Communication Lower Bounds for Cryptographic Broadcast Protocols

Erica Blum: University of Maryland
Elette Boyle: Reichman University \& NTT Research
Ran Cohen: Reichman University
Chen-Da Liu-Zhang: HSLU \& Web3 Foundation

Broadcast Protocols

A broadcast protocol with sender S is considered secure if it satisfies the following properties:

- Validity: if the sender is honest and has input x, then $y=x$
- Agreement: every honest party outputs the same value y

Byzantine agreement: a closely related multi-input version

Setting

- Synchronous message passing
- Malicious (Byzantine) adversary
- Corruption timing:
- Static: before the protocol begins
- Adaptive: on-the-fly during the protocol
- Strongly adaptive: "after the fact" message removal
- Weakly adaptive: no "after the fact" removal

Playground of feasibility \& impossibility

Playground of feasibility \& impossibility

Communication

async

$t \geq n / 3 \quad t<n / 3$

$<t+1$

$<2 t+1 \geq 2 t+1$
$o\left(n^{2}\right)$

$\Theta\left(n^{2}\right)$

Randomness \& Cryptography

Security with high probability
Security wrt PPT adversaries

Playground of feasibility \& impossibility

Playground of feasibility \& impossibility

Communication complexity (partial)

Honest majority

- [KS'09] statically secure BA with $o\left(n^{2}\right)$ communication and $o(n)$ connectivity
- [BGT'13] used cryptography for polylog(n) locality (max degree in induced communication graph)
- [BCG'21] balanced BA with $\tilde{O}(n)$ comm. (polylog (n) bits per party)
- [Micali'17] \& [ACDNPRS'19] unbalanced BA with $\tilde{O}(n)$ comm. against weakly adaptive
- [ACDNPRS'19] security wrt t strongly-adaptive $\Rightarrow \Omega\left(t^{2}\right)$ messages

Communication complexity (partial)

Dishonest majority

- All communication-efficient broadcast based on [DS'83] $O\left(n^{2}\right)$ messages and $O\left(n^{3}\right)$ communication
 (bare pki + sig)
- [CPS'20] for $t=\Theta(n)$ constructed broadcast with $\tilde{O}\left(n^{2}\right)$ communication against weakly adaptive (trusted pki + cryptography)
- [TLP'22] for $t=\Theta(n)$ constructed broadcast
 with $\tilde{O}\left(n^{2}\right)$ communication and $\tilde{O}(1)$ locality against static adaptive (bare pki + sig)

Starting point

| | | Setