
• It is NP-hard to distinguish between these two cases.
• There exists a poly-time algorithm that colors any

graph G with at most +1 colors.
• For this algorithm Alg(I)  OPT(I) + 1.

49

r-approximation Algorithms

• Approximations with guaranteed
additive error are rare.

• All approximation algs we are going to
see are factor-r approximations:
– Vertex cover
– Traveling salesman
– Bin packing
– Knapsack

• An algorithm Alg is an r-approximation
if, for any input, the solution that Alg
outputs is within factor r from the
optimal. (r  1)

50

Approximation Algorithms
(minimization)

• In minimization problems: Alg is r-approximation if
Alg(I)  rOPT(I) for any instance I.

Example 1: Traveling Salesman is a minimization
problem (the goal is to find a tour with minimal
cost). If we have an algorithm, A, that finds, for
any graph, a tour whose cost is at most 5 times
the optimal, then A is 5-approximation to TSP.

Example 2: Minimum Spanning Tree is a minimization
problem (the goal is to find an ST with minimal
cost). The optimal algorithms we know are 1-
approximate.

51

Approximation Algorithms
(maximization)

• In maximization problems: Alg is r-approximation if
Alg(I)  (1/r)opt(I) for any instance I.

Example: Maximum clique is a maximization problem
(the goal is to find a clique with maximum size). If
we have an algorithm, A, that finds, for any graph, a
clique whose size is at least (log n)2/n times the
optimal, then A is n/(log n)2-approximation to clique.

(remark: best known ratio for clique is n (log log n)2/(log n)3

)

52

Reminder: Matching
 (to be used soon)

• Definition: a matching in a graph G is a
subset M of E such that the degree of
each vertex in G’=(V’,M) is 0 or 1.

• Example: M={(a,d),(b,e)} is a matching.

 S={(a,d), (c,d)} is not a matching.

b

e
d

c

a

53

Example 1: Vertex Cover

• Given G=(V,E), find a minimum sized
subset W of V such that for every (v,u) in
E, at least one of v or u is in W.

• Vertex Cover is NP-Hard.

• We are willing to end up with a vertex
cover W which is not of minimum size. But,
we don’t want it to be too large and we
want to be able to find it in polynomial
time.

54

Approximating Vertex Cover

VertexCover(G=(V,E)):

while (E)

1. select an arbitrary edge (u,v)

2. add both u and v to the cover

3. delete all edges incident to either u or v

1. This is a legal cover (why?)

2. This is a 2-approximation; its size is at most 2
times OPT (the size of a minimum vertex cover).

Proof: Let c be the number of iterations. The VC has
size 2c. The edges selected in step 1 form a
matching of size c (why?). Even if we only need to
cover these edges we need at least c vertices.

55

Approximating Vertex Cover

A more natural algorithm: select in each
iteration a vertex with maximum degree, add
it to the cover and remove all its adjacent
edges.

Looks promising!

However, the approximation ratio of this

approach is not bounded: for any r there
exists a graph for which the VC chosen by
the algorithm is r-times larger than the
optimal VC

Proof: In Class

