
Shortest Paths in Planar Graphs with Real
Lengths in O(n log2 n/ log logn) Time

Shay Mozes⋆1 and Christian Wulff-Nilsen2

1 Department of Computer Science, Brown University, Providence, RI 02912, USA
shay@cs.brown.edu

2 Department of Computer Science, University of Copenhagen, DK-2100,
Copenhagen, Denmark. koolooz@diku.dk

Abstract. Given an n-vertex planar directed graph with real edge lengths
and with no negative cycles, we show how to compute single-source short-
est path distances in the graph in O(n log2 n/ log log n) time with O(n)
space. This improves on a recent O(n log2 n) time bound by Klein et al.

1 Introduction

Computing shortest paths in graphs is one of the most fundamental problems
in combinatorial optimization. The Bellman-Ford algorithm and Dijkstra’s algo-
rithm are classical algorithms that find distances from a given vertex to all other
vertices in the graph. The Bellman-Ford algorithm works for general graphs and
runs in O(mn) time where m resp. n is the number of edges resp. vertices of the
graph. Dijkstra’s algorithm runs in O(m+n log n) time when implemented with
Fibonacci heaps but it only works for graphs with non-negative edge lengths.

We are interested in the single-source shortest path (SSSP) problem for pla-
nar directed graphs. There is an optimal O(n) time algorithm for SSSP when all
edge lengths are non-negative [4]. For planar graphs with arbitrary real edge
lengths and with no negative cycles3, Lipton, Rose, and Tarjan [8] gave an
O(n3/2) time algorithm. Henzinger, Klein, Rao, and Subramanian [4] obtained a
(not strongly) polynomial bound of Õ(n4/3). Later, Fakcharoenphol and Rao [3]
showed how to solve the problem in O(n log3 n) time and O(n log n) space. Re-
cently, Klein, Mozes, and Weimann [7] presented a linear space O(n log2 n) time
recursive algorithm.

In this paper, we present a linear space algorithm with O(n log2 n/ log log n)
running time. The speed-up comes from a reduction of the recursion depth of
the algorithm in [7] from O(log n) to O(log n/ log log n) levels. Each recursive
step now becomes more involved. To deal with this, we show a new technique
for using the Monge property in graphs that do not necessarily posses that
property. Both [3] and [7] showed how to partition a set of distances that are
not Monge, into subsets, each of which is Monge. Exploiting this property, the

⋆ Supported by NSF grant CCF-0635089
3 Algorithms for this problem can be used to detect negative cycles.

distances within each subset can be processed efficiently. Here we extend that
technique by exhibiting sets of Monge distances whose union is a superset of the
distances we are actually interested in. We believe this technique may be useful
in solving other problems, not necessarily in the context of the Monge property.

From observations in [7], our algorithm can be used to solve bipartite perfect
matching, feasible flow, and feasible circulation in planar graphs inO(n log2 n/ log log n)
time. Chambers et al. claimed [1] that the algorithm in [7] generalizes to bounded
genus graphs. However, the proof (Theorem 3.2 in [1]) is not detailed, and it
seems that our new technique is required for its correctness [2]. The resulting
running time for fixed genus is also improved to O(n log2 n/ log log n).

The organization of the paper is as follows. In Section 2, we give some def-
initions and review some basic results. In Section 3 we give an overview of the
algorithm of Klein et al. In Section 4 we show how to improve the running time.
Finally, we make some concluding remarks in Section 5.

2 Preliminaries

In the following, G = (V,E) denotes an n-vertex planar directed graph with real
edge lengths and with no negative cycles. For vertices u, v ∈ V , let dG(u, v) ∈
R ∪ {∞} denote the length of a shortest path in G from u to v. We extend
this notation to subgraphs of G. We will assume that G is triangulated such
that there is a path of finite length between each ordered pair of vertices of G.
The new edges added have sufficiently large lengths so that finite shortest path
distances in G will not be affected.

Given a graph H, let VH and EH denote its vertex set and edge set, re-
spectively. For an edge e ∈ EH , let l(e) denote the length of e (we omit H in
the definition but this should not cause any confusion). Let P = u1, . . . , um

be a path in H, where |P | = m. For 1 ≤ i ≤ j ≤ m, P [ui, uj] denotes
the subpath ui, . . . , uj . If P

′ = um, . . . , um′ is another path, we define PP ′ =
u1, . . . , um−1, um, um+1, . . . , um′ . Path P ′ is said to intersect P if VP ∩ VP ′ 6= ∅.

Define a region R to be the subgraph of G induced by a subset of V . In G,
the vertices of VR adjacent to vertices in V \ VR are called boundary vertices (of
R) and the set of boundary vertices of R is called the boundary of R. Vertices
of VR that are not boundary vertices of R are called interior vertices (of R).

The cycle separator theorem of Miller [9] states that, given an m-vertex
triangulated plane graph, there is a Jordan curve C intersecting O(

√
m) vertices

and no edges such that between m/3 and 2m/3 vertices are enclosed by C.
Furthermore, this Jordan curve can be found in linear time.

Let r ∈ (0, n) be a parameter. Fakcharoenphol and Rao [3] showed how to
recursively apply the cycle separator theorem so that in O(n log n) time, (a plane
embedding of) G is divided into O(n/r) regions with the following properties:

1. Each region contains at most r vertices and O(
√
r) boundary vertices,

2. No two regions share interior vertices,
3. Each region has a boundary contained in O(1) faces, defined by simple cycles.

We refer to such a division as an r-division of G. For simplicity we assume that
the O(1) faces in property 3 contain boundary vertices only. This can always be
achieved by adding edges between consecutive boundary vertices on each face.
Let R be a region in an r-division. We assume that R is enclosed by one of the
cycles C in the boundary of R. This can be achieved by adding a new cycle if
needed. C is the external face of R. Let F be one of the O(1) faces defining
the boundary of R. If F is not the external face of R then the subgraph of G
enclosed by F (including the boundary vertices of R in F) is called a hole of R.

For a graph H, a price function is a function p : VH → R. The reduced cost
function induced by p is the function wp : EH → R, defined by

wp(u, v) = p(u) + l(u, v)− p(v).

We say that p is a feasible price function for H if for all e ∈ EH , wp(e) ≥ 0.
It is well known that reduced cost functions preserve shortest paths, meaning

that we can find shortest paths in H by finding shortest paths in H with edge
lengths defined by the reduced cost function wp. Furthermore, given p and the
distance in H w.r.t. wp from a u ∈ VH to a v ∈ VH , we can extract the original
distance in H from u to v in constant time [7].

Observe that if p is feasible, Dijkstra’s algorithm can be applied to find
shortest path distances since then wp(e) ≥ 0 for all e ∈ EH . The distances
dH(s, u) from any s ∈ VH are an example of a feasible price function u 7→ dH(s, u)
(recall that we have assumed that dH(s, u) <∞ for all u ∈ VH).

A matrix M = (Mij) is totally monotone if for every i, i′, j, j′ such that
i < i′, j < j′, Mij ≤Mij′ implies Mi′j ≤Mi′j′ . Totally monotone matrices were
introduced by Aggarwal et al. [10], who gave an algorithm, nicknamed SMAWK,
that, given a totally monotone n ×m matrix M , finds all row minima of M in
just O(n+m) time. A matrix M = (Mij) is convex Monge if for every i, i′, j, j′

such that i < i′, j < j′, we have Mij +Mi′j′ ≥Mij′ +Mi′j . It is easy to see that
if M is convex Monge then it is totally monotone, and that SMAWK can be used
to find the column minima of a convex Monge matrix. The algorithm in [7] uses
a generalization of SMAWK to so called falling staircase matrices, due to Klawe
and Kleitman [5]. Klawe and Kleitman’s algorithm finds all column minima in
O(mα(n) + n) time, where α(n) is the inverse Ackerman function.

3 The Algorithm of Klein et al.

In this section, we give an overview of the algorithm of [7]. Let s be a vertex of G.
To find SSSP distances in G with source s, the algorithm finds a cycle separator
C with O(

√
n) boundary vertices that separates G into two subgraphs, G0 and

G1. Let r be any of these boundary vertices. The algorithm consists of five stages:

Recursion: SSSP distances from r are computed recursively in G0 and G1.

