Advanced Algorithms

Problem solving Techniques. Divide and Conquer

 הפרד ומשול
"We already have quite a few people who know how to divide. So essentially, we're now looking for people who know how to conquer."

Divide and Conquer

- A method of designing algorithms that (informally) proceeds as follows:
- Given an instance of the problem to be solved, split it into several, smaller, sub-instances (of the same problem): independently solve each of the sub-instances and then combine the sub-instance solutions so as to yield a solution for the original instance.

Divide and Conquer

Question: By what methods the sub-instances are independently solved?

Answer: By the same method, till we have a constant size problem that can be solved in constant time.

This simple answer is central to the concept of Divide-\&-Conquer algorithms, and is a key factor in measuring their efficiency.

Divide and Conquer: Outline

- Divide the problem into a number of subproblems (similar to the original problem but smaller);
- Conquer the sub-problems by solving them recursively (if a sub-problem is small enough, just solve it in a straightforward manner).
- Combine the solutions for the sub-problems into a solution for the original problem

Example 1: Binary Search

- A directory contains a set of names and a telephone number is associated with each name.
- The directory is sorted by alphabetical order of names. It contains n entries each having the form [name, number]
- Given a name and the value n, the problem is to find the number associated with the name
- We assume that any given input name actually does occur in the directory.

Binary Search

The Divide \& Conquer algorithm for this problem is based on the following:
Given a name, say X, there are 3 possibilities:
X occurs in the middle of the names array
Or
X occurs in the first half of the names array. Or
X occurs in the second half of the names array.

Binary Search

region of answer
function binsearch (X : name; start, finish : int) begin middle := (start+finish)/2;
if name(middle) $=x$ return number(middle);
else if X s name(middle) return binsearch(X,start,middle-1): else [$X>$ name(middle)] return binsearch (X, middle +1 ,finish):
end if;
end search;

Binary Search

- Divide the n-element array into a middle element and two sub-arrays of $n / 2(-1)$ elements.
- Conquer: Consider the middle element, if name not found, ignore one sub-array, and solve the problem for the other sub-array using Binary search
- Combine: Empty.

Binary Search - Performance Analysis

- $T(1)=c_{1}$ (constant time)
- for $n>1$, we have

$$
\begin{gathered}
T(n)=T(n / 2)+c_{2} \\
T(n)=\left\{\begin{array}{cc}
c_{1} & \text { if } n=1 \\
T(n / 2)+c_{2} & \text { if } n>1
\end{array}\right.
\end{gathered}
$$

Example 2: Merge Sort

- Sorting problem: Given an array, order the elements according to some order (say increasing value)
- Merge sort: A sort algorithm that splits the elements to be sorted into two groups, recursively sorts each group, and merges them into a final, sorted sequence.

Merge Sort

- Divide the n-element sequence to be sorted into two subsequences of $n / 2$ elements each
- Conquer: Sort the two subsequences recursively using merge sort
- Combine: merge the two sorted subsequences to produce the sorted answer
- recursion base case: if the subsequence has only one element, then do nothing.

Merge-Sort (A,p,r)

sorts the elements in the sub-array $A[p . . r]$ using divide and conquer

- Merge-Sort(A,p,r)
- if $p \geq r$, do nothing
- if $p<r$ then $q \leftarrow\lfloor(p+r) / 2\rfloor$
- Merge-Sort(A, p, q)
- Merge-Sort(A,q+1,r)
- Merge(A,p,q,r)
- Start by calling Merge-Sort($A, 1, n$)
- Do we need an example?

Performance Analysis

Known: two sorted arrays of sizes n_{1} and n_{2} can be merged in time $c\left(n_{1}+n_{2}\right)$.
Let $T(n)$ denote the time it takes to sort an n elements array.

- $T(1)=O(1) \quad$ Merging
- for $n>1, T(n)=2 T(n / 2)+\mathrm{cn}^{2}$ time

$$
T(n)=\left\{\begin{array}{cc}
O(1) & \text { if } n=1 \\
2 T(n / 2)+c n & \text { if } n>1
\end{array}\right.
$$

Example 3: Counting Inversions

- Music site tries to match your song preferences with others.
- You rank n songs.
- Music site consults database to find people with similar tastes.
- Similarity metric: number of inversions between two rankings.

Songs

$$
3-2,4-2
$$

- My rank: $1,2, \ldots, n$. Your rank: $a_{1}, a_{2}, \ldots, a_{n}$.
- Songs i and j inverted if $i<j$, but $a_{i}>a_{j}$.
- Brute force: check all $\Theta\left(n^{2}\right)$ pairs i and j.

Counting Inversions: Divide-and-Conquer

- Divide: separate list into two pieces.
- Conquer: recursively count inversions in each half.
- Combine: count inversions where a_{i} and a_{j} are in different halves, and return sum of three quantities.

9 blue-green inversions
$5-3,4-3,8-6,8-3,8-7,10-6,10-9,10-3,10-7$

$$
\text { Total }=5+8+9=22 .
$$

Counting Inversions: Combine

- Combine: count blue-green inversions
- Assume each half is sorted.
- Count inversions where a_{i} and a_{j} are in different halves.

Merge-andCount

- Merge two sorted halves into sorted whole.

3	7	10	14	18	19		2	11	16	17	23
	25										

13 blue-green inversions: $6+3+2+2+0+0$

2	3	7	10	11	14	16	17	18	19	23	25

$$
T(n) \leq T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+O(n)
$$

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

\square

```
Total:
```


Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

2
auxiliary array

```
Total: 6
```


Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

2
auxiliary array

```
Total: 6
```


Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

23
auxiliary array

```
Total: 6
```


Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

23
auxiliary array

```
Total: 6
```


Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

Total: 6

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

2	3	7

auxiliary array

```
Total: 6
```


Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

[^0]
Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

2	3	7	10

auxiliary array

```
Total: 6
```


Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

2	3	7	10	11

auxiliary array

```
Total: 6 + 3
```


Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.


```
Total: 6 + 3
```


Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

$$
\text { Total: } 6+3
$$

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

$$
\text { Total: } 6+3
$$

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

$$
\text { Total: } 6+3+2
$$

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

$$
\text { Total: } 6+3+2
$$

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

$$
\text { Total: } 6+3+2+2
$$

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

$$
\text { Total: } 6+3+2+2
$$

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

$$
\text { Total: } 6+3+2+2
$$

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

2	3	7	10	11	14	16	17	18			

$$
\text { Total: } 6+3+2+2
$$

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

2	3	7	10	11	14	16	17	18	19		\quad auxiliary array

Total: $6+3+2+2$

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

first half exhausted it									$i=0$								two sorted halves
3			10		14	18		19		2	11		16	17	23	25	
										6	3		2	2			
	2	3		7	10		11	14	16	1		18	1				auxiliary array

$$
\text { Total: } 6+3+2+2
$$

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

$$
\text { Total: } 6+3+2+2+0
$$

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

$$
\text { Total: } 6+3+2+2+0
$$

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

$$
\text { Total: } 6+3+2+2+0+0
$$

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

$$
\text { Total: } 6+3+2+2+0+0=13
$$

Counting Inversions: Implementation

- Pre-condition of [Merge-and-Count]: A and B are sorted.
- Post-condition of [Sort-and-Count]: L is sorted.

```
Sort-and-Count(L) {
    if list L has one element
        return O and the list L
    Divide the list into two halves A and B
    (rA, A) \leftarrow Sort-and-Count(A)
    (r }\mp@subsup{r}{B}{\prime},B)\leftarrow\mathrm{ Sort-and-Count(B)
    (r, L) \leftarrow Merge-and-Count(A, B)
    return r = r 
}
```


D\&C Performance Analysis

The running time of a Divide \& Conquer algorithm is affected by 3 criteria:

1. The number of sub-instances (a) into which a problem is split.
2. The ratio of initial problem size to subproblem size (b).
3. The number of steps required to divide the instance ($D(n)$), and to combine sub-solutions ($C(n)$).

General Recurrence for Divide-and-Conquer

- If a divide and conquer scheme divides a problem of size n into a sub-problems of size at most n / b. Suppose the time for Divide is $D(n)$ and time for Combination is $C(n)$, then

$$
T(n)=\left\{\begin{array}{cc}
\Theta(1) & \text { if } n<c \\
a T(n / b)+D(n)+C(n) & \text { if } n \geq c
\end{array}\right.
$$

- How do we bound $T(n)$?

The Master Theorem

- Let
$T(n)=\left\{\begin{array}{cc}\Theta(1) & \text { if } n<c \\ a T(n / b)+f(n) & \text { if } n \geq c\end{array}\right.$
where $a \geq 1$ and $b \geq 1$
- we will ignore ceilings and floors (all absorbed in the O or Θ notation)

The Master Theorem: A relaxed version for $f(n)=\Theta\left(n^{k}\right)$

- As special cases, when $f(n)=\Theta\left(n^{k}\right)$ we get the following:
- If $a>b^{k}$ then $T(n)=\Theta\left(n^{\log _{b} a}\right)$
- If $a=b^{k}$ then $T(n)=\Theta\left(n^{k} \log n\right)$
- If $a<b^{k}$ then $T(n)=\Theta\left(n^{k}\right)$

The Master Theorem

Examples (in class)

1. $T(n)=T(2 n / 3)+1$ then $T(n)=\Theta(\log n)$
2. $T(n)=9 T(n / 3)+n$, then $T(n)=\Theta\left(n^{2}\right)$

More examples: Back to merge sort and binary search:

- MS: $T(n)=2 T(n / 2)+c n$
- BS: $T(n)=T(n / 2)+c$

Figure 4.7 in CLRS

$$
\text { Total: } \Theta\left(n^{\log _{b} a}\right)+\sum_{j=0}^{\log _{b} n-1} a^{j} f\left(n / b^{j}\right)
$$

Counting.....

- num. of nodes at depth i is a^{i}
- depth of tree is $\log _{b} n$
- num. of leaves: $a^{\log _{b} n}=2^{\log a \frac{\log n}{\log b}}=n^{\log _{b} a}$
- so $T(n)=\theta\left(n^{\log _{b} a}\right)+\sum_{j} a^{j} f\left(n / b^{j}\right)$

The Master Theorem (general f)

Intuition: Compare $f(n)$ to $n^{\text {logga }}$

- If $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$ for some constant $\varepsilon>0$ then $T(n)=\Theta\left(n^{\log _{b} a}\right)$
- If $f(n)=\Theta\left(n^{\log _{b} a}\right)$ then $T(n)=\Theta\left(n^{\log _{b} a} \log n\right)$
- If $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$ for some constant $\varepsilon>0$ and if $a \cdot f(n / b) \leq c \cdot f(n)$ for some constant $c<1$ and all sufficiently large n, then $T(n)=\Theta(f(n))$

Example 4: Integer Multiplication

- Used extensively in Cryptography:
- public-key encryption/decryption uses multiplication of huge numbers
- Standard multiplication on two n-bit numbers takes

Can We do Better?

- Divide and Conquer (assume X, Y given in binary)

$$
\begin{aligned}
x= & a \\
y= & b \\
& \frac{c}{c \mid} \frac{d}{} \\
& X=a 2^{n / 2}+b, y=c 2^{n / 2}+d \\
& x y=a c 2^{n}+(a d+b c) 2^{n / 2}+b d
\end{aligned}
$$

- MULT(X,Y)
- if $|X|=|Y|=1$ then return $X Y$
- else return
$\operatorname{MULT}(a, c) 2^{n}+(\operatorname{MULT}(a, d)+\operatorname{MULT}(b, c)) 2^{n / 2}+\operatorname{MULT}(b, d)$

Complexity

$$
T(n)=\left\{\begin{array}{cl}
1 & \text { if } n=1 \\
4 T(n / 2)+\Theta(n) & \text { if } n>1
\end{array}\right.
$$

- By the Master Theorem: $T(n)=\Theta\left(n^{2}\right)$
- Not an improvement over standard multiplication.

