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Abstract Let G be a graph where each vertex is associated with a label. A
vertex-labeled approximate distance oracle is a data structure that, given a
vertex v and a label λ, returns a (1 + ε)-approximation of the distance from
v to the closest vertex with label λ in G. Such an oracle is dynamic if it
also supports label changes. In this paper we present three different dynamic
approximate vertex-labeled distance oracles for planar graphs, all with poly-
logarithmic query and update times, and nearly linear space requirements. No
such oracles were previously known.

Keywords Planar graphs · Approximate distance oracles · Vertex labels ·
Portals · ε-Cover

1 Introduction

Consider the following scenario. A 911 dispatcher receives a call about a fire
and needs to dispatch the closest fire truck. There are two difficulties with
locating the appropriate vehicle to dispatch. First, the vehicles are on a con-
stant move. Second, there are different types of emergency vehicles, whereas
the dispatcher specifically needs a fire truck. Locating the closest unit of a
certain type under these assumptions is the dynamic vertex-labeled distance
query problem on the road network graph. Each vertex in this graph can be
annotated with a label that represents the type of the emergency vehicle cur-
rently located at that vertex. An alternative scenario where this problem is
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relevant is when one wishes to find a service provider (e.g., gas station, coffee
shop), but different locations are open at different times of the day.

A data structure that answers distance queries between a vertex and a
label, and supports label updates is called a dynamic vertex-labeled distance
oracle. We model the road map as a planar graph, and extend previous results
for the static case (where labels are fixed). We present oracles with polyloga-
rithmic update and query times (in the number of vertices) that require nearly
linear space.

We focus on approximate vertex-labeled distance oracles for a fixed param-
eter ε > 0. When queried, such an oracle returns at least the true distance,
but not more than (1 + ε) times the true distance. These are also known as
stretch-(1 + ε) distance oracles. Note that, in our context, the graph is fixed,
and only the vertex labels change.

1.1 Related Work

1.1.1 Approximate vertex-to-vertex distance oracles

We outline related results, and refer the reader to an extensive survey due to
Sommer [18]. For general graphs, Thorup and Zwick [20] presented for every
k ≥ 2 a stretch-(2k− 1) vertex-to-vertex distance oracle for undirected graphs
with O(kn1+ 1

k ) space, and O(k) query time. Their oracle can be constructed in
O(kmn1+

1
k ) time. Wulff-Nilsen [23] gave an oracle with similar space and query

time, and O(kn1+
c
k ) construction time. Here c is some universal constant.

For planar graphs, Thorup [19] presented a stretch-(1+ε) distance oracle for
directed planar graphs, for any 0 < ε < 1. His oracle requiresO(ε−1n log n log(nN))
space and answers queries in O(log log (nN) + ε−1) time. Here N denotes the
ratio of the largest to smallest arc length. For undirected planar graphs Tho-
rup presented an oracle that can be stored using O(ε−1n log n) space, and
can answer queries in O(ε−1) time. Klein [10,11] independently described a
stretch-(1 + ε) distance oracle for undirected graphs with the same bounds,
but faster preprocessing time. Kawarabayashi, Klein and Sommer [8], extended
Thorup’s result to other families of restricted graphs (e.g. minor free, bounded
genus) and improved its space requirements to O(n) in the cost of increasing
the query time by a factor of ε−1 log2 n. Kawarabayashi, Sommer and Tho-
rup [9] reduced the space dependency by a factor of ε−1 log n, while keeping
the query time of O(ε−1). They also show an oracle for unweighted graphs that
can be stored using O(n) space, and has O(ε−1) query time. Abraham, Chechik
and Gavoille [2] presented a stretch-(1+ ε) distance oracle that supports both
query and edge length updates in Õ(n1/2) worst case time. Abraham et al. [1]
later provided an oracle with polylogarithmic update and query time for pla-
nar graphs, when the edge lengths can only change within a predetermined
ratio. In this work, we consider a different setting of updates, where the edge
lengths are fixed, and only the vertex labels can change.
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1.1.2 Approximate vertex-to-label distance oracles

The vertex-to-label query problem was introduced at ICALP’11 by Hermelin
et al. [7]. For any k ≥ 2, They presented a stretch-(4k − 5) distance ora-
cle for undirected general (i.e. not necessarily planar) graphs with O(kn1+

1
k )

space and query time O(k). In a second result, they gave a dynamic label-to-
vertex distance oracle that can handle label changes in sub-linear time, but
with exponential stretch in terms of k, i.e., (2 · 3k−1 + 1). Chechik [3] later
improved their results, and presented a stretch-(4k − 5) distance oracle that
requires Õ(n1+

1
k ) expected space, and supports queries in O(k) time, and label

changes in O(n
1
k log1−

1
k n log log n) time. Her oracle can be constructed using

O(kmn
1
k ) time.

The first result for the static vertex-to-label query problem for undirected
planar graphs is due to Li et al. [12]. They described a stretch-(1+ ε) distance
oracle that is based on Klein’s results [10]. Their oracle requires O(ε−1n log n)
space, and answers queries in O(ε−1 log n log∆) time. Here ∆ is the hop-
diameter of the graph, which can be Θ(n). Mozes and Skop [15], building
on Thorup’s oracle, described a stretch-(1 + ε) distance oracle for directed
planar graphs that can be stored using O(ε−1n log n log(nN)) space, and has
O(log log n log log nN + ε−1) query time.

Li et al. [12] considered the dynamic case, but their update method was
trivial and takes Θ(n log n) time in the worst case. Łącki et al. [14] presented
a different dynamic vertex-to-label oracle for undirected planar graphs, in the
context of computing Steiner trees. Their oracle requiresO(

√
n log2 n logDε−1)

amortized time per update or query (in expectation), where D is the stretch
of the metric of the graph (which could be nN). Their oracle however does
not support changing the label of a specific vertex. Instead, they represent the
labels in a forest, and support merging two labels by connecting two trees in
the forest. Likewise, they support splitting labels by removing an edge from
the forest, dividing a single tree into two trees.

To the best of our knowledge, our distance oracles are the first stretch-
(1+ε) vertex-to-label distance oracles with polylogarithmic query and update
times, and the first that support directed planar graphs.

1.2 Our Results and Techniques

We present three approximate vertex-labeled distance oracles with polylog-
arithmic query and update times and nearly linear space and preprocessing
times. Our update and construction times are expected amortized due to the
use of dynamic hashing.1 Our solutions differ in the tradeoff between query
and update times. One solution works for directed planar graphs, whereas the
other two only work for undirected planar graphs.

1 We assume that a single comparison or addition of two numbers takes constant time.
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We obtain our results by building on and combining existing techniques
for the static case. All of our oracles rely on recursively decomposing the
graph using shortest paths separators. Our first oracle for undirected graphs
(Section 3) uses uniformly spaced connections, and efficiently handles them
using fast predecessor data structures. The upshot of this approach is that
there are relatively few connections. The caveat is that this approach only
works when working with bounded distances, so a scaling technique [19] is
required.

Our second oracle for undirected graphs (Section 5) uses the approach
taken by Li et al. [12] in the static case. Each vertex has a different set of
connections, which are handled efficiently using a dynamic prefix minimum
query data structure. Such a data structure can be obtained using a data
structure for reporting points in a rectangular region of the plane [21].

Our oracle for directed planar graphs (Section 4) is based on the static
vertex-labeled distance oracle of [15], which uses connections for sets of vertices
(i.e., a label) rather than connections for individual vertices. We show how to
efficiently maintain the connections for a dynamically changing set of vertices
using a bottom-up approach along the decomposition of the graph.

Our data structures support both queries and updates in polylogarithmic
time. No previously known data structure supported both queries and updates
in sublinear time. Table 1 summarizes the comparison between our oracles and
the relevant previously known ones.

Table 1 Vertex-to-Label Distance Oracles Time Bound Comparison

Query time Update time
Li et al. [12] U O(ε−1 logn log∆) O(n logn)

Łącki et al. [14] U O(ε−1√n log2 n logD) O(ε−1√n log2 n logD)
Sec. 3 (fast query) U O(ε−1 logn log lognN) O(ε−1 logn log log ε−1 lognN)

Sec. 5 (fast update) U O(ε−1 log2 (ε−1n)

log log (ε−1n)
) O(ε−1 log1.51(ε−1n))

Mozes et al. [15] D O(ε−1 + log logn log lognN) N/A
Sec. 4 D O(ε−1 logn log lognN) O(ε−1 log3 n lognN)

In the table above, D/U stands for Directed and Undirected graphs.

