
1

Welcome to
Advanced Algorithms

Lecturer: Shay Mozes(smozes@idc.ac.il)

 Office Hours: Sunday 14:00-15:00

 and by appointment

Fall 2014

2

Administrivia

• Most important resource: course web page
• Papers and sections from various books (mainly

CLRS).
• Grading:

– Homework - 25%
– Final exam - 75% (must get at least 60).

3

About the Homework

• Every 2-3 weeks a homework exercise

• Some Hard questions - significant effort

• May use any resource: friends, papers, books;
but must write by yourself and acknowledge /
specify working group.

• Every student must hand in every exercise.

• Average of best n-1 form the HW component in
the final grade. Probably n=6.

• 5 point bonus for HW written in LaTeX.

4

Course Goals

• A large algorithmic toolbox.
• A deeper understanding of the issues and

tradeoffs involved in algorithm design.
• An appreciation for applications of

algorithmic techniques in the real world.
• A better sense of how to model problems you

encounter as well-known algorithmic
problems.

• Fun! Elegance! Beauty!

5

Some Topics

• Classic techniques – greedy, divide and conquer,
dynamic programming

• Approximation algorithms
• Solving NP hard problems on structured inputs
• Fixed parameter tractability
• Linear programming, LP duality and applications
• Online algorithms
• Streaming algorithms
• Randomized algorithms
• External memory / cache oblivious algorithms

6

Applied Algorithm Scenario

Real world problem

Abstractly model the problem

Find abstract algorithm

Adapt to original problem

7

Modeling

• Formalize the goal

• What kind of algorithm is needed?

• Can I find an algorithm or do I have to
invent one?

• Can I ‘tune’ an existing algorithm? Does
it remind me a familiar problem?

8

Algorithm Design Goals

• Correctness

• Efficiency

• Simple, if possible.

• Ease of implementation

9

Evaluating an algorithm

 Mike: My algorithm can sort 106 numbers in 3 seconds.

 Bill: My algorithm can sort 106 numbers in 5 seconds.

 Mike: I’ve just tested it on my new Intel core duo.
 Bill: I remember my result from my undergraduate studies

(1985).

 Mike: My input is a random permutation of 1..106.
 Bill: My input is the sorted output, so I only need to verify

that it is sorted.

10

Types of complexity

* A complexity function is a function T: N  N.

 T(n) is the number of operations the algorithm does on
an input of size n.

* We can measure (at least) three different things.

• Worst-case complexity

• Best-case complexity

• Average-case complexity

• Actual running time time is not necessarily a good measure

• We need a ‘stable’ measure, independent of the
implementation.

11

The RAM Model of Computation

• Each simple operation (e.g., C statement) takes 1 time
step.

• Loops and subroutines are not simple operations.
• Each memory access takes one time step, and there is no

shortage of memory.
For a given problem instance:
• Running time of an algorithm = # of simple operations.
• Space used by an algorithm = # RAM memory cells

useful abstraction  captures the architecture of modern

computers, but still allows us to analyze algorithms in a
machine independent fashion.

12

Big O Notation
• Goal :

– A stable measurement independent of the machine.

• Way:
– ignore constant factors. Consider just the leading term.

• f(n) = O(g(n)) if cg(n) is upper bound on f(n)

  There exist c, N, s.t. for any n  N, f(n)  cg(n)

n+120

5n2 For all n  5 n+120
 5n2

 n+120 = O(n2).

Also, for all n  60
n+120  2n

 n+120 = O(n).

13

Growth Rates

• Even by ignoring constant factors, we can get
an excellent idea of whether a given algorithm
will be able to run in a reasonable amount of
time on a problem of a given size.

• The “big O” notation and worst-case analysis
are tools that greatly simplify our ability to
compare the efficiency of algorithms.

• O(n) O(log n) O(2n)

14

Reminder : Graphs

A B

C

E
D

• G=(V,E)

•|V|=n, |E|=m

•Directed/undirected

•Weighted/unweighted

•In/out-degree

15

Graph Search

Input: Graph G, vertex s

Output: All vertices connected from s.

Two main approaches:

1. Breadth First Search

2. Depth First Search

16

 Graph Search

BFS(G,s):

 mark s

 F.enque(s)

 Repeat

 u  F.deque()

 for all v neighbor of u

 if v not marked

 mark v

 F.enque(v)

 Until F is empty

s

DFS(G,s):

 mark s

 for all v neighbor of s

 if v unmarked

 DFS(G,v)

17

Shortest-path Algorithms

• Single source: given a vertex s, find the
shortest path from s to any other vertex of G.

