
Improved Submatrix Maximum Queries in Monge Matrices

Pawe l Gawrychowski1, Shay Mozes2?, and Oren Weimann3∗

1 MPII, gawry@mpi-inf.mpg.de
2 IDC Herzliya, smozes@idc.ac.il

3 University of Haifa, oren@cs.haifa.ac.il

Abstract. We present efficient data structures for submatrix maximum queries in Monge matrices and
Monge partial matrices. For n× n Monge matrices, we give a data structure that requires O(n) space
and answers submatrix maximum queries in O(logn) time. The best previous data structure [Kaplan
et al., SODA‘12] required O(n logn) space and O(log2 n) query time. We also give an alternative data
structure with constant query-time and O(n1+ε) construction time and space for any fixed ε < 1. For
n × n partial Monge matrices we obtain a data structure with O(n) space and O(logn · α(n)) query
time. The data structure of Kaplan et al. required O(n logn · α(n)) space and O(log2 n) query time.

Our improvements are enabled by a technique for exploiting the structure of the upper envelope of
Monge matrices to efficiently report column maxima in skewed rectangular Monge matrices. We hope
this technique will be useful in obtaining faster search algorithms in Monge partial matrices. In addition,
we give a linear upper bound on the number of breakpoints in the upper envelope of a Monge partial
matrix. This shows that the inverse Ackermann α(n) factor in the analysis of the data structure of
Kaplan et. al is superfluous.

1 Introduction

A matrix M is a Monge matrix if for any pair of rows i < j and columns k < ` we have that Mik +
Mj` ≥Mi` +Mjk. Monge matrices have many applications in combinatorial optimization and computational
geometry. For example, they arise in problems involving distances in the plane [20,23,25,27], and in problems
on convex n-gons [2,3]. See [9] for a survey on Monge matrices and their uses in combinatorial optimization.

In this paper we consider the following problem: Given an n × n Monge matrix M , construct a data
structure that can report the maximum entry in any query submatrix (defined by a set of consecutive
rows and a set of consecutive columns). Recently, Kaplan, Mozes, Nussbaum and Sharir [21] presented an

Õ(n) space4 data structure with Õ(n) construction time and O(log2 n) query time. They also described
an extension of the data structure to handle partial Monge matrices (where some of the entries of M are
undefined, but the defined entries in each row and in each column are contiguous). The extended data
structure incurs larger polylogarithmic factors in the space and construction time. Both the original and the
extended data structures have various important applications. They are used in algorithms that efficiently
find the largest empty rectangle containing a query point, in dynamic distance oracles for planar graphs, and
in algorithms for maximum flow in planar graphs [6]. See [21] for more details on the history of this problem
and its applications.

Note that, even though explicitly representing the input matrix requires N = Θ(n2) space, the additional

space required by the submatrix maximum data structure of [21] is only Õ(n). In many applications (in
particular [6,21]), the matrix M is not stored explicitly but any entry of M can be computed when needed
in O(1) time. The space required by the application is therefore dominated by the size of the submatrix
maximum data structure. With the increasing size of problem instances, and with current memory and
cache architectures, space often becomes the most significant resource.

For general (i.e., not Monge) matrices, a long line of research over the last three decades includ-

ing [5,13,14,17,28] achieved Õ(N) space and Õ(1) query data structures, culminating with the O(N)-space
O(1)-query data structure of Yuan and Atallah [28]. Here N = n2 denotes the total number of entries in the
matrix. It is also known [8] that reducing the space to O(N/c) incurs an Ω(c) query-time. Tradeoffs requir-

ing O(N/c) additional space and Õ(c) query-time were given in [7,8]. When the matrix has only N = o(n2)

? Mozes and Weimann supported in part by Israel Science Foundation grant 794/13.
4 The Õ(·) notation hides polylogarithmic factors in n.

mailto:gawry@mpi-inf.mpg.de
mailto:smozes@idc.ac.il
mailto:oren@cs.haifa.ac.il


nonzero entries, the problem is known in computational geometry as the orthogonal range searching problem
on the n × n grid. In this case as well, various tradeoffs with Õ(N)-space and Õ(1)-query appear in a long
history of results including [4,10,11,15,17]. In particular, a linear O(N)-space data structure was given by
Chazelle [11] at the cost of an O(logε n) query time. See [24] for a survey on orthogonal range search.

Contribution. Our first contribution is in designing O(n)-space O(log n)-query data structures for subma-
trix maximum queries in Monge matrices and in partial Monge matrices (see Section 3). Our data structures
improve upon the data structures of Kaplan et al. in both space and query time. Consequently, using our
data structures for finding the largest empty rectangle containing a query point improves the space and
query time by logarithmic factors.

We further provide alternative data structures with faster query-time; We achieve O(1) query-time at
the cost of O(n1+ε) construction time and space for an arbitrarily small constant 0 < ε < 1 (see Section 5).

Our results are achieved by devising a data structure for reporting column maxima in m × n Monge
matrices with many more columns than rows (n >> m). We refer to this data structure as the micro
data structure. The space required by the micro data structure is linear in m, and independent of n. Its
construction-time depends only logarithmically on n. The query-time is O(log log n), the time required for
a predecessor query in a set of integers bounded by n. We use the micro data structure in the design of our
submatrix maximum query data structures, exploiting its sublinear dependency on n, and an ability to trade
off construction and query times.

For partial Monge matrices, we provide a tight O(m) upper bound on the complexity of the upper envelope
(see Section 4). The best previously known bound [26] was mα(m), where α(m) is the inverse Ackermann
function. This upper bound immediately implies that the α(m) factor stated in the space and construction
time of the data structures of Kaplan et al. is superfluous.

Notice that the upper envelope of a full m × n Monge matrix also has complexity O(m). The famous
SMAWK algorithm [2] can find all column maxima in O(n + m) time. However, this is not the case for
partial Monge matrices. Even for simple partial Monge matrices such as triangular, or staircase matrices,
where it has been known for a long time that the complexity of the upper envelope is linear, the fastest known
algorithm for finding all column maxima is the O(nα(m) +m) time algorithm of Klawe and Kleitman [22].
We hope that our micro data structure will prove useful for obtaining a linear-time algorithm. The known
algorithms, including the (nα(m)+m)-time algorithm of Klawe and Kleitman [22], partition the matrix into
skewed rectangular matrices, and use the SMAWK algorithm. It is plausible that our micro data structure
will yield a speed up since it is adapted to skewed matrices.

2 Preliminaries and Our Results

In this section we overview the data structures of [21] and highlight our results.
A matrix M is a Monge matrix if for any pair of rows i < j and columns k < ` we have that Mik +Mj` ≥

Mi` +Mjk. A matrix M is totally monotone in columns if for any pair of rows i < j and columns k < ` we
have that if Mik ≤Mjk then Mi` ≤Mj`. Similarly, M is totally monotone in rows if for any pair of rows i < j
and columns k < ` we have that if Mik ≤Mi` then Mjk ≤Mj`. Notice that the Monge property implies total
monotonicity (in columns and in rows) but the converse is not true. When we simply say totally monotone
(or TM) we mean totally monotone in columns (our results symmetrically apply to totally monotone in
rows).