2 Preliminaries

2.1 Basic Concepts

Throughout the paper we use the term arc when dealing with directed graphs
and the term edge when dealing with undirected graphs or when we wish to
ignore the direction of an arc in a directed graph. Our algorithms are based on
partitioning the input graph. For the sake of partitioning it is useful to regard
the graph as undirected. For a directed graph G we let G′ be the underlying
undirected graph whose vertices V (G′) = V (G), and for every u, v ∈ V (G),
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E(G′) contains an edge uv if and only if E(G) contains the arc uv or the arc
vu. We say that P is an undirected path (resp., cycle or tree) in G if P is
a path (resp., cycle or tree) in G′. We say that G is connected if for every
u, v ∈ V (G) there exists an u-to-v path in G′.

Let T be an undirected rooted tree. Let A(·) be a boolean property that
is defined over the vertices of T . For every v ∈ V (T ), we say that a vertex u
is the root-most vertex on the v-to-root path P in T that fulfills A, if u is the
vertex closest to the root of T on the v-to-root path that fulfills A.

Let G be a directed graph. Let T be an undirected spanning tree of G
rooted at some vertex r ∈ V (G). For an edge uv not in T , the fundamental
cycle of uv (with respect to T ) is the undirected cycle composed of the r-to-u
and r-to-v paths in T , and the edge uv.

Let ` : E(G) → R+ be a non-negative length function. Let N be the
ratio of the maximum and minimum values of `(·). The length of a path P is
Σe∈P `(e). A shortest u-to-v path is a path of minimum length among those
that start at u and end at v. We define the distance from u to v, denoted
by δG(u, v), as the length of a shortest u-to-v path. We assume, only for ease
of presentation, that shortest paths are unique. This assumption is only used
when we present our algorithms and refer to the shortest path between two
vertices. Our data structures do not require this assumption.

A path or cycle P is simple if every vertex is the endpoint of at most two
arcs in P . For a simple path Q and a vertex set U ⊆ V (Q) with |U | ≥ 2, we
define QU , the reduction of Q to U as a path whose vertices are U . Consider the
vertices of U in the order in which they appear in Q. For every two consecutive
vertices u1, u2 of U in this order, there is an arc u1u2 in QU whose length is
the length of the u1-to-u2 sub-path of Q.

Let L be a set of labels. We say that a graph G is vertex-labeled if every
vertex is assigned with a single label from L. For a label λ ∈ L, let SλG denote
the set of vertices in G with label λ. We define the distance from a vertex
u ∈ V (G) to the label λ by δG(u, λ) = minv∈SλG δG(u, v). If G does not contain
the label λ, or λ is unreachable from u, we say that δG(u, λ) =∞.

Definition 1 For a fixed parameter ε > 0, a stretch-(1 + ε) vertex-labeled
distance oracle is a data structure that, given a vertex u ∈ V (G) and a label
λ ∈ L, returns a distance d satisfying δG(u, λ) ≤ d ≤ (1 + ε)δG(u, λ).

Definition 2 For fixed parameters α, ε > 0, a scale-(α, ε) vertex-labeled dis-
tance oracle is a data structure that, given a vertex u ∈ V (G) and a label
λ ∈ L, such that δG(u, λ) ≤ α, returns a distance d satisfying δG(u, λ) ≤ d ≤
δG(u, λ) + εα. If δG(u, λ) > α, the oracle returns ∞.

A vertex-labeled distance oracle is dynamic if it also supports an update op-
eration that, given a vertex v and a label λ, sets the label of v to be λ.

Definition 3 Let G be a directed graph. Let P be an undirected path in G.
Let S be a set of vertex disjoint directed shortest paths in G. We say that P
is composed of S if (i) each vertex of P is in some shortest path in S, and (ii)



6 Itay Laish, Shay Mozes

for every path Q ∈ S, the undirected path corresponding to Q is a subpath of
P .

Thorup shows that to obtain a stretch-(1 + ε) distance oracle for directed
planar graphs, it suffices to show scale-(α, ε) oracles for so-called α-layered
planar graphs. An α-layered graph is one equipped with an undirected span-
ning tree T such that each root-to-leaf path in T is composed of O(1) shortest
paths, each of length at most α. This is summarized in the following lemma:

Lemma 1 ([19, Sections 3.1,3.2,3.3]) Let G be a graph. Suppose that, for any
α, ε′ > 0 and any α-layered minor H of G, one can construct, in O(p(|H|, ε′))
time2 a scale-(α, ε′) distance oracle with space bound O(s(|H|, ε′)) and query
time O(t(ε′)) (here, p, s and t are arbitrary functions that do not depend on α).
Then, one can construct, for any ε > 0, a stretch-(1+ ε) distance oracle for G
with space O(s(|G|, ε4 ) lg(|G|N)) and query time O(t( 14 ) log log (|G|N)+ t( ε4 )).
The construction time is O(p(|G|, ε4 ) lg(|G|N)).

2.2 Recursive decomposition using shortest paths separators

The only properties of planar graphs that we use in this paper are the existence
of shortest path separators (to be defined shortly), and the fact that single
source shortest paths can be computed in O(n) time in a planar graph with n
vertices [6].

Definition 4 Let G = (V,E) be a directed embedded planar graph. An
undirected cycle C in G is a balanced cycle separator of G if the vertices of
V (G) \V (C) can be partitioned into two subsets Vint, Vext, each with at most
2|V (G)|/3 vertices, and such that every path whose endpoints do not belong
to the same subset intersects C. The subgraph of G induced by V (C) ∪ Vint
(resp., V (C) ∪ Vext) is called the interior (resp., exterior) of C w.r.t. G. If,
additionally, C is composed of a constant number of directed shortest paths,
then C is called a shortest path separator.

Let G be a planar graph. We assume that G is triangulated since we can
triangulate G with infinite length edges, so that distances are not affected. It is
well known [13,19] that for any undirected spanning tree T of G, there exists a
fundamental cycle C with respect to T that is a balanced cycle separator. The
cycle C can be found in linear time. Note that, if T is chosen to be a shortest
path tree, or if any root-to-leaf path of T is composed of a constant number
of shortest paths, then the fundamental cycle C is a shortest path separator.

All of our distance oracles are based on a recursive decomposition of G
using shortest path separators. If G is undirected (not necessarily α-layered),
we can use any shortest path tree to find a shortest path separator in linear

2 The lemma applies to any graph (not necessarily planar). The size of a graph H is
defined as |H| = |V (H)|+ |E(H)|. For planar graphs |H| = O(|V (H)|).
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time. Similarly, if G is directed and α-layered, then we can use the spanning
tree G is equipped with to find a shortest path separator in linear time.

We now describe a recursive decomposition ofG into subgraphs using short-
est path separators until each subgraph has a constant number of vertices. We
represent this decomposition by a binary tree TG. To distinguish the vertices
of TG from the vertices of G we refer to the former as nodes.

Each node r of TG is associated with a subgraph Gr. The root of TG is
associated with the entire graph G. We sometimes abuse notation and equate
nodes of TG with their associated subgraphs. For each non-leaf node r ∈ TG,
let Cr be the shortest path separator of Gr. Let Sepr be the set of shortest
paths Cr is composed of. The subgraphs Gr1 and Gr2 associated with the two
children of r in TG are the interior and exterior of Cr (w.r.t. Gr), respectively.
The shortest path separator Cr belongs to bothGr1 andGr2 . Note that the size
of Cr is only bounded by the size of Gr. To guarantee that Gri (i ∈ {1, 2}) is
smaller thanGr by a constant factor [19], Cr is replaced inGri by the reduction
of Cr to the vertices of Cr that have neighbors in V (Gri) \ V (Cr). See [16]
for a more comprehensive description of the recursive decomposition and the
decomposition tree. Since we use this decomposition as a black box, we only
highlight the following useful properties of TG. See Fig. 1 for an illustration.

– The depth of TG is O(log n).
– The total size of all subgraphs corresponding to nodes at a specific depth

of TG is O(n).
– The subgraph corresponding to each leaf of TG has constant size.
– For each vertex v of G there exists at least one leaf rv of TG such that
v ∈ Grv . If there is more than one such leaf, let rv denote an arbitrary one.

– For each non-leaf node r of TG, Sepr consists of a constant number of
shortest paths.