Can we do better? (Karatsuba 1962)

- Gauss Equation

$$
a d+b c=(a+b)(c+d)-a c-b d
$$

- MULT(X,Y)
- if $|X|=|Y|=1$ then return $X Y$
- else
- $A_{1}=\operatorname{MULT}(a, c)$;
- $A_{2}=\operatorname{MULT}(b, d)$;

```
Recall:
\(X Y=a c 2^{n}+(a d+b c) 2^{n / 2}+b d\)
```

- $A_{3}=\operatorname{MULT}((a+b),(c+d)) ;$
- Return $A_{1} 2^{n}+\left(A_{3}-A_{1}-A_{2}\right) 2^{n / 2}+A_{2}$

Complexity

$$
T(n)=\left\{\begin{array}{cl}
1 & \text { if } n=1 \\
3 T(n / 2)+\Theta(n) & \text { if } n>1
\end{array}\right.
$$

- By the Master Theorem:

$$
T(n)=\Theta\left(n^{\log _{2} 3}\right)=\Theta\left(n^{1.58}\right)
$$

Example 5: Matrix Multiplication

- Dot product: Given two length n vectors a and b, compute $c=a \cdot b$.

$$
a \cdot b=\sum_{i=1}^{n} a_{i} b_{i}
$$

- Grade-school: $\Theta(n)$ arithmetic operations.

```
a=[[\begin{array}{lll}{.70}&{.20}&{.10}\end{array}]
b =[\begin{array}{lll}{.30}&{.40}&{.30}\end{array}]
a\cdotb=(.70\times.30)+(.20\times.40)+(.10\times.30) = . .32
```

- Remark: Grade-school dot product algorithm is optimal.

Matrix Multiplication

- Given two n-by-n matrices A and B, compute $C=A B$.
- Grade-school: $\Theta\left(n^{3}\right)$ arithmetic operations.

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}
$$

$$
\left\lfloor\begin{array}{cccc}
c_{11} & c_{12} & \cdots & c_{1 n} \\
c_{21} & c_{22} & \cdots & c_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n 1} & c_{n 2} & \cdots & c_{n n}
\end{array}\right\rfloor=\left\lfloor\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right\rfloor \times\left\lfloor\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 n} \\
b_{21} & b_{22} & \cdots & b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n 1} & b_{n 2} & \cdots & b_{n n}
\end{array}\right\rfloor
$$

$\left[\begin{array}{lll}.59 & .32 & .41 \\ .31 & .36 & .25 \\ .45 & .31 & .42\end{array}\right\rfloor=\left[\begin{array}{lll}.70 & .20 & .10 \\ .30 & .60 & .10 \\ .50 & .10 & .40\end{array}\right] \times\left[\begin{array}{lll}.80 & .30 & .50 \\ .10 & .40 & .10 \\ .10 & .30 & .40\end{array}\right]$

- Q. Is grade-school matrix multiplication algorithm optimal?

Block Matrix Multiplication

$$
C_{11}=A_{11} \times B_{11}+A_{12} \times B_{21}=\left\lfloor\begin{array}{ll}
0 & 1 \\
4 & 5
\end{array}\right\rfloor \times\left\lfloor\begin{array}{cc}
16 & 17 \\
20 & 21
\end{array}\right\rfloor+\left\lfloor\begin{array}{ll}
2 & 3 \\
6 & 7
\end{array}\right\rfloor \times\left\lfloor\begin{array}{cc}
24 & 25 \\
28 & 29
\end{array}\right\rfloor=\left\lfloor\begin{array}{ll}
152 & 158 \\
504 & 526
\end{array}\right\rfloor
$$

Matrix Multiplication: Warmup

- To multiply two n-by- n matrices A and B :
- Divide: partition A and B into $\frac{1}{2} n$-by- $\frac{1}{2} n$ blocks.
- Conquer: multiply 8 pairs of $\frac{1}{2} n$-by- $\frac{1}{2} n$ matrices, recursively.
- Combine: add appropriate products using 4 matrix additions.

$$
\left\lfloor\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right\rfloor=\left\lfloor\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right\rfloor \times\left\lfloor\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right\rfloor
$$

$$
\begin{aligned}
& C_{11}=\left(A_{11} \times B_{11}\right)+\left(A_{12} \times B_{21}\right) \\
& C_{12}=\left(A_{11} \times B_{12}\right)+\left(A_{12} \times B_{22}\right) \\
& C_{21}=\left(A_{21} \times B_{11}\right)+\left(A_{22} \times B_{21}\right) \\
& C_{22}=\left(A_{21} \times B_{12}\right)+\left(A_{22} \times B_{22}\right)
\end{aligned}
$$

$$
T(n)=\underbrace{8 T(n / 2)}_{\text {recursive calls }}+\underbrace{\Theta\left(n^{2}\right)}_{\text {add, form submatrices }} \Rightarrow T(n)=\Theta\left(n^{3}\right)
$$

Fast Matrix Multiplication

- Key idea. multiply 2-by-2 blocks with only 7 multiplications.

$$
\left\lfloor\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right\rfloor=\left\lfloor\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right\rfloor \times\left\lfloor\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right\rfloor
$$

$$
\begin{aligned}
& P_{1}=A_{11} \times\left(B_{12}-B_{22}\right) \\
& P_{2}=\left(A_{11}+A_{12}\right) \times B_{22} \\
& P_{3}=\left(A_{21}+A_{22}\right) \times B_{11} \\
& P_{4}=A_{22} \times\left(B_{21}-B_{11}\right) \\
& P_{5}=\left(A_{11}+A_{22}\right) \times\left(B_{11}+B_{22}\right) \\
& P_{6}=\left(A_{12}-A_{22}\right) \times\left(B_{21}+B_{22}\right) \\
& P_{7}=\left(A_{11}-A_{21}\right) \times\left(B_{11}+B_{12}\right)
\end{aligned}
$$

- 7 multiplications, 14 2-by-2 elements.
$-18=8+10$ additions and subtractions.

Fast Matrix Multiplication

- To multiply two n-by- n matrices A and B : [Strassen 1969]
- Divide: partition A and B into $\frac{1}{2} n$-by- $\frac{1}{2} n$ blocks.
- Compute: $14 \frac{1}{2} n$-by- $\frac{1}{2} n$ matrices via 10 matrix additions.
- Conquer: multiply 7 pairs of $\frac{1}{2} n$-by- $\frac{1}{2} n$ matrices, recursively.
- Combine: 7 products into 4 terms using 8 matrix additions.
- Analysis.
- Assume n is a power of 2 .
- $\pi(n)=\#$ arithmetic operations.

$$
T(n)=\underbrace{7 T(n / 2)}_{\text {recursive calls }}+\underbrace{\Theta\left(n^{2}\right)}_{\text {add, subtract }} \Rightarrow T(n)=\Theta\left(n^{\log _{2} 7}\right)=O\left(n^{2.81}\right)
$$

Fast Matrix Multiplication: Practice

- Implementation issues.
- Sparsity.
- Caching effects.
- Numerical stability.
- Odd matrix dimensions.
- Crossover to classical algorithm around $n=128$.
- Common misperception. "Strassen is only a theoretical curiosity.
- Apple reports $8 x$ speedup on $G 4$ Velocity Engine when n $\approx 2,500$.
- Range of instances where it's useful is a subject of controversy.

Fast Matrix Multiplication: Theory

Q. Multiply two 2-by-2 matrices with 7 scalar mult?
A. Yes! [Strassen 1969]

$$
\Theta\left(n^{\log _{2} 7}\right)=O\left(n^{2.807}\right)
$$

Q. Multiply two 2-by-2 matrices with 6 scalar multiplications?
A. Impossible. [Hopcroft and Kerr 1971] $\quad \Theta\left(n^{\log _{2} 6}\right)=O\left(n^{2.59}\right)$
Q. Two 3-by-3 matrices with 21 scalar multiplications?
A. Also impossible.

$$
\Theta\left(n^{\log _{3} 21}\right)=O\left(n^{2.77}\right)
$$

- Two 20-by-20 matrices with 4,460 scalar mult.

$$
\begin{aligned}
& O\left(n^{2.805}\right) \\
& O\left(n^{2.7801}\right) \\
& O\left(n^{2.7799}\right) \\
& O\left(n^{2.521813}\right) \\
& O\left(n^{2.521801}\right)
\end{aligned}
$$

- Two 48-by-48 matrices with 47,217 scalar mult.

A year later.

- December, 1979.
- January, 1980.
- Record holder 1987-2010: $O\left(n^{2.376}\right)$ [Coppersmith-Winograd, 1987].
- Best Known: O(n².373) [Vassilevska Williams, 2011]
- Conjecture: $O\left(n^{2+\varepsilon}\right)$ for any $\varepsilon>0$.