• Variants:
– Different edges have different lengths

(representing delay, cost, etc.)
– Nonnegative/real weights. Negative cycles.

• All-pair shortest path problem: no specific
source.

18

Shortest-path algorithms -
Summary

• Single source, no weights:

 BFS - O(m)

• Single source, non-negative weights:
Dijkstra O(m+ nlog n)) or O(n2)

• Single source, arbitrary weights:

 Bellman-Ford: O(nm)

• All-pair shortest paths, arbitrary weights:
Floyd: O(n3), Johnson: O(nm + n2log n)

19

Minimum Spanning Tree

• Each edge has a cost.

• Find a minimal-cost subset of edges that will
keep the graph connected. (must be a ST).

1

6

5

7

2

3

4

21 75

17

25
19 10

18

64

80

4

Price of this tree = 18+19+4+10+17+64

20

Minimum Spanning Tree Problem

• Input: Undirected connected graph G = (V,E)
and a cost function C from E to the reals.
C(e) is the cost of edge e.

• Output: A spanning tree T with minimum
total cost. That is: T that minimizes

• Another formulation: Remove from G edges
with maximal total cost, but keep G
connected.





Te

C(e)C(T)

21

Two Popular algorithms:

• Kruskal
– Greedily add lightest edge that does not create a

cycle

– Time complexity O(m log m) using basic sorting and
Union-Find data structures

• Prim
– Grow a tree by greedily adding the lightest edge

with one endpoint in the tree and one not in the tree

– Time complexity O(m log m) using binary heap,
O(m + n log n) using Fibonacci heaps.

22

Maximum Flow

• Input: a directed graph (network) G

– each edge (v,w) has associated capacity c(v,w)

– a specified source node s and target node t

• Problem: What is the maximum flow you can route
from s to t while respecting the capacity constraint of
each edge?

s t
7

5

6

3

4

5

4

1 4

6

3

7

23

Properties of Flow:
f(v,w) - flow on edge (v,w)

• Edge condition (capacity): 0  f(v,w)  c(v,w) : the flow
through an edge cannot exceed the capacity of an edge.

• Vertex condition (conservation): for all v except s,t :
u f(u,v) = w f(v,w) the total flow entering a vertex is
equal to total flow exiting this vertex.

• total flow leaving s = total flow entering t.

4/5

s t
3/7

5/5

4/6

2/3

3/4

2/4

1/1
3/4

2/6

3/3

7/7

Notation on edges
f(v,w)/c(v,w)

Not a
maximum
flow!

24

Cut

st-Cut - a set of edges that separates s from t.

• A cut is defined by a set of vertices, S. This set
includes s and maybe additional vertices.
The sink t is not in S.

• The cut is the set of edges (u,v) such that uS and
vS, or vS and uS.

out(S) – edges in the cut directed from S to V-S

in(S) – edges in the cut directed from V-S to S

s t S V-S

25

s t

Cut - example

S – set of orange vertices.

out(S) – orange edges

in(S) – purple edges

7

5

6

3

4

5

4

1 4

6

3

7

The capacity of this
cut = 18

For a cut S, the capacity of S is    .ecSc
out(S)e






26

Max-flow Min-Cut Theorem

 The value of a maximum flow in a
network is equal to the minimum
capacity of a cut.

27

Induction has many appearances.

• Formal Arguments

• Loop Invariants

• Recursion

• Algorithm Design

• Recurrences

28

Review: Induction

• If
– P(k) is true for fixed constant k

• Often k = 0

– P(n)  P(n+1) for all n  k

• Then P(n) is true for all n  k

29

Proof By Induction

• Claim:P(n) is true for all n  k

• Base:
– Show P(n) is true for n = k

• Inductive hypothesis:
– Assume P(n) is true for an arbitrary n

• Step:
– Show that P(n) is then true for n+1

30

Induction Example:
Geometric sequence

• Prove by induction on n: for all a  1
• a0 + a1 + … + an = (an+1 - 1)/(a - 1)
• Base: n=0. a0 = (a0+1 - 1)/(a - 1).

 a0 = 1 = (a1 - 1)/(a - 1)
• Inductive hypothesis:

• Assume a0 + a1 + … + an = (an+1 - 1)/(a - 1)
• Step (show true for n+1):

a0 + a1 + … + an+1 = a0 + a1 + … + an + an+1

= (an+1 - 1)/(a - 1) + an+1 = (an+1+1 - 1)/(a - 1)

31

Design by Induction Example: Tiling

Goal: tile a room of 2n x 2n squares.