– For every two vertices u, v of G, there exists some common ancestor r of
ru and rv such that the shortest u-to-v path P in G is entirely contained
in Gr, and such that P intersects some path in Sepr.

Recall that we denote by L the set of labels of G. For r ∈ TG, let Lr be the
restriction of L to labels that appear in Gr.

2.3 Connections sets

We now describe the connections sets, which are that basic building block
used in our (and in many previous) distance oracles. Let u, v be vertices in G.
Let Q be a path on the root-most separator (i.e., the separator in the node of
TG closest to its root) that is intersected by the shortest u-to-v path P . Let
t be a vertex in Q ∩ P . Note that δG(u, v) = δG(u, t) + δG(t, v). Therefore,
if we stored for u the distance to every vertex on Q, and for v the distance
from every vertex on Q, we would be able to find δG(u, v) by iterating over
the vertices of Q, and finding the one minimizing the distance above. This,
however, may require linear space since the number of vertices on Q might be
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Fig. 1 An illustration of (part of) the recursive decomposition of a graph G using cycle
separators, and the corresponding decomposition tree TG. The graph G is decomposed using
a cycle separator into G0, and G1. Similarly, G1 is decomposed into G10 and G11, and G11

is decomposed into G110 and G111. The node r is the root of TG and is associated with
Gr = G. Similarly, r1 is associated with G1, etc. The nodes ru and rv are the leaf nodes
that contain u and v, respectively. The node r1 is the root-most node whose separator is
intersected by the shortest u-to-v path in G (indicated in blue). Hence, this path is fully
contained in Gr1 = G1.

θ(|V (G)|). Instead, we store the distances for a subset of Q. This set is called
an (α, ε)-covering connections set.

Definition 5 ((α, ε)-covering connections set) [19, Section 3.2.1] Let
ε, α > 0 be fixed constants. Let G be a directed graph. Let Q be a shortest
path in G of length at most α. For u ∈ V (G) we say that CG(u,Q) ⊆ V (Q)
is an (α, ε)-covering connections set from u to Q if and only if for every ver-
tex t on Q s.t. δG(u, t) ≤ α, there exists a vertex q ∈ CG(u,Q) such that
δG(u, q) + δG(q, t) ≤ δG(u, t) + εα. The distances δG(u, q) are called connec-
tions lengths.

One defines (α, ε)-covering connections sets CG(Q, u) from Q to u symmetri-
cally. We will use the term ε-covering connections set whenever α is obvious
from the context. Various constructions of small covering connections sets are
known for undirected and directed graphs. We will use different constructions
in our different oracles, so we postpone their descriptions to the relevant sec-
tions.
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3 An Oracle for Undirected Graphs (Variant with Faster Query)

In this section we describe a dynamic vertex labeled distance oracle for undi-
rected planar graphs stated in the following theorem.

Theorem 1 Let G be an undirected planar graph. There exists a stretch-(1 +
ε) approximate dynamic vertex-labeled distance oracle that supports query in
O(ε−1 log n log log nN) worst case time and updates in O(ε−1 log n·log log ε−1 log nN)
expected amortized time. The construction time of that oracle is
O(ε−1n log n · log log ε−1 log nN) and it can be stored in O(ε−1n log n log nN)
space.

In fact, we only show a scale-(α, ε) distance oracle, which, by Lemma 1
implies the Theorem.

Let H be an undirected α-layered graph,3 and let T be the associated
spanning tree of H. We decompose H using shortest path separators w.r.t.
T and obtain the decompostion tree TH . For every node r ∈ TH and every
shortest path Q ∈ Sepr, we select a set CQ ⊆ V (Q) of ε−1 connections evenly
spread intervals4 along Q, each of length εα. Thus, for every vertex t ∈ V (Q)
there is a vertex q ∈ CQ such that δH(t, q) ≤ εα/2.

For each r ∈ TH , for each shortest path Q ∈ Sepr, for each q ∈ CQ, we
compute in O(|Hr|) time a shortest path tree in Hr rooted at q using [6]. This
computes the connection lengths δHr (u, q), for all u ∈ V (Hr).

Lemma 2 Let u ∈ V (H). For every ancestor node r ∈ TH of ru, and every
Q ∈ Sepr, CQ is a ε-covering connections set from u to Q.

Proof Let t ∈ Q. We need to show that there exist q ∈ CQ such that δHr (u, t) ≤
δHr (u, q)+δHr (q, t) ≤ δHr (u, t)+εα. Since t ∈ Q, there exists a vertex q ∈ CQ
such that δH(q, t) ≤ εα/2. Since H is undirected, the triangle inequality holds,
so:

δHr (u, q) ≤ δHr (u, t) + δHr (t, q) (1)
δHr (u, q) + δHr (t, q) ≤ δHr (u, t) + δHr (t, q) + δHr (t, q) (2)
δHr (u, q) + δHr (t, q) ≤ δHr (u, t) + εα (3)

By the triangle inequality we also have δHr (u, t) ≤ δHr (u, q) + δHr (q, t),
and the lemma follows. See Fig. 2 for an illustration. ut

3 The discussion of α-layered graphs in Section 2 refers to directed graphs, and hence
also applies to undirected graphs.

4 We assume that the endpoints of the intervals are vertices on Q, since otherwise one
can add artificial vertices on Q without asymptotically changing the size of the graph.
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Fig. 2 Illustration of Lemma 2. Q is a shortest path in some separator, the connections of
CQ are marked by triangles. The solid u-to-q path reflects the shortest path from u to the
connection q, and the dashed u-to-t path reflects the shortest path from u to t.

3.1 Warm Up: The Static Case

We start by describing our data structure for the static case with a single
fixed label λ (i.e., each vertex either has label λ or no label at all). For every
node r ∈ TH , let Sλr be the set of λ-labeled vertices in Hr. For every separator
Q ∈ Sepr, every vertex q ∈ CQ, and every vertex v ∈ Sλr let δ̂Hr (q, v) = kεα
where k is the smallest integer such that δHr (q, v) ≤ kεα. Thus, δHr (q, v) ≤
δ̂Hr (q, v) ≤ δHr (q, v) + εα. Note that since in a scale-(α, ε) distance oracle
we may assume distances are bounded by α, k ≤ dε−1e. Let Lr(q, λ) be the
list of the distances δ̂Hr (q, v) for all v ∈ Sλr . Note that Lr(q, λ) contains at
most dε−1e distinct values. We sort each list in ascending order. Thus, the first
element of Lr(q, λ) denoted by first(Lr(q, λ)) is at most εα more than the
distance from q to the closest λ-labeled vertex in Hr. We note that each vertex
u ∈ V (H) may contribute its distance to O(ε−1 log n) lists (one list for each
of O(ε−1) connections on each of O(1) separator paths in each of the O(log n)
nodes of TH that contain u. Hence, we have O(ε−1n log n) elements in total.
Since H is an α-layered graph, the length of each Q is bounded by α. Hence,
the universe of these lists can be regarded as non-negative integers bounded
by α

εα = ε−1. Thus, these lists can be sorted in total O(ε−1n log n) time.

3.1.1 Query(u,λ)

Given u ∈ H. We wish to find the closest λ-labeled vertex v to u in H. For
each ancestor r of ru, for each Q ∈ Sepr, we perform the following search.
We inspect for every q ∈ CQ, the distance δHr (u, q) + first(Lr(q, λ)). We
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Fig. 3 Illustration of the query algorithm. The solid quarter-circles are shortest paths of
separators in G. The vertices x, y and v have label λ, and v is the closest λ-labeled vertex
to u. The path Q belongs to the root-most node r whose separator is intersected by the
shortest u-to-λ path (solid blue). The vertices q and t on Q are as in the proof of Lemma 3.
The connection q minimizes δH(u, q) + first(Lr(q, λ)). The distances in Lr(q, λ) are the
lengths of the dashed paths.

also inspect the λ-labeled vertices in Hru explicitly. We return the minimum
distance inspected. See Fig. 3 for an illustration.

Lemma 3 The query algorithm runs in O(ε−1 log n) time, and returns a dis-
tance d such that δH(u, λ) ≤ d ≤ δH(u, λ) + 2εα.

Proof Let v be the λ-labeled vertex closest to u in H. It is trivial that if the
shortest path P from u to v does not leave ru = rv the query algorithm is
correct, since the distances in ru are inspected explicitly. Otherwise, let r be
the root-most node in TH such that P intersects some Q ∈ Sepr. Thus, P
is fully contained in Hr. Let t be a vertex in Q ∩ P . Since v is the closest
λ-labeled vertex to u, it follows that v is also the closest λ-labeled vertex to t.