Example 6: Finding the Convex Hull of a set of points (2-dim).

- Given a set A of n points in the plane, the convex hull of A is the smallest convex polygon that contains all the points in A.
- For simplicity, assume no two points have the same x or y coordinate. (otherwise rotate a bit..)
- The output: set of CH vertices in clockwise order.

A set S of points is convex if for any two points $x, y \in S$, any point on the line connecting x and y is also in S.

Example 6: Finding the Convex Hull of a set of points.

Intuition:

- Each point is a nail sticking out from a board.
- Take a rubber band and lower it over the nails, so as to completely encompass the set of nails.
- Let the rubber band naturally contract.
- The rubber band gives the edges of the convex hull of the set of points.
- Nails corresponding to a change in slope of the rubberband represent the extreme points of the convex hull.

Convex Hull - D\&C algorithm.

Let $A=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$. Denote the convex hull of A by $\mathrm{CH}(\mathrm{A})$.

1. Sort the points of A by x-coordinate.
2. If $n \leq 3$, solve the problem directly. Otherwise, apply divide-and-conquer as follows.
3. Divide A into two subsets: $A=L \cup R$.
4. Find $C H(L)$, the convex hull of L.
5. Find $C H(R)$, the convex hull of R.
6. Combine the two convex hulls.

Convex Hull - Divide \& Conquer

Split set into two, compute convex hull of both, combine.

Convex Hull - Divide \& Conquer

Solution order:

1
2
4
5
8
9
11
12

Convex Hull - Divide \& Conquer

Convex Hull - Divide \& Conquer

Convex Hull - Divide \& Conquer

Combine $\mathrm{CH}(\mathrm{B})$ and $\mathrm{CH}(\mathrm{C})$ to get $\mathrm{CH}(\mathrm{A})$

1. We need to find the "upper bridge" and the "lower bridge" that connect the two convex hulls.
2. The lower bridge is the edge $v w$, where $v \in C H(L)$ and $w \in C H(R)$, such that all other vertices in $C H(L)$ and in $C H(R)$ are above vw.
3. Suffices to check if both neighbors of v in $\mathrm{CH}(\mathrm{L})$ and both neighbors of w in $\mathrm{CH}(\mathrm{R})$ are all above vw .

Combine $\mathrm{CH}(\mathrm{B})$ and $\mathrm{CH}(\mathrm{C})$ to get $\mathrm{CH}(A)$

4. Find the lower bridge as follows:
(a) $v=$ the rightmost point in $\mathrm{CH}(B)$;
$w=$ the leftmost point in $\mathrm{CH}(C)$.
(b) Loop
if counterclockwise neighbor(w) lies below the line vw then $w=$ counterclockwise neighbor(w)
else if clockwise neighbor(v) lies below the line vw then $v=$ clockwise neighbor (v)
(c) vw is the upper bridge.
5. Find the upper bridge similarly.

Convex Hull - Divide \& Conquer

Combine two convex hulls: Finding the lower bridge.

Convex Hull - Divide \& Conquer

Convex Hull - D\&C algorithm.

Analysis:

1. Preprocessing: $O(n \log n)$
2. Recursion: Each of the Divide and Combine steps takes $O(n)$: When calculating the bridges, each point is considered at most once, $O(1)$ for each point.
Therefore:

$$
T(n)=\left\{\begin{array}{cc}
O(1) & n \leq 3 \\
2 T(n / 2)+c n & n>3
\end{array}\right.
$$

Implying $T(n)=O(n \log n)$ (like mergesort)
Can we do better? Maybe not by D\&C?

Convex Hull - lower bound.

Theorem: Any algorithm for calculating convex hull takes $\Omega(n \log n)$ time.
Proof: Given n positive numbers, $x_{1} x_{2} \ldots, x_{n}$, correspond to each number x_{i} the point (x_{i}, x_{i}^{2}), and find a convex hull of the n points.
These points all lie on the parabola $y=x^{2}$. The convex hull of this set consists of a list of the points sorted by x coordinate.
Therefore, if we could find a convex hull in time $T(n)$ then we could sort in time $T(n)+O(n)$.
It is known that sorting takes $\Omega(n \log n)$, therefore, this lower bound applies also to finding the convex hull.