2n

2n

Architect allows only L-shaped tiles covering 3 squares

32

Tiling
A tile in the middle is reserved to Efi Arazi statue.

Middle =
one of the
four
middle
squares.

33

Tiling
For n=2, the 4x4 square can be tiled as follows:

4

4

34

Tiling

For n=3, the 8x8 square can be tiled as follows:

8

8

35

Tiling

Theorem: For all n  N we can tile 2n x 2n square so that
both Efi and Architect are happy.

Proof: By induction on n. Let

 P(n) := [can tile 2n x 2n square with Efi in middle]

Base case: True for n = 0 (no tiles are needed).

36

Tiling

Induction step: assume can tile 2n x 2n square, prove that can
tile 2n+1 x 2n+1 square.

2n

2n+1

Now what??

37

Tiling

The idea: Use a stronger induction hypothesis.
1. Implies the original theorem.

2. Makes proving P(n)  P(n+1) easier!

Proof (second attempt): By induction on n. Let

P’(n):= [can tile 2n x 2n square with Efi in any location]

Note: this implies

 P(n) := [can tile 2n x 2n square with Efi in middle]

38

Tiling

P’(n):= [can tile 2n x 2n square with Efi in any location]

Base case: Still true for n = 0 (no tiles are needed).

Induction step: Assume can tile 2n x 2n square with Efi in
any location.

39

Tiling

Given a 2n+1 x 2n+1 square:
1. Ask the client to select Efi’s location.
2. Locate the first tile in the middle, such that one block

is missing from every quarter.
3. By the induction hypothesis the quarters can be legally

tiled.

2n

2n+1

40

What are the Lessons?

Proof by induction can be constructive:

1. Sometimes yields an efficient procedure/algorithm.

2. Our proof implicitly defined a recursive procedure
for tiling with Efi in the middle.

Choice of the induction hypothesis is crucial:

1. Assuming stronger hypothesis may make proof easier!

2. But need to ensure that P(n)  P(n+1) is indeed true.

41

The Mathematics Of 1950’s Dating:
Who wins the battle of the sexes?

Based on slides by Prof. Steven Rudich (CMU) and Prof. Kevin Wayne (Princeton) .

Copyright © 2005 Pearson-Addison Wesley

42

3,2,5,1,4

1

5,2,1,4,3

4,3,5,1,2

3

1,2,3,4,5

4

2,3,4,1,5

5

1

3,2,5,1,4

2

1,2,5,3,4

3

4,3,2,1,5

4

1,3,4,2,5

5

1,2,4,5,3

2

Boys Girls

43

Dating Scenario
– There are n boys and n girls
– Each girl has her own ranked

preference list of all the boys
– Each boy has his own ranked

preference list of all the girls
– The lists have no ties

Question: How do we pair them off
optimally?

44

What is considered a “good” pairing?

– Maximizing total satisfaction

• What is the average rank of the partner in a person’s
ranking?

– Maximizing the minimum satisfaction
• What is the rank of the partner in the most unsatisfied

person’s ranking?
– Minimizing the maximum difference in mate ranks

• Everybody is more or less equally satisfied

– Maximizing the number of people who get their first choice

45

Rogue Couples

• Suppose we pair off all the boys and
girls. Now suppose that some boy and
some girl prefer each other to the
people to whom they are paired. They will
be called a rogue couple.

46

Why be with them when we can be
with each other?

47

Stable Pairings

• A pairing of boys and girls is called
stable if it contains no rogue couples.

48

Stability is a Must.

• Any reasonable list of criteria for a good
pairing must include stability. (A
pairing is doomed if it contains a rogue
couple.)

49

The study of stability will be the
subject of the entire lecture.

• We will:
– Analyze various mathematical properties of an

algorithm that looks a lot like 1950’s dating

– Discover the naked mathematical truth about which
sex has the romantic edge.

– Learn how the world’s largest, most successful
dating service operates.

50

Given a set of preference lists, how
do we find a stable pairing?

Wait! There is a
more primary

question!

The Existence Question:

Does every set of preferences
lists have at least one stable

pairing???

51

Can you argue that the
couples will not continue

breaking up and reforming
forever?

52

An Instructive Variant:
Roommate Problem

Stable roommate problem.
2n people; each person ranks others from 1 to 2n-1.
Assign roommate pairs so that no unstable pairs.