Let q be the vertex in CQ closest to t. Thus δHr (q, t) ≤ εα/2. By the
triangle inequality we have the following two inequalities:

δHr (u, q) ≤ δHr (u, t) + δHr (t, q) ≤ δHr (u, t) + εα/2 (4)
δHr (q, λ) ≤ δHr (q, v) ≤ δHr (t, v) + δHr (q, t) ≤ δHr (t, v) + εα/2 (5)

Summing the two inequalities we get δHr (u, q)+δHr (q, λ) ≤ δHr (u, v)+εα.
Since first(Lr(q, λ) ≤ δHr (q, λ) + εα, we have δHr (u, q) + first(Lr(q, λ) ≤
δHr (u, v)+2εα = δH(u, λ)+2εα (the last equality is by definition of v and r).

To prove the query time, observe that the height of TH is O(log n). At any
level of the decomposition we inspect the first element in O(ε−1) lists, that
is O(ε−1 log n) time. We also inspect a constant number of distances in ru in
constant time. ut
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We now generalize to multiple labels. Let L be the set of labels in H. Recall
that, for r ∈ TH , we denote by Lr the restriction of L to labels that appear
in Hr. For every label λ ∈ Lr, every Q ∈ Sepr and every q ∈ CQ, we store
the list Lr(q, λ). This does not affect the total size of our structure, since each
vertex has one label, so it still contributes its distances to O(ε−1 log n) lists.
The proof of Lemma 3 remains the same since each list contains distances to
a single label.

Naively, we could store for every node r, every vertex q, and every label
λ ∈ L the list Lr(q, λ) in a fixed array of size |L|. This allows O(1)-time access
to each list, but increases the space by a factor of |L| w.r.t. the single label
case. Instead, we use hashing. Each vertex q holds a hash table of the labels
that contributed distances to q. For the static case, one can use perfect hash-
ing [4] with expected linear construction time and constant query time. In the
dynamic case, we will use a dynamic hashing scheme, e.g., [17], which pro-
vides query and deletions in O(1) worst case, and insertions in O(1) expected
amortized time.

3.2 The Dynamic Case

We now turn our attention to the dynamic case. We wish to use the following
method for updating our structure. When a node v changes its label from
λ1 to λ2, we would like to iterate over all ancestors r of rv in TH . For every
Q ∈ Sepr and every q ∈ CQ, we wish to remove the value contributed by v
from Lr(q, λ1), and insert it to Lr(q, λ2). We must maintain the lists sorted,
but do not wish to pay O(log n) time per insertion to do so. We will be able
to pay O(log log ε−1) per insertion/deletion by using a successor/predecessor
data structure as follows.

For every r ∈ TH , Q ∈ Sepr, and q ∈ CQ, let Lr(q) be the list containing
all distances from all vertices in V (Hr) to q sorted in ascending order. We
note that since the distance for each specific vertex to q does not depend on
its label, the list Lr(q, λ) is a restriction of Lr(q) to the λ-labeled vertices in
Hr at all times.

During the construction of our structure we build Lr(q), and, for every
vertex v in Hr, we store for v its corresponding index in Lr(q). We denote this
index as IDq(v). Since Lr(q) contains only dε−1e distinct values, IDq(v) is
an integer bounded by dε−1e and all vertices u with the same δ̂Hr (q, u) share
the same ID. We also store for q a single lookup table from the IDs to the
corresponding distances. We note that v has O(ε−1 log n) such identifiers, and
in total we need O(ε−1n log n) space to store them.

Now, instead of using linked lists as before, we implement Lr(q, λ) using
a successor/predecessor structure over the universe [1, ..., ε−1] of the IDs. For
an ordered set U (the universe) and a set S ⊆ U , the successor (respectively,
predecessor) of a ∈ U is the smallest (respectively, largest) element b ∈ S
such that b is greater (respectively, smaller) than a. A successor (predecessor)
data structure for S is a data structure that supports insertion of elements to
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S, deletion of elements from S, and answers successor (predecessor) queries
for any a ∈ U . We use, e.g., y-fast tries [22], that, for the set Lr(q, λ, re-
quires O(|Lr(q, λ)|) space, and supports insertions, deletions, and queries in
O(log log ε−1) expected amortized time. It also supports minimum queries in
O(1) time in the worst case. (In fact, we only use insertions/deletions and min-
imum queries). In addition, we store for each ID present in Lr(q, λ) a doubly
linked list of the λ-labeled vertices with that ID. Each such vertex also stores
a pointer to its node in the doubly linked list.

3.2.1 Query(u, λ)

The query algorithm remains the same as in the static case. For every ancestor
r of ru in TH , every Q ∈ Sepr, and every connection q ∈ CQ, we retrieve the
minimal ID from Lr(q, λ) using a minimum query in O(1) time, and use the
lookup table to get the actual distance between q and the vertex with that ID.
The query time remains O(ε−1 log n).

3.2.2 Update

Assume that the vertex v changes its label from λ1 to λ2. For every ancestor r
of rv in TH , every Q ∈ Sepr, and every q ∈ CQ, we remove v from Lr(q, λ1) and
insert v to Lr(q, λ2) as follows. We first remove v from the doubly linked list
of IDq(v) in Lr(q, λ1). If v was the only node in the linked list we also remove
IDq(v) from the predecessor data structure of Lr(q, λ1). Then, if IDq(v) is
not present in Lr(q, λ2), we insert IDq(v) to the predecessor data structure of
Lr(q, λ2). Finally, we add v to the doubly linked list of IDq(v) in Lr(q, λ1).5

Lemma 4 The update time is O(ε−1 log n · log log ε−1) expected amortized.

Proof In each one of the O(log n) levels in TH , we perform O(ε−1) inser-
tions and deletions from successor/predecessor structures in O(log log ε−1) ex-
pected amortized time per operation, and O(ε−1) insertions and deletions in
a linked list in O(1) time per operation. Therefore the total update time is
O(ε−1 log n log log n). If the set Lr changes for some r ∈ TH as a result of the
update, we must also update the hash table that handles the labels. This might
cost an additional O(1) expected amortized time per level, so is bounded by
O(log n) expected amortized time in total. ut

Lemma 5 The data structure can be constructed in O(ε−1n log n · log log ε−1)
expected time, and stored using O(ε−1n log n) space.

Proof We decompose H into TH , and compute the connection lengths in
O(ε−1n log n) time (to find the connection lengths for each connection q, we
compute a shortest path tree rooted at q). We then build the lists Lr(q) for

5 Note that if one is only interested in reporting distances, and is not interested in being
able to also trace back the shortest path, then the doubly-linked list can be replaced with a
counter for the number of vertices represented by each ID in Lr(q, λ).
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every node r ∈ TH and q on any q ∈ Sepr. These lists contain O(ε−1n log n)
elements in the range [1, ..., ε−1] that is independent of both n and α. Hence
we sort the lists in O(ε−1n log n) time. We then use our update process on
each v ∈ V (H) and each ancestor r of rv in O(ε−1 log n · log log ε−1) expected
amortized time for v. Hence, our construction time is O(ε−1n lg n log log ε−1)
in expectation. To see our space bound, we note that every v contributes a dis-
tance to O(ε−1) lists at every ancestor r of rv. Hence, there are O(ε−1n log n)
elements in total. Our successor/predecessor structures, and the hash tables
require linear space in the number of elements stored. Thus, O(ε−1n log n)
space in total. ut

Plugging this scale-(α, ε) distance oracle into Lemma 1 proves Theorem 1.6

4 An Oracle for Directed Graphs

In this section we describe a dynamic vertex labeled distance oracle for directed
planar graphs.

Theorem 2 For any directed planar graph and fixed parameter ε, there ex-
ists a (1 + ε) approximate vertex-labeled distance oracle that support queries
in O(ε−1 log n log log nN) worst case and updates in O(ε−1 log3 n log nN) ex-
pected amortized time. This oracle can be constructed in O(ε−2n log5 n log nN)
expected time, and stored using O(ε−1n log3 n log nN) space.

As before, by Lemma 1, it suffices to show a dynamic vertex labeled scale-
(α, ε) oracle. For simplicity we only describe an oracle that supports queries
from a given label to a vertex. Vertex to label queries can be handled sym-
metrically.

