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Abstract. This paper reviews the group law algorithms of nonsingular Cab

curves, and provides implementation results comparing it to an algorithm for
computing in the generalized Jacobian of CA curves.

1. Introduction

The success of Jacobian groups of (nonsingular) elliptic and hyperelliptic curves
in cryptography has drawn a lot of interest over the recent years. One of the main
areas of research is to find suitable Jacobian groups of other families of curves, and
implement their group operation efficiently. The first part of this work is a survey
of the group law algorithms of nonsingular Cab curves. The second part is a review
of the algorithm, proposed recently by Arita, Miura and Sekiguchi, for generalized
Jacobian of a special family of singular curves, so called CA curves. Implementation
results provide a comparison of the running time between Cab curves and CA curves.

In this paper we follow the notations of [Sil86]. Let k = Fq, where q = pt for
some prime p, and denote by k its algebraic closure. Let C0/k be an absolutely
irreducible projective curve. We fix a k-rational point P∞ ∈ C0, and let C be the
curve obtained by desingularizing only the point P∞. We assume there is only one
point lying above P∞ in C which is also denoted P∞. In addition, we assume that
Ca = C\{P∞} is a nonsingular affine curve. Let R = k[Ca] be its coordinate ring,
and k(C) its field of rational functions. Let g be the genus of the curve C.

The Jacobian variety Jac(C) is isomorphic as a group to the degree zero subgroup
of the Picard group Pic0(C) := Div0(C)/PDiv(C). We focus on Pic0

k(C), the
invariant subgroup w.r.t. Gal(k/k). Recall that a divisor of the form E − nP∞,
where E ≥ 0 is affine and of degree n, is called a semi-reduced divisor with weight n.
Using Riemann-Roch Theorem one can prove that every divisor class [D] ∈ Pic0

k(C)
has a unique representative D ∼ E −mP∞, with minimal weight m. The divisor
E −mP∞ is called a reduced divisor.

The coordinate ring R is obviously Noetherian and of Krull dimension 1. For
curves the notions of normality and nonsingularity are equivalent, therefore Ca

is a normal curve. It follows that R is a Dedekind domain, and the ideal class
group IdCl(R) is well defined. In this case we have a natural isomorphism between
Pick(Ca) and IdCl(R). In addition, P∞ is the single point at infinity, and so we have
an isomorphism between Pic0

k(C) and Pick(Ca), by
∑
nPP−(

∑
nP )P∞ ↔

∑
nPP .

For conclusion, we get the following sequence of isomorphisms of groups:

Jack(C) ' Pic0
k(C) ' Pick(Ca) ' IdCl(R).
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2. Cab Curves

Let C/k be a plane irreducible projective curve, and let P ∈ C. We define

L(∞P ) :=
⋃
n≥0

L(nP ).

Define M(P ) =
{
− ordP (f) : f ∈ L(∞P )\{0}

}
. If a, b ∈ M(P ) there exist

functions f, h ∈ L(∞P ) such that −ordP (f) = a and −ordP (h) = b. Clearly fh ∈
L(∞P ), and −ordP (fh) = a+ b, so M(P ) is a unitary semigroup w.r.t. addition.

Definition 2.0.1 (Cab curve, [Ari99]). If the semigroup M(P ) is generated by two
relatively prime positive integers a and b, then the pair (C,P ) is called a Cab curve.

Let (C,P ) be a Cab curve. Then by definition there are functions x, y ∈ L(∞P )
with poles of order a and b respectively. Using these two functions we obtain the
affine model of the Cab curve F (x, y) =

∑
ai+bj≤ab cijx

iyj = 0, where 0 ≤ i ≤ b,
0 ≤ j ≤ a, cij ∈ k, cb0 6= 0 and c0a 6= 0. This affine model of C is called the
Miura canonical form. We assume that Cab curves satisfy the conditions in the
introduction, i.e. nonsingular in the affine plane, and P is the only point at infinity,
denoted P∞. The genus of a Cab curve is g = 1

2 (a− 1)(b− 1).

Definition 2.0.2 (Cab order, [Ari99]). Let α = (α1, α2), β = (β1, β2) ∈ N2. We
say that α >ab β, if one of the following holds:

(1) aα1 + bα2 > aβ1 + bβ2.
(2) aα1 + bα2 = aβ1 + bβ2, and α1 < β1.

We can order the monomials xα1yα2 ∈ k(C) by their pole order at P∞, by setting
−ordP∞(xα1yα2) = aα1 + bα2, and when two monomials have the same pole order
at infinity, the monomial with the larger degree of x is smaller.

2.1. Classification of algorithms. Various algorithms were proposed for Jaco-
bians of Cab curves, with special care for curves appealing for cryptography such
as C25 and C34 curves. The algorithms consist of two stages: composition and
reduction, and can be classified to the following types:

The first type is based on hyperplane intersection. The underlying idea is to
construct a hyperplane interpolating the affine points in the support of two reduced
divisors. The intersection of this hyperplane with the curve forms a divisor in the
opposite class. Inverting this divisor yields the reduced divisor.

The second type is based on Cantor’s algorithm. This approach is inspired from
Gauß’ algorithm for quadratic forms, which was utilized by E. Artin to the case
of hyperelliptic fields, quadratic extensions of k(x). Cantor used this approach for
computing in Jacobians of hyperelliptic curves.

The third type is based on Gröbner basis manipulation and includes two subfam-
ilies: algorithms based on lexicographic order and algorithms based on Cab order.
Algorithms in the first subfamily use an LLL-like algorithm in order to reduce a
divisor. This algorithm finds a reduced basis for a lattice in a function field, allow-
ing us to compute the minimal element in the lattice based on a specific metric.
Algorithms in the second subfamily compute the minimal element in the reduced
Gröbner basis (with respect to Cab order) of the ideal corresponding to the divisor.
The divisor is then reduced using this minimal element.

In the remaining part of this section we review special families of Cab curves,
and the algorithms proposed for each family based on chronological order.
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2.2. Elliptic Curves. The first example of Cab curves are C23 curves, elliptic
curves. By definition, elliptic curves are nonsingular curves of genus 1 along with
a fixed base point. In this case the Miura canonical form is mostly known as the
Weierstraß form, y2 +a1xy+a3y = x3 +a2x

2 +a4x+a6, where the fixed point P∞
corresponds to (0, 1, 0).