A matrix M is a partial matrix if some entries of M are undefined, but the defined entries in each row
and in each column are contiguous. We assume w.l.o.g. that every row has at least one defined element and
that the defined elements form a single connected component (i.e., the defined column intervals in each pair
of consecutive rows overlap). If this is not the case then only minor changes are needed in our algorithms.
A partial TM (resp., Monge) matrix is a partial matrix whose defined entries satisfy the TM (resp., Monge)
condition.

We consider m × n matrices, but for simplicity we sometimes state the results for n × n matrices.
For a Monge matrix M , denote r(j) = i if the maximum element in column j lies in row i. (We assume
this maximum element is unique. It is simple to break ties by, say, taking the highest index.) The upper
envelope E of all the rows of M consists of the n values r(1), . . . , r(n). Since M is Monge we have that
r(1) ≤ r(2) ≤ . . . ≤ r(n) and so E can be implicitly represented in O(m) space by keeping only the r(j)s
of O(m) columns called breakpoints. Breakpoints are the columns j where r(j) 6= r(j + 1). The maximum

2



element r(π) of any column π can then be retrieved in O(logm) time by a binary search for the first
breakpoint-column j after π, and setting r(π) = r(j).

The first data structure of [21] is a balanced binary tree Th over the rows of M . A node u whose subtree
contains k leaves (i.e., k rows) stores the O(k) breakpoints of the k × n matrix Mu defined by these k
rows and all columns of M . A leaf represents a single row and requires no computation. An internal node
u obtains its breakpoints by merging the breakpoints of its two children: its left child u1 and its right u2.
By the Monge property, the list of breakpoints of u starts with a prefix of breakpoints of u1 and ends with
a suffix of breakpoints of u2. Between these there is possibly one new breakpoint j. The prefix and suffix
parts can be found easily in O(k) time by linearly comparing the lists of breakpoints of u1 and u2. The new
breakpoint j can then be found in additional O(log n) time via binary search. Summing O(k + log n) over
all nodes of Th gives O(m(logm+ log n)) time. The total size of Th is O(m logm).

Note that the above holds even if M is not Monge but only TM. This gives rise to a data structure that
answers subcolumn (as opposed to submatrix) queries:

Subcolumn queries in TM matrices [21]. Given a n × n TM matrix, one can construct, in O(n log n)
time, a data structure of size O(n log n) that reports the maximum in a query column and a contiguous range
of rows in O(log n) time.

The maximum entry in a query column π and a contiguous range of rows R is found using Th by identifying
O(logm) canonical nodes of Th. A node u is canonical if u’s set of rows is contained in R but the set of
rows of u’s parent is not. For each such canonical node u, we find in O(logm) time the maximum element in
column π amongst all the rows of u. The output is the largest of these and the total query time is O(log2m).
The query time can be reduced to O(logm) by using fractional cascading [12].

The first results of our paper improve the above subcolumn query data structure of [21], as indicated in
Table 1 under subcolumn query in TM matrices. The next data structure of [21] extends the queries from
subcolumn to submatrix (specified by ranges R of consecutive rows, and C of consecutive columns.)

Submatrix queries in Monge matrices [21]. Given a n × n Monge matrix, one can construct, in
O(n log n) time, a data structure of size O(n log n) that reports the maximum entry in a query submatrix in
O(log2 n)) time.

To obtain O(log2 n) = O(logm(logm + log n)) query time, note that R is the disjoint union of O(logm)
canonical nodes of Th. For each such canonical node u, we use u’s list of breakpoints {j1, j2, . . . , jk} to
find in O(logm + log n) time the maximum element in all rows of u and the range of columns C. This is
done as follows: we first identify in O(logm) time the set I = {ja, ja+1, . . . , jb} of u’s breakpoints that are
fully contained in C. The columns of C that are to the left of ja all have their maximum element in row
r(ja). To find the maximum of these we construct, in addition to Th, a symmetric binary tree B that can
report in O(log n) time the maximum entry in a query row and a contiguous range of columns. B is built in
O(n(logm + log n)) time and O(n log n) space using the subcolumn query data structure on the transpose
of M . This is possible since M is Monge.5 Similarly, we find in O(log n) time the maximum in all columns
of C that are to the right of jb.

To find the maximum in all columns between ja and jb, let m(ji) denote the maximum element in the
columns interval (ji−1, ji] (note it must be in row r(ji)). We wish to find max{m(ja+1), . . . ,m(jb)} which
corresponds to a Range Maximum Query in the array Au = {m(j1), . . . ,m(jk)}. We compute the array Au

(along with a naive RMQ data structure with logarithmic query time) of every node u during the construction
of Th. Most of the entries of Au are simply copied from u’s children arrays Au1 and Au2 . The only new m(·)
value that u needs to compute is for the single new breakpoint j (that is between the prefix from u1 and the
suffix from u2). Since m(j) must be in row r(j) it can be computed in O(log n) time by a single query to B.

Overall, we get a query time of O(logm+log n) per canonical node u for a total of O(logm(logm+log n)).
Building Th (along with all the RMQ arrays Au) and B takes total O((m + n)(logm + log n)) time and
O(m logm+n log n) space. Our two improvements to this bound of [21] are stated in Table 1 under submatrix
queries in Monge matrices.

The next data structures of [21] extend the above subcolumn and submatrix data structures from full
to partial TM matrices. The construction is very similar. Merging the breakpoints of the two children u1,
u2 of a node u of Th is slightly more involved now, since the envelopes may cross each other multiple

5 In fact it suffices that M is a TM matrix whose transpose is also TM.

3



times. The number of breakpoints of any subset of consecutive k rows is O(k · α(k)) [26], and so there are
O(m logm · α(m)) breakpoints in total over all nodes of Th (as opposed to O(m) in full matrices). This
implies the following

Subcolumn queries in partial TM matrices [21]. Given a partial TM n×n matrix, one can construct,
in O(n log2 n · α(n)) time, a data structure of size O(n log n · α(n)) that reports the maximum entry in a
query column and a contiguous range of rows in O(log n) time.

We improve this data structure to the same bounds we get for full matrices. i.e, we show that our bounds
for full matrices also apply to partial matrices. This is stated in Table 1 under subcolumn query in Partial
TM matrices. Finally, [21] extended their submatrix data structure from full to partial Monge matrices. It
uses a similar construction of Th and B as in the case of full matrices, but again requires the additional
O(logm · α(m) + log n · α(n)) multiplicative factor to store the breakpoints of all nodes of Th and B.

property query type space construction time query time

TM subcolumn O(n logn) O(n logn) O(logn) Lemma 3.1 in [21]

TM subcolumn O(n) O(n logn/ log log n) O(logn) Lemma 2 here

TM subcolumn O(n1+ε) O(n1+ε) O(1) Lemma 8 here

Monge submatrix O(n logn) O(n logn) O(log2 n) Theorem 3.2 in [21]

Monge submatrix O(n) O(n logn) O(logn) Theorem 1 here

Monge submatrix O(n) O(n logn/ log log n) O(log1+ε n) Corollary 1 here

Monge submatrix O(n1+ε) O(n1+ε) O(1) Theorem 4 here

Partial TM subcolumn O(n logn · α(n)) O(n log2 n · α(n)) O(logn) Lemma 3.3 in [21]

Partial TM subcolumn O(n) O(n logn/ log log n) O(logn) Lemma 3 here

Partial TM subcolumn O(n1+ε) O(n1+ε) O(1) Lemma 3 here

Partial Monge submatrix O(n logn · α(n)) O(n log2 n · α(n)) O(log2 n) Theorem 3.4 in [21]

Partial Monge submatrix O(n) O(n logn) O(logn · α(n)) Theorem 2 here

Partial Monge submatrix O(n) O(n logn/ log log n) O(log1+ε n · α(n)) Corollary 2 here

Table 1. Our results compared to [21].

