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Welcome to  
Advanced Algorithms 

Lecturer: Shay Mozes(smozes@idc.ac.il) 

    Office Hours:  Sunday 14:00-15:00 

                          and by appointment 

 

Fall 2014 
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Administrivia 

 
• Most important resource: course web page 
• Papers and sections from various books (mainly 

CLRS). 
• Grading: 

– Homework - 25% 
– Final exam - 75% (must get at least 60).  
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About the Homework 

 

• Every 2-3 weeks a homework exercise  

• Some Hard questions - significant effort 

• May use any resource: friends, papers, books; 
but must write by yourself and acknowledge / 
specify working group. 

• Every student must hand in every exercise. 

• Average of best n-1 form the HW component in 
the final grade. Probably n=6. 

• 5 point bonus for HW written in LaTeX. 
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Course Goals 

• A large algorithmic toolbox. 
• A deeper understanding of the issues and 

tradeoffs involved in algorithm design. 
• An appreciation for applications of 

algorithmic techniques in the real world. 
• A better sense of how to model problems you 

encounter as well-known algorithmic 
problems. 

• Fun! Elegance! Beauty! 
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Some Topics 

• Classic techniques – greedy, divide and conquer, 
dynamic programming 

• Approximation algorithms 
• Solving NP hard problems on structured inputs 
• Fixed parameter tractability 
• Linear programming, LP duality and applications 
• Online algorithms 
• Streaming algorithms 
• Randomized algorithms 
• External memory / cache oblivious algorithms 
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Applied Algorithm Scenario 

Real world problem 

Abstractly model the problem 

Find abstract algorithm 

Adapt to original problem 
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Modeling 

• Formalize the goal 
 

• What kind of algorithm is needed? 

• Can I find an algorithm or do I have to 
invent one? 

• Can I ‘tune’ an existing algorithm? Does 
it remind me a familiar problem? 
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Algorithm Design Goals 

• Correctness 

• Efficiency 

• Simple, if possible. 

• Ease of implementation 
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Evaluating an algorithm 

  Mike: My algorithm can sort 106 numbers in 3 seconds. 

  Bill: My algorithm can sort 106 numbers in 5 seconds. 

 

 Mike: I’ve just tested it on my new Intel core duo. 
 Bill: I remember my result from my undergraduate studies 

(1985). 

 Mike: My input is a random permutation of 1..106. 
 Bill: My input is the sorted output, so I only need to verify 

that it is sorted. 
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Types of complexity 

* A complexity function is a function T: N  N.   

   T(n) is the number of operations the algorithm does on 
an input of size n. 

* We can measure (at least) three different things. 

• Worst-case complexity 

• Best-case complexity 

• Average-case complexity 

• Actual running time time is not necessarily a good measure 
 

• We need a ‘stable’ measure, independent of the 
implementation. 
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The RAM Model of Computation 

• Each simple operation (e.g., C statement) takes 1 time 
step. 

• Loops and subroutines are not simple operations. 
• Each memory access takes one time step, and there is no 

shortage of memory. 
For a given problem instance: 
• Running time of an algorithm = # of simple operations.  
• Space used by an algorithm = # RAM memory cells 
 
useful abstraction  captures the architecture of modern 

computers, but still allows us to analyze algorithms in a 
machine independent fashion. 
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Big O Notation 
• Goal : 

– A stable measurement independent of the machine.  

• Way: 
– ignore constant factors. Consider just the leading term. 

• f(n) = O(g(n)) if cg(n) is upper bound on f(n) 

   There exist c, N,  s.t. for any n  N,   f(n)  cg(n) 

n+120 

5n2 For all n  5     n+120 
 5n2 

  n+120 = O(n2). 

Also, for all n  60 
n+120  2n 

 n+120 = O(n). 
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Growth Rates 

• Even by ignoring constant factors, we can get 
an excellent idea of whether a given algorithm 
will be able to run in a reasonable amount of 
time on a problem of a given size. 

• The “big O” notation and worst-case analysis 
are tools that greatly simplify our ability to 
compare the efficiency of algorithms. 

• O(n)    O(log n)   O(2n) 
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Reminder : Graphs 

A B 

C 

E 
D 

• G=(V,E) 

•|V|=n, |E|=m 

•Directed/undirected 

•Weighted/unweighted 

•In/out-degree 
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Graph Search 

Input: Graph G, vertex s 

Output: All vertices connected from s. 

 

Two main approaches:  

1. Breadth First Search 

2. Depth First Search 
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      Graph Search 

BFS(G,s): 

 mark s 

 F.enque(s) 

 Repeat 

       u  F.deque() 

    for all v neighbor of u 

        if v not marked 

               mark v  

        F.enque(v) 

 Until F is empty  

s 

DFS(G,s): 

    mark s 

    for all v neighbor of s 

         if v unmarked 

             DFS(G,v) 
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Shortest-path Algorithms  

• Single source: given a vertex s, find the 
shortest path from s to any other vertex of G. 

• Variants: 
– Different edges have different lengths 

(representing delay, cost, etc.) 
– Nonnegative/real weights. Negative cycles. 

• All-pair shortest path problem: no specific 
source. 
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Shortest-path algorithms - 
Summary 

• Single source, no weights:   

 BFS -  O(m) 

• Single source, non-negative weights: 
Dijkstra O(m+ nlog n)) or O(n2)  

• Single source, arbitrary weights: 

 Bellman-Ford: O(nm) 

• All-pair shortest paths, arbitrary weights: 
Floyd: O(n3), Johnson: O(nm + n2log n) 
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Minimum Spanning Tree 

• Each edge has a cost. 

• Find a minimal-cost subset of edges  that will 
keep the graph connected. (must be a ST). 

1 

6 

5 

7 

2 

3 

4 

21 75 

17 

25 
19 10 

18 

64 

80 

4 

Price of this tree = 18+19+4+10+17+64 
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Minimum Spanning Tree Problem 

• Input: Undirected connected graph G = (V,E) 
and a cost function C from E to the reals. 
C(e) is the cost of edge e. 

• Output: A spanning tree T with minimum 
total cost.  That is: T that minimizes 

 

 

• Another formulation: Remove from G edges 
with maximal total cost, but keep G 
connected. 





Te

C(e)C(T)
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Two Popular algorithms: 

• Kruskal 
– Greedily add lightest edge that does not create a 

cycle 

– Time complexity O(m log m) using basic sorting and 
Union-Find data structures  

• Prim 
– Grow a tree by greedily adding the lightest edge 

with one endpoint in the tree and one not in the tree 

– Time complexity O(m log m) using binary heap,  
O(m + n log n) using Fibonacci heaps. 
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Maximum Flow 

• Input: a directed graph (network) G  

– each edge (v,w) has associated capacity c(v,w) 

– a specified source node s and target node t 

• Problem: What is the maximum flow you can route 
from s to t while respecting the capacity constraint of 
each edge? 

s t 
7 

5 

6 

3 

4 

5 

4 

1 4 

6 

3 

7 
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Properties of Flow:  
f(v,w) - flow on edge (v,w) 

• Edge condition (capacity): 0  f(v,w)  c(v,w) : the flow 
through an edge cannot exceed the capacity of an edge. 

• Vertex condition (conservation): for all v except s,t : 
u f(u,v) = w f(v,w) the total flow entering a vertex is 
equal to total flow exiting this vertex. 

• total flow leaving s = total flow entering t. 

4/5 

s t 
3/7 

5/5 

4/6 

2/3 

3/4 

2/4 

1/1 
3/4 

2/6 

3/3 

7/7 

Notation on edges 
f(v,w)/c(v,w) 

Not a 
maximum 
flow! 
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Cut 

st-Cut - a set of edges that separates s from t. 

• A cut is defined by a set of vertices, S. This set 
includes s and maybe additional vertices.  
The sink t is not in S. 

• The cut is the set of edges (u,v) such that uS and 
vS, or vS and uS.  

 

 

 

 

out(S) – edges in the cut directed from S to V-S 

in(S) – edges in the cut directed from V-S to S 

 

s t S V-S 
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s t 

Cut - example 

S – set of orange vertices. 

out(S) – orange edges  

in(S) – purple edges 

7 

5 

6 

3 

4 

5 

4 

1 4 

6 

3 

7 

The capacity of this 
cut = 18 

For a cut S, the capacity of S  is    .ecSc
out(S)e





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Max-flow Min-Cut Theorem 

  The value of a maximum flow in a 
network is equal to the minimum 
capacity of a cut. 
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Induction has many appearances. 
 