Intra-part boundary distances: Distances in Gi between every pair of boundary
vertices of Gi are computed in O(n log n) time using the algorithm of [6] for
i = 0, 1.

Single-source inter-part boundary distances: A variant of Bellman-Ford is used
to compute SSSP distances in G from r to all boundary vertices on C. The
algorithm consists of O(

√
n) iterations. Each iteration runs in O(

√
nα(n)) time

using the algorithm of Klawe and Kleitman [5]. This stage takes O(nα(n)) time.

Single-source inter-part distances: Distances from the previous stage are used
to modify G such that all edge lengths are non-negative without changing the
shortest paths. Dijkstra’s algorithm is then used in the modified graph to obtain
SSSP distances in G with source r. Total running time for this stage is O(n log n).

Rerooting single-source distances: The computed distances from r in G form
a feasible price function for G. Dijkstra’s algorithm is applied to obtain SSSP
distances in G with source s in O(n log n) time.

The last four stages of the algorithm in [7] run in a total of O(n log n) time.
Since there are O(log n) recursion levels, the total running time is O(n log2 n).
We next describe how to improve this time bound.

4 An Improved Algorithm

The main idea is to reduce the number of recursion levels by applying the cy-
cle separator theorem of Miller not once but several times at each level of the
recursion. More precisely, for a suitable p, we obtain an n/p-division of G in
O(n log n) time. For each region Ri in this n/p-division, we pick an arbitrary
boundary vertex ri and recursively compute SSSP distances in Ri with source
ri. This is similar to the first stage of the algorithm in [7], except that we recurse
on O(p) regions instead of just two.

We will show how all these recursively computed distances can be used to
compute SSSP distances in G with source s in O(n log n + npα(n)) additional
time. This bound is no better than the O(n log n) bound of the original algorithm
but does result in fewer recursion levels. Since the size of regions is reduced
by a factor of p with each recursive call, the depth of the recursion is only
O(log n/ log p). Furthermore, by recursively applying the separator theorem of
Miller as done by Fakcharoenphol and Rao [3], the subgraphs at the kth recursion
level define an r-division of G where r = n/pk. This r-division consists of O(n/r)
regions each containing at most r vertices, implying that the total time spent
at the kth recursion level is O(n/r(r log r + rpα(r))) = O(n log n + npα(n)).
Summing over all O(log n/ log p) levels, it follows that the total running time of
our algorithm is

O

(

log n

log p
(n log n+ npα(n))

)

.

To minimize this expression, we set n log n = npα(n), so p = log n/α(n). This
gives the desired O(n log2 n/ log log n) running time.

It remains to show how to compute SSSP distances in G with source s in
O(n log n + npα(n)) = O(n log n) time, excluding the time for recursive calls.
Assume that we are given an n/p-division of G and that for each region R, we

are given SSSP distances in R with some boundary vertex of R as source. Note
that the number of regions is O(p) and each region contains at most n/p vertices
and O(

√

n/p) boundary vertices.
The main technical difficulty arises from the existence of holes. We will first

describe a generalization of [7] using multiple regions instead of just two, but
assuming that no region has holes. In this case, as is the case of [7], all of
the boundary vertices in a region are cyclically ordered on its external face. In
section 4.4 we show how to handle the existence of holes.

Without holes, the remaining four steps of the algorithm are very similar
to those in the algorithm of Klein et al. We give an overview here and go into
greater detail in the subsections below. Each step takes O(n log n) time.

Intra-region boundary distances: For each region R, distances in R between each
pair of boundary vertices of R are computed.

Single-source inter-region boundary distances: Distances in G from an arbitrary
boundary vertex r of an arbitrary region to all boundary vertices of all regions
are computed.

Single-source inter-region distances: Using the distances obtained in the previous
stage to obtain a modified graph, distances in G from r to all vertices of G are
computed using Dijkstra’s algorithm on the modified graph.

Rerooting single-source distances: Identical to the final stage of the original
algorithm.

4.1 Intra-region Boundary Distances

Let R be a region. Since R has no holes, we can apply the multiple-source
shortest path algorithm of [6] to R since we have a feasible price function from
the recursively computed distances in R. Total time for this is O(|VR| log |VR|)
time which is O(n log n) over all regions.

4.2 Single-source Inter-region Boundary Distances

Let r be some boundary vertex of some region. We need to find distances in G
from r to all boundary vertices of all regions. To do this, we use a variant of
Bellman-Ford similar to the one used in stage three of the original algorithm.

Let R be the set of O(p) regions, let B ⊆ V be the set of boundary vertices
over all regions, and let b = |B| = O(p

√

n/p) = O(
√
np). Note that a vertex in

B may belong to several regions.
Pseudocode of the algorithm is shown in Figure 1. Notice the similarity with

the algorithm in [7] but also an important difference: in [7], each table entry
ej [v] is updated only once. Here, it may be updated several times in iteration

j since more than one region may have v as a boundary vertex. For j ≥ 1, the
final value of ej [v] will be

ej [v] = min
w∈Bv

{ej−1[w] + dR(w, v)}, (1)

where Bv is the set of boundary vertices of regions having v as boundary vertex.

1. initialize vector ej [v] for j = 0, . . . , b and v ∈ B
2. ej [v] := ∞ for all v ∈ B and j = 0, . . . , b
3. e0[r] := 0
4. for j = 1, . . . , b
5. for each region R ∈ R
6. let C be the cycle defining the boundary of R
7. ej [v] := min{ej [v],minw∈VC

{ej−1[w] + dR(w, v)}} for all v ∈ VC

8. D[v] := eb[v] for all v ∈ B

Fig. 1. Pseudocode for single-source inter-region boundary distances algorithm.

To show the correctness of the algorithm, we need the following two lemmas.

Lemma 1. Let P be a simple r-to-v shortest path in G where v ∈ B. Then P
can be decomposed into at most b subpaths P = P1P2P3 . . ., where the endpoints
of each subpath Pi are boundary vertices and Pi is a shortest path in some region
of R.
Lemma 2. After iteration j of the algorithm in Figure 1, ej [v] is the length of
a shortest path in G from r to v that can be decomposed into at most j subpaths
P = P1P2P3 . . . Pj, where the endpoints of each subpath Pi are boundary vertices
and Pi is a shortest path in a region of R.
Both lemmas are straightforward generalizations of the corresponding lemmas
in [7]. They imply that after b iterations, D[v] holds the distance in G from r to
v for all v ∈ B. This shows the correctness of our algorithm.

Line 7 can be executed in O(|VC |α(|VC |)) time using the technique of [7]
using the distances dR(w, v) which have been precomputed in the previous stage
for all v, w ∈ VC . It is important to note that the techniques of [7] only apply
since we have assumed that all boundary vertices of R are cyclically ordered on
its external face. Thus, each iteration of lines 4–7 takes O(bα(n)) time, giving
a total running time for this stage of O(b2α(n)) = O(npα(n)). Recalling that
p = log n/α(n), this bound is O(n log n), as desired.

4.3 Single-source Inter-region Distances

In this step we need to compute, for each region R, the distances in G from r
to each vertex of R. We apply a nearly identical construction to the one used in
the corresponding step of [7].

Let R be a region. Let R′ be the graph obtained from R by adding a new
vertex r′ and an edge from r′ to each boundary vertex of R whose length is set to
the distance in G from r to the boundary vertex. Note that dG(r, v) = dR′(r′, v)
for all v ∈ VR, so it suffices to find distances in R′ from r′ to each vertex of VR.

Let rR be the boundary vertex of R for which distances in R from rR to all
vertices of R have been recursively computed. Define a price function φ for R′ as
follows. Let BR be the set of boundary vertices of R and letD = max{dR(rR, b)−
dG(r, b)|b ∈ BR}. Then for all v ∈ VR′ ,

φ(v) =

{

dR(rR, v) if v 6= r′

D if v = r′.

Lemma 3. Function φ defined above is a feasible price function for R′.

Proof. Let e = (u, v) be an edge of R′. By construction, no edges enter r′ so
v 6= r′. If u 6= r′ then φ(u) + l(e)− φ(v) = dR(rR, u) + l(u, v)− dR(rR, v) ≥ 0 by
the triangle inequality so assume that u = r′. Then v ∈ BR so φ(u)+l(e)−φ(v) =
D + dG(r, v)− dR(rR, v) ≥ 0 by definition of D. This shows the lemma. ⊓⊔

Price function φ can be computed in time linear in the size of R and Lemma 3
implies that Dijkstra’s algorithm can be applied to compute distances in R′ from
r′ to all vertices of VR in O(|VR| log |VR|) time. Over all regions, this is O(n log n),
as requested.

We omit the description of the last stage where single-source distances are
rerooted to source s since it is identical to the last stage of the original algorithm.
We have shown that all stages run in O(n log n) time and it follows that the total
running time of our algorithm is O(n log2 n/ log log n). It remains to deal with
holes in regions.

4.4 Dealing with Holes

In Sections 4.1 and 4.2, we made the assumption that no region has holes. In
this section we remove this restriction. This is the main technical contribution of
this paper. As mentioned in Section 2, each region of R has at most a constant
number, h, of holes.

Intra-region boundary distances: In Section 4.1 we used the fact that all bound-
ary vertices of each region are on the external face, to apply the multiple-source
shortest path algorithm of [6]. Consider a region R with h holes. If we apply [6]
to R we get distances from boundary vertices on the external face of R to all
boundary vertices of R. This does not compute distances from boundary vertices
belonging to the holes of R. Consider one of the holes of R. We can apply the
algorithm of [6] with this hole considered as the external face to get the distances
from the boundary vertices of this hole to all boundary vertices of R. Repeating
this for all holes, we get distances in R between all pairs of boundary vertices
of R in time O(|VR| log |VR|+ h|VR| log |VR|) = O(|VR| log |VR|) time. Thus, the
time bound in Section 4.1 still holds when regions have holes.

Single-source inter-region boundary distances: It remains to show how to com-
pute single-source inter-region boundary distances when regions have holes. Let
C be the external face of region R. Let HR be the directed graph having the
boundary vertices of R as vertices and having an edge (u, v) of length dR(u, v)
between each pair of vertices u and v.

As usual in this context, we say that we relax an edge if it is being considered
by the algorithm as the next edge in the shortest path. Line 7 in Figure 1 relaxes
all edges in HR having both endpoints on C. We need to relax all edges of HR.
In the following, when we say that we relax edges of R, we really refer to the
edges of HR.

To relax the edges of R, we consider each pair of cycles (C1, C2), where C1

and C2 are C or a hole, and we relax all edges starting in C1 and ending in C2.
This will cover all edges we need to relax.

Since the number of choices of (C1, C2) is O(h2) = O(1), it suffices to show
that in a single iteration, the time to relax all edges starting in C1 and ending in
C2 is O((|VC1

|+|VC2
|)α(|VC1

|+|VC2
|)), with O(|VR| log |VR|) preprocessing time.

We may assume that C1 6= C2, since otherwise we can relax edges as described
in Section 4.2.

Before going into the details, let us give an intuitive and informal overview
of our approach. We transform R in such a way that C1 is the external face of
R and C2 is a hole of R. Let P be a simple path from some vertex r1 ∈ VC1

to
some vertex r2 ∈ VC2

. Let RP be the graph obtained by “cutting along P” (see
Figure 2). Note that every shortest path in RP corresponds to a shortest path
in R that does not cross P . We will show that relaxing all edges in HR from
C1 to C2 with respect to distances in RP can be done efficiently. Unfortunately,
relaxing edges w.r.t. RP does not suffice since shortest paths in R that do cross
P are not represented in RP . To overcome this obstacle we will identify two
particular paths Pr and Pℓ such that for any u ∈ C1, v ∈ C2 there exists a
shortest path in R that does not cross both Pr and Pℓ. Then, relaxing all edges
between boundary vertices once in RPr

and once in RPℓ
suffices to compute

shortest path distances in R. More specifically, let T be a shortest path tree in
R from r1 to all vertices of C2. The rightmost and leftmost paths in T satisfy
the above property (see Figure 3).

We proceed with the formal description. In the following, we define graphs,
obtained from R, required in our algorithm. It is assumed that these graphs are
constructed in a preprocessing step. Later, we bound construction time.

We transformR in such a way that C1 is the external face ofR and C2 is a hole
of R. We may assume that there is a shortest path in R between every ordered
pair of vertices, say, by adding a pair of oppositely directed edges between each
consecutive pair of vertices of Ci in some simple walk of Ci, i = 1, 2 (if an edge
already exists, a new edge is not added). The lengths of the new edges are chosen
sufficiently large so that shortest paths in R and their lengths do not change.
Where appropriate, we regard R as some fixed planar embedding of that region.

We say that an edge e = (u, v) with exactly one endpoint on path P emanates
right (left) of P if (a) e is directed away from P , and (b) e is to the right (left) of

P in the direction of P (see e.g., [6] for a more precise definition). If e is directed
towards P , then we say that e enters P from the right (left) if (v, u) emanates
right (left) of P . We extend these definitions to paths and say, e.g., that a path
Q emanates right of path P if there is an edge of Q that emanates right of P .

For a simple path P from a vertex r1 ∈ VC1
to a vertex r2 ∈ VC2

, take a copy

RP of R and remove P and all edges incident to P in RP . let
←−
E resp.

−→
E be the

set of edges that either emanate left resp. right of P or enter P from the left

resp. right. Add two copies,
←−
P and

−→
P , of P to RP . Connect path

←−
P resp.

−→
P to

the rest of RP by attaching the edges of
←−
E resp.

−→
E to the path, see Figure 2. If

(u, v) ∈ ER, where (v, u) ∈ EP , we add (u, v) to both
←−
P and

−→
P in RP .

P

r1

−→
P

←−
P

R RP

C1 P1

P2C2

u′1

v′|C2|+1v′1

u′|C1|+1

r2

Fig. 2. Region RP is obtained from R essentially by cutting open at P the “ring”
bounded by C1 and C2.

A simple, say counter-clockwise, walk u1, u2, . . . , u|C1|, u|C1|+1 of C1 in R
where u1 = u|C1|+1 = r1 corresponds to a simple path P1 = u′

1, . . . , u
′
|C1|+1

in

RP . In the following, we identify ui with u′
i for i = 2, . . . , |C1|. The vertex r1 in

R corresponds to two vertices in RP , namely u′
1 and u′

|C1|+1
. We will identify

both of these vertices with r1. Similarly, a simple, say clockwise, walk of C2 in
R from r2 to r2 corresponds to a simple path P2 = v′1, . . . , v

′
|C2|+1

in RP . We
make a similar identification between vertices of C2 and P2.

In the following, when we say that we relax all edges in RP starting in vertices
of C1 and ending in vertices of C2, we really refer to relaxing edges in HR with
respect to the distances between the corresponding vertices of P1 and P2 in RP .
More precisely, suppose we are in iteration j. Then relaxing all edges entering a
vertex v ∈ VC2

in RP means updating

ej [v] := min
u∈VC1

{ej−1[v], ej−1[u] + dRP
(u′, v′)}.

It is implicit in this notation that if u = r1, we relax w.r.t. both u′
1 and u′

|C1|+1

and if v = r2, we relax w.r.t. both v′1 and v′|C2|+1
.

The fact that in RP P1 and P2 both belong to the external face implies (see
Lemma 4.3 in [7]):

Lemma 4. Relaxing all edges from VC1
to VC2

in RP can be done in O(|VC1
|+

|VC2
|) time in any iteration of Bellman-Ford. ⊓⊔
As we have mentioned, relaxing edges between boundary vertices in RP does

not suffice since shortest paths in R that cross P are not represented in RP .
Let T be a shortest path tree in R from r1 to all vertices of C2. A rightmost
(leftmost) path P in T is a path such that no other path Q in T emanates right
(left) of P . Let Pr and Pℓ be the rightmost and leftmost root-to-leaf simple paths
in T , respectively; see Figure 3(a). Let vr ∈ C2 and vℓ ∈ C2 denote the leaves of
Pr and Pℓ, respectively.

