Advanced Algorithms

Problem solving Techniques. Divide and Conquer הפרד ומשול

"We already have quite a few people who know how to divide. So essentially, we're now looking for people who know how to conquer."

Divide and Conquer

- A method of designing algorithms that (informally) proceeds as follows:
- Given an instance of the problem to be solved, split it into several, smaller, sub-instances (of the same problem);

independently solve each of the sub-instances and then combine the sub-instance solutions so as to yield a solution for the original instance.

Divide and Conquer

Question: By what methods the sub-instances are independently solved?

Answer: <u>By the same method</u>, till we have a constant size problem that can be solved in constant time.

This simple answer is central to the concept of *Divide-&-Conquer* algorithms, and is a key factor in measuring their efficiency.

Divide and Conquer: Outline

- **Divide** the problem into a number of subproblems (similar to the original problem but smaller);
- Conquer the sub-problems by solving them recursively (if a sub-problem is small enough, just solve it in a straightforward manner).
- Combine the solutions for the sub-problems into a solution for the original problem

Example 1: Binary Search

- A directory contains a set of *names* and a telephone *number* is associated with each name.
- The directory is sorted by alphabetical order of names. It contains *n* entries each having the form [name, number]
- Given a name and the value n, the problem is to find the number associated with the name
- We assume that any given input name actually *does occur* in the directory.

Binary Search

The Divide & Conquer algorithm for this problem is based on the following:

Given a name, say X, there are 3 possibilities:

X occurs in the *middle* of the *names* array Or X occurs in the *first* half of the *names* array. Or

X occurs in the *second* half of the *names* array.

Binary Search

region of answer

- function binsearch (X: name; start, finish : int)
 begin middle := (start+finish)/2;
 - if name(middle)=x return number(middle);
 - else if X < name(middle) return
 binsearch(X,start,middle-1);</pre>

else [X > name(middle)] return
binsearch(X,middle+1,finish);

end if; end *search*;

Binary Search

- Divide the n-element array into a middle element and two sub-arrays of n/2 (-1) elements.
- Conquer: Consider the middle element, if name not found, ignore one sub-array, and solve the problem for the other sub-array using Binary search
- Combine: Empty.

Binary Search - Performance Analysis

- $T(1) = c_1$ (constant time)
- for n > 1, we have

$$T(n) = T(n/2) + c_2$$

$$\mathsf{T}(\mathsf{n}) = \begin{cases} \mathsf{C}_1 & \text{if } n = 1\\ \mathsf{T}(\mathsf{n}/\mathsf{2}) + \mathsf{C}_2 & \text{if } n > 1 \end{cases}$$

Example 2: Merge Sort

- Sorting problem: Given an array, order the elements according to some order (say increasing value)
- Merge sort: A sort algorithm that splits the elements to be sorted into two groups, recursively sorts each group, and merges them into a final, sorted sequence.

Merge Sort

- Divide the n-element sequence to be sorted into two subsequences of n/2 elements each
- Conquer: Sort the two subsequences recursively using merge sort
- Combine: merge the two sorted subsequences to produce the sorted answer
- recursion base case: if the subsequence has only one element, then do nothing.

Merge-Sort(A,p,r)

sorts the elements in the sub-array A[p..r] using divide and conquer

- Merge-Sort(A,p,r)
 - if $p \ge r$, do nothing
 - if p < r then $q \leftarrow \lfloor (p+r)/2 \rfloor$
 - Merge-Sort(A,p,q)
 - Merge-Sort(A,q+1,r)
 - Merge(A,p,q,r)
- Start by calling Merge-Sort(A,1,n)
- Do we need an example?

Performance Analysis

Known: two sorted arrays of sizes n_1 and n_2 can be merged in time $c(n_1+n_2)$.