Observation: Stable matchings do not always exist for
stable roommate problem.

B

Bob

Chris

Adam C

A

B

D

D

Dan A B C

D

C

A

1st 2nd 3rd

A-B, C-D  B-C unstable
A-C, B-D  A-B unstable
A-D, B-C  A-C unstable

Can be any order

53

An Instructive Variant:
Roommate Problem B,C,D

A,B,D

D

C,A,D

,,

A
B

C

54

Insight

• Any proof that couples do not break up and reform
forever must contain a step that fails in the case of
the roommate problem.

• If you have a proof idea that works equally well in the
marriage problem and the roommate problem, then
your idea is not adequate to show the couples
eventually stop.

55

The Traditional Marriage Algorithm

Worshipping males

Female

56

Traditional Marriage Algorithm

• Repeat:
– Morning

• Each girl stands on her balcony

• Each boy proposes under the balcony of the best girl
whom he has not yet crossed off

– Afternoon (for those girls with at least one suitor)

• To today’s best suitor: “Maybe, come back tomorrow”

• To any others: “No, I will never marry you”

– Evening

• Any rejected boy crosses the girl off his list.

While some boy gets a “No” answer

Each girl marries the boy to whom she just said “maybe”

57

Traditional Marriage Algorithm

Termination:

• When no boy gets a “No” (all were told “maybe”):

• Each girl marries the boy to whom she said “maybe”.

58

3,2,5,1,4

1

5,2,1,4,3

4,3,5,1,2

3

1,2,3,4,5

4

2,3,4,1,5

5

1

3,2,5,1,4

2

1,2,5,3,4

3

4,3,2,1,5

4

1,3,4,2,5

5

1,2,4,5,3

2

Boys Girls

59

Traditional Marriage Algorithm

• Example

girl Day 1

1 2,4,5

2

3 1

4 3

5

= come
tomorrow

Day 2

2

5

1, 4

3

Girls Boys

3,2,5,1,4 3,2,5,1,4 1

5,2,1,4,3 1,2,5,3,4 2

4,3,5,1,2 4,3,2,1,5 3

1,2,3,4,5 1,3,4,2,5 4

2,3,4,1,5 1,2,4,5,3 5

60

Traditional Marriage Algorithm

girl Day 1

1 2,4,5

2

3 1

4 3

5

Day 2

2

5

1, 4

3

Day 3

2

5, 1

4

3

Day 4

2

5

 4

3

 1

Girls Boys

3,2,5,1,4 3,2,5,1,4 1

5,2,1,4,3 1,2,5,3,4 2

4,3,5,1,2 4,3,2,1,5 3

1,2,3,4,5 1,3,4,2,5 4

2,3,4,1,5 1,2,4,5,3 5

61

Trade-up lemma: In TMA, if on day i a
girl says “maybe” to boy b, she is guaranteed
to marry a husband that she likes at least as
much as b.

– She would only let go of him in order to “maybe”
someone better

– She would only let go of that guy for someone even
better

– She would only let go of that guy for someone even
better

– AND SO ON

Informal Induction

62

• (*) For all k  0, on day i+k the girl will say
“maybe” to a boy she likes as much as b.

• Base: k=0 (true by assumption)

• Assume (*) is true for k-1. Thus she has a boy
as good as b on day i+k-1. The next day she will
either keep him or reject him for some better.
Thus (*) is true for k.

Formal Induction

Trade-up Lemma: In TMA, if on day i a girl
says “maybe” to boy b, she is guaranteed to
marry a husband that she likes at least as
much as b.

63

Corollary: Each girl will marry her
absolute favorite of the boys who

visit her during the TMA.

64

Does the Traditional Marriage
Algorithm always produce a stable

pairing?

Wait! There is a
more primary

question!

Does TMA always
terminate?

65

Does TMA always terminate?

– It might encounter a situation where the
algorithm does not specify what to do next.

– It might keep on going for an infinite
number of days.

66

Lemma: Everyone will be matched.

• We show that no boy can be rejected by all the girls.
This would imply that there are n couples.

• Suppose by contradiction that Bob is rejected by all
the girls.

• Then some woman, say Amy, is not matched when Bob
marked out the last girl from his list.

– By the trade-up lemma, Amy was never proposed to.