Submatrix queries in partial Monge matrices [21]. Given a n × n partial Monge matrix, one can
construct, in O(nα(n) log2 n) time, a data structure of size O(nα(n) log n) that reports the maximum entry
in a query submatrix in O(log2 n) time.

We remove the O(log n · α(n)) multiplicative factor and obtain the bounds stated in the bottom of Table 1.
The α(n) factor is removed by showing that the number of breakpoints in the upper envelope of a partial
Monge matrix is linear.

3 Linear-Space Data Structures

In this section we present our data structures that improve the space to O(n) and the query time to O(log n).
We begin by introducing a new data structure for the case where a query is composed of an entire column (as
opposed to a range of rows). This new data structure (which we call the micro data structure) is designed to
work well when the number of rows in the matrix is much smaller than the number of columns. We denote
by pred(x, n) = O(min{log x, log log n}) the time to query a predecessor data structure with x elements from
{1, . . . , n}.

Lemma 1 (the micro data structure). Given a x × n TM matrix and r > 0, one can construct in
O(x log n/ log r) time, a data structure of size O(x) that given a query column can report the maximum entry
in the entire column in O(r + pred(x, n)) time.

4



Proof. Out of all n columns of the input matrix M , we will designate O(x) columns as special columns. For
each of these special columns we will eventually compute its maximum element. The first x special columns
of M are columns 1, n/x, 2n/x, 3n/x, . . . , n and are denoted j1, . . . , jx.

Let X denote the x×x submatrix obtained by taking all x rows but only the x special columns j1, . . . , jx.
It is easy to verify that X is TM. We can therefore run the SMAWK algorithm [2] on X in O(x) time and
obtain the column maxima of all special columns. Let r(j) denote the row containing the maximum element
in column j. Since M is TM, the r(j) values are monotonically non-decreasing. Consequently, r(j) of a non-
special column j must be between r(ji) and r(ji+1) where ji < j and ji+1 > j are the two special columns
bracketing j (see Figure 1).

n

m x

n/x

xi

ji ji+1

Mi r(ji+1)
r(ji)

j

Tuesday, July 2, 13

Fig. 1. An x×n matrix inside an m×n matrix. The black columns are the first x special columns. The (monotonically
non-decreasing) gray cells inside these special columns are the column maxima (i.e., the r(ji) values of breakpoints
ji). The maximum element of column j in the x× n matrix must be between r(ji) and r(ji+1) (i.e., in matrix Mi).

For every i, let xi = r(ji+1)− r(ji). If xi ≤ r then no column between ji and ji+1 will ever be a special
column. When we will query such a column j we can simply check (at query-time) the r elements of j between
rows r(ji) and r(ji+1) in O(r) time. If, however, xi > r, then we designate more special columns between
ji and ji+1. This is done recursively on the xi × (n/x) matrix Mi composed of rows r(ji), . . . , r(ji+1) and
columns ji, . . . , ji+1. That is, we mark xi evenly-spread columns of Mi as special columns, and run SMAWK
in O(xi) time on the xi× xi submatrix Xi obtained by taking all xi rows but only these xi special columns.
We continue recursively until either xi ≤ r or the number of columns in Mi is at most r. In the latter case,
before terminating, the recursive call runs SMAWK in O(xi + r) = O(xi) time on the xi × r submatrix Xi

obtained by taking the xi rows and all columns of Mi (i.e., all columns of Mi will become special).

After the recursion terminates, every column j of M is either special (in which case we computed its
maximum), or its maximum is known to be in one of at most r rows (these rows are specified by the r(·) values
of the two special columns bracketing j). Let s denote the total number of columns that are marked as special.
We claim that s = O(x log n/ log r). To see this, notice that the number of columns in every recursive call
decreases by a factor of at least r and so the recursion depth is O(logr n) = O(log n/ log r). In every recursive
level, the number of added special columns is

∑
xi over all x′is in this level that are at least r. In every

recursive level, this sum is bounded by 2x because each one of the x rows of M can appear in at most two Mi’s
(as the last row of one and the first row of the other). Overall, we get 2x ·O(log n/ log r) = O(x log n/ log r).

Notice that s = O(x log n/ log r) implies that the total time complexity of the above procedure is also
O(x log n/ log r). This is because whenever we run SMAWK on a y× y matrix it takes O(y) time and y new
columns are marked as special. To complete the construction, we go over the s special columns from left to
right in O(s) time and throw away (mark as non-special) any column whose r(·) value is the same as that
of the preceding special column. This way we are left with only O(x) special columns, and the difference in
r(·) between consecutive special columns is at least 1 and at most r. In fact, it is easy to maintain O(x) (and

5



not O(s)) space during the construction by only recursing on sub matrices Mi where xi > 1. We note that
when r = 1, the eventual special columns are exactly the set of breakpoints of the input matrix M .

The final data structure is a predecessor data structure that holds the O(x) special columns and their
associated r(·) values. Upon query of some column j, we search in pred(x, n) time for the predecessor and
successor of j and obtain the two r(·) values. We then search for the maximum of column j by explicitly
checking all the (at most r) relevant rows of column j. The query time is therefore O(r + pred(x, n)) and
the space O(x). ut

A linear-space subcolumn data structure.

Lemma 2. Given a m × n TM matrix, one can construct, in O(m(log n + logm)/ log logm) time, a data
structure of size O(m) that can report the maximum entry in a query column and a contiguous range of rows
in O(logm) time.

Proof. Given anm×n input matrixM we partition it intom/xmatricesM1,M2, . . . ,Mm/x where x = logm.
Every M i is an x×n matrix composed of x consecutive rows of M . We construct the micro data structure of
Lemma 1 for each M i separately choosing r = xε for any constant 0<ε<1. This requires O(x log n/ log r) =
O(x log n/ log x) construction time per M i for a total of O(m log n/ log logm) time. We obtain a (micro)
data structure of total size O(m) that upon query (i, j) can report in O(xε + pred(x, n)) = O(logεm) time
the maximum entry in column j of M i.

Now, consider the (m/x) × n matrix M ′, where M ′ij is the maximum entry in column j of M i. We
cannot afford to store M ′ explicitly, however, using the micro data structure we can retrieve any entry M ′ij
in O(logεm) time. We next show that M ′ is also TM.

For any pair of rows i < j and any pair of columns k < ` we need to show that if M ′ik ≤ M ′jk then

M ′i` ≤M ′j`. Suppose that M ′ik,M
′
jk,M

′
i`, and M ′j` correspond to entries Mak,Mbk,Mc`, and Md` respectively.