The set of rational points on an elliptic curve has a natural composition, the chord
and tangent law. This algorithm obviously belongs to the first type, hyperplane
intersection.

Based on the chord and tangent law, one can derive explicit formulae valid over
any field. These formulae can be simplified based on the characteristic of the
field. The efficiency of the computation can be further improved based on the co-
ordinates system: affine coordinates, projective coordinates, Jacobian coordinates,
Chudnovski-Jacobian coordinates, modified Jacobian coordinates, or mixed coordi-
nates (see [CMO98]).

2.3. Hyperelliptic Curves. A hyperelliptic curve C/k is a projective curve of
genus g ≥ 1 that admits a nonsingular affine model of the form y2 + H(x)y =
F (x), where H,F ∈ k[x], F is monic of degree 2g + 1, and deg(H) ≤ g. Clearly,
hyperelliptic curves are C2b curves. If char(k) = 2 then we have H(x) 6= 0, and
if char(k) 6= 2, C can be represented in the form y2 = F (x). The order of the
Jacobian of a hyperelliptic curve is approximately qg, so we can obtain a similar
group as of an elliptic curve while working over a field with g

√
q elements.

In ([Mum84]) Mumford showed that every semi-reduced divisor on a hyperelliptic
curve can be represented as the gcd of two principal divisors. Using Mumford’s
representation one can represent a divisor over k even if its support is contained
in some extension of k. Let D =

∑
nPP −

( ∑
nP

)
P∞ be a semi-reduced divisor,

and set U(x) =
∏

(x − xP )nP ∈ k[x], then there is a unique polynomial V (x) ∈
k[x] satisfying: deg(V ) < deg(U), V (xP ) = yP for all P for which nP 6= 0, and
U |(V 2 + V H − F ). It follows that D = gcd

(
div(U),div(y − V )

)
. We simplify this

notation to div(U, y − V ).
In [Gau00] Gaudry used a variant of index calculus for the Jacobian group of

hyperelliptic curves of genus g defined over Fq, and managed to compute the DLP
with complexity O(q2). Note that the group size is approximately qg, and so Pol-
lard’s Rho attack computes the DLP with complexity O(qg/2). Thus, Gaudry’s
attack is faster than Pollard’s Rho when the genus is greater than 4.

2.3.1. Cantor’s algorithm. In 1987 Cantor utilized Mumford’s representation to
propose an algorithm for addition in the Jacobian of hyperelliptic curves over fields
of odd characteristic (see [Can87]). In 1989 Koblitz generalized Cantor’s algorithm
to arbitrary characteristic (see [Kob89]). This algorithm consists of two steps: com-
position and reduction. The reduction algorithm is based on the classical method
due to Gauß. Nevertheless, there are other reduction algorithms that are faster
asymptotically, i.e. as the genus grows larger.

In 2000 Nagao improved Cantor’s algorithm over odd characteristic, based on
the following ideas: (see [Nag00])

• Dividing polynomials without inversion in the base field.
• Computing gcd of polynomials using only one inversion in the base field.
• Ignoring superfluous operations during the algorithm.
• Representing the Jacobian’s elements differently.
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2.3.2. Harley’s algorithm. In 2000 Harley proposed a generalization of the chord
and tangent law to the case of hyperelliptic curves of genus 2 over odd characteristic
([Har00a, Har00b]). This algorithm is based on hyperplane intersection. Given two
reduced divisors D1 and D2, after the composition step we have a semi-reduced
divisor R of weight at most 2g. If weight(R) ≤ g then R is already reduced,
otherwise, for genus 2, weight(R) can be either 3 or 4.

If weight(R) = 3, then R = P1+P2+P3−3P∞. Denote y = A(x) the hyperplane
(parabola or straight line) passing through the three points. The roots of F−A2 are
the x-coordinates of the intersection points between the hyperplane and C. F −A2

is a polynomial of degree 5, hence there are 5 intersection points, denote Q1, Q2

the remaining two, and define S = Q1 +Q2 − 2P∞, then the result is −S.
If weight(R) = 4, then R = P1 + P2 + P3 + P4 − 4P∞. Denote y = A(x) the

hyperplane interpolating the four points, this is a polynomial of degree at most 3.
F −A2 is a polynomial of degree 5 or 6, and we know 4 of the roots. Construct S
as in the previous case, and the result is −S.

Harley implemented the algorithm using relatively fast techniques such as CRT,
Newton’s iteration, and Karatsuba method for polynomials multiplication. In this
way the polynomial arithmetic was reduced to arithmetic over the base field.

2.3.3. Improvements for genus two. Since Harley’s algorithm many improvements
were suggested for genus 2. The main ideas of generalizations and improvements
were in the following issues:

Generalization to arbitrary characteristic [Lan01, Lan02a, SMCT02, SMCT03].
Reduce the number of operations [MCT01, MDMCT02, Tak02].
Use of different sets of coordinates ([MDMCT02, Lan02b, Lan02c]).
Focus on special families of curves [PWP03, PWP04a, BD04].
The comparison between various algorithms for hyperelliptic curves of genus 2

can be found in Appendix A.

2.3.4. Improvements for genus three. Genus 3 hyperelliptic curves were considered
to be attractive because they are resilient against Gaudry’s attack on one hand, and
allow working over smaller fields than genus 2 curves do. However, a recent variant
of Gaudry’s attack ([GTTD07]) appears to be faster than Pollard Rho attack in this
case, so one should be careful about using these curves in standard cryptosystems.
Genus 3 hyperelliptic curves are C27 curves, i.e. of the form

y2 +(h3x
3 +h2x

2 +h1x+h0)y = x7 + f6x
6 + f5x

5 + f4x
4 + f3x

3 + f2x
2 + f1x+ f0.

In [KGMCT02] Kuroki et al. generalized Harley’s algorithm to genus 3 over odd
characteristic. In [PWGP03] Pelzl et al. generalized it to arbitrary characteristic.
In [GMACT04] the authors managed to save some multiplications by using Toom’s
polynomial multiplication instead of Karatsuba’s multiplication. In [FW04] Fan
and Wang implemented the algorithm over odd characteristic using projective co-
ordinates. In [FWW05] Fan et al. focused on the doubling operation over binary
fields. In [ATW06] Avanzi et al. focused on the arithmetic over binary fields.