- Let T(n) denote the time it takes to sort an nelements array.
- T(1) = O(1) Merging
- for n > 1, $T(n) = 2T(n/2) + cn^{2}$

$$T(n) = \begin{cases} O(1) & \text{if } n = 1 \\ 2T(n/2) + cn & \text{if } n > 1 \end{cases}$$

Example 3: Counting Inversions

- Music site tries to match your song preferences with others.
 - You rank n songs.
 - Music site consults database to find people with similar tastes.
- Similarity metric: number of inversions between two songs

 A
 B
 C
 D
 E

 Me
 1
 2
 3
 4
 5

 You
 1
 3
 4
 2
 5

Inversions 3-2, 4-2

- My rank: 1, 2, ..., n. Your rank: $a_1, a_2, ..., a_n$.
- Songs i and j inverted if i < j, but $a_i > a_j$.
- Brute force: check all $\Theta(n^2)$ pairs i and j.

Counting Inversions: Divide-and-Conquer

- Divide: separate list into two pieces.
- Conquer: recursively count inversions in each half.
- Combine: count inversions where a_i and a_j are in different halves, and return sum of three quantities.

9 blue-green inversions 5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Combine: ???

Counting Inversions: Combine

- Combine: count blue-green inversions
 - Assume each half is sorted.
 - Count inversions where a_i and a_j are in different halves.
 - Merge two sorted halves into sorted whole.

13 blue-green inversions: 6 + 3 + 2 + 2 + 0 + 0

2	3	7	10	11	14	16	17	18	19	23	25	Merge:	O(n)
---	---	---	----	----	----	----	----	----	----	----	----	--------	------

 $T(n) \leq T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n)$

Mergeand-Count

Count: O(n)

- Given two sorted halves, count number of inversions where $a_{\rm i}$ and $a_{\rm j}$ are in different halves.
- . Combine two sorted halves into sorted whole.

- Given two sorted halves, count number of inversions where $a_{\rm i}$ and $a_{\rm j}$ are in different halves.
- . Combine two sorted halves into sorted whole.

- Given two sorted halves, count number of inversions where $a_{\rm i}$ and $a_{\rm j}$ are in different halves.
- . Combine two sorted halves into sorted whole.

- Given two sorted halves, count number of inversions where $a_{\rm i}$ and $a_{\rm j}$ are in different halves.
- . Combine two sorted halves into sorted whole.

- Given two sorted halves, count number of inversions where $a_{\rm i}$ and $a_{\rm j}$ are in different halves.
- . Combine two sorted halves into sorted whole.

- Given two sorted halves, count number of inversions where $a_{\rm i}$ and $a_{\rm j}$ are in different halves.
- . Combine two sorted halves into sorted whole.

- Given two sorted halves, count number of inversions where $a_{\rm i}$ and $a_{\rm j}$ are in different halves.
- . Combine two sorted halves into sorted whole.

- Given two sorted halves, count number of inversions where $a_{\rm i}$ and $a_{\rm j}$ are in different halves.
- . Combine two sorted halves into sorted whole.

- Given two sorted halves, count number of inversions where $a_{\rm i}$ and $a_{\rm j}$ are in different halves.
- . Combine two sorted halves into sorted whole.

Merge and count step.

- Given two sorted halves, count number of inversions where $a_{\rm i}$ and $a_{\rm j}$ are in different halves.
- . Combine two sorted halves into sorted whole.

Merge and count step.

- Given two sorted halves, count number of inversions where $a_{\rm i}$ and $a_{\rm j}$ are in different halves.
- . Combine two sorted halves into sorted whole.

Merge and count step.

- Given two sorted halves, count number of inversions where $a_{\rm i}$ and $a_{\rm j}$ are in different halves.
- . Combine two sorted halves into sorted whole.

Merge and count step.

- Given two sorted halves, count number of inversions where $a_{\rm i}$ and $a_{\rm j}$ are in different halves.
- . Combine two sorted halves into sorted whole.

Merge and count step.

- . Given two sorted halves, count number of inversions where $a_{\rm i}$ and $a_{\rm j}$ are in different halves.
- . Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2

Merge and count step.

- . Given two sorted halves, count number of inversions where $a_{\rm i}$ and $a_{\rm j}$ are in different halves.
- . Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2

Merge and count step.

- Given two sorted halves, count number of inversions where ${\bf a}_i$ and ${\bf a}_j$ are in different halves.
- . Combine two sorted halves into sorted whole.