We assume that Mak ≤Mbk and we need to show that Mc` ≤Md`. Notice that Mck ≤Mak because Mak is
the maximal entry in column k of M i and Mck is also an entry in column k of M i. Since Mck ≤ Mak and
Mak ≤ Mbk we have that Mck ≤ Mbk. Since Mck ≤ Mbk, from the total monotonicity of M , we have that
Mc` ≤ Mb`. Finally, we have Mb` ≤ Md` because Md` is the maximal entry in column ` of M j and Mb` is
also an entry in column ` of M j . We conclude that Mc` ≤Md`.

Now that we have established that the matrix M ′ is TM, we can use the subcolumn data structure of [21]
(see previous section) on M ′. Whenever an entry M ′ij is desired, we can retrieve it using the micro data
structure. This gives us the macro data structure: it is of size O(m/x · log(m/x)) = O(m) and can report in
O(logm) time the maximum entry of M ′ in a query column and a contiguous range of rows. It is built in
O(m/x · (log(m/x) + log n) · xε) time which is O(m(log n+ logm)/ log logm) for any choice of ε < 1.

To complete the proof of Lemma 2 we need to show how to answer a general query in O(logm) time.
Recall that a query is composed of a column of M and a contiguous range of rows. If the range is smaller than
logm we can simply check all elements explicitly in O(logm) time and return the maximum one. Otherwise,
the range is composed of three parts: a prefix part of length at most logm, an infix part that corresponds
to a range in M ′, and a suffix part of length at most logm. The prefix and suffix are computed explicitly in
O(logm) time. The infix is computed by querying the macro data structure in O(logm) time. ut

A linear-space submatrix data structure.

Theorem 1. Given a m × n Monge matrix, one can construct, in O((m + n)(log n + logm)) time, a data
structure of size O(m+n) that can report the maximum entry in a query submatrix in O(logm+log n) time.

Proof. Recall from Section 2 that the submatrix data structure of [21] is composed of the tree Th over the
rows of M and the tree B over the columns of M . Every node u ∈ Th stores its breakpoints along with the
RMQ array Au (where Au[j] holds the value of the maximum element between the (j − 1)’th and the j’th
breakpoints of u). If u has k breakpoints then they are computed along with Au in O(k + log n) time: O(k)
to copy from the children of u and O(log n) to find the new breakpoint and to query B. As opposed to [21],
we don’t use a naive RMQ data structure but instead one of the existing linear-construction constant-query
RMQ data structures such as [19].

To prove Theorem 1 we begin with two changes to the above. First, we build Th on the rows of the
(m/x) × n matrix M ′ instead of the m × n matrix M (again, when an entry M ′ij is desired, we retrieve it

6



using the micro data structure in O(xε) time). Second, for B we use the data structure of Lemma 2 applied
to the transpose of M . B’s construction requires O(n(logm + log n)/ log log n) time and O(n) space. After
this, constructing Th (along with the Au arrays) on M ′ requires O(m/x · log(m/x)) = O(m) space and
O((m/x)(log(m/x)+ log n) ·xε) = O(m(logm+log n)/ log logm) time by choosing x = logm and any ε < 1.

Finally, we construct a data structure Tv that is symmetric to Th but applied to the transpose of M . Notice
that Tv is built on the columns of anm×(n/ log n) matrixM ′′ instead of them×nmatrixM . The construction
of Tv, from a symmetric argument to the previous paragraph, also takes O((m+n)(log n+ logm)/ log logm)
time and O(m+ n) space.

We now describe how to answer a submatrix query with row range R and column range C. Let R′ be
the set of consecutive rows of M ′ whose corresponding rows in M are entirely contained in R. Let Rp be the
prefix of O(logm) rows of R that do not correspond to rows of R′. Let Rs be the suffix of O(logm) rows of R
that do not correspond to rows of R′. We define the subranges C ′, Cp, Cs similarly (with respect to columns
and to M ′′). The submatrix query (R,C) can be covered by the following: (1) a submatrix query (R′, C) in
M ′, (2) a submatrix query (R,C ′) in M ′′, and (3) four small O(logm)×O(log n) submatrix queries in M for
the ranges (Ri, Cj), i, j ∈ {p, s}. We find the maximum in each of these six ranges and return the maximum
of the six values.

We find the maximum of each of the small O(logm)×O(log n) ranges of M in O(logm+log n) time using
the SMAWK algorithm. The maximum in the submatrix of M ′ is found using Th as follows (the maximum in
the submatrix of M ′′ is found similarly using Tv). Notice that R′ is the disjoint union of O(logm) canonical
nodes of Th. For each such canonical node u, we use binary-search on u’s list of breakpoints {j1, j2, . . . , jk}
to find the set {ja, ja+1, . . . , jb} of u’s breakpoints that are fully contained in C. Although this binary-search
can take O(logm) time for each canonical node, using fractional cascading, the searches on all canonical
nodes take only O(logm) time and not O(log2m). The maximum in all rows of u and all columns between
ja and jb is found by one query to the RMQ array Au in O(1) time. Over all canonical nodes this takes
O(logm) time.

The columns of C that are to the left of ja all have their maximum element in row r(ja) of M ′ (that
is, in one of O(logm) rows of M) . Similarly, the columns of C that are to the right of jb all have their
maximum element in row r(jb+1) of M ′. This means we have two rows of M ′, r(ja) and r(jb+1), where we
need to search for the maximum. We do this only after we have handled all canonical nodes. That is, after
we handle all canonical nodes we have a set A = a1, a2, . . . of 2 logm rows of M ′ in which we still need
to find the maximum. We apply the same procedure on Tv which gives us a set B = b1, b2, . . . of 2 log n
columns of M ′′ in which we still have to find the maximum. Note that we only need to find the maximum
among the elements of M that lie in rows corresponding to a row in A and in columns corresponding to a
column in B. This amounts to finding the maximum of the O(logm)×O(log n) matrix M̄ , with M̄ij being
the maximum among the elements of M in the intersection of the x rows corresponding to row ai of M ′,
and of the x columns corresponding to column bj of M ′′.

An argument similar to the one in Lemma 2 shows that M̄ is Monge. Therefore we can find its maximum
element using the SMAWK algorithm. We claim that each element of M̄ can be computed in O(1) time,
which implies that SMAWK finds the maximum of M̄ in O(x) time.

It remains to show how to compute an element of M̄ in constant time. Recall from the proof of Lemma 2
that M is partitioned into x-by-n matrices M i. During the preprocessing stage, for each M i we compute and
store its upper envelope, and an RMQ array over the maximum elements in each interval of the envelope
(similar to the array Au). Computing the upper envelope takes O(x log n) time by incrementally adding one
row at a time and using binary search to locate the new breakpoint contributed by the newly added row.
Finding the maximum within each interval of the upper envelope can be done in O(x log n) time using the
tree B. We store the upper envelope in an atomic heap [16], which supports predecessor searches in constant
time provided x is O(log n). Overall the preprocessing time is O(m log n), and the space is O(m). We repeat
the same preprocessing on the transpose of M .