The comparison between various algorithms for hyperelliptic curves of genus 3
can be found in Appendix B.

2.3.5. Improved Algorithms for Genus four. Genus 4 hyperelliptic curves allow
working over smaller fields than genus 2 and 3 curves. However, these curves
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are less attractive for standard cryptosystems due to recent attacks ([GTTD07]).
Genus 4 hyperelliptic curves are C29 curves, i.e. of the form

y2 + (h4x
4 + h3x

3 + h2x
2 + h1x+ h0)y = x9 + f8x

8 + f7x
7 + . . .+ f1x+ f0.

In [PWP04b] Pelzl et al. introduced the first explicit formulae for genus 4 hyper-
elliptic curves. In [ATW06] Avanzi et al. used the same methods both for genus 3
and for genus 4. The authors focused on curves over binary fields, and implemented
the arithmetic “tricks” that were used for smaller genus as well as more efficient
field arithmetic.

The comparison between various algorithms for hyperelliptic curves of genus 4
can be found in Appendix C.

2.4. Superelliptic Curves. A superelliptic curve C is a curve that admits an
affine model of the form

ya = F (x) = fbx
b + fb−1x

b−1 + . . .+ f1x+ f0.

We can see that superelliptic curves are Cab curves where cij = 0 for 0 ≤ i ≤ b
and 0 < j ≤ a− 1, cia = 0 for 0 < i ≤ b, and c0a = 1.

In order for the superelliptic curve to be nonsingular in the affine plane we assume
that gcd

(
F (x), F ′(x)

)
= 1, and that char(k) - a. To ensure one and only one point

at infinity we assume that gcd(a, b) = 1. The field extension k(C)/k(x) is a Galois
extension, and the Galois group is Gal

(
k(C)/k(x)

)
= 〈σ〉, where σ is of the form

σ(x, y) 7→ (x, ζy) and ζ is a primitive a-th root of unity.

2.4.1. GPS Algorithm. In [GPS02] Galbraith et al. proposed an algorithm for com-
puting in the Jacobian of superelliptic curves by adopting an LLL-like algorithm
for lattice reduction to provide the reduction method. Their approach is analogous
to the strategy of computing with ideals in number fields ([Coh93] Section 6.5).
This algorithm belongs to the third type, Gröbner basis manipulation.

In [Pau98] Paulus modified the LLL algorithm to compute a reduced basis of a
lattice in a function field. First we embed k[C] into k[x]a in the following way:

ϕ :
a∑

i=1

hi(x)yi 7→
(
h1(x), . . . , ha(x)

)
.

Denote A =
(
h1(x), . . . , ha(x)

)
∈ k[x]a, we can define a metric on A by setting

|A|i := degx(hi(x)) + b
a i, and then |A| := maxi{|A|i}.

Consider an ideal a ⊆ k[C], and let [α1, . . . , αa] be a k[x]-basis of a, then the
image of a under ϕ is a lattice over k[x] generated by {ϕ(αi)}.

The authors represented divisors classes using the unique HNF (Hermite normal
form) of the reduced ideal. Given reduced ideals a1, a2, the algorithm consists of
four steps

(1) b← a1a2.
(2) c← the semi-reduced ideal equivalent to b−1.
(3) b← a minimal nonzero element in c.
(4) a3 ← the HNF of bc−1.

The complexity of the GPS algorithm is O
(
a6b2g2

)
operations in k.
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2.4.2. Cantor’s Algorithm for Superelliptic Cubics. In [BEFG04a] Basiri et al. fo-
cused on superelliptic cubics, i.e. superelliptic curves with a = 3. In this case we
have that Gal

(
k(C)/k(x)

)
= {Id, σ, σ2}, where σ is of the form σ(x, y) 7→ (x, ζy)

and ζ is a primitive third root of unity.
Let D be a k-rational divisor. The conjugates of D are Dσ and Dσ2

. The authors
noticed that Mumford’s representation is suitable for a special class of divisors,
namely divisors that do not have any two conjugate points in their support. A
divisor D is called typical if it is of the form D = div(U, y−V ) for some U, V ∈ k[x]
such that deg(V ) < deg(U) ≤ g and U | (V 3 − F ). For a fixed g, the probability
that a reduced divisor is not typical is O( 1

q ).
Given a superelliptic cubic of genus 3 or 4, a typical divisor div(U, y − V ) is

reduced whenever deg(U) < g, or deg(U) = g and deg(V ) = g − 1.
Based on the similarity between Mumford’s representation of reduced divisors

on a hyperelliptic curve and the representation of typical divisors on a superelliptic
cubic, Basiri et al. generalized Cantor’s algorithm to the case of superelliptic cubics.
The classic approach of Gauß’ reduction fails for superelliptic cubics, so Lagrange
reduction is used in this case.

2.4.3. Bauer’s Algorithm for Superelliptic Cubics. In [Bau03] Bauer implemented
GPS algorithm for superelliptic curves in the specific case of superelliptic cubics.
The author noticed that because GPS algorithm is very general it contains certain
inefficiencies, and by exploiting the underlying structure of superelliptic cubics the
arithmetic can be improved.

2.4.4. Flon-Oyono Algorithm for Picard Curves. A Picard curve is a superelliptic
curve of genus 3: y3 = F (x) = x4 + f3x

3 + f2x
2 + f1x+ f0.

In [FO04] Flon and Oyono took the approach of hyperplane intersection, and
obtained explicit formulae for computing in the Jacobian of Picard curves. Follow-
ing [BEFG04a], the authors concentrated on addition in the most frequent cases,
i.e. of typical divisors.

Given two reduced divisors D1 = P1 +P2 +P3− 3P∞ and D2 = Q1 +Q2 +Q3−
3P∞, we want to find the reduced divisor equivalent to P1 + P2 + P3 +Q1 +Q2 +
Q3 − 6P∞. For this we look at the divisor

D = −
(
P1 + P2 + P3 +Q1 +Q2 +Q3 − 9P∞

)
.

D is a k-rational divisor of degree 3, so by Riemann-Roch there exists a function
W ∈ k(C)∗ such that div(W ) ≥ −D. The only pole of W is P∞, hence W ∈ k[C].
In addition, ordP∞(W ) ≥ −9, so W is an element of the k-vector space spanned by
1, x, x2, xy, y2, x3. Take W to be the unique such element with max. order at P∞.

If W is a conic, then Supp(D1 + D2) consists of 6 points aside from P∞ that
lie on W . This conic intersects C in exactly two more points R1 and R2. Taking
a hyperplane through these points gives us two new points K1, K2. Thus, the
reduction of D1 +D2 is K1 +K2 − 2P∞.

If W is a cubic, then by Bézout theorem W intersects C in exactly three more
points R1, R2, R3. We get that

(P1 +P2 +P3−3P∞)+(Q1 +Q2 +Q3−3P∞) = −(R1 +R2 +R3−3P∞)+div(W ).

Using Riemann-Roch again we get that there exists a unique conic W2 passing
through R1, R2, R3 and through three more points K1,K2,K3. Thus, (K1 +K2 +
K3 − 3P∞) is the reduced representative of D1 +D2.
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2.5. Cab Curves. In this section we review some generic algorithms for Cab curves,
and focus on the more cryptographically interesting C34 curves.

2.5.1. Arita’s Algorithm for Cab Curves. In [Ari99] Arita proposed an addition
algorithm in the Jacobian of Cab curves. Reduced ideals are represented by their
reduced Gröbner basis w.r.t. Cab order.

Let C be a Cab curve, and let a ⊂ k[C] be an ideal. We denote by fa the
nonzero ‘monic’ polynomial with smallest leading monomial (w.r.t. Cab order) in
a, and a∗ :=

(
〈fa〉 :k[C] a

)
=

{
g ∈ k[C] : ga ⊆ 〈fa〉

}
. Notice that aa∗ = 〈fa〉, thus

a∗ = a−1. An ideal a is reduced iff a = a∗∗.
Given two reduced ideals a1, a2 ⊆ k[C], in the composition step we compute the

ideal b = a1a2. In the reduction step we first compute the reduced inverse b∗ and
later the reduced ideal a3 = b∗∗. We need to find the polynomial g = fb such that
〈g〉 = bb∗ and the polynomial h = fb∗ such that 〈h〉 = b∗b∗∗. Combining these
relations we get that b〈h〉 = bb∗b∗∗ = 〈g〉b∗∗, hence b∗∗ = h

g b.

(1) b← a1a2.
(2) g ← the minimal nonzero element in b w.r.t. Cab order.
(3) h← the minimal nonzero element w.r.t. Cab order, satisfying hb ⊆ 〈g〉.
(4) a3 ← h

g b.

The minimal elements in steps 2 and 3 are found by computing the reduced
Gröbner bases of the ideals b and b∗. Arita used Buchberger’s method for this
computation. The complexity of this algorithm is O(g3 log2 q).

2.5.2. GPS Algorithm for Cab Curves. In [HS00] Harasawa and Suzuki generalized
the GPS algorithm of superelliptic curves to Cab curves. In order to generalize GPS
algorithm, the authors had to address two issues:

(1) Given an ideal a, how to compute the inverse a−1.
(2) How to compute the minimal element over an ideal w.r.t. Cab order.

The first issue is treated with methods of computing inverse ideals in the integral
closure of a number field (see [Coh93, Prop. 4.8.19]). In the case of Cab curves, k[C]
is the integral closure of k[x] in k(C), and the set {1, y, . . . , ya−1} is a k[x]-basis of
k[C].

Regarding the second issue, given h =
∑a

i=1 hi(x)yi ∈ k[C], by the definition of
the metric | · |, we have

−ordP∞(h) = max
1≤i≤a

{
adegx(hi) + bi

}
= a max

1≤i≤a

{
degx(hi) +

b

a
i
}

= a|ϕ(h)|.

Therefore, for an ideal a ⊆ k[C], finding the minimal element over a w.r.t. the Cab

order is the same as finding the minimal element over ϕ(a) w.r.t. the metric | · |.
Thus we can apply Paulus’ method for lattice reduction in order to find the minimal
element w.r.t. the Cab order.

The overall complexity Harasawa and Suzuki obtained for the addition in the
Jacobian of a Cab curve is O(a8g2 log2 q).

2.5.3. Arita’s Algorithm for C34 Curves. In [Ari01] Arita managed to simplify his
algorithm in the case of C34 curves. This was accomplished by classifying the
Gröbner bases of the ideals, and so computing their Gröbner bases without the use
of Buchberger algorithm. The author carried out the computation symbolically and
managed to obtained explicit formulae.
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The genus of a C34 curve is 3, therefore, after the composition step the order
of the ideals is at most 6. The minimal six polynomials w.r.t. C34-order are M =
{1, x, y, x2, xy, y2}. Arita classified the ideals of degree at most 6 based on the
different possibilities of linear independence of polynomials in M .

2.5.4. BEFG Algorithm for C34 Curves. In [BEFG04a] and [BEFG04b] the authors
managed to obtain explicit formulae for adding and doubling typical reduced ideals
in C34 curves. The underlying method for the reduction step was the FGLM algo-
rithm for switching between Gröbner bases of different orderings, and so compute
the Gröbner basis in a C34 order from the Gröbner basis in lexicographic order.

Let C be a C34 curve of the form y3 + H(x)y = F (x) where deg(F ) = 4 and
deg(H) ≤ 2. In the composition step, given two typical ideals ai = 〈Ui, y − Vi〉
where deg(Ui) = 3 and deg(Vi) = 2, we get the product b = a1a2 = 〈U, y − V 〉
where U = U1U2 of degree 6 and deg(V ) = 5. In the case of addition, where
U1 6= U2 and gcd(U1, U2) = 1, we can find V using the CRT as follows:

S1 ≡ U−1
1 (mod U2), T ≡ S1(V2 − V1) (mod U2), V = V1 + TU1.

In the reduction step we have the ideal b = 〈U, y − V 〉. Let E be the minimal
element w.r.t. C34 order in the ideal b−1 = 〈U, y2 + V y + V 2 +H〉. The reduced
ideal is a3 = E

U b = 〈U3, y − V3〉.

2.5.5. FOR Algorithm for C34 Curves. In [FOR04] Flon et al. focused on Jacobians
of non-hyperelliptic curves of genus 3. Such a curve can be represented as a smooth
projective plane quartic C. We assume there exists a rational line `∞ which crosses
C in four k-rational points P∞1 , P∞2 , P∞3 and P∞4 . There are 5 possibilities:

(1) The four points are distinct.
(2) P∞1 = P∞2 , then `∞ is tangent to C at P∞i .
(3) P∞1 = P∞2 = P∞3 , then the point P∞1 is called a flex.
(4) P∞1 = P∞2 and P∞3 = P∞4 , then `∞ is call bitangent.
(5) P∞1 = P∞2 = P∞3 = P∞4 , then the point P∞1 is called a hyperflex.