• Formal Arguments 

• Loop Invariants 

• Recursion 

• Algorithm Design 

• Recurrences  
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Review: Induction 

• If  
– P(k) is true for fixed constant k  

• Often k = 0 

– P(n)  P(n+1) for all n  k 

• Then P(n) is true for all n  k 
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Proof By Induction 

• Claim:P(n) is true for all n  k 

• Base: 
– Show P(n) is true for n = k 

• Inductive hypothesis: 
– Assume P(n) is true for an arbitrary n 

• Step: 
– Show that P(n) is then true for n+1 
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Induction Example: 
Geometric sequence 

• Prove by induction on n: for all a  1 
• a0 + a1 + … + an = (an+1 - 1)/(a - 1)  
• Base: n=0. a0 = (a0+1 - 1)/(a - 1). 

           a0 = 1 = (a1 - 1)/(a - 1) 
• Inductive hypothesis:  

• Assume a0 + a1 + … + an = (an+1 - 1)/(a - 1)  
• Step (show true for n+1): 

a0 + a1 + … + an+1 = a0 + a1 + … + an + an+1 

= (an+1 - 1)/(a - 1) + an+1 = (an+1+1 - 1)/(a - 1) 
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Design by Induction Example: Tiling 

Goal: tile a room of 2n x 2n squares. 

2n 

2n 

Architect allows only L-shaped tiles covering 3 squares 
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Tiling 
A tile in the middle is reserved to Efi Arazi statue. 

Middle = 
one of the 
four 
middle 
squares. 



33 

Tiling  
For n=2, the 4x4 square can be tiled as follows: 

4 

4 
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Tiling 

For n=3, the 8x8 square can be tiled as follows: 

8 

8 
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Tiling 

Theorem: For all n  N we can tile 2n x 2n square so that 
both Efi and Architect are happy. 

 

Proof: By induction on n. Let 

   P(n) := [can tile 2n x 2n square with Efi in middle] 

 

Base case: True for n = 0 (no tiles are needed). 
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Tiling 

Induction step: assume can tile 2n x 2n square, prove that can 
tile 2n+1 x 2n+1 square. 

2n 

2n+1 

Now what?? 
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Tiling 

The idea: Use a stronger induction hypothesis. 
1. Implies the original theorem. 

2. Makes proving P(n)    P(n+1) easier! 
 

Proof (second attempt): By induction on n. Let 

 

P’(n):= [can tile 2n x 2n square with Efi in any location] 

 

Note: this implies  

 P(n) := [can tile 2n x 2n square with Efi in middle] 
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Tiling 

P’(n):= [can tile 2n x 2n square with Efi in any location] 

 

Base case: Still true for n = 0 (no tiles are needed). 

 

 

 

Induction step: Assume can tile 2n x 2n square with Efi in 
any location. 
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Tiling 

Given a 2n+1 x 2n+1 square: 
1. Ask the client to select Efi’s location.  
2. Locate the first tile in the middle, such that one block 

is missing from every quarter. 
3. By the induction hypothesis the quarters can be legally 

tiled. 

 

 

 

 

 

 

 

 
 

 

2n 

2n+1 
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What are the Lessons? 

Proof by induction can be constructive: 

1. Sometimes yields an efficient procedure/algorithm. 

2. Our proof implicitly defined a recursive procedure 
for tiling with Efi in the middle. 

 

Choice of the induction hypothesis is crucial: 

1. Assuming stronger hypothesis may make proof easier! 

2. But need to ensure that P(n)   P(n+1) is indeed true. 
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The Mathematics Of 1950’s Dating:  
Who wins the battle of the sexes? 

Based on slides by Prof. Steven Rudich (CMU) and Prof. Kevin Wayne (Princeton) . 