Merge and count step.

- Given two sorted halves, count number of inversions where ${\bf a}_i$ and ${\bf a}_j$ are in different halves.
- . Combine two sorted halves into sorted whole.

Merge and count step.

- Given two sorted halves, count number of inversions where ${\bf a}_i$ and ${\bf a}_j$ are in different halves.
- . Combine two sorted halves into sorted whole.

Merge and count step.

- Given two sorted halves, count number of inversions where ${\bf a}_i$ and ${\bf a}_j$ are in different halves.
- . Combine two sorted halves into sorted whole.

Merge and count step.

- Given two sorted halves, count number of inversions where ${\bf a}_i$ and ${\bf a}_j$ are in different halves.
- . Combine two sorted halves into sorted whole.

Merge and count step.

- . Given two sorted halves, count number of inversions where $a_{\rm i}$ and $a_{\rm j}$ are in different halves.
- . Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2

Merge and count step.

- Given two sorted halves, count number of inversions where ${\bf a}_i$ and ${\bf a}_j$ are in different halves.
- . Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2 + 0

Merge and count step.

- Given two sorted halves, count number of inversions where ${\bf a}_i$ and ${\bf a}_j$ are in different halves.
- . Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2 + 0

Merge and count step.

- Given two sorted halves, count number of inversions where $a_{\rm i}$ and $a_{\rm j}$ are in different halves.
- . Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2 + 0 + 0

Merge and count step.

- Given two sorted halves, count number of inversions where $a_{\rm i}$ and $a_{\rm j}$ are in different halves.
- . Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2 + 0 + 0 = 13

Counting Inversions: Implementation

- Pre-condition of [Merge-and-Count]: A and B are sorted.
- Post-condition of [Sort-and-Count]: L is sorted.

```
Sort-and-Count(L) {

if list L has one element

return 0 and the list L

Divide the list into two halves A and B

(r_A, A) \leftarrow Sort-and-Count(A)

(r_B, B) \leftarrow Sort-and-Count(B)

(r, L) \leftarrow Merge-and-Count(A, B)

return r = r_A + r_B + r and the sorted list L

}
```

D&C Performance Analysis

- The running time of a Divide & Conquer algorithm is affected by 3 criteria:
- 1. The number of sub-instances (*a*) into which a problem is split.
- 2. The ratio of initial problem size to subproblem size (*b*).
- 3. The number of steps required to divide the instance (D(n)), and to combine sub-solutions (C(n)).

General Recurrence for Divide-and-Conquer

If a divide and conquer scheme divides a problem of size *n* into *a* sub-problems of size at most *n/b*.
 Suppose the time for Divide is D(*n*) and time for Combination is C(*n*), then

$$T(n) = \begin{cases} \Theta(1) & \text{if } n < c \\ aT(n/b) + D(n) + C(n) & \text{if } n \ge c \end{cases}$$

• How do we bound T(n)?

The Master Theorem

• Let

$$T(n) = \begin{cases} \Theta(1) & \text{if } n < c \\ aT(n/b) + f(n) & \text{if } n \ge c \end{cases}$$

where $a \ge 1$ and $b \ge 1$

• we will ignore ceilings and floors (all absorbed in the O or Θ notation)

The Master Theorem: A relaxed version for $f(n)=\Theta(n^k)$

• As special cases, when $f(n)=\Theta(n^k)$ we get the following:

- If $a > b^k$ then $T(n) = \Theta(n^{\log_b a})$
- If a=b^k then
- $T(n) = \Theta(n^k \log n)$
- If a<b^k then
- $\mathsf{T}(\mathsf{n}) = \Theta(\mathsf{n}^{\mathsf{k}})$

The Master Theorem

Examples (in class)

- 1. T(n) = T(2n/3) + 1 then $T(n) = \Theta(\log n)$
- 2. T(n) = 9T(n/3) + n, then $T(n) = \Theta(n^2)$

More examples: Back to merge sort and binary search:

- MS: T(n) = 2T(n/2) + cn
- BS: T(n)= T(n/2) + c

Counting.....