Denote D∞ = P∞1 + P∞2 + P∞3 . For every D ∈ Div0
k(C) let D+ be an effective

divisor such that D+−D∞ ∼ D. The algorithm is based on the following theorem.

Theorem 2.5.1 ([FOR04] p. 4). Let D1, D2 ∈ Div0
k(C). Then D1+D2 is equivalent

to a divisor D = D+−D∞, where the points in Supp(D+) are given by the following:

(1) Take the unique cubic E which goes (with multiplicity) through the support
of D+

1 , D
+
2 and P∞1 , P∞2 and P∞4 . This cubic also crosses C in the residual

effective divisor D3.
(2) Take the unique conic Q which goes through the support of D3 and P∞1 ,

P∞2 . This conic also crosses C in the residual effective divisor D+.

The authors implemented this algorithm for the flex case, with cost of 2I + 163M
for addition and 2I + 185M for doubling. In the subcase of hyperflex we get a C34

curve, and the cost is 2I + 145M for addition and 2I + 167M for doubling.
The comparison of the algorithms for C34 curves can be found in Appendix D. 1

1After the release of this paper another algorithm was published in [ASM07], using an approach
which reduces the computation to linear algebra.
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3. CA Curves

In the previous section we described the group law operation in the Jacobian
group of certain nonsingular curves. In this section we discuss a generalization of
this situation, and explain the group law in the generalized Jacobian of (possibly
singular) CA curves. Cab curves are a special case of CA curves. The concept of
generalized Jacobian was first introduced by Rosenlicht in [Ros54] More details can
be found in [Ser88].

3.1. Generalized Jacobian Varieties. Let C/k be a complete irreducible non-
singular projective curve, let m =

∑
mPP be an effective k-rational divisor, and

let S = Supp(m). We call m a modulus. Given a function f ∈ k(C)∗ we denote
f ≡ 1 (mod m) if for every P ∈ C we have ordP (1− f) ≥ mP .

Definition 3.1.1 (m-equivalence). Let D1 and D2 be two divisors over C prime
to S. We say that D1 and D2 are m-equivalent, and write D1 ∼m D2, if there is a
function f ∈ k(C)∗ such that div(f) = D1 −D2 and f ≡ 1 (mod m).

Given an irreducible nonsingular curve C, a finite subset of S ⊆ C and an
equivalence relation ∼ on S, one can construct a singular curve C ′ = (C\S)∪(S/ ∼)
with C its normalization. Given a modulus m with deg(m) ≥ 2, ∼m is an equivalence
relation and we denote the singular curve C ′ by Cm.

Just like linear equivalence gives rise to the Jacobian variety, given a modulus m
the equivalence relation ∼m gives rise to a generalized Jacobian variety, Jm.

The dimension of Jm is the arithmetic genus of the curve Cm, that is

π =
{
g, m = 0
g + deg(m)− 1, m 6= 0

Let m be a modulus on C and S = Supp(m), we define Divm(C) to be the
subgroup of Div(C) formed by divisors prime to S and Div0

m(C) its subgroup of
degree zero. We denote by Picm(C) (and Pic0

m(C)) the quotient group of Divm(C)
(resp. Div0

m(C)) of m-equivalence classes. Jm is isomorphic (as a group) to Pic0
m(C).

In order to understand the structure of Jm first note that there are isomorphisms
of groups ϕ : Pic0(C) → J and ψ : Pic0

m(C) → Jm. In addition, every pair of m-
equivalent divisors is obviously also linearly equivalent, so we have an epimorphism
σ : Pic0

m(C) → Pic0(C). Combining the three maps together, we get an epimor-
phism τ : Jm → J defined by τ = ϕ ◦ σ ◦ ψ−1. Denote by Lm the kernel of τ , and
we get the following short exact sequence of groups

0 −→ Lm ↪→ Jm
τ−→ J −→ 0.

Thus, the generalized Jacobian Jm is an extension of the Jacobian J by Lm. The
algebraic group Lm is biregular isomorphic to Rm/Gm, i.e.

Lm '
#S−1∏
i=1

Gm ×
∏
P∈S

V(mP ),

where V(mP ) is a unipotent group isomorphic to a group of matrices.

3.2. The Ideal Class Group of Singular Curves. Let C0/k be a plane irre-
ducible projective curve. We fix a k-rational point P∞ ∈ C0. Let C1 be the curve
obtained by desingularizing only the point P∞. We assume there is only one point
lying above P∞ in C1 which is also denoted P∞. Let S be the set of singular
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points of C1, and let C be the normalization of C1 (and of C0) with the map
d : C → C1 → C0. Denote by m the modulus defined by d−1(S). Let g be the
genus of the curve C.

We assume Ca
1 = C1\{P∞} is an affine curve, and let R = k[Ca

1 ] be its coordinate
ring. Note that if Ca

1 has singular points R is not a Dedekind domain. However,
we can still denote by Id(R) the group of invertible fractional ideals of R, and
its subgroup PId(R) = {〈f〉 = fR : f ∈ k(C)∗}. Thus, we can define with this
notation the ideal class group IdCl(R) = Id(R)/PId(R).

The local ring of a nonsingular point P is regular, i.e. the corresponding maximal
ideal mP is principal. However, the maximal ideal corresponding to a singular point
is generated by more than one element. Therefore, the group of invertible fractional
ideals of R is the free abelian group generated by maximal ideals corresponding to
nonsingular points. We generalize the situation of the previous section by assigning
divisors prime to S, i.e. divisors generated by nonsingular points, to invertible
fractional ideals generated by the corresponding regular maximal ideals, and vice-
versa. For conclusion, we get the following sequence:

Jm(C) ' Jm(C1) ' Pic0
m(C1) ' Picm(Ca

1 ) ' IdCl(R).