Example 7: Closest Pair Problems

- Input:
- A set of points $P=\left\{p_{1}, \ldots, p_{n}\right\}$ in two dimensions
- Output:
- The pair of points p_{i}, p_{j} with minimal Euclidean distance between them.

Euclidean Distances

$$
\begin{array}{l|l}
\\
y_{1} & \\
y_{2} & \\
& \\
& x_{1} \\
& \\
& \\
& x_{2}
\end{array}
$$

$$
\left\|\left(x_{1}, y_{1}\right)-\left(x_{2}, y_{2}\right)\right\|=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$

Closest Pair Problem

Closest Pair Problem

- $O\left(n^{2}\right)$ time algorithm is easy
- Assumptions:
- No two points have the same x-coordinates
- No two points have the same y-coordinates
(otherwise rotate a bit)
- How do we solve this problem in one-dimension (this is very easy)?
- Sort the numbers and scan from left to right looking for the minimum gap
- Let's apply divide-and-conquer to the 1-dim problem:

D\&C for 1-dim closest pair

- Divide
- $t=n / 2$
- Conquer
- $\delta_{1}=$ Closest-Pair(A,1,t)
- $\delta_{2}=$ Closest-Pair(A,t+1,n)
- Combine
- Return min $\left(\delta_{1}, \delta_{2}, A[t+1]-A[\dagger]\right)$

Time: $T(n)=2 T(n / 2)+c \rightarrow T(n)=\Theta(n)$

Divide and Conquer: 2-dim

- We will do better than $O\left(n^{2}\right)$.
- Intuitively, there is no need to really compare each pair.
- Divide and conquer can avoid it.

Divide and Conquer for the Closest Pair Problem

Divide by x-median

Divide

Divide by x-median

Conquer

Conquer: Recursively solve L and R

Combine I

Take the smaller one of $\delta_{1}, \delta_{2}: \delta=\min \left(\delta_{1}, \delta_{2}\right)$

Combine II

but maybe there is a point in L and a point in R whose distance is smaller than $\boldsymbol{\delta}$?

Take the smaller one of $\delta_{1}, \delta_{2}: \delta=\min \left(\delta_{1}, \delta_{2}\right)$

Combine II

- If the answer is "no" then we are done.
- If the answer is "yes" then the closest such pair forms the closest pair for the entire set
- How do we determine this?

Combine II

Is there a point in L and a point in R whose distance is smaller than δ ?

Combine II

Is there a point in L and a point in R whose distance is smaller than δ ?

We need to consider only the 2δ-narrow band. We will show that it can be done in $O(n)$ time.

R

Denote this set by S. Assume S_{y} is a sorted list of S by y-coordinate.

Combine II

- There exists a point in L and a point in R whose distance is less than δ if and only if there exist two points in S whose distance is less than δ
- If S is the whole thing, did we gain anything?
- Amazing claim: If s and t in S have the property that $||s-t||<\delta$, then s and t are within 8 positions of each other in the sorted list S_{y}.

Combine II

Is there a pair of points, one in L and one in R, whose distance is smaller than δ ?

L

There is at most one point in each box.

Top half of circle intersects 8 boxes.

In fact, can prove less than 8.

D\&C Algorithms for Closest-Pair

- Preprocessing:
- Construct P_{x} and P_{y} as sorted-list by x - and y-coordinates
- Divide
- Construct $L_{,} L_{x}, L_{y}$ and R, R_{x}, R_{y}
- Conquer
- Let $\delta_{1}=$ Closest-Pair $\left(L, L_{x}, L_{y}\right)$
- Let $\delta_{2}=$ Closest-Pair $\left(R, R_{x}, R_{y}\right)$
- Combine
- Let $\delta=\min \left(\delta_{1}, \delta_{2}\right)$
- Construct S and S_{y}
- For each point in S_{y}, check each of the next 8 points in S_{y}.
- If the distance is less than δ, then update δ to be the new distance

Closest-Pair - Time Analysis

- Preprocessing: $O(n \log n)$ time
- Divide: O(n)
- Conquer: $2 T(n / 2)$
- Combine: $O(n)$
$T(n)=2 T(n / 2)+O(n) \rightarrow O(n \log n)$ time

[^0]: Total: 6