Copyright © 2005 Pearson-Addison Wesley 
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3,2,5,1,4 

1 

5,2,1,4,3 

4,3,5,1,2 

3 

1,2,3,4,5 

4 

2,3,4,1,5 

5 

1 

3,2,5,1,4 

2 

1,2,5,3,4 

3 

4,3,2,1,5 

4 

1,3,4,2,5 

5 

1,2,4,5,3 

2 

Boys Girls 
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Dating Scenario 
– There are n boys and n girls 
– Each girl has her own ranked 

preference list of all the boys 
– Each boy has his own ranked 

preference list of all the girls 
– The lists have no ties 

Question: How do we pair them off 
optimally?  
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What is considered a “good” pairing? 

– Maximizing total satisfaction 

• What is the average rank of the partner in a person’s 
ranking? 

– Maximizing the minimum satisfaction 
• What is the rank of the partner in  the most unsatisfied 

person’s ranking? 
– Minimizing the maximum difference in mate ranks 

• Everybody is more or less equally satisfied  

– Maximizing the number of people who get their first choice 
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Rogue Couples 

• Suppose we pair off all the boys and 
girls. Now suppose that some boy and 
some girl prefer each other to the 
people to whom they are paired. They will 
be called a rogue couple.   
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Why be with them when we can be 
with each other? 
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Stable Pairings 

• A pairing of boys and girls is called 
stable if it contains no rogue couples. 
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Stability is a Must. 

• Any reasonable list of criteria for a good 
pairing must include stability. (A 
pairing is doomed if it contains a rogue 
couple.) 
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The study of stability will be the 
subject of the entire lecture. 

• We will: 
– Analyze various mathematical properties of an 

algorithm that looks a lot like 1950’s dating 

– Discover the naked mathematical truth about which 
sex has the romantic edge. 

– Learn how the world’s largest, most successful 
dating service operates. 
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Given a set of preference lists, how 
do we find a stable pairing? 

Wait! There is a 
more primary 

question! 

The Existence Question: 

Does every set of preferences 
lists have at least one stable 

pairing??? 
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Can you argue that the 
couples will not  continue 

breaking up and reforming 
forever? 
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An Instructive Variant: 
Roommate Problem 

Stable roommate problem. 
2n people; each person ranks others from 1 to 2n-1. 
Assign roommate pairs so that no unstable pairs. 

Observation:  Stable matchings do not always exist for 
stable roommate problem. 

 

B 

Bob 

Chris 

Adam C 

A 

B 

D 

D 

Dan A B C 

D 

C 

A 

1st 2nd 3rd 

A-B, C-D   B-C unstable 
A-C, B-D   A-B unstable 
A-D, B-C   A-C unstable 
 
 
Can be any order 
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An Instructive Variant: 
Roommate Problem B,C,D 

A,B,D 

D 

C,A,D 

,,

A 
B 

C 
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Insight 

• Any  proof that couples do not break up and reform 
forever must contain a step that fails in the case of 
the roommate problem. 

 

• If you have a proof idea that works equally well in the 
marriage problem and the roommate problem, then 
your idea is not adequate to show the couples 
eventually stop. 
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The Traditional Marriage Algorithm 

Worshipping males 

Female 
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Traditional Marriage Algorithm 

• Repeat: 
– Morning 

• Each girl stands on her balcony 

• Each boy proposes under the balcony of the best girl 
whom he has not yet crossed off 

– Afternoon (for those girls with at least one suitor) 

• To today’s best suitor: “Maybe, come back tomorrow” 

• To any others: “No, I will never marry you” 

– Evening 

• Any rejected boy crosses the girl off his list. 

While some boy gets a “No” answer 

Each girl marries the boy to whom she just said “maybe” 
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Traditional Marriage Algorithm 

Termination: 

• When no boy gets a “No” (all were told “maybe” ): 

• Each girl marries the boy to whom she said “maybe”. 
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3,2,5,1,4 

1 

5,2,1,4,3 

4,3,5,1,2 

3 

1,2,3,4,5 

4 

2,3,4,1,5 

5 

1 

3,2,5,1,4 

2 

1,2,5,3,4 

3 

4,3,2,1,5 

4 

1,3,4,2,5 

5 

1,2,4,5,3 

2 

Boys Girls 
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Traditional Marriage Algorithm 