3.3. CA Curves. We denote by N the set of non-negative integers. Let M ⊂ N be
a finitely generated semigroup, i.e.

M = 〈a1, . . . , at〉 = Na1 + . . .+ Nat

where t ≤ a1, and ai 6= 0. The complement ofM in N is finite iff gcd(a1, . . . , at) = 1.
If we denote bi = min{a ∈M : a ≡ i (mod a1)}, then

#(N\M) =
a1−1∑
i=1

[
bi
a1

]
.

In this case M is called a numerical semigroup.
Let M be a numerical semigroup with a system of generators A = {a1, . . . , at},

where t ≤ a1. We now define a surjective map Ψ : Nt −→M by

Ψ(n1, n2, . . . , nt) =
t∑

i=1

niai.

Using this map, we can define a monomial order on Nt as follows.

Definition 3.3.1 (CA order). Given α = (α1, . . . , αt), β = (β1, . . . , βt) ∈ Nt we
say that α <A β, if one of the following holds:

(1) Ψ(α) < Ψ(β);
(2) Ψ(α) = Ψ(β), and α1 = β1, . . . , αi = βi, αi+1 > βi+1.

Definition 3.3.2. For a ∈ M we define m(a) = min{n ∈ Nt : n ∈ Ψ−1(a)}, and
as before bi = min{a ∈M : a ≡ i (mod a1)}. In addition we set
B(A) = {m(a) : a ∈M} ⊂ Nt.
T (A) = {m(bi) ∈ B(A) : i = 0, . . . , a1 − 1}.
V (A) = {` ∈ Nt\B(A) : if ` = m+ n with m ∈ Nt\B(A) and n ∈ Nt, then n = 0}.

V (A) is a finite set and B(A) = T (A) + N× {0}t−1.
Under these notations we consider polynomials Fm ∈ k[x1, . . . , xt], for m ∈

V (A), satisfying the following conditions:
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(D1) For each m ∈ V (A) set ` = m
(
Ψ(m)

)
, then

Fm = Xm + a`X
` +

∑
n

anX
n,

where a` 6= 0, and the sum runs over n ∈ B(A) with n < `.
(D2)

{ ∑
n∈B(A) kXn

} ⋂ {
Fm : m ∈ V (A)

}
=

{
0
}
.

The notation Xm means xm1
1 · · ·x

mt
t , where m = (m1, . . . ,mt).

Let C/k be an irreducible nonsingular curve. Let P ∈ C be a k-rational point,
like in Cab curves we define

M(P ) =
{
− ordP (f) : f ∈ L(∞P )\{0}

}
⊂ N,

then M(P ) is a numerical semigroup.
Let R be a subalgebra of L(∞P ) such that k ⊂ R ⊂ L(∞P ), and define a

semigroup by
M(R) =

{
− ordP (f) : f ∈ R\{0}

}
⊂ N.

Lemma 3.3.3 ([AMS04], Lemma 3.1). The field of fractions of R coincides with
k(C) iff M(R) is a numerical semigroup.

Hereafter we assume that M(R) is a numerical semigroup. For every i = 1, . . . , t
we choose a function fi ∈ R such that ordP (fi) = −ai, and consider the surjection
Θ : k[x1, . . . , xt] −→ R defined by Θ(F ) = F (f1, . . . , ft) for F ∈ k[x1, . . . , xt]. The
kernel of this map, denoted I(R) = ker Θ, is generated by polynomials satisfying
conditions (D1) and (D2). Miura showed the converse is also true.

Theorem 3.3.4 ([AMS04], Theorem 3.2). Let M be a numerical semigroup with a
system of generators A = {a1, . . . , at}. Then an ideal I ⊂ k[x1, . . . , xt] is generated
by polynomials satisfying conditions (D1) and (D2) iff there exist a function field K
of one variable over k, a k-rational point P of the nonsingular model of K, and a
subalgebra k ⊂ R ⊂ L(∞P ) such that the field of fractions of R is K, and I = I(R).

In this case the polynomials satisfying (D1) and (D2) form a Gröbner basis of
I, and the projective model C0(A) of Spec(k[x1, . . . , xt]/I) ⊂ At

k in Pt
k has only one

infinite point P , which is at most a cuspidal singularity. Moreover, the affine model
Spec(k[x1, . . . , xt]/I) of K is nonsingular iff R = L(∞P ).

Definition 3.3.5 (CA curve, [AMS04]). Under the notation of the theorem, when
the ideal I = I(R) ⊂ k[x1, . . . , xt] corresponds to the numerical semigroup M with
a system of generators A = {a1, . . . , at}, we call Spec(k[x1, . . . , xt]/I), or C0(A), a
CA curve. For a numerical semigroup M generated by A, if there exists an affine
nonsingular CA curve, M is called a Weierstraß numerical semigroup.

Using the Riemann-Roch theorem for singular curves we obtain the following
formula for the genus of a CA curve.

Proposition 3.3.6 ([AMS04], Prop. 3.3). Let C1 be the curve given by desingular-
izing only the point at infinity of a CA curve C0(A). The arithmetic genus of C1

is

pa(C1) = #(N\M) =
a1−1∑
i=1

[
bi
a1

]
.

If a CA curve is generated by two coprime elements, A = {a, b}, we obtain a Cab

curve. A beautiful example of a C357 curve can be found in [AMS04].
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3.4. Arita’s Algorithm for CA Curves. In [AMS04] the authors generalized
Arita’s algorithm for Cab curves to the case of CA curves. Let C be a CA curve,
and following the notations of Theorem 3.3.4 let R = k[C] = k[x1, . . . , xt]/I be
its coordinate ring, and consider the canonical map Θ : k[x1, . . . , xt] → R whose
kernel is I. Note that CA order is a monomial order on k[x1, . . . , xt]. For every
ideal a ⊂ R we denote A = Θ−1(a).

Let a ⊂ R be an invertible ideal, denote h ∈
(
1 :k(C) a

)
= a−1 the nonzero

element of a−1 with smallest minus order −ordP∞(h), and define a∗ = ha.

Lemma 3.4.1 ([AMS04]). For an invertible ideal a∗ of R, a nonzero element h of
a with smallest minus order −ordP∞(h) is unique up to constant multiplication.

It follows that given an ideal class [a] the ideal a∗ is unique, this is the reduced
representative of the ideal class.

In order to find the element h ∈ a−1 we take an element f ∈ a and find g ∈(
〈f〉 :k(C) a

)
=

(
〈f〉 :R a

)
= fa−1 with smallest minus order −ordP∞(g), then

h = g
f . The element g is found by computing the Gröbner basis w.r.t. CA order of

the ideal Θ−1(fa−1) =
(
(fk[x1, . . . , xt] + I) :k[x1,...,xt] A

)
.