- num. of nodes at depth i is a^i
- depth of tree is $\log_b n$
- num. of leaves: $a^{\log_b n} = 2^{\log a \frac{\log n}{\log b}} = n^{\log_b a}$
- so $T(n) = \theta(n^{\log_b a}) + \sum_j a^j f(n/b^j)$

The Master Theorem (general f)

Intuition: Compare f(n) to $n^{\log_{ba}}$

- If f(n) = O(n^{logba-ε}) for some constant ε > 0 then T(n) = O(n^{logba})
 If f(n) = O(n^{logba}) then T(n) = O(n^{logba}logn)
- If $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$ and if $a \cdot f(n/b) \le c \cdot f(n)$ for some constant c < 1 and all sufficiently large *n*, then $T(n) = \Theta(f(n))$

Example 4: Integer Multiplication

- Used extensively in Cryptography:
 - public-key encryption/decryption uses multiplication of huge numbers

- Standard multiplication on two n-bit numbers takes $\Theta(n^2)$ operations.
- Note: standard addition takes O(n)

Can We do Better?

• Divide and Conquer (assume X,Y given in binary)

$$X = a2^{n/2} + b$$
, $Y = c2^{n/2} + d$
 $XY = ac2^{n} + (ad + bc)2^{n/2} + bd$

- MULT(X,Y)
 - if |X| = |Y| = 1 then return XY
 - else return

 $MULT(a, c)2^{n} + (MULT(a, d) + MULT(b, c))2^{n/2} + MULT(b, d)$

Complexity

$$T(n) = \begin{cases} 1 & \text{if } n = 1 \\ 4T(n/2) + \Theta(n) & \text{if } n > 1 \end{cases}$$

- By the Master Theorem: $T(n) = \Theta(n^2)$
- Not an improvement over standard multiplication.

Can we do better? (Karatsuba 1962)

- Gauss Equation ad+bc = (a+b)(c+d) - ac - bd
- MULT(X,Y)
 - if |X| = |Y| = 1 then return XY
 - else
 - $A_1 = MULT(a,c);$
 - $A_2 = MULT(b,d);$
 - $A_3 = MULT((a+b),(c+d));$
 - Return $A_1 2^n + (A_3 A_1 A_2) 2^{n/2} + A_2$

Recall:

 $XY = ac2^{n} + (ad+bc)2^{n/2} + bd$

Complexity

$$T(n) = \begin{cases} 1 & \text{if } n = 1 \\ 3T(n/2) + \Theta(n) & \text{if } n > 1 \end{cases}$$

• By the Master Theorem:

$$\mathsf{T}(\mathsf{n}) = \Theta(\mathsf{n}^{\log_2 3}) = \Theta(\mathsf{n}^{1.58})$$

Example 5: Matrix Multiplication

- Dot product: Given two length *n* vectors *a* and *b*, compute $c = a \cdot b$. $a \cdot b = \sum_{i=1}^{n} a_i b_i$
- Grade-school: $\Theta(n)$ arithmetic operations.

$$a = \begin{bmatrix} .70 & .20 & .10 \end{bmatrix}$$

$$b = \begin{bmatrix} .30 & .40 & .30 \end{bmatrix}$$

$$a \cdot b = (.70 \times .30) + (.20 \times .40) + (.10 \times .30) = .32$$

• Remark: Grade-school dot product algorithm is optimal.

Section 28.2 (or 4.2) in CLRS

Matrix Multiplication

- Given two *n*-by-*n* matrices *A* and *B*, compute C = AB. Grade-school: $\Theta(n^3)$ arithmetic operations. $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$ •
- •

$$\begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \times \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{bmatrix}$$