• Example 

girl Day 1 

1 2,4,5 

2 

3 1 

4 3 

5 

= come 
tomorrow 

Day 2 

2 

5 

1, 4 

3 

Girls Boys 

3,2,5,1,4 3,2,5,1,4 1 

5,2,1,4,3 1,2,5,3,4 2 

4,3,5,1,2 4,3,2,1,5 3 

1,2,3,4,5 1,3,4,2,5 4 

2,3,4,1,5 1,2,4,5,3 5 
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Traditional Marriage Algorithm 

girl Day 1 

1 2,4,5 

2 

3 1 

4 3 

5 

Day 2 

2 

5 

1, 4 

3 

Day 3 

2 

5, 1 

4 

3 

Day 4 

2 

5 

 4 

3 

    1 

Girls Boys 

3,2,5,1,4 3,2,5,1,4 1 

5,2,1,4,3 1,2,5,3,4 2 

4,3,5,1,2 4,3,2,1,5 3 

1,2,3,4,5 1,3,4,2,5 4 

2,3,4,1,5 1,2,4,5,3 5 
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Trade-up lemma: In TMA, if on day i a 
girl says “maybe” to boy b, she is guaranteed 
to marry a husband that she likes at least as 
much as b. 

– She would only let go of him in order to “maybe” 
someone better 

– She would only let go of that guy for someone even 
better 

– She would only let go of that guy for someone even 
better 

– AND SO ON . . . . . . . . . . . . .  

 

Informal Induction 
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• (*) For all k  0, on day i+k the girl will say 
“maybe” to a boy she likes as much as b. 

• Base: k=0 (true by assumption) 

• Assume (*) is true for k-1. Thus she has a boy 
as good as b on day i+k-1. The next day she will 
either keep him or reject him for some better. 
Thus (*) is true for k. 

Formal Induction 

Trade-up Lemma: In TMA, if on day i a girl 
says “maybe” to boy b, she is guaranteed to 
marry a husband that she likes at least as 
much as b. 
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Corollary: Each girl will marry her 
absolute favorite of the boys who 

visit her during the TMA. 
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Does the Traditional Marriage 
Algorithm always produce a stable 

pairing? 

Wait! There is a 
more primary 

question! 

Does TMA always 
terminate? 
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Does TMA always terminate? 

– It might encounter a situation where the 
algorithm does not specify what to do next. 
 

– It might keep on going for an infinite 
number of days. 
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Lemma: Everyone will be matched. 

• We show that no boy can be rejected by all the girls. 
This would imply that there are n couples. 

• Suppose by contradiction that Bob is rejected by all 
the girls.  

• Then some woman, say Amy, is not matched when Bob 
marked out the last girl from his list. 

– By the trade-up lemma, Amy was never proposed to. 

– But Bob proposes to everyone, since he ends up 
unmatched.  In particular to Amy                       ▪ 

 

Contradiction 
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Theorem: The TMA always terminates 
in at most      days 

– Consider the “master list” containing all the boy’s 
preference lists of girls.  There are n boys, and each list 
has n girls on it, so there are a total of n X n = n2 girls’ 
names in the master list. 

 

– Each day that at least one boy gets a “No”, at least one 
girl gets crossed off the master list. 

 

– Therefore, the number of days is bounded by the original 
size of the master list. 

n2 
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Great! We know that TMA will 
terminate and produce a pairing. 

But is it stable? 
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Theorem: The pairing produced 
                    by TMA is stable. 

– Proof by contradiction:  
Suppose Bob and Mia are a rogue couple. 

 

 

 

 

 

– This means Bob likes Mia more than his wife, Alice. 

– Thus, Bob proposed to Mia before he proposed to Alice. 
– Mia must have rejected Bob for someone she preferred. 
– By the Tradeoff lemma, she must like her husband Luke more 

than Bob. 
 

Bob 
Alice 

Mia 

Luke 

Contradiction!  
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Theorem: The pairing produced 
                    by TMA is stable. 

– Proof by contradiction:  
Suppose Bob and Mia are a rogue couple. 

 

 

 

 

 

– This means Bob likes Mia more than his wife, Alice. 