Given two reduced invertible ideals a1, a2 ⊆ R, represented with the Gröbner
bases a1 = 〈f1, . . . , fl〉, a2 = 〈g1, . . . , gm〉:

(1) A1 ← 〈f1, . . . , fl〉+ I, A2 ← 〈g1, . . . , gm〉+ I.
(2) B← A1A2.
(3) Take a nonzero element f ∈ B\I.
(4) Take g ∈

(
(fk[x1, . . . , xt] + I) :k[x1,...,xt] B

)
with smallest CA order.

(5) Compute Gröbner basis of B∗ = g
f B.

4. Conclusions

The Arita-Miura-Sekiguchi algorithm for CA curves does not attempt to replace
the faster algorithms for Cab curves, but provides a way to work with more general
curves than Cab curves. Nevertheless, it is interesting to see the difference in per-
formance between the AMS algorithm and the fast Cab curves algorithms. AMS
algorithm relies on Buchberger’s algorithm to find the reduced Gröbner Basis, and
this algorithm is hard for analysis, therefore, it is difficult to perform a theoretical
comparison. In this work we implemented some of the Cab curves algorithms and
compared them to AMS CA curves algorithm. The purpose of this implementation
is to provide a feeling of the running time.

All computations were performed using Intel Pentium 4 CPU 3.00GHz, 1GB
RAM, using Magma V2.11-14.

Examples comparing C34 curves can be found in Appendix E. The results show
that operations that take 0.016 seconds using the FOR and BEFG algorithms take
0.125 seconds using AMS algorithm. This means that AMS algorithms is approxi-
mately 8 times slower than the FOR and BEFG algorithms for C34 curves.
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Appendix A. Genus 2 hyperelliptic curves – summary

The following table compares various algorithms for genus 2 hyperelliptic curves.
The hyperelliptic curve is of the form

y2 + (h2x
2 + h1x+ h0)y = x5 + f4x

4 + f3x
3 + f2x

2 + f1x+ f0.

Algorithm char(k) Properties Addition Doubling
1987 Cantor general 3I + 70M/S 3I + 76M/S
2000 Nagao odd regular representation 2I + 52M/S 2I + 59M/S

odd alternative representation I + 56M/S I + 66M/S
2000 Harley odd 2I + 24M + 3S 2I + 30M/S
2001 Lange general 2I + 24M + 3S 2I + 26M + 6S
2001 MCT odd 2I + 22M + S 2I + 23M + 2S
2002 MDMCT odd affine, f4 = 0 I + 24M + 2S I + 23M + 4S

odd projective, f4 = 0 51M + 3S 47M + 6S
2002 Takahashi odd I + 23M + 2S I + 21M + 8S
2002 Lange a general h2, h1, f4 ∈ {0, 1} I + 22M + 3S I + 22M + 5S

even h2, h1, f4 ∈ {0, 1} I + 22M + 2S I + 20M + 5S
2002 Lange b general projective 47M + 4S 40M + 6S

general mixed 40M + 3S
2002 Lange c odd weighted, f4 = 0 47M + 7S 34M + 7S

odd mixed, f4 = 0 36M + 5S
even weighted, f4 = 0, h2 6= 0 46M + 4S 35M + 6S
even mixed, f4 = 0, h2 6= 0 35M + 5S
even weighted, f4 = 0, h2 = 0 44M + 6S 29M + 6S
even mixed, f4 = 0, h2 = 0 34M + 6S

2002 SMCT even f4 = f2 = 0, h2 = 1 I + 23M + 2S I + 26M + S
2003 SMCT general I + 28M + S I + 38M
2003 PWP even y2 + xy = x5 + f1x+ f0 I + 9M +6S
2004 BD even affine, general I + 25M I +27M

even affine, deg(H) = 2 I + 25M I +26M
even affine, deg(H) = 1 I + 24M I +18M
even projective, general 45M 45M
even projective, deg(H) = 2 45M 44M
even projective, deg(H) = 1 42M 31M
even modified, general 45M 43M
even modified, deg(H) = 2 45M 42M
even modified, deg(H) = 1 42M 31M
even weighted, general 42M 46M
even weighted, deg(H) = 2 42M 45M
even weighted, deg(H) = 1 40M 27M

Table 1. Genus 2 hyperelliptic curve arithmetic – summary
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Appendix B. Genus 3 hyperelliptic curves – summary

The following table compares various algorithms for genus 3 hyperelliptic curves.
The hyperelliptic curve is of the form

y2 +(h3x
3 +h2x

2 +h1x+h0)y = x7 + f6x
6 + f5x

5 + f4x
4 + f3x

3 + f2x
2 + f1x+ f0.

Algorithm char(k) Properties Addition Doubling
1987 Cantor general 4I + 200M/S 4I + 207M/S
2000 Nagao odd regular representation 2I + 144M/S 2I + 153M/S

odd alternative representation 2I + 157M/S 2I + 170M/S
2002 KGMCT odd f6 = 0 I + 81M/S I + 74M/S
2003 PWGP general hi ∈ {0, 1}, f6 = 0 I + 70M + 6S I + 61M + 10S

even hi ∈ {0, 1}, f6 = 0 I + 65M + 6S I + 53M + 10S
even H(x) = 1, f6 = 0 I + 65M + 6S I + 14M + 11S

2004 GMACT odd f6 = 0 I + 67M + 3S I + 61M + 8S
2004 FW odd projective, f6 = 0 132M + 8S 120M + 12S

odd mixed, f6 = 0 101M + 7S
2005 FWW a odd projective, f6 = 0 122M + 9S 110M + 11S

odd mixed, f6 = 0 105M + 8S
even projective, H(x) = 1, f6 = 0 119M + 9S 42M + 15S
even mixed, H(x) = 1, f6 = 0 102M + 8S

2005 FWW b even H(x) = 1 I + 11M + 11S
even H(x) = x I + 13M + 13S
even H(x) = x2 I + 20M + 12S
even H(x) = x3 I + 26M + 11S

2006 ATW even classical, H(x) = 1, f6 = 0 I + 57M + 6S I + 11M + 11S
even effective, H(x) = 1, f6 = 0 I +47.7M + 6S I + 9.3M + 11S

Table 2. Genus 3 hyperelliptic curve arithmetic – summary

Appendix C. Genus 4 hyperelliptic curves – summary

The following table compares various algorithms for genus 4 hyperelliptic curves.
The hyperelliptic curve is of the form

y2+(h4x
4+h3x

3+h2x
2+h1x+h0)y = x9+f8x8+f7x7+f6x6+f5x5+f4x4+f3x3+f2x2+f1x+f0.