.59	.32	.41		.70	.20	.10		.80		
.31	.36	.25	=	.30	.60	.10	×	.10	.40	.10
45	.31	.42		L.50	.10	.40_		.10	.30	.40

Q. Is grade-school matrix multiplication algorithm optimal?

$$C_{11} = A_{11} \times B_{11} + A_{12} \times B_{21} = \begin{bmatrix} 0 & 1 \\ 4 & 5 \end{bmatrix} \times \begin{bmatrix} 16 & 17 \\ 20 & 21 \end{bmatrix} + \begin{bmatrix} 2 & 3 \\ 6 & 7 \end{bmatrix} \times \begin{bmatrix} 24 & 25 \\ 28 & 29 \end{bmatrix} = \begin{bmatrix} 152 & 158 \\ 504 & 526 \end{bmatrix}$$

Matrix Multiplication: Warmup

- To multiply two *n*-by-*n* matrices *A* and *B*:
 - Divide: partition A and B into $\frac{1}{2}n$ -by- $\frac{1}{2}n$ blocks.
 - Conquer: multiply 8 pairs of $\frac{1}{2}n$ -by- $\frac{1}{2}n$ matrices, recursively.
 - Combine: add appropriate products using 4 matrix additions.

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \times \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

$$C_{11} = (A_{11} \times B_{11}) + (A_{12} \times B_{21})$$

$$C_{12} = (A_{11} \times B_{12}) + (A_{12} \times B_{22})$$

$$C_{21} = (A_{21} \times B_{11}) + (A_{22} \times B_{21})$$

$$C_{22} = (A_{21} \times B_{12}) + (A_{22} \times B_{22})$$

$$T(n) = \underbrace{8T(n/2)}_{\text{recursive calls}} + \underbrace{\Theta(n^2)}_{\text{add, form submatrices}} \implies T(n) = \Theta(n^3)$$

Fast Matrix Multiplication

• Key idea. multiply 2-by-2 blocks with only 7 multiplications.

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \times \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$
$$\begin{bmatrix} C_{11} & = & P_5 + P_4 - P_2 + P_6 \\ C_{12} & = & P_1 + P_2 \\ C_{21} & = & P_3 + P_4 \\ C_{22} & = & P_5 + P_1 - P_3 - P_7 \end{bmatrix}$$

$$P_{1} = A_{11} \times (B_{12} - B_{22})$$

$$P_{2} = (A_{11} + A_{12}) \times B_{22}$$

$$P_{3} = (A_{21} + A_{22}) \times B_{11}$$

$$P_{4} = A_{22} \times (B_{21} - B_{11})$$

$$P_{5} = (A_{11} + A_{22}) \times (B_{11} + B_{22})$$

$$P_{6} = (A_{12} - A_{22}) \times (B_{21} + B_{22})$$

$$P_{7} = (A_{11} - A_{21}) \times (B_{11} + B_{12})$$

- 7 multiplications, 14 2-by-2 elements. - 18 = 8 + 10 additions and subtractions.

Fast Matrix Multiplication

- To multiply two n-by-n matrices A and B: [Strassen 1969]
 - Divide: partition A and B into $\frac{1}{2}n$ -by- $\frac{1}{2}n$ blocks.
 - Compute: $14 \frac{1}{2}n$ -by- $\frac{1}{2}n$ matrices via 10 matrix additions.
 - Conquer: multiply 7 pairs of $\frac{1}{2}n$ -by- $\frac{1}{2}n$ matrices, recursively.
 - Combine: 7 products into 4 terms using 8 matrix additions.
- Analysis.
 - Assume *n* is a power of 2.
 - T(n) = # arithmetic operations.

$$T(n) = \underbrace{7T(n/2)}_{\text{recursive calls}} + \underbrace{\Theta(n^2)}_{\text{add, subtract}} \implies T(n) = \Theta(n^{\log_2 7}) = O(n^{2.81})$$

Fast Matrix Multiplication: Practice

- Implementation issues.
 - Sparsity.
 - Caching effects.
 - Numerical stability.
 - Odd matrix dimensions.
 - Crossover to classical algorithm around n = 128.
- **Common misperception**. *"Strassen is only a theoretical curiosity."*
 - Apple reports 8x speedup on G4 Velocity Engine when $n \approx 2,500$.
 - Range of instances where it's useful is a subject of controversy.