(b)(a)

r1 r1

u

T

Pr

Pℓ win

wout

x

v

Tv

vℓ
vr

Pr

Pℓ

Q

vℓ
vr

Fig. 3. (a): The rightmost root-to-leaf simple path Pr and the leftmost root-to-leaf
simple path Pℓ in T . (b): In the proof of Lemma 5, if Q first crosses Pr from right to
left and then crosses Pℓ from right to left then there is a u-to-v shortest path in R that
does not cross Pℓ.

In order to state the desired property of Pr and Pℓ we now define what we
mean when we say that path Q = q1, q2, q3, . . . crosses path P . Let out0 be the
smallest index such that qout0 does not belong to P . We recursively define ini

to be smallest index greater than outi−1 such that qini
belongs to P , and outi

to be smallest index greater than ini such that qouti does not belong to P . We
say that Q crosses P from the right (left) with entry vertex vin and exit vertex
vout if (a) vin = qini

and vout = qouti−1 for some i > 0 and (b) qini−1qini
enters

P from the right (left) and (c) qouti−1qout emanates left (right) of P .

Lemma 5. For any u ∈ VC1
and any v ∈ VC2

, there is a simple shortest path
in R from u to v which does not cross both Pr and Pℓ.

Proof. Let Q be a simple u-to-v shortest path in R which is minimal with respect
to the total number of time it crosses Pr and Pℓ. If Q does not cross Pr or Pℓ,
we are done, so assume it crosses both. Also assume that Q crosses Pr first. The
case where Q crosses Pℓ first is symmetric. Let win and wout be the entry and
exit vertices of the first crossing, see Figure 3(b). There are two cases:

– Q first crosses Pr from left to right. In this case Q must cross Pℓ at the
same vertices. In fact, it must be that all root-to-leaf paths in T coincide

until wout and that Q crosses them all. In particular, Q crosses the root-to-v
path in T , which we denote by Tv. Since Tv does not cross Pr, the path
Q[u,wout]Tv[wout, v] is a shortest u-to-v path in R that does not cross Pr.

– Q first crosses Pr from right to left. Consider the path S = Q[u,wout]Pr[wout, vr].
We claim that Q does not cross S. To see this, assume the contrary and let
w′ denote the exit point corresponding to the crossing. Since Q is simple,
w′ /∈ Q[u,wout]. So w′ ∈ Pr[wout, vr], but then Q[u,wout]Pr[wout, w

′]Q[w′, v]
is a shortest path from u to v in R that crosses Pr and Pℓ fewer times than
Q. But this contradicts the minimality of Q.
Since Q first crosses Pr from right to left and never crosses S, its first crossing
with Pℓ must be right-to-left as well, see Figure 3(b). This implies that Q
enters all root-to-leaf paths in T before (not strictly before) it enters Pℓ. In
particular, Q enters Tv. Let x be the entry vertex. Then Q[u, x]Tv[x, v] is a
u-to-v shortest path in R that does not cross Pℓ. ⊓⊔

The algorithm: We can now describe our Bellman-Ford algorithm to relax all
edges from vertices of C1 to vertices of C2. Pseudocode is shown in Figure 4.

Assume that RPl
and RPr

and distances between pairs of boundary vertices
in these graphs have been precomputed. In each iteration j, we relax edges from
vertices of VC1

to all v ∈ VC2
in RPℓ

and in RPr
(lines 9 and 10). Lemma 5

implies that this corresponds to relaxing all edges in R from vertices of VC1
to

vertices of VC2
. By the results in Section 4.2, this suffices to show the correctness

of the algorithm.
Lemma 4 shows that lines 9, 10 can each be implemented to run in O(|VC1

|+
|VC2
|) time. Thus, each iteration of lines 6–10 takes O((|VC1

| + |VC2
|)α(|VC1

| +
|VC2
|)) time, as desired.