Thorup proves that in any directed graph (not necessarily planar) there
always exists an (α, ε)-covering connections set of size O(ε−1):

Lemma 6 [19, Lemma 3.4] Let G,Q, ε, α and u be as in definition 5. There
exists an (α, ε)-covering connections set CG(u,Q) of size at most d2ε−1e. This
set can be found in O(|Q|) if the distances from u to every vertex on Q are
given.

Thorup further shows that (α, ε)-covering connections sets can be com-
puted efficiently for the entire decomposition of a planar graph.

Lemma 7 [19, Lemma 3.15] Let H be an α-layered graph. In O(ε−2n log3 n)
time and O(ε−1n log n) space one can compute and store a decomposition TH
of H using shortest path separators, along with (α, ε)-covering connections sets
CH(u,Q) and CH(Q, u) for every vertex u ∈ V (H), every ancestor node r of
ru in TH , and every Q ∈ Sepr.

6 Formally, one needs to show that Lemma 1 holds for vertex-labeled oracles as well. We
refer the reader to the detailed proof due to Mozes and Skop [16, Section 5.1].
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To describe our data structure for directed graphs, we first need to in-
troduce the concept of an ε-covering set from a set of vertices to a directed
shortest path.

Definition 6 Let S be a set of vertices in a directed graph H. Let Q be a
shortest path in H of length at most α. CH(S,Q) ⊆ V (Q) × R+ is an ε-
covering set from S to Q in H if for every t ∈ Q s.t. δH(S, t) ≤ α, there exists
(q, `) ∈ CH(S,Q) s.t. `+ δ(q, t) ≤ δH(S, t) + εα, and ` ≥ δH(S, q).

In the definition above we use ` instead of δ(S, q), and regard the connection
lengths ` as a part of the covering set (compare to Definition 5). This is because
we cannot afford to recompute exact distances as S changes. Instead, we store
and use approximate distances `.

Lemma 8 Let H be a directed graph. Let Q be a shortest path in H of length
at most α. For every set of vertices S ⊆ V (H) there is an ε-covering set
CH(S,Q) of size O(ε−1).

Proof We introduce a new apex vertex in H denoted by x. For every vertex v
in S, we add an arc xv with length 0. Since the indegree of x is 0, Q remains
a shortest path with length bounded by α. We apply Lemma 6 on x and Q, to
get an ε-cover set CH(x,Q) of size O(ε−1). Clearly, CH(x,Q) is an ε-covering
set from S to Q, and the Lemma follows. ut

Our construction relies on the following lemma.

Lemma 9 (Thinning Lemma) Let H, S and Q be as in Lemma 8. Let
{Si}ki=1 be sets such that S =

⋃k
i=1 Si. For 1 ≤ i ≤ k, let DH(Si, Q) be an

ε′-covering set from Si to Q, ordered by the order of the vertices on Q. Then
for every ε > 0, an (ε+ ε′)-covering set CH(S,Q) from S to Q of size d2ε−1e
can be found in O(ε−1 + |

⋃k
i=1DH(Si, Q)|) time.

Proof Let q0 be the first vertex on Q. Let Q̂ be the reduction of Q to {q0}∪{q :
∃` s.t. (q, `) ∈

⋃k
i=1DH(Si, Q)}. Let Ĥ be the auxiliary graph consisting of

Q̂ and an apex vertex x. For every pair (q, `) in
⋃k
i=1DH(Si, Q), we add to

Ĥ an arc xq of length `. Note that Ĥ has diameter bounded by α, and since
the indegree of x is 0, Q is a shortest path in Ĥ. Let m = |

⋃k
i=1DH(Si, Q)|.

We compute the shortest distance from x to every other q in Ĥ explicitly by
first relaxing (as in relaxations in Dijkstra’s algorithm) all arcs adjacent to x,
and then relaxing the arcs of Q starting from q0 according to their order on
Q. Constructing Ĥ and computing these distances therefore takes O(m) time,
since |V (Ĥ)| = |E(Ĥ)| = O(m).

We apply Lemma 6 to x with ε and get an ε-covering set CĤ(x,Q) of size
d2ε−1e from x to Q̂. Note that CĤ(x,Q) is a connections set of the vertex x.
We convert CĤ(x,Q) into a connections set for the set S as in Definition 6
by pairing each q ∈ CĤ(x,Q) with δĤ(x, q). From now on we treat CĤ(x,Q)
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such a set of pairs. It remains to prove that CĤ(x,Q) is an (ε + ε′)-covering
set from S to Q in H.

Let t ∈ Q. We show that there exists (q, `) ∈ CĤ(x,Q) such that ` +
δH(q, t) ≤ δH(S, t) + (ε′ + ε)α. We assume without loss of generality, that
δH(S, t) = δH(S1, t). Since DH(S1, Q) is an ε′-covering set from S1 to Q in H,
there exists (q′, `′) ∈ DH(S1, Q) such that:

`′ + δH(q′, t) ≤ δH(S1, t) + ε′α (6)

Also, since q′ ∈ DH(S1, Q), it is also on Q̂. Therefore there exists (q, `) ∈
CĤ(x,Q) such that:

`+ δĤ(q, q′) ≤ δĤ(x, q′) + εα ≤ `′ + εα (7)

Where the last inequality follows the fact that for every (q∗, `∗) ∈ DH(S1, Q),
δĤ(x, q∗) ≤ `∗, and hence, δĤ(x, q′) is at most `′.

δH(S, t) + ε′α+ εα = δH(S1, t) + ε′α+ εα (8)
≥ `′ + δH(q′, t) + εα (9)
≥ `+ δĤ(q, q′) + δH(q′, t) (10)
= `+ δH(q, q′) + δH(q′, t) (11)
≥ `+ δH(q, t) (12)

Here, (9) follows from inequality (6), (10) follows from inequality (7). ut

Let H be a directed planar α-layered graph, equipped with a spanning
tree T . For every fixed parameter ε > 0, let ε̂ = ε

8 logn , and ε
∗ = ε

2 . For every

1 ≤ i ≤ log n, let εi =
ε(logn−i+1)

4 logn . We denote the level (depth) of the root
of TH as 1, so the depth of the farthest leaf from the root is log n (ignoring
rounding issues for simplicity).

The data structure for H consists of 3 types of connections sets at different
levels of precision. We will use ε∗-covering sets for efficient queries. In order to
support updates, we will be using the thinning lemma climbing up the log n
levels of TH . Since we lose precision each time the thinning lemma is invoked
we need to start with very precise ε̂-covering sets at the leaves of TH and
maintain εi-covering sets at each level i of TH .

The data structure consists of the following:

– A decomposition tree TH of H.
– For every v ∈ V (H), every ancestor r of rv in TH and every Q ∈ Sepr,
ε̂-covering sets CHr (v,Q) and CHr (Q, v)

– For every r ∈ TH , λ in ∈ Lr:
– For every Q ∈ Sepr an ε∗-covering set C∗Hr (S

λ
r , Q), where Sλr is the set

of all vertices with label λ in Hr.
– For every ancestor t of r in TH and every Q ∈ Sept, εi-covering sets
CHt(S

λ
r , Q) where i is the level of r in TH
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𝑡 

Fig. 4 Illustration of he auxiliary graph Ĥ in the proof of Lemma 9, when applied to the
sets S1 = u and S2 = v (i.e. k = 2). The connections sets of S1 and S2 are indicated by
the triangles and squares, respectively. The connections in the output set are indicated by a
solid fill. The vertex t is a vertex on Q (not on Q̂) that is closer to v than it is to u. Although
t is covered by both q and q′, its distance from x is better approximated via q′. The vertex
q ε-covers q′ w.r.t. the distances in Ĥ hence q′ is not included in the output set. Since q
ε-covers q′, and q′ ε′-covers t, it follows that t is (ε+ ε′)-covered by q.

The first two items are computed by applying Lemma 7 with ε̂ to H. The
ε∗-covering sets are obtained by applying Lemma 9 (the thinning lemma) to
the ε̂-covering connections sets CHr (v,Q) for all v ∈ Sλr , with ε′ = ε̂ and ε set
to ε

4 . We assume for the moment that the εi-covering sets are given. We defer
the description of their construction (see the update procedure and the proof
of Lemma 13).

Lemma 10 The size of the data structure for an alpha-layered planar graph
H with n vertices is O(ε−1n log3 n).