Fast Matrix Multiplication: Theory

- Q. Multiply two 2-by-2 matrices with 7 scalar mult?
- A. Yes! [Strassen 1969] $\Theta(n^{\log_2 7}) = O(n^{2.807})$
- Q. Multiply two 2-by-2 matrices with 6 scalar multiplications?
- A. Impossible. [Hopcroft and Kerr 1971] $\Theta(n^{\log_2 6}) = O(n^{2.59})$
- Q. Two 3-by-3 matrices with 21 scalar multiplications?
- A. Also impossible. $\Theta(n^{\log_3 21}) = O(n^{2.77})$
- Two 20-by-20 matrices with 4,460 scalar mult.
 Two 48-by-48 matrices with 47,217 scalar mult.
 A year later.
 December, 1979.
 January, 1980.
 O(n^{2.805})
 O(n^{2.805})
 O(n^{2.709})
 O(n^{2.721813})
 O(n^{2.521813})
 O(n^{2.521801})
- Record holder 1987-2010: O(n^{2.376}) [Coppersmith-Winograd, 1987].
- Best Known: O(n^{2.373}) [Vassilevska Williams, 2011]
- Conjecture: $O(n^{2+\epsilon})$ for any $\epsilon > 0$.

Example 6: Finding the Convex Hull of a set of points (2-dim).

- Given a set A of n points in the plane, the convex hull of A is the smallest convex polygon that contains all the points in A.
- For simplicity, assume no two points have the same x or y coordinate. (otherwise rotate a bit..)
- The output: set of CH vertices in clockwise order.

A set S of points is convex if for any two points $x,y \in S$, any point on the line connecting x and y is also in S.

Example 6: Finding the Convex Hull of a set of points.

Intuition:

- Each point is a nail sticking out from a board.
- Take a rubber band and lower it over the nails, so as to completely encompass the set of nails.
- Let the rubber band naturally contract.
- The rubber band gives the edges of the convex hull of the set of points.
- Nails corresponding to a change in slope of the rubberband represent the extreme points of the convex hull.

Convex Hull - D&C algorithm.

- Let $A = \{p_1, p_2, ..., p_n\}$. Denote the convex hull of A by CH(A).
- 1. Sort the points of A by x-coordinate.
- 2. If $n\leq 3$, solve the problem directly. Otherwise, apply divide-and-conquer as follows.
- **3**. Divide A into two subsets: $A = L \cup R$.
- **4**. Find CH(L), the convex hull of L.
- 5. Find CH(R), the convex hull of R.
- 6. Combine the two convex hulls.

Split set into two, compute convex hull of both, combine.

72

73

74

Combine CH(B) and CH(C) to get CH(A)

- 1. We need to find the "upper bridge" and the "lower bridge" that connect the two convex hulls.
- 2. The lower bridge is the edge vw, where $v \in CH(L)$ and $w \in CH(R)$, such that all other vertices in CH(L) and in CH(R) are above vw.
- 3. Suffices to check if both neighbors of v in CH(L) and both neighbors of w in CH(R) are all above vw.

Combine CH(B) and CH(C) to get CH(A)

4. Find the lower bridge as follows:

- (a) v = the rightmost point in CH(B);
 - w = the leftmost point in CH(C).

(b) Loop

if counterclockwise neighbor(w) lies below the line vw
 then w = counterclockwise neighbor(w)

else if clockwise neighbor(v) lies below the line vw
then v = clockwise neighbor(v)

(c) vw is the upper bridge.

5. Find the upper bridge similarly.

Combine two convex hulls: Finding the lower bridge.

Convex Hull - D&C algorithm.

Analysis:

- 1. Preprocessing: O(n log n)
- Recursion: Each of the Divide and Combine steps takes
 O(n): When calculating the bridges, each point is
 considered at most once, O(1) for each point.

Therefore:

$$T(n) = \begin{cases} O(1) & n \le 3 \\ 2T(n/2) + cn & n > 3 \end{cases}$$

Implying T(n)=O(n log n) (like mergesort) Can we do better? Maybe not by D&C?

Convex Hull - lower bound.