– But Bob proposes to everyone, since he ends up
unmatched. In particular to Amy ▪

Contradiction

67

Theorem: The TMA always terminates
in at most days

– Consider the “master list” containing all the boy’s
preference lists of girls. There are n boys, and each list
has n girls on it, so there are a total of n X n = n2 girls’
names in the master list.

– Each day that at least one boy gets a “No”, at least one
girl gets crossed off the master list.

– Therefore, the number of days is bounded by the original
size of the master list.

n2

68

Great! We know that TMA will
terminate and produce a pairing.

But is it stable?

69

Theorem: The pairing produced
 by TMA is stable.

– Proof by contradiction:
Suppose Bob and Mia are a rogue couple.

– This means Bob likes Mia more than his wife, Alice.

– Thus, Bob proposed to Mia before he proposed to Alice.
– Mia must have rejected Bob for someone she preferred.
– By the Tradeoff lemma, she must like her husband Luke more

than Bob.

Bob
Alice

Mia

Luke

Contradiction!

70

Theorem: The pairing produced
 by TMA is stable.

– Proof by contradiction:
Suppose Bob and Mia are a rogue couple.

– This means Bob likes Mia more than his wife, Alice.

– Thus, Bob proposed to Mia before he proposed to Alice.
– Mia must have rejected Bob for someone she preferred.
– By the Tradeoff lemma, she must like her husband Luke more

than Bob.
– So no boy participates in a rogue couple.

Bob
Alice

Mia

Luke

Suppose

71

Opinion Poll

72

Understanding the Solution
• Question: For a given problem instance, there may be

several stable matchings. Do all executions of the
algorithm yield the same stable matching? If so, which
one?

• An instance with two stable matchings:

– A-X, B-Y, C-Z.
– A-Y, B-X, C-Z.

Zeus

Yancey

Xavier

A

B

A

1st

B

A

B

2nd

C

C

C

3rd

Clare

Bertha

Amy

X

X

Y

1st

Y

Y

X

2nd

Z

Z

Z

3rd

73

Forget TMA for a moment

• How should we define what we mean when we
say “the optimal girl for Zeus”?

Flawed Attempt:
 “The girl at the top of Zeus’s list”

74

The Optimal Girl

• A boy’s optimal girl is the highest ranked girl G
for whom there is some stable pairing in which

the boy marries G.

• She is the best girl he can conceivably get in a
stable world. Presumably, she might be better
than the girl he gets in the stable pairing
output by TMA.

75

The Pessimal Girl

• A boy’s pessimal girl is the lowest ranked girl G
for whom there is some stable pairing in which

the boy marries G.

• She is the worst girl he can conceivably get in
a stable world.

76

Dating Heaven and Hell

• A pairing is male-optimal if every boy gets his
optimal girl. This is the best of all possible
stable worlds for all the boys simultaneously.

• A pairing is male-pessimal if every boy gets his
pessimal girl. This is the worst of all possible
stable worlds for all the boys simultaneously.

77

Dating Heaven and Hell

• A pairing is female-optimal if every girl gets
her optimal mate. This is the best of all
possible stable worlds for every girl
simultaneously.

• A pairing is female-pessimal if every girl gets
her pessimal mate. This is the worst of all
possible stable worlds for every girl
simultaneously.

78

The Naked Mathematical Truth!

• The Traditional Marriage Algorithm
always produces a male-optimal, female-

pessimal pairing.

79

Theorem: TMA produces a
male-optimal pairing

– Suppose not: i.e. that some boy gets rejected
by his optimal girl during TMA.

– In particular, let’s say Bob is the first boy to
be rejected by his optimal girl Mia: Let’s say
she said “maybe” to Luke, whom she prefers.

– Since Bob was the only boy to be rejected by
his optimal girl so far, Luke must like Mia at
least as much as his optimal girl.

80

Mia: …. Luke ….. Bob…..
Luke: ….. Mia…. Optimal girl….

Bob: …. Mia (optimal girl)…

• We show that any pairing S in which Bob marries Mia
cannot be stable (for a contradiction).

• Suppose S is stable:

– Luke likes Mia more than his wife in S (At least as
much as his optimal possible girl)

– Mia likes Luke more than her husband Bob in S

Contradiction
Luke Mia

The
lists:

81

Theorem: The TMA pairing, T, is female-
pessimal.

• Suppose there is a stable pairing S where some girl
Alice does worse than in T.

• Let Luke be her mate in T.

- Alice likes Luke better than her mate in S.

- T is male-optimal, so Luke likes Alice better than
his mate in S.

– Therefore, S is not stable.