Proof It is easy to see that the space is dominated by the total size of the
εi-covering sets, so we only bound those. At each level of TH , the sum over |Lr
for all nodes at that level of TH is O(n). For each of the O(n) different λ’s we
store an O(ε/ log n)-covering set for O(log n) ancestral nodes in TH . Thus, the
total size for each level is O(nε−1 log2 n), so O(nε−1 log3 n) for all levels. ut

4.1 Query(λ, u)

The query algorithm is straightforward. For every ancestor r of ru we find a
query-connection (q, `) in the ε∗-covering set of query connections C∗Hr (S

λ
r , Q),

and a vertex connection t in the ε̂-covering connections set CHr (Q, u) that
minimize the distance ` + δHr (q, t) + δHr (t, u). We also inspect the distance
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𝑟1 

𝒓 

𝑟𝑢 𝑟𝑣 

𝑢 𝑣 

ε̂-covering sets ε∗-covering sets (used
for query)

εi-covering sets (used
for update)

r N/A From SλG to every Q ∈
Sepr

From SλG to every Q ∈
Sepr

r1 N/A From Sλr1 = Sru ∪ Srv
to every Q ∈ Sepr1

From Sλr1 = Sru ∪
Srv to every Q ∈
{Sepr1 , Sepr}

ru N/A From Sλru = u to every
Q ∈ Sepru

From Sλru = u
to every Q ∈
{Sepru , Sepr1 , Sepr}

rv N/A From Sλrv = v to every
Q ∈ Seprv

From Sλrv = v
to every Q ∈
{Seprv , Sepr1 , Sepr}

u
From u to every Q ∈
{Sepru , Sepr1 , Sepr}, and
from every such Q to u.

N/A N/A

v
From v to every Q ∈
{Seprv , Sepr1 , Sepr}, and
from every such Q to v.

N/A N/A

Fig. 5 A summary of the connections-sets stored by the directed oracle. On the top, part
of a decomposition tree of a graph is shown. The vertices u and v are the only λ labeled
vertices in the graph. The table lists all the covering sets that are stored for the label λ.

to the λ-labeled vertices in ru explicitly. We return the minimum distance
inspected. To see that the query time is O(ε−1 log n), we note that for every
one of the O(log n) ancestors of ru we inspect O(ε−1) distances on constant
number of separators. Inspecting the distances in ru itself takes constant time.

Lemma 11 Query(λ, u) ≤ δH(λ, u) + εα.

Proof Let r be the root-most node in TH such that the shortest λ-to-u path P
in H intersects some Q ∈ Sepr. Let k be a vertex in Q ∩ P . By the definition
of the connections set C∗Hr (S

λ
r , Q), there exists (q, `) such that

l + δHr (q, k) ≤ δHr (Sλr , k) + ε∗α (13)

Also, there exists t ∈ CHr (Q, u) such that

δHr (k, t) + δHr (t, u) ≤ δHr (k, u) + ε̂α ≤ δHr (k, u) + ε∗α (14)
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𝑄 

𝒒 

𝒕 

𝑣 
𝑢 

Fig. 6 Illustration of the query algorithm. The solid quarter-circles are shortest paths of
separators in G. The vertex v is the closest λ-labeled vertex to u. The path Q belongs to the
root-most node r whose separator is intersected by the shortest λ-to-u path (thick red). The
connections of Sλr on Q are indicated by black triangles, the connections of u are indicated
by black squares. The vertices q and t on Q are as in the proof of Lemma 11. The blue and
black dashed lines are the shortest paths from v to q, and from t to u, respectively. These
paths are used to generate the distance reported by the query algorithm.

We add the two to get

l + δHr (q, k)δH(k, t) + δHr (t, u) ≤ δHr (Sλr , k) + δHr (k, u) + ε∗α+ ε∗α (15)

l + δHr (q, t) + δH(t, u) ≤ δHr (Sλr , k) + δHr (k, u) + 2ε∗α (16)

l + δHr (q, t) + δHr (t, u) ≤ δHr (Sλr , u) + εα (17)

Clearly, l+ δH(q, t) + δH(t, u) ≥ δH(Sλr , u). Also, since P is fully contained in
Hr, δHr (Sλr , u) = δH(Sλr , u), and the Lemma follows. ut

4.2 Update

Assume that some vertex u changes its label from λ1 to λ2. For every an-
cestor r of ru and every Q ∈ Sepr, we would like to remove CHr (u,Q) from
CHr (S

λ1
r , Q), and combine CHr (u,Q) into CHr (S

λ2
r , Q). While the latter is

straightforward using Lemma 9, removing CHr (u,Q) from CHr (S
λ1
r , Q) is more

difficult. For example, if u was the closest λ1 labeled vertex to every vertex on
Q, it is possible that CHr (u,Q) = CHr (S

λ1
r , Q). In that case, we will have to

rebuild CHr (Sλ1
r , Q) from the other O(|V (Hr)|) vertices of Sλ1

r . Instead of re-
moving the connections of u, we will rebuild CHr (Sλ1

r , Q) bottom-up starting
from the leaf node ru.

We therefore start by describing how to update ru. There is a constant
number of vertices in ru, and hence |Sλ1

ru | = O(1). Let v1, v2,...vk be the
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vertices in Sλ1
ru . Recall that for every 1 ≤ j ≤ k, vj has an ε̂-covering set

CHt(vj , Q) of size O(ε̂−1) from vj to Q, for every ancestor t of ru in TH , and
for every Q ∈ Sept. We apply the Thinning Lemma (Lemma 9) for each such
t and Q on {CHt(vj , Q)}kj=1 with ε′ = ε̂ and ε set to ε̂. Lemma 9 yields a
2ε̂-covering set CHt(Sλru , Q).

We next handle the ancestors r of ru in TH in bottom up order. Let x and
y be the children of r ∈ TH . We first note that Hr = Hx ∪ Hy and hence,
Sλ1
r = Sλ1

x ∪ Sλ1
y . Therefore, by Lemma 9, for every ancestor t of r, and every

Q ∈ Sept, CHt(Sλ1
r , Q) can be obtained from CHt(S

λ1
x , Q) ∪CHt(Sλ1

y , Q). Let
i be the level of r in TH , and hence the level of x and y is i + 1. Since t is
an ancestor of r, it is also an ancestor of x and y. Hence, x (resp., y) stores
an εi+1-covering set CHt(Sλ1

x , Q) (resp., CHt(Sλ1
y , Q)). We apply Lemma 9 on

CHt(S
λ1
x , Q) and CHt(Sλ1

y , Q) with ε′ = εi+1 and ε = 2ε̂ to get an (εi+1+2ε̂)-
covering set CHt(Sλ1

r , Q). The following lemma shows that CHt(Sλ1
r , Q) is an

εi-covering set.

Lemma 12 Let r be a node in level i in TH . For every ancestor t of r, and
every Q ∈ Sept, CHt(Sλ1

r , Q) is an εi-covering set from Sλ1
r to Q.

Proof We first recall that εi = ε logn−i+1
4 logn for every 1 ≤ i ≤ log n. We prove

the lemma by induction on the level of r in TH . The base case is i = log n,
so r is a leaf. The connections sets of the leaf nodes are computed explicitly
using Lemma 9, with ε and ε′ set to ε̂. Hence the product of the lemma is
2ε̂-covering sets.

2ε̂ = 2
ε

8 log n
=

ε

4 log n
= εlogn (18)

For the inductive step, if r is a leaf, then the arguments from the base case
apply. Otherwise, let x and y be the children of r. By the induction hypothesis,
both x and y have εi+1-covering set from Sλ1

x and Sλ1
y to Q, respectively. The

update procedure applies Lemma 9 on CHx(S
λ1
x , Q) and CHy (S

λ1
y , Q) with

ε′ = εi+1 and ε = 2ε̂, so we get an (εi+1 + 2ε̂)-covering set CHt(Sλ1
r , Q).

εi+1 + 2ε̂ = ε
log n− (i+ 1) + 1

4 log n
+ ε

2

8 log n
= ε

log n− i+ 1

4 log n
= εi (19)

ut

To finish the update process, we need to update the ε∗-covering sets that
we use for queries. Let r be an ancestor node of ru at level i in TH . By
Lemma 12, for every Q ∈ Sepr, we have an εi-covering set CHr (Sλ1

r , Q). Since
εi < ε∗ , CHr (Sλ1

r , Q) is also an ε∗-covering set. However, it is too large. We
apply Lemma 9 on CHr (Sλ1

r , Q) with ε′ = εi, and ε set to ε
4 to get (εi +

ε
4 )-

covering set. We note that since εi ≤ ε
4 for every 1 ≤ i ≤ log n, we get that

εi+
ε
4 ≤ 2 ε4 ≤

ε
2 = ε∗. Hence the output of Lemma 9 is the desired ε∗-covering

set C∗Hr (S
λ1
r , Q) of size d2ε−1e. We repeat the entire process for λ2.
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Lemma 13 There exists a scale-(α, ε) distance oracle for directed α-layered
planar graph, with worst case O(ε−1 log n) query time, and expected amortized
O(ε−1 log3 n) update time. The oracle can be constructed in O(ε−2n log5 n)
time and stored using O(ε−1n log3 n) space.