– Thus, Bob proposed to Mia before he proposed to Alice. 
– Mia must have rejected Bob for someone she preferred. 
– By the Tradeoff lemma, she must like her husband Luke more 

than Bob. 
– So no boy participates in a rogue couple. 
 

Bob 
Alice 

Mia 

Luke 

Suppose 
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Opinion Poll 
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Understanding the Solution 
• Question: For a given problem instance, there may be 

several stable matchings. Do all executions of the 
algorithm yield the same stable matching? If so, which 
one? 

 
• An instance with two stable matchings: 

– A-X, B-Y, C-Z. 
– A-Y, B-X, C-Z. 

Zeus 

Yancey 

Xavier 

A 

B 

A 

1st 

B 

A 

B 

2nd 

C 

C 

C 

3rd 

Clare 

Bertha 

Amy 

X 

X 

Y 

1st 

Y 

Y 

X 

2nd 

Z 

Z 

Z 

3rd 
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Forget TMA for a moment 

• How should we define what we mean when we 
say “the optimal girl for Zeus”? 

 

Flawed Attempt: 
 “The girl at the top of Zeus’s list” 
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The Optimal Girl 

• A boy’s optimal girl is the highest ranked girl G 
for whom there is some stable pairing in which 

the boy marries G. 

 

• She is the best girl he can conceivably get in a 
stable world. Presumably, she might be better 
than the girl he gets in the stable pairing 
output by TMA. 
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The Pessimal Girl 

• A boy’s pessimal girl is the lowest ranked girl G 
for whom there is some stable pairing in which 

the boy marries G. 

 

• She is the worst girl he can conceivably get in 
a stable world.  
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Dating Heaven and Hell 

• A pairing is male-optimal if every boy gets his 
optimal girl. This is the best of all possible 
stable worlds for all the boys simultaneously. 

 

• A pairing is male-pessimal if every boy gets his 
pessimal girl. This is the worst of all possible 
stable worlds for all the boys simultaneously. 
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Dating Heaven and Hell 

• A pairing is female-optimal if every girl gets 
her optimal mate. This is the best of all 
possible stable worlds for every girl 
simultaneously. 

 

• A pairing is female-pessimal if every girl gets 
her pessimal mate. This is the worst of all 
possible stable worlds for every girl 
simultaneously. 
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The Naked Mathematical Truth! 

• The Traditional Marriage Algorithm 
always produces a male-optimal, female-

pessimal pairing. 
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Theorem: TMA produces a  
male-optimal pairing 

– Suppose not: i.e. that some boy gets rejected 
by his optimal girl during TMA.  

– In particular, let’s say Bob is the first boy to 
be rejected by his optimal girl Mia: Let’s say 
she said “maybe” to Luke, whom she prefers.  

– Since Bob was the only boy to be rejected by 
his optimal girl so far, Luke must like Mia at 
least as much as his optimal girl. 
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Mia:  ….  Luke ….. Bob…..  
Luke: ….. Mia…. Optimal girl…. 

Bob: …. Mia (optimal girl)… 
 

• We show that any pairing S in which Bob marries Mia 
cannot be stable (for a contradiction). 

• Suppose S is stable: 

– Luke likes Mia more than his wife in S (At least as 
much as his optimal possible girl) 

– Mia likes Luke more than her husband Bob in S 

Contradiction  
Luke Mia 

The 
lists: 
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Theorem: The TMA pairing, T, is female-
pessimal. 

• Suppose there is a stable pairing S where some girl 
Alice does worse than in T. 

• Let Luke be her mate in T.  
 

- Alice likes Luke better than her mate in S. 

- T is male-optimal, so Luke likes Alice better than 
his mate in S. 

–  Therefore, S is not stable.  

A contradiction 
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Efficient Implementation 

• We describe an O(n2)-time implementation. 
• Men and women are denoted 1, …, n and 1', …, n‘ 

respectively. 
• Engagements: 

– Maintain a list of rejectedmen. 
– Maintain two arrays wife[m], and husband[w]. 