1. initialize vector ej [v] for j = 0, . . . , b and v ∈ B
2. ej [v] := ∞ for all v ∈ B and j = 0, . . . , b
3. e0[r] := 0
4. for j = 1, . . . , b
5. for each region R ∈ R
6. for each pair of cycles, C1 and C2, defining the boundary of R
7. if C1 = C2, relax edges from C1 to C2 as in Section 4.2
8. else (assume C1 is external and that dRPr

and dRPℓ
have been precomputed)

9. ej [v] := min{ej [v],minw∈VC1
{ej−1[w] + dRPr

(w′, v′)}} for all v ∈ VC2

10. ej [v] := min{ej [v],minw∈VC1
{ej−1[w] + dRPℓ

(w′, v′)}} for all v ∈ VC2

11. D[v] := eb[v] for all v ∈ B

Fig. 4. Pseudocode for the Bellman-Ford variant that handles regions with holes.

It remains to show that RPr
and RPℓ

and distances between boundary ver-
tices in these graphs can be precomputed in O(|VR| log |VR|) time. Shortest path
tree T in R with source r1 can be found in O(|VR| log |VR|) time with Dijk-
stra using the recursively computed distances in R as a feasible price function

φ. Given T , we can find its rightmost path in O(|VR|) time by starting at the
root r1. When entering a vertex v using the edge uv, leave that vertex on the
edge that comes after vu in counterclockwise order. Computing RPr

given Pr

also takes O(|VR|) time. We can next apply Klein’s algorithm [6] to compute
distances between all pairs of boundary vertices in RPr

in O(|VR| log |VR|) time
(here, we use the non-negative edge lengths in R defined by the reduced cost
function induced by φ). We similarly compute Pℓ and pairwise distances between
boundary vertices in RPℓ

. We can finally state our result.

Theorem 1. Given a planar directed graph G with real edge lengths and no
negative cycles and given a source vertex s, we can find SSSP distances in G
with source s in O(n log2 n/ log log n) time and linear space. ⊓⊔

5 Concluding Remarks

We gave a linear space algorithm for single-source shortest path distances in
a planar directed graph with arbitrary real edge lengths and no negative cy-
cles. The running time is O(n log2 n/ log log n), which improves on the previous
bound by a factor of log log n. As corollaries, bipartite planar perfect match-
ing, feasible flow, and feasible circulation in planar graphs can be solved in
O(n log2 n/ log log n) time. The true complexity of the problem remains unset-
tled as there is a gap between our upper bound and the linear lower bound. Is
O(n log n) time achievable?

References

1. E. W. Chambers, J. Erickson, and A. Nayyeri. Homology flows, cohomology cuts.
Proc. 42nd Ann. ACM Symp. Theory Comput., 273–282, 2009.

2. J. Erickson, Private Communication, 2010.
3. J. Fakcharoenphol and S. Rao. Planar graphs, negative weight edges, shortest

paths, and near linear time. J. Comput. Syst. Sci., 72(5):868–889,2006.
4. M. R. Henzinger, P. N. Klein, S. Rao, and S. Subramanian. Faster shortest-path

algorithms for planar graphs. J. Comput. Syst. Sci., 55(1):3–23, 1997.
5. M. M. Klawe and D. J. Kleitman. An almost linear time algorithm for generalized

matrix searching. SIAM Journal On Discrete Math, 3(1):81–97, 1990.
6. P. N. Klein. Multiple-source shortest paths in planar graphs. Proceedings, 16th

ACM-SIAM Symposium on Discrete Algorithms, 2005, pp. 146–155.
7. P. N. Klein, S. Mozes, and O. Weimann. Shortest Paths in Directed Planar Graphs

with Negative Lengths: a Linear-Space O(n log2 n)-Time Algorithm. Proc. 19th
Ann. ACM-SIAM Symp. Discrete Algorithms, p. 236–245, 2009.

8. R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized nested dissection. SIAM
Journal on Numerical Analysis, 16:346–358, 1979.

9. G. L. Miller. Finding small simple cycle separators for 2-connected planar graphs.
J. Comput. Syst. Sci., 32:265–279, 1986.

10. A. Aggarwal, M. Klawe, S. Moran, P. W. Shor, and R. Wilber. Geometric applica-
tions of a matrix searching algorithm. SCG ’86: Proceedings of the second annual
symposium on Computational geometry, 285–292, 1986.