- Theorem: Any algorithm for calculating convex hull takes $\Omega(n \log n)$ time.
- Proof: Given *n* positive numbers, $x_1 x_2 ..., x_n$, correspond to each number x_i the point (x_i, x_i^2) , and find a convex hull of the *n* points.
- These points all lie on the parabola $y = x^2$. The convex hull of this set consists of a list of the points sorted by x-coordinate.
- Therefore, if we could find a convex hull in time T(n) then we could sort in time T(n)+O(n).
- It is known that sorting takes $\Omega(n \log n)$, therefore, this lower bound applies also to finding the convex hull.

Example 7: Closest Pair Problems

- Input:
 - A set of points $P = \{p_1, ..., p_n\}$ in two dimensions
- Output:
 - The pair of points $p_i,\,p_j$ with minimal Euclidean distance between them.

Euclidean Distances

$$\|(x_1, y_1) - (x_2, y_2)\| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

90

Closest Pair Problem

Closest Pair Problem

- $O(n^2)$ time algorithm is easy
- Assumptions:
 - No two points have the same x-coordinates
 - No two points have the same y-coordinates
 (otherwise rotate a bit)
- How do we solve this problem in one-dimension (this is very easy)?
 - Sort the numbers and scan from left to right looking for the minimum gap
- Let's apply divide-and-conquer to the 1-dim problem:

D&C for 1-dim closest pair

- Divide
 - t = n/2
- Conquer
 - $\delta_1 = Closest-Pair(A,1,t)$
 - δ_2 = Closest-Pair(A,t+1,n)
- Combine
 - Return min(δ_1 , δ_2 , A[t+1]-A[t])

Time: $T(n)=2T(n/2)+c \rightarrow T(n)=\Theta(n)$

Divide and Conquer: 2-dim

- We will do better than $O(n^2)$.
- Intuitively, there is no need to really compare each pair.
- Divide and conquer can avoid it.

Divide and Conquer for the Closest Pair Problem

Divide

Conquer

Conquer: Recursively solve L and R

Take the smaller one of $\delta_1, \delta_2: \delta = \min(\delta_1, \delta_2)$

but maybe there is a point in L and a point in R whose distance is smaller than δ ?

Take the smaller one of $\delta_1, \delta_2: \delta = \min(\delta_1, \delta_2)$

- If the answer is "no" then we are done.
- If the answer is "yes" then the closest such pair forms the closest pair for the entire set
- How do we determine this?

Is there a point in L and a point in R whose distance is smaller than δ ?

Is there a point in L and a point in R whose distance is smaller than δ ?

We need to consider only the 2δ-narrow band. We will show that it can be done in O(n) time.

R

Denote this set by S. Assume S_y is a sorted list of S by y-coordinate.

- There exists a point in L and a point in R whose distance is less than δ if and only if there exist two points in S whose distance is less than δ (why?).
- If S is the whole thing, did we gain anything?
- Amazing claim: If *s* and *t* in *S* have the property that $||s-t|| < \delta$, then *s* and *t* are within 8 positions of each other in the sorted list S_y .

Is there a pair of points, one in L and one in R, whose distance is smaller than δ ?

There is at most one point in each box.

Top half of circle intersects 8 boxes.

In fact, can prove less than 8.

D&C Algorithms for Closest-Pair

- Preprocessing:
 - Construct P_x and P_y as sorted-list by x- and y-coordinates
- Divide
 - Construct L, L_x , L_y and R, R_x , R_y
- Conquer
 - Let δ_1 = Closest-Pair(L, L_x, L_y)
 - Let δ_2 = Closest-Pair(R, R_x, R_y)
- Combine
 - Let $\delta = \min(\delta_1, \delta_2)$
 - Construct S and S_{y}
 - For each point in S_{y} , check each of the next 8 points in S_{y} .
 - If the distance is less than δ , then update δ to be the new distance

Closest-Pair - Time Analysis

- Preprocessing: O(n log n) time
- Divide: O(n)
- Conquer: 2T(n/2)
- Combine: O(n)

$T(n)=2T(n/2)+O(n) \rightarrow O(n \log n) \text{ time}$