• set entry to 0 if unmatched 
• if w just said “maybe” to m then wife[m]=w and 
husband[w]=m 

• Men proposing: 
– For each man, maintain a list of women, ordered by 

preference. 
– Maintain an array count[m] that counts the number 

of (different) proposals made by man m. 
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Efficient Implementation 

• Women rejecting/accepting. 
– Does woman w prefer man m to man m'? 
– For each woman, create inverse of preference list of men. 
– Constant time access for each query after O(n) preprocessing. 

for i = 1 to n 
   inverse[prefBoy[i]] = i 

prefBoy 

1st 

8 

2nd 

7 

3rd 

3 

4th 

4 

5th 

1 5 2 6 

6th 7th 8th 

inverse 4th 2nd 8th 6th 5th 7th 1st 3rd 

1 2 3 4 5 6 7 8 

Amy 

Amy 

Amy prefers man 3 to 6 
since inverse[3] < inverse[6] 

2 7 
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Efficient Implementation 

• Initially, all men are rejected. 

• Iteration: Each rejected man m proposes to count[m] 
(and count[m] increases) 

• The women answer (each in O(1)) 

• Arrays husband/wife updated. The queue is updated. 
O(1) for each proposal made. 

• Time complexity: Init: O(n2) (create inverse[]) 

• n women, each woman is proposed to at most n times. 

• n men,  each man proposes at most n times 

• Total of at most O(n2) proposals, each proposal in O(1). 
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Game Theory @ Stable Pairing 
Problem 

• Question:  Can there be an incentive to misrepresent your 
preference profile? 
– Assume you know TMA algorithm will be used. 
– Assume that you know the preference profiles of all 

other participants. 
 
• Answer: No, for any man.  
                 Yes, for some women.  
   No mechanism can guarantee a stable matching and be 

cheatproof. 
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Clare 

Zeus 

Clare 

Game Theory @ Stable Pairing 
Problem 

A 

X 

X 

Y 

Y 

Z 

Z 

Men’s Preference List 

Women’s True Preference Profile 

Yancey 

Xavier 

1st 

A 

B 

2nd 

C 

C 

3rd 

Bertha 

Amy 

1st 2nd 3rd 

B 

A 

B 

C 

X 

Y 

Z 

X 

Z 

Y 

Y 

Z 

X 

Amy Lies 

Bertha 

Amy 

1st 2nd 3rd 

X 

Y 

Z 

Example: Amy Lies and improves her match. 
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Application: Matching Residents to 
Hospitals 

• Men  hospitals, Women  medical school residents. 

– Each medical school graduate submits a ranked list of 
hospitals where he/she wants to do a residency. 

– Each hospital submits a ranked list of newly minted 
doctors. 

 

• Variant 1.  Some participants declare others as 
unacceptable (resident A unwilling to 
work in Cleveland). 

• Variant 2.  Unequal number of men and women. 

• Variant 3.  Limited polygamy (hospital X wants to hire 3 
residents). 
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Extensions: Matching Residents to 
Hospitals 

Definition:  Matching S is unstable if there is a 
hospital h and resident r such that: 

– h and r are acceptable to each other; and 

– either r is unmatched, or r prefers h to her 
assigned hospital; and 

– either h does not have all its places filled, or h 
prefers r to at least one of its assigned 
residents. 

How can the TMA algorithm be extended? 
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History  
• 1900 

– Idea of hospitals having residents (“interns”) 
• Over the next few decades 

– Intense competition among hospitals for an inadequate 
supply of residents 
• Each hospital makes offers independently 
• Process degenerates into a race. Hospitals steadily 

advancing date at which they finalize binding 
contracts 

• 1944 Absurd Situation. Appointments being made 2 years 
ahead of time! 
– All parties were unhappy 
– Medical schools stop releasing any information about 

students before some reasonable date 
– Offers were made at a more reasonable date, but 

new problems developed 
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History 
• 1945-1949 

–Hospitals started putting time limits on offers 

–Time limit gets down to 12 hours 

–Lots of unhappy people 

–Many instabilities resulting from lack of cooperation 

• 1950 Centralized System 
–Each hospital ranks residents  

–Each resident ranks hospitals 

–National Resident Matching Program produces a pairing. 

–Sometimes unstable. 

• By 1952 the algorithm was the TMA (hospital-
optimal) and therefore stable. 