Now, given a row ai of M ′ and column bj of M ′′, let [ca, cb] be the range of x columns of M that
correspond to bj . We search in constant time for the successor ca′ of ca and for the predecessor cb′ of cb in
the upper envelope of Mai . We use the RMQ array to find in O(1) time the maximum element y among
elements in all rows of M corresponding to ai and columns in the range [ca′ , cb′). The maximum element
in columns [ca, ca′) and [cb′ , cb] is contributed by two known rows r1, r2. We repeat the symmetric process
for the transpose of M , obtaining a maximum element y′, and two columns c1, c2. M̄ai,bj is the maximum
among six values: y, y′ and the four elements Mr1c1 ,Mr1c2 ,Mr2c1 ,Mr2c2 . ut

7



Notice that in the above proof, in order to obtain an element of M̄ in constant time, we loose the
O(log logm) speedup in the construction time. This is because we found the upper envelope of each M i. To
get the O(log logm) speedup we can obtain an element of M̄ in O(xε) time using the micro data structure.

Corollary 1. Given a m×n Monge matrix, one can construct, in O((m+n)(log n+logm)/ log logm) time, a
data structure of size O(m+n) that reports the maximum entry in a query submatrix in O((logm+log n)1+ε)
time for any fixed 0 < ε < 1.

A linear-space subcolumn data structure for partial matrices. We next claim that the bounds of
Lemma 2 for TM matrices also apply to partial TM matrices. The reason is that we can efficiently turn any
partial TM matrix M into a full TM matrix by implicitly filling appropriate constants instead of the blank
entries.

Lemma 3. The blank entries in an m× n partial TM M can be implicitly replaced so that M becomes TM
and each Mij can be returned in O(1) time.

Proof. Let si (resp. ti) denote the index of the leftmost (resp. rightmost) column that is defined in row i.
Since the defined (non-blank) entries of each row and column are continuous we have that the sequence
s1, s2, . . . , sm starts with a non-increasing prefix s1 ≥ s2 ≥ . . . ≥ sa and ends with a non-decreasing suffix
sa ≤ sa+1 ≤ . . . ≤ sm. Similarly, the sequence t1, t2, . . . , tn starts with a non-decreasing prefix t1 ≤ t2 ≤
. . . ≤ tb and ends with a non-increasing suffix tb ≥ tb+1 ≥ . . . ≥ tm.

We partition the blank region of M into four regions: (I) entries that are above and to the left of Misi
for i = 1, . . . , a, (II) entries that are below and to the left of Misi for i = a + 1, . . . ,m, (III) entries that
are above and to the right of Miti for i = 1, . . . , b, (IV) entries that are below and to the right of Miti for
i = b + 1, . . . , n. Let W denote the largest absolute value of any entry in M . (We can find W by applying
the algorithm of Klawe and Kleitman [22].) We replace every Mij in region I with m+W − i, every Mij in
region II with −W − i, every Mij in region III with −W , and every Mij in regions IV with W . It is easy to
verify that after replacing all blanks as above M becomes TM (i.e., for any i < j and k < ` if Mik ≤ Mjk

then Mi` ≤Mj`). ut

The above lemma means we can (implicitly) fill the black entries in M so that M is a full TM matrix. We
can therefore apply the data structure of Lemma 2. Note that the maximum element in a query (a column
π and a range of rows R) might now appear in one of the previously-blank entries. This is easily overcome
by first restricting R to the defined entries in the column π and only then querying the data structure of
Lemma 2.

A linear-space submatrix data structure for partial matrices. Given a partial matrix M , the above
simple trick of replacing appropriate constants instead of the blank entries does not work for submatrix
queries because the defined (i.e., non-blank) entries in a submatrix do not necessarily form a submatrix.
Instead, we need a more complicated construction, which yields the following theorem.

Theorem 2. Given a m×n partial Monge matrix, one can construct, in O((m+n) log(m+n)) time, a data
structure of size O(m+ n) that reports the maximum entry in a query submatrix in O((logm+ log n)α(m+
n)) time.

Proof. As before, we partition M into m/x matrices M1,M2, . . . ,Mm/x, where x = logm and M i is an
x× n matrix composed of x consecutive rows of M . We wish to again define the (m/x)× n matrix M ′ such
that M ′ij is equal to the maximum entry in column j of M i. However, it is now possible that some (or all) of

the entries in column j of M i are undefined. We therefore define M ′ so that M ′ij is equal to the maximum

entry in column j of M i only if the entire column j of M i is defined. Otherwise, M ′ij is undefined. We also

define the sparse matrix S′ so that S′ij is undefined if column j of M i is either entirely defined or entirely

undefined. Otherwise, S′ij is equal to the maximum entry among all the defined entries in column j of M i.

Using a similar argument as before, it is easy to show that M ′ is also a partial Monge matrix. The matrix
S′, however, is not partial Monge, but it is a sparse matrix with at most two entries per column. It has
additional structure on which we elaborate in the sequel.

8



We begin with M ′. As before, we cannot afford to store M ′ explicitly. Instead, we use the micro data
structure on M1, . . . ,Mm/x (after implicitly filling the blanks in M using Lemma 3). This time we use
r = 1 and so the entire construction takes O((m/x)x log n/ log r) = O(m log n) time and O(m) space,
after which we can retrieve any entry of M ′ in O(pred(x, n)) time. We then build a similar data structure
to the one we used in Theorem 1. That is, we build Th on M ′, and for B we use the data structure of
Lemma 2 applied to the transpose of M (after implicitly filling the blanks). B’s construction therefore
requires O(n(logm+ log n)/ log log n) time and O(n) space.

After constructing B, constructing Th (along with the RMQ arrays Au) on M ′ is done bottom up. This
time, since M ′ is partial Monge, each node of Th can contribute more than one new breakpoint. However,
as we show in Section 4 (Theorem 3), a node whose subtree contains k leaves (rows) can contribute at most
O(k) new breakpoints. Each new breakpoint can be found in O(log n) time via binary search. Summing
O(k · log n · pred(x, n)) over all m/x nodes of Th gives O((m/x) log(m/x) · log n · pred(x, n))) = O(m log n)
time and O(m/x · log(m/x)) = O(m) space. Notice we use atomic heaps here to get pred(x, n) = O(1).

Similarly to what was done in Theorem 1, we repeat the entire preprocessing with the transpose of
M (that is, we construct Tv on the columns of the m × (n/ log n) matrix M ′′, along with the RMQ data
structures, and also construct the corresponding sparse matrix S′′). This takes O(n logm) time and O(n)
space.

We now describe how to answer a submatrix query with row range R and column range C. Let
R′, Rs, Rp, C

′, Cs, Cp be as in Theorem 1. The submatrix query (R,C) can be covered by the following:
(1) a submatrix query (R′, C) in M ′, (2) a submatrix query (R′, C) in S′, (3) a submatrix query (R,C ′) in
M ′′, (4) a submatrix query (R,C ′) in S′′, and (5) four small O(logm) × O(log n) submatrix queries in M
for the ranges (Ri, Cj), i, j ∈ {p, s}. We return the overall maximum among the maxima in each of these
queries.

We already described how to handle the queries in items (1), (3), and (5) in the proof of Theorem 1. The
only subtle difference is that in Theorem 1 we used the SMAWK algorithm on O(logm) × O(log n) Monge
matrices while here we have partial Monge matrices. We therefore use the Klawe-Kleitman algorithm [22]
instead of SMAWK which means the query time is O((logm+ log n)α(n)) and not O(logm+ log n).

We next consider the query to S′. The query to S′′ is handled in a similar manner. Recall from the proof
of Lemma 3 the structure of a partial matrix M . Let si (resp. ti) denote the index of the leftmost (resp.
rightmost) column that is defined in row i. Since the defined (non-blank) entries of each row and column are
continuous we have that the sequence s1, s2, . . . , sm starts with a non-increasing prefix s1 ≥ s2 ≥ . . . ≥ sa
and ends with a non-decreasing suffix sa ≤ sa+1 ≤ . . . ≤ sm. Similarly, the sequence t1, t2, . . . , tn starts with
a non-decreasing prefix t1 ≤ t2 ≤ . . . ≤ tb and ends with a non-increasing suffix tb ≥ tb+1 ≥ . . . ≥ tm. See
Fig. 2 for an illustration. It follows that the defined entries of S′ can be partitioned into four sequences,
such that the row and column indices in each sequence are monotone. We focus on one of these monotone
sequences in which the set of defined entries is in coordinates (r1, c1), (r2, c2), . . . such that ri+1 ≥ ri and
ci+1 ≤ ci. The other monotone sequences are handled similarly. Notice that any query range that includes
(ri, cj) and (rj , cj) for some i < j must include entries (rk, ck) for all i < k < j. Given a range query (R,C),
we find in pred(n, n) time the interval [i1, i2] of indices that are inside R. Similarly, we find the interval [i′1, i

′
2]

of indices that are inside C. We can then use a (1-dimensional) RMQ data structure on the O(n) entries in
this sequence to find the maximum element in the intersection of these two ranges in O(1) time. Overall,
handling the query in S′ takes pred(n, n) = O(log log n) time.

To conclude the proof of Theorem 2, notice that our data structure requires O(m+n) space, is constructed
in O(m log n+n log n/ log log n+n logm+n log n) time which is O(n log n), and has O((logm+ log n)α(n))
query time. ut

Finally, for the same reasons leading to Corollary 1 we can get a log logm speedup in the construction-time
with a logε n slowdown in the query-time.

Corollary 2. Given a m× n partial Monge matrix, one can construct, in O((m+ n) log(m+ n)/ log logm)
time, a data structure of size O(m+n) that reports the maximum entry in a query submatrix in O((logm+
log n)1+εα(m+ n)) time for any fixed 0 < ε < 1.

9



4 The Complexity of the Upper Envelope of a Totally Monotone Partial
Matrix

In this section we prove the following theorem, stating that the number of breakpoints of an m × n TM
partial matrix is only O(m).

Theorem 3. Let M be a partial m× n matrix in which the defined entries in each row and in each column
are contiguous. If M is TM (i.e., for all i < j, k < ` where Mik,Mi`,Mjk,Mj` are all defined, Mik ≤
Mjk =⇒ Mi` ≤Mj`), then the upper envelope has complexity O(m).

The proof relies on a decomposition of M into staircase matrices. A partial matrix is staircase if the
defined entries in its rows either all begin in the first column or all end in the last column. It is well known
(cf. [1]) that by cutting M along columns and rows, it can be decomposed into staircase matrices {Mi} such
that each row is covered by at most three matrices, and each column is covered by at most three matrices.
For completeness, we describe such a decomposition below.

Lemma 4. A partial matrix M can be decomposed into staircase matrices {Mi} such that each row is covered
by at most three matrices, and each column is covered by at most three matrices.

Proof. Let si and ti denote the smallest and largest column index in which an element in row i is defined,
respectively. The fact that the defined entries of M are contiguous in both rows and columns implies that the
sequence s1, s2, . . . , sm consists of a non-increasing prefix and a non-decreasing suffix. Similarly, the sequence
t1, t2, . . . , tm consists of a non-decreasing prefix and a non-increasing suffix. It follows that the rows of M can
be divided into three ranges - a prefix where s is non-increasing and t is non-decreasing, an infix where both
s and t have the same monotonicity property, and a suffix where s is non-decreasing and t is non-increasing.
The defined entries in the prefix of the rows can be divided into two staircase matrices by splitting M at
t1, the largest column where the first row has a defined entry. Similarly, the defined entries in the suffix of
the rows can be divided into two staircase matrices by splitting it at tm, the largest column where the last
row has a defined entry. The defined entries in the infix of the rows form a double staircase matrix. It can
be broken into staircase matrices by dividing along alternating rows and columns as shown in Figure 2.

Fig. 2. Decomposition of a partial matrix into staircase matrices (defined by solid thick black lines) and into blocks
of consecutive columns with the same defined entries (indicated by thin vertical red lines).

10



It is easy to verify that, in the resulting decomposition, each row is covered by at most two staircase
matrices, and each column is covered by at most three staircase matrices. Also note that every set of consec-
utive columns whose defined elements are in exactly the same set of rows are covered in this decomposition
by the same three row-disjoint staircase matrices. ut

We next prove the fact that, if M is a TM staircase matrix with m rows, then the complexity of its upper
envelope is O(m).

Lemma 5. The number of breakpoints in the upper envelope of an m × n TM staircase matrix is at most
2m.

Proof. We focus on the case where the defined entries of all rows begin in the first column and end in
non-decreasing columns. In other words, for all i, si=1 and ti ≤ ti+1. The other cases are symmetric.

A breakpoint is a situation where the maximum in column c is at row r1 and the maximum in column
c+ 1 is at a different row r2. We say that r1 is the departure row of the breakpoint, and r2 is the entry row
of the breakpoint. There are two types of breakpoints: decreasing (r1 < r2), and increasing (r1 > r2). We
show that (1) each row can be the entry row of at most one decreasing breakpoint, and (2) each row can be
the departure row of at most one increasing breakpoint.

(1) Assume that row r2 is an entry row of two decreasing breakpoints: One is the pair of entries
(r1, c1), (r2, c1 + 1) and the other is the pair (r3, c2), (r2, c2 + 1). We know that r1 < r2, r3 < r2,
and wlog c2 > c1 + 1. Since the maximum in column c1 + 1 is in row r2, we have Mr3,c1+1 < Mr2,c1+1.
However, since the maximum in column c2 is in row r3, we have Mr3,c2 > Mr2,c2 , contradicting the total
monotonicity of M . Note that Mr2,c2 is defined since Mr2,c2+1 is defined.

(2) Assume that row r1 is a departure row of two increasing breakpoints: One is the pair of entries
(r1, c1), (r2, c1 + 1) and the other is the pair (r1, c2), (r3, c2 + 1). We know that r1 > r2 and r1 > r3.
Since the maximum in column c1 is in row r1, we have Mr2,c1 < Mr1,c1 . However, since the maximum
in column c1 + 1 is in row r2, we have Mr2,c1+1 > Mr1,c1+1, contradicting the total monotonicity of M .
Note that Mr1,c1+1 is defined since Mr1,c2 is defined.

ut

Using Lemmas 3 and 5 we can now complete the proof of Theorem 3. Let bp(Mi) denote the number of
breakpoints in the upper envelope of Mi. Let mi denote the number of rows in Mi. Since each row appears in
at most three Mis,

∑
imi = O(m). The total number of breakpoints in the envelopes of all of Mis is O(m)

since
∑

i bp(Mi) =
∑

iO(mi) = O(m).
Consider now a partition of M into rectangular blocks Bj defined by maximal sets of contiguous columns

whose defined entries are at the same set of rows. There are O(m) such blocks. The upper envelope of M is
just the concatenation of the upper envelopes of all the Bj ’s. Hence, bp(M) =

∑
j bp(Bj) +O(m) (the O(m)

term accounts for the possibility of a new breakpoint between every two consecutive blocks). Therefore, it
suffices to bound

∑
j bp(Bj).

Consider some block Bj . As we mentioned above, the columns of Bj appear in the same three row-disjoint
staircase matrices M1,M2,M3 in the decomposition of M . The column maxima of Bj are a subset of the
column maxima of M1,M2,M3. Assume wlog that the indices of rows covered by M1 are smaller than those
covered by M2, which are smaller than those covered by M3.

The breakpoints of the upper envelope of Bj are either breakpoints in the envelope of M1,M2,M3, or
breakpoints that occur when the maxima in consecutive columns of Bj originate in different Mi. However,
since Bj is a (non-partial) TM matrix, its column maxima are monotone. So once a column maximum
originates in Mi, no maximum in greater columns will ever originate in Mj for j < i. It follows that the
number of breakpoints in Bj that are not breakpoints of M1,M2,M3 is at most two. Since there are O(m)
blocks,

∑
j bp(Bj) ≤

∑
i bp(Mi) +O(m) = O(m). This completes the proof of Theorem 3.

5 Constant Query-Time Data Structures

In this section we present our data structures that improve the query time to O(1) at the cost of an nε factor
in the construction time and space for any constant 0 < ε < 1.

We use the following micro data structure that slightly modifies the one of Lemma 1.

11



Lemma 6 (another micro data structure). Given a TM matrix of size x × n, one can construct in
O(xnεε−1) time and space a data structure that given a query column can report the maximum entry in the
entire column in O(log(ε−1)) time for any 1 > ε ≥ log log n/ log n.

Proof. Recall that the data structure of Lemma 1, for r = 1, finds in O(x log n) time a set of O(x) values
(breakpoints) in the range {1, . . . , n}. A query is performed in O(pred(x, n)) time using a standard prede-
cessor data structure on these O(x) values. Since now we can allow an nε factor we use a non-standard
predecessor data structure with faster O(ε−1) query-time. We now describe this data structure.

Consider the complete tree of degree nε over the leaves {1, . . . , n}. We do not store this entire tree. We
only store the leaf nodes corresponding to the O(x) existing values and all ancestors of these leaf nodes. Since
the height of the tree is O(ε−1) we store only O(xε−1) nodes. At each such node we keep two arrays, each
of size nε. The first array stores all children pointers (including null-children). The second array stores for
each child u (including null-children) the value pred(u) = the largest existing leaf node that appears before
u in a preorder traversal of the tree.

The y = O(xε−1) nodes are stored in a hash table. We use the static deterministic hash table of Hagerup
et al. [18] that is constructed in O(y log y) = O(xε−1 log(xε−1)) worst case time and can be queried in O(1)
worst case time. Upon query, we binary-search (using the hash table) for the deepest node v on the root-to-
query path whose child u on the root-to-query path is null. To find the predecessor we use v’s second array
and return pred(u).

The total construction time is O(x log n+xnεε−1 +xε−1 log(xε−1)) which is O(xnεε−1) since we assume
ε ≥ log log n/ log n. The query time is O(log(ε−1)) since we binary-search on a path of length ε−1 and each
lookup takes O(1) time using the hash table. ut
We use the above micro data structure to obtain the following data structure.

Lemma 7. Given a TM x × n matrix, one can construct in O(x3nεε−1) time a data structure of size
O(x3nεε−1) that can report the maximum entry in a query column and a contiguous range of rows in
O(log(ε−1)) time.

Proof. For each of the O(x2) row intervals, construct the data structure of Lemma 6. ut

A constant-query subcolumn data structure.

Lemma 8. Given a TM matrix of size m × n, one can construct, in O(mnεε−2) = O(n1+εε−2) time and
space a data structure that can report the maximum entry in a query column and a contiguous range of rows
in O(ε−1 log(ε−1)) time.

Proof. The first idea is to use a degree-x tree, with x = mε/4, instead of the binary tree Th. The height of the
tree is O(logm/ log x) = O(ε−1). The leaves of the tree correspond to individual rows of M . For an internal
node u of this tree, whose children are u1, u2, . . . , ux and whose subtree contains k leaves (i.e., k rows), recall

that Mu is the k×n matrix defined by these k rows and all columns. Let M̂u be the x×n matrix whose (i, j)

element is the maximum in column j among the rows of Mui . In other words, M̂u(i, j) = max`M
ui(`, j).

Working bottom up, for each internal node u, instead of explicitly storing the matrix Mu (whose size is
O(kn)), we build the O(knεε−1)-sized micro data structure of Lemma 6 over the k rows of Mu. This way,

any element M̂u(i, j) can be obtained in O(log(ε−1)) time by querying the data structure of ui. Once we

can obtain each M̂u(i, j) in O(log(ε−1)) time, we use this to construct the data structure of Lemma 7 over

the x = mε/4 rows of M̂u.
Constructing the micro data structure of Lemma 6 for an internal node with k leaf descendants takes

O(knεε−1) time and space. Summing this over all internal nodes in the tree, the total construction takes
O(mnεε−2) time and space. After this, we construct the Lemma 7 data structure for each internal node
but we use ε/2 and not ε so the construction takes O(x3nε/2ε−1 · log(ε−1)) = O(m3ε/4nε/2ε−1 log(ε−1))
time and space. The total construction time over all O(m/x) = O(m1−ε/4) internal nodes is thus
O(m1+ε/2nε/2ε−1 log(ε−1)) = O(n1+εε−1 log(ε−1)) time and space.

We now describe how to answer a query. Given a query column and a row interval I, there is an induced
set of O(logm/ log x) = O(ε−1) canonical nodes. Each canonical node u is responsible for a subinterval of I
(that includes all descendant rows of ui, u1+1 . . . , uj for some two children ui, uj of u). We find the maximum
in this subinterval with one query to u’s Lemma 7 data structure in O(log(ε−1)) time. The total query time
is thus O(ε−1 log(ε−1)). ut

12



A constant query submatrix data structure.

Theorem 4. Given a Monge matrix of size m × n, one can construct, in O(n1+εε−3 log(ε−1)) time and
space, a data structure that can report the maximum entry in a query submatrix in O(ε−2 log(ε−1)) time.

Proof. As in the proof of Lemma 8, we construct a degree-x tree Th over the rows of M , with x = mε/4.
Recall that Th includes, for each internal node u, (i) the data structure of Lemma 6, which enables queries to

elements of M̂u in O(log(ε−1)) time, and (ii) the breakpoints of all possible row intervals of the x×n matrix

M̂u. In addition to the breakpoints we store, for each of these O(x2) intervals, a RMQ data structure over
the maximum elements between breakpoints. The construction of those RMQ data structures is described
in the sequel.

For each level ` > 0 of the O(ε−1) levels of the tree Th (the leaves of Th are considered to be at level 0),
we construct the symmetric data structure of Lemma 8 over the (m/x`−1)× n matrix formed by the union

of M̂u over all level-i nodes u in Th. We denote these data structures by B`. Their construction takes total
O(ε−1 ·mnεε−2 · log(ε−1)) = O(n1+εε−3 log(ε−1)) time and space. For notational convenience we define B0

to be equal to B1.
We now describe how to construct the RMQ data structures for an internal node u at level ` of Th

with children u1, . . . , ux. We describe how to construct the RMQ for the interval consisting of all rows of
M̂u. Handling the other intervals is similar. We need to show how to list the maximum among the column
maxima of M̂u between every two consecutive breakpoints of M̂u. All the column maxima between any two
consecutive breakpoints are contributed by a single known child u′ of u. In other words, we are looking for
the maximum element in the range consisting of a single row of M̂u and the range of columns between the
two breakpoints. This maximum can be found by querying the B` data structure in O(ε−1 log(ε−1)) time.
There are O(x) such queries for each of the O(x2) intervals at each of the O(m/x) internal nodes. Therefore,
the total construction time of the RMQs is O(m1+ε · ε−1 log(ε−1)). This completes the description of our
data structure.

We finally discuss how to answer a query (a range in M of rows R and columns C). A query induces a set
of O(ε−1) canonical nodes u. For a canonical node u ∈ Th and an induced row interval Ru, we use the list of

breakpoints of Ru in M̂u to identify the breakpoints that are fully contained in C. This takes O(log(ε−1))
time. The maximum element in those columns is found by querying the RMQ data structure of Ru in u.
In addition to that, there are at most two column intervals C ′ and C ′′ in M̂u that intersect C but are not
fully contained in C. The maximum in C ′ ∩C and C ′′ ∩C is contributed by two known children u′, u′′ of u,
respectively. In other words, each of them is the maximum element in the range consisting of a single row
of M̂u and a range of columns. If u is a level-` node of the tree then we find them by two queries to B`: one
for the row of u′ and columns C ′ and one for the row of u′′ and columns C ′′. The total query time is thus
O(ε−1 · ε−1 log(ε−1)) = O(ε−2 log(ε−1)). ut

References

1. A. Aggarwal and M. Klawe. Applications of generalized matrix searching to geometric algorithms. Discrete Appl.
Math., 27:3–23, 1990.

2. A. Aggarwal, M. M. Klawe, S. Moran, P. Shor, and R. Wilber. Geometric applications of a matrix-searching
algorithm. Algorithmica, 2(1):195–208, 1987.

3. A. Aggarwal and J. Park. Notes on searching in multidimensional monotone arrays. In 29th FOCS, pages 497–512,
1988.

4. S. Alstrup, G. S. Brodal, and T. Rauhe. New data structures for orthogonal range searching. In 41st FOCS,
pages 198–207, 2000.

5. A. Amir, J. Fischer, and M. Lewenstein. Two-dimensional range minimum queries. In 18th CPM, pages 286–294,
2007.

6. G. Borradaile, P. N. Klein, S. Mozes, Y. Nussbaum, and C. Wulff-Nilsen. Multiple-source multiple-sink maximum
flow in directed planar graphs in near-linear time. In 52nd FOCS, pages 170–179, 2011.

7. G. Brodal, P. Davoodi, M. Lewenstein, R. Raman, and S. Rao. Two dimensional range minimum queries and
Fibonacci lattices. In 20th ESA, pages 217–228, 2012.

8. G. Brodal, P. Davoodi, and S. Rao. On space efficient two dimensional range minimum data structures. In 18th
ESA, pages 171–182, 2010.

13



9. R. E. Burkard, B. Klinz, and R. Rudolf. Perspectives of Monge properties in optimization. Discrete Appl. Math.,
70:95–161, 1996.

10. T. M. Chan, K. G. Larsen, and M. Pǎtraşcu. Orthogonal range searching on the RAM, revisited. In 27th SOCG,
pages 354–363, 2011.

11. B. Chazelle. A functional approach to data structures and its use in multidimensional searching. SICOMP,
17:427–462, 1988.

12. B. Chazelle and L. J. Guibas. Fractional cascading: I. A data structuring technique. Algorithmica, 1:133–162,
1986.

13. B. Chazelle and B. Rosenberg. Computing partial sums in multidimensional arrays. In 5th SOCG, pages 131–139,
1989.

14. E. D. Demaine, G. M. Landau, and O. Weimann. On cartesian trees and range minimum queries. In 36th ICALP,
pages 341–353, 2009.

15. A. Farzan, J. I. Munro, and R. Raman. Succinct indices for range queries with applications to orthogonal range
maxima. In 39th ICALP, pages 327–338, 2012.

16. M. L. Fredman and D. E. Willard. Trans-dichotomous algorithms for minimum spanning trees and shortest
paths. J. Comput. Syst. Sci., 48(3):533–551, 1994.

17. H. Gabow, J. L. Bentley, and R.E Tarjan. Scaling and related techniques for geometry problems. In 16th STOC,
pages 135–143, 1984.

18. T. Hagerup, P. B. Miltersen, and R. Pagh. Deterministic dictionaries. J. of Algorithms, 41(1):69–85, 2001.
19. D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors. SICOMP, 13(2):338–355,

1984.
20. A. J. Hoffman. On simple linear programming problems. In Proc. Symp. Pure Math., volume VII, pages 317–327.

Amer. Math. Soc., 1963.
21. H. Kaplan, S. Mozes, Y. Nussbaum, and M. Sharir. Submatrix maximum queries in Monge matrices and Monge

partial matrices, and their applications. In 23rd SODA, pages 338–355, 2012.
22. M. M. Klawe and D. J. Kleitman. An almost linear time algorithm for generalized matrix searching. SIAM J.

Discrete Math., 3:81–97, 1990.
23. G. Monge. Mémoire sur la théorie des déblais et des remblais. In Histoire de l’Académie Royale des Science,

pages 666–704. 1781.
24. Y. Nekrich. Orthogonal range searching in linear and almost-linear space. Comput. Geom., 42(4):342–351, 2009.
25. J. K. Park. A special case of the n-vertex traveling-salesman problem that can be solved in O(n) time. Inf.

Process. Lett., 40(5):247–254, 1991.
26. M. Sharir and P. K. Agarwal. Davenport-Schinzel sequences and their geometric applications. Cambridge Uni-

versity Press, New York, USA, 1995.
27. A. Tiskin. Fast distance multiplication of unit-monge matrices. In 21st SODA, pages 1287–1296, 2010.
28. H. Yuan and M. J. Atallah. Data structures for range minimum queries in multidimensional arrays. In 21st

SODA, pages 150–160, 2010.

14


	Improved Submatrix Maximum Queries in Monge Matrices