Proof The space requirement was established in Lemma 10. Since our update
process only uses Lemma 9, we bound the update time by the running time
of that Lemma. Since the running time of Lemma 9 is linear in the size of
the input connections sets, we only need to bound the number of connections
stored for ru and all of its ancestors. We store for ru a ε

4 logn -connections set
for constant number of separators for each one of the O(log n) ancestors of
ru. Hence, the number of connections stored for ru is O(log n( ε

4 logn )
−1) =

O(ε−1 log2 n). Since the number of connections stored for ru dominates the
number of connections stored for any strict ancestor of ru, we get that the
total number of connections stored for ru and all its ancestors is O(ε−1 log3 n).

We note that the connections of the vertices in ru are only used when
updating ru, and for any other non-leaf node r, we only use the connections of
its children. Thus, any connection of a node r is used at most twice. Once for
updating a connections set of r’s parent, and the second time when updating
the ε∗-covering sets of r. Hence the total input size over all calls to Lemma
9 during the update of the label of u is at most twice the number of the
connections stored for the ancestors of ru, that is O(ε−1 log3 n), and the update
time follows.

Since we store for every r ∈ TH and every Q ∈ Sepr a connections set for
every λ ∈ Lr, we use dynamic hashing as in Section 3. Hence, our update time
is expected amortized.

Our query time is trivial and follows from the fact that we process O(log n)
levels in TH , and in each we inspect O(ε∗−1) connections. That is O(ε−1 log n)
worst case time.

We next analyze the construction time. By Lemma 7 with ε set to ε̂, all
connections sets for all leaves of TH can be computed in O(ε−2n log5 n) and
require O(ε−1n log2 n) space. We construct the connections sets CHr (Sλr , Q)
for all r ∈ TH , Q ∈ Sepr and λ ∈ Hr by applying the update process for
each vertex v ∈ V (H). This takes O(ε−1 log3 n) expected amortized time per
vertex, and O(ε−1n log3 n) expected time in total. This is dominated by the
O(ε−2n log5 n) term. ut

Applying Lemma 1 with the scale-(α, ε) oracle of Lemma 13 proves Theo-
rem 2.

5 Another Oracle for Undirected Graphs (Variant with Faster
Update)

In this section we describe another oracle for undirected planar graphs, which
is based on the static oracle of Li et al. [12].
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Theorem 3 For any undirected planar graph and fixed parameters ε, γ, there
exists a stretch-(1 + ε) vertex-labeled distance oracle that approximates dis-
tances in O(ε−1 logn log(ε−1n)

log log (ε−1n) ) worst casetime, and supports updates in

O(ε−1 log n log
1
2+γ(ε−1n)) expected amortized time. This data structure can

be constructed using O(n log2 n+ε−1n log n log
1
2+γ (ε−1n)) expected amortized

time and stored using O(ε−1n log n) space.

Both Thorup [19, Lemma 3.19] and Klein [10] independently presented
efficient vertex-vertex distance oracles for undirected planar graph that use
connections sets. Klein later improved the construction time [11]. They show
that, in undirected planar graphs, one can avoid the scaling approach that
uses α-layered graphs. Instead, there exist connections sets that approximate
distance with (1 + ε) multiplicative factor rather than εα additive factor. We
use the term portals [11] to distinguish these types of connections from the
previous ones.

Definition 7 Let G be an undirected planar graph, and let Q be a shortest
path in G. For every vertex v ∈ V (G) we say that a set CG(v,Q) ⊆ V (Q) is
an ε-covering set of portals if and only if, for every vertex t on Q there exist a
vertex q ∈ CG(v,Q) such that: δG(v, q) + δG(q, t) ≤ (1 + ε)δG(v, t)

We use a recursive decomposition TG with shortest path separators. For
every vertex v ∈ V (G) and for every ancestor r of rv in TG, for every Q in
Sepr, we use Klein’s algorithm [11] to select a portal set CGr (u,Q) of size
O(ε−1) efficiently . We cannot use the lists of Section 3 because there may
be too many portals, and we cannot use the thinning lemma (Lemma 9) of
Section 4 because its proof uses a directed construction, and hence, cannot
be applied in undirected graphs. Instead, we take the approach used by Li et
al. for the static vertex-labeled case [12]. We work with all portals of vertices
with the appropriate label, and find the closest one using dynamic prefix/suffix
minimum queries.

Definition 8 (Dynamic prefix minimum data structure) A dynamic
prefix minimum data structure is a data structure that maintains a set A of
pairs in [1, n] × R, under insertions, deletions, and prefix minimum queries
(PMQ) of the following form: given l ∈ [1, n] return a pair (x, y) ∈ A s.t.
x ∈ [1, l], and for every other pair (x′, y′) ∈ A with x′ ∈ [1, l], y ≤ y′.

Suffix minimum queries (SMQ) are defined analogously. Let PMQ(A, l) and
SMQ(A, l) denote the result of the corresponding queries on the set A and l.

We assume that for every u, v ∈ V (Gr), CGr (u,Q) ∩ CGr (v,Q) = ∅. This
is without loss of generality, since if x is a portal of vertices v0, ..., vk, we can
split x to k copies. Since the size of ∩CGr (vi, Q) is O(ε−1) for every vi, this
does not increase |G| by more than a factor of ε−1. See Fig. 7.

To describe our data structure, we first need the following definitions. Let
Q ∈ Sepr for some r ∈ TG. Let q0, ..., qk be the vertices on Q by their order
along Q. G is undirected, so the direction of Q can be chosen arbitrarily. For
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Fig. 7 Illustration of the reduction to unique portals. Above, the path Q with the portal x
that is used by v0, v1, and v2. Below, x was replaced by xv0, xv1, and xv2, inner connected
with zero length edges. Here, xv0, xv1, xv2 are the portals of v0, v1, and v2 respectively.
Note that this reduction does not introduce new paths in the graph, nor changes the distance
along Q.

every 0 ≤ j ≤ k, let h(qj) denote the distance from q0 to qj on Q. We note
that since Q is a shortest path in G, h(qi) = δG(q0, qj).

For every r ∈ TG, for every Q ∈ Sepr and for every λ ∈ Lr we main-
tain a dynamic prefix minimum data structure PreQ,λ over {(j,−h(qj) +
δGr (qj , λ))}kj=0. We similarly maintain a dynamic sufix minimum data struc-
ture SufQ,λ over {(j, h(qj) + δGr (qj , λ))}kj=0.

To Summarize, our data structure consists of:

– For every vertex v ∈ V (G) and for every ancestor r of rv in TG, for every
Q in Sepr the portal set CGr (u,Q).

– For every r ∈ TG, for every Q ∈ Sepr and for every λ ∈ Lr the data
structures PreQ,λ and SufQ,λ.