A contradiction

82

Efficient Implementation

• We describe an O(n2)-time implementation.
• Men and women are denoted 1, …, n and 1', …, n‘

respectively.
• Engagements:

– Maintain a list of rejectedmen.
– Maintain two arrays wife[m], and husband[w].

• set entry to 0 if unmatched
• if w just said “maybe” to m then wife[m]=w and
husband[w]=m

• Men proposing:
– For each man, maintain a list of women, ordered by

preference.
– Maintain an array count[m] that counts the number

of (different) proposals made by man m.

83

Efficient Implementation

• Women rejecting/accepting.
– Does woman w prefer man m to man m'?
– For each woman, create inverse of preference list of men.
– Constant time access for each query after O(n) preprocessing.

for i = 1 to n
 inverse[prefBoy[i]] = i

prefBoy

1st

8

2nd

7

3rd

3

4th

4

5th

1 5 2 6

6th 7th 8th

inverse 4th 2nd 8th 6th 5th 7th 1st 3rd

1 2 3 4 5 6 7 8

Amy

Amy

Amy prefers man 3 to 6
since inverse[3] < inverse[6]

2 7

84

Efficient Implementation

• Initially, all men are rejected.

• Iteration: Each rejected man m proposes to count[m]
(and count[m] increases)

• The women answer (each in O(1))

• Arrays husband/wife updated. The queue is updated.
O(1) for each proposal made.

• Time complexity: Init: O(n2) (create inverse[])

• n women, each woman is proposed to at most n times.

• n men, each man proposes at most n times

• Total of at most O(n2) proposals, each proposal in O(1).

85

Game Theory @ Stable Pairing
Problem

• Question: Can there be an incentive to misrepresent your
preference profile?
– Assume you know TMA algorithm will be used.
– Assume that you know the preference profiles of all

other participants.

• Answer: No, for any man.
 Yes, for some women.
 No mechanism can guarantee a stable matching and be

cheatproof.

86

Clare

Zeus

Clare

Game Theory @ Stable Pairing
Problem

A

X

X

Y

Y

Z

Z

Men’s Preference List

Women’s True Preference Profile

Yancey

Xavier

1st

A

B

2nd

C

C

3rd

Bertha

Amy

1st 2nd 3rd

B

A

B

C

X

Y

Z

X

Z

Y

Y

Z

X

Amy Lies

Bertha

Amy

1st 2nd 3rd

X

Y

Z

Example: Amy Lies and improves her match.

87

References

•D. Gale and L. S. Shapley, College admissions and
the stability of marriage, American Mathematical
Monthly 69 (1962), 9-15

•Dan Gusfield and Robert W. Irving, The Stable
Marriage Problem: Structures and Algorithms,
MIT Press, 1989

88

Application: Matching Residents to
Hospitals

• Men  hospitals, Women  medical school residents.

– Each medical school graduate submits a ranked list of
hospitals where he/she wants to do a residency.

– Each hospital submits a ranked list of newly minted
doctors.

• Variant 1. Some participants declare others as
unacceptable (resident A unwilling to
work in Cleveland).

• Variant 2. Unequal number of men and women.

• Variant 3. Limited polygamy (hospital X wants to hire 3
residents).

89

Extensions: Matching Residents to
Hospitals

Definition: Matching S is unstable if there is a
hospital h and resident r such that:

– h and r are acceptable to each other; and

– either r is unmatched, or r prefers h to her
assigned hospital; and

– either h does not have all its places filled, or h
prefers r to at least one of its assigned
residents.

How can the TMA algorithm be extended?

90

History
• 1900

– Idea of hospitals having residents (“interns”)
• Over the next few decades

– Intense competition among hospitals for an inadequate
supply of residents
• Each hospital makes offers independently
• Process degenerates into a race. Hospitals steadily

advancing date at which they finalize binding
contracts

• 1944 Absurd Situation. Appointments being made 2 years
ahead of time!
– All parties were unhappy
– Medical schools stop releasing any information about

students before some reasonable date
– Offers were made at a more reasonable date, but

new problems developed

91

History
• 1945-1949

–Hospitals started putting time limits on offers

–Time limit gets down to 12 hours

–Lots of unhappy people

–Many instabilities resulting from lack of cooperation

• 1950 Centralized System
–Each hospital ranks residents

–Each resident ranks hospitals

–National Resident Matching Program produces a pairing.

–Sometimes unstable.

• By 1952 the algorithm was the TMA (hospital-
optimal) and therefore stable.