Algorithm char(k) Properties Addition Doubling
1987 Cantor general 6I + 386M/S 6I + 395M/S
2000 Nagao odd regular representation 3I + 286M/S 3I + 296M/S

odd alternative representation 2I + 292M/S 2I + 307M/S
2004 PWP general hi ∈ {0, 1}, f8 = 0 2I + 160M + 4S 2I + 193M + 16S

even H(x) = x, f8 = 0 2I + 148M + 6S 2I + 75M + 14S
2006 ATW even classical, H(x) = 1, I + 119M +10S I + 28M + 16S

even effective, H(x) = 1, I +98.1M +10S I +23.7M + 16S
Table 3. Genus 4 hyperelliptic curve arithmetic – summary
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Appendix D. Genus 3 Cab Curves – Summary

The following table compares various algorithms C34 curves.

Algorithm Curve Algorithm Type Addition Doubling
1998 GPS Superelliptic LLL 20I + 600M
1999 Arita Cab Gröbner basis (Buchberger)
2000 HS Cab LLL
2001 Bauer y3 = F (x) LLL 10I + 547M
2001 Arita C34 Explicit formulae 5I + 204M 5I + 284M
2002 BEFG y3 = F (x) Cantor based 10I + 200M
2003 FO Picard Explicit formulae 2I + 156M 2I + 174M
2003 BEFG Picard Explicit formulae 2I + 140M 2I + 164M
2003 BEFG C34 Explicit formulae 2I + 150M 2I + 174M
2004 FOR Picard Explicit formulae 2I + 130M 2I + 152M
2004 FOR C34 Explicit formulae 2I + 145M 2I + 167M
2007 ASM C34 Linear Algebra 2I + 117M 2I + 129M

Table 4. Genus 3 Cab Curves Arithmetic – Summary

Appendix E. Implementation Results

Example E.0.2. The first example is a C23 (elliptic) curve over a prime field of size
of the 250 bits prime number

783504955098126625939564619462229155911706009001203502697182381485670696613.

The elliptic curve is defined as y2 = x3 + ax+ b, where

a = 679322676434579681662095559405844519193433472993608121158029730379314270957,

b = 775289106016033264724793354519456787365137692569549278377432100829205343147.
The base point P is set to be (x0, y0) where

x0 = 663177336873733094218081445310882501380649766049695127538340181645475357470,

y0 = 689758082397337870647308833580650003532936643997911875124778830597331113909.
The order of P is

195876238774531656484891154865557288981112418841755378292714293866612104675.

The example computes the scalar product mP where m is set to be

195876238774531656484891154865557288981112418841755378292714293866612104670.

Using Magma’s built-in elliptic curves arithmetic the computation took 0.016
seconds, and gave the result (x1, y1) where

x1 = 630198629825731277605313391089810323623623875920174014924690401420891747856,

y1 = 129175656922667234996155241666791587986535559688720415317024679020521648518.
Using AMS algorithm the computation took 1.219 seconds, and returned the

following Gröbner basis which corresponds to the ideal 〈x− x1, y − y1〉.{
y + 654329298175459390943409377795437567925170449312483087380157702465149048095,
x+ 153306325272395348334251228372418832288082133081029487772491980064778948757

}
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Example E.0.3. The following example is a C34 curve over the prime field of size
25033. The curve is defined to be

6567x3y + y3 + 25032x4 + 18877x2y + 162xy + 4738x2 + 14333y + 7218x+ 21234.

We represent the divisor div(x3 + u2x
2 + u1x+ u0, y− (v2x2 + v1x+ v0)) by the

sextuple [u2, u1, u0, v2, v1, v0].
We select the divisor D = [3904, 5539, 5752, 19670, 14925, 12954] and the scalar

m = 1341 and compute mP .
Using FOR algorithm the computation took 0.016 seconds and returned the

divisor D1 = [11095, 5932, 17083, 12380, 15154, 10043].
Using AMS algorithm the computation took 0.125 seconds and returned the

following Gröbner basis y2 + 17380y + 4174x+ 17473,
xy + 4646y + 21534x+ 13556,
x2 + 840y + 12437x+ 14528


which corresponds to the ideal of D1.

Note that BEFG algorithm is not applicable for this curve, because it is only
effective for C34 curves where h3 = 0.

Example E.0.4. The following example is a C34 curve over the prime field of size
2003. The curve is defined to be

y3 + 2002x4 + 1550x2y + 1224xy + 1679x2 + 856y + 1882x+ 1302.

We select the divisor D = [721, 1735, 1698, 1360, 1449, 1465] and the scalar m =
10000 and compute mP .

Using FOR algorithm the computation took 0.016 seconds and returned the
divisor D1 = [1164, 1124, 904, 1260, 79, 581].

Using BEFG algorithm the computation took 0.016 seconds and returned the
divisor D1 = [1164, 1124, 904, 1260, 79, 581].

Using AMS algorithm the computation took 0.125 seconds and returned the
following Gröbner basis  y2 + 258y + 921x+ 279,

xy + 1683y + 50x+ 1870,
x2 + 1379y + 1224x+ 1064


which corresponds to the ideal of D1.

Example E.0.5. The following example is a C357 curve over the prime field of size
83. C is defined by 64 + 4x+ 30x2 + 30x3 + 76y + 75xy + y2 + 52z + 4xz,

10 + 27x+ 16x2 + 6x3 + 44x4 + 69y + 16xy + 27x2y + 31z + xz + yz,
22 + 32x+ 77x2 + 30x3 + 11x4 + 17y + 25xy + 3x2y + 72x3y + 45z + 32xz + 76x2z + z2


We select a point P = (2, 33, 62). According to [AMS04] the order the ideal I =
〈x− 2, y − 33, z − 62〉, corresponding to P , ism = 1848. We verified this statement.
The computation of mI took 0.313 seconds and returned the Gröbner basis {1}.
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