5.1 Query(u, λ)

For every ancestor r of ru in TG, every Q ∈ Sepr, and every qj ∈ CGr (u,Q)
we wish to find the index i that minimizes δGr (u, qj)+ δGr (qj , qi)+ δGr (qi, λ).
Observe that for i ≤ j, δGr (qj , qi) = h(j)− h(i), while for i ≥ j, δGr (qj , qi) =
h(i)−h(j). We therefore find the optimal i ≤ j and i ≥ j separately. Note that
mini≤j(δGr (u, qj)+δGr (qj , qi)+δGr (qi, λ)) = δGr (u, qj)+h(j)+PMQ(PreQ,λ, j).
Similarly, we handle the case where i ≥ j using SMQ(SufQ,λ, j). Thus, we
have two queries for each portal of u. We also compute the distance from u to
λ in ru explicitly. We return the minimum distance computed.
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Lemma 14 The query algorithm returns a distance d such that δG(u, λ) ≤
d ≤ (1 + ε)δG(u, λ)

Proof The proof of correctness of our algorithm is essentially the same as
in [12, Lemma 1]. We adapt it to fit our construction. Let v be the closest λ-
labeled vertex to u inG. If the shortest u-to-v path P does not leave ru = rv the
algorithm is correct, since the distance in ru is computed expilicitly. Otherwise,
let r be the root-most node in TG such that P intersects some Q ∈ Sepr. Let
t be a vertex on P ∩Q. There exists qj ∈ CGr (u,Q) and qi ∈ CGr (v,Q) such
that:

δGr (u, qj) + δGr (qj , t) ≤ (1 + ε)(δGr (u, t)) (20)
δGr (v, qi) + δGr (qi, t) ≤ (1 + ε)(δGr (v, t)) (21)

We add the two inequalities and use the triangle inequality to get:

δGr (u, qj) + δGr (qj , qi) + δGr (v, qi) ≤ (1 + ε)(δGr (u, v)) (22)

If i ≤ j, then PMQ(PreQ,λ, j) ≤ δGr (qi, λ) − h(qi) ≤ δGr (v, qi) − h(qi).
Thus,

Query(u, λ) ≤ δGr (v, qi)− h(qi) + h(j) + δGr (u, qj) (23)
= δGr (v, qi) + δGr (qi, qj) + δGr (u, qj) (24)
≤ (1 + ε)(δGr (u, v)) (25)
≤ (1 + ε)(δG(u, λ)) (26)

Here, inequality (25) follows from (22), and (26) follows from that fact that
P is fully contained in r, and our assumption that v is the closest λ-labeled
vertex to u.

The proof for the case that i ≥ j is similar. ut

5.1.1 Update

Assume that the label of u changes from λ1 to λ2. For every ancestor r of
ru ∈ TG, and Q ∈ Sepr, and for qi ∈ CGr (u,Q), we remove from PreQ,λ1

and SufQ,λ1
the element (x, y) with x = i, and insert the element (i,−h(i) +

δGr (u, qi)) into PreQ,λ2 , and (i, h(i) + δGr (u, qi)) into SufQ,λ2 . We note that
since we assume that every vertex qi is a portal of at most one vertex, the
removals are well defined, and the insertions are safe.

The time and space bounds for the oracle described above are given in the
following lemma.

Lemma 15 Assume there exists a dynamic prefix/suffix minimum data struc-
ture in the word RAM model, that for a set of size m, supports PMQ/SMQ
in O(TQ(m)) time, and updates in O(TU (m)) time, can be constructed in
O(TC(m)) time, where TC(m) ≥ m, and can be stored in O(S(m)) space.
Then there exist a dynamic vertex-labeled stretch-(1 + ε) distance oracle for
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planar graphs with worst case query time O(ε−1 log(n)TQ(ε
−1n)), and expected

amortized update time O(ε−1 log(n)TU (ε
−1n)). The oracle can be constructed

using O(ε−1n log2 n+log(n)TC(ε
−1n)) expected amortized time, and stored in

O(log(n)S(ε−1n)) space.

Proof Let G be an undirected planar graph. We first decompose G to obtain
TG, and compute all the portals and the distances to portals. Klein [11] shows
that this can be done using O(n log(n)(ε−1 + log n)) time. Then, for every
r ∈ TG, for every Q ∈ Sepr and every λ ∈ Lr, we construct a prefix/suffix
minimum query data structures for PreQ,λ and SufQ,λ.

Recall that PreQ,λ is defined over the set of pairs {(j,−h(qj)+δGr (qj , λ))}kj=0,
where qj is the j’th vertex on Q. For each element (x, y) in PreQ,λ, the first
coordinate is specified by the order of the corresponding portal on Q. Hence,
x ≤ ε−1n is an integer that fits in a single word. The second coordinate can be
treated similarly; We sort the list {−h(qj) + δGr (qj , λ)}j for all portals qj on
Q. Then, we can specify y by its ordinal number in the sorted list. The same
argument holds for SufQ,λ.

Constructing PreQ,λ and SufQ,λ takesO(log n(ε−1n log(ε−1n)+TC(ε
−1n))

time, since at every level of TG the total number of portals is O(ε−1n), and
since TC(·) is superlinear. The number of portals we store is O(ε−1n log n)
since every vertex v has O(ε−1) portals for every one of its O(log n) ances-
tors in TG. Hence our space is O(log(n)S(ε−1n)), and the construction time is
O(ε−1n log2 n+ log(n)Tc(ε

−1n)).
To analyze the query and update time, we note that we process O(log n)

nodes in TG and in each we perform O(ε−1) queries or updates to the pre-
fix/suffix minimum query structures. The size of our prefix/suffix structures
is bounded by the size of V (Q) which is O(ε−1n). The ε−1 factor is due to the
assumption of distinct portals. Thus, the query time is O(ε−1 log(n)TQ(ε

−1n))
and the update time is O(ε−1 log(n)TU (ε

−1n)).
Since every Q ∈ Sepr holds a prefix/suffix minimum data structure for

every label λ ∈ Lr, we use dynamic hashing to avoid space dependency on |L|,
as in Section 5. Hence, our construction time and update time are expected
amortized. ut

It remains to describe a fast prefix/suffix minimum query structure. We use
a result due to Wilkinson [21] for solving the 2-sided reporting problem in R2

in the word RAM model. In this problem, we maintain a set A of n points in R2

under an online sequence of insertions, deletions and queries of the following
form. Given a rectangle B = [l1, h1]× [l2, h2] such that exactly one of l1, l2 and
one of h1, h2 is ∞ or −∞, we report A ∩ B. Here, [l1, h1]× [l2, h2] represents
the rectangle {(x, y) : l1 ≤ x ≤ l2, h1 ≤ y ≤ h2}. Since Wilkinson assumes the
word RAM model, it is assumed that the coordinates of the points in A are
integers that fit in a single word. Wilkinson’s data structure is captured by
the following lemma.

Lemma 16 [21, Theorem 5] For any f ∈ [2, log n/ log log n], there exists a
data structure for 2-sided reporting with update time O((f log n log log n)1/2),
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query time O((f log n log log n)1/2 + logf (n) + k) where k is the number of
points reported. The structure requires linear space.

In fact, Wilkinson’s structure first finds the point with the minimum y-coordinate
in the query region, and then reports the other points. Using this fact, and
setting f = logγ n for some arbitrary small constant γ, we get the following
lemma, in which we also state Wilkinson’s construction time explicitly.

Lemma 17 There exists a linear space data structure for 2-sided reporting on
n points, with update time O(log1/2+γ n) and query time O( logn

log logn ). This data
structure can be constructed in O(n log1/2+γ n) time. Moreover, upon query the
data structure returns the minimum y-coordinate of a point in the query region.

The prefix/suffix queries required by Lemma 15 correspond to one-sided range
reporting in the plane, which can be solved using 2-sided queries, by setting
the upper limit of the query rectangle to nN .

Lemma 18 For any constant γ > 0, there exists a linear space dynamic pre-
fix/suffix minimum data structure over n elements with update time O(log1/2+γ n),
and query time O( logn

log logn ). This data structure can be constructed in
O(n log1/2+γ n) time.

Proof We use Wilkinson’s structure. A prefix minimum query for i corresponds
to finding the point with minimum y-coordinate in the rectangle (−∞,−∞, i,∞).
This is a 1-sided rectangle. To be able to specify a boundry for the y-axis,
we maintain an upper bound ymax on the y-coordinates of points in A. The
bound can be easily updated in constant time when an insertion occurs. (There
is no need to update the bound when a deletion occurs). We replace the 1-
sided rectangle with the 2-sided rectangle (−∞,−∞, i, ymax). Similarly, our
suffix minimum query is the 1-sided rectangle (i,−∞,∞,∞) or the 2-sided
(i,−∞,∞, ymax). The lemma now follows by applying Lemma 17. ut

Plugging Lemma 18 into Lemma 15 proves Theorem 3.

6 Conclusion

In this paper we presented approximate vertex-labeled distance oracles for
directed and undirected planar graphs with polylogarithmic query and update
times and nearly linear space. All of our oracles have Ω(log n) query and
updates since we handle root-to-leaf paths in the decomposition tree. It would
be interesting to study whether this can be avoided, as done in the vertex-to-
vertex case, where approximate distance oracles with faster query times exist
(see e.g., [5,19,24] and references therein). Another interesting question that
arises is that of faster dynamic prefix minimum data structures. In Section 5
we used Wilkinson’s 2-sided reporting [21] as a dynamic prefix/suffix minimum
data structure. Can other approaches to this problem be used to obtain a faster
solution?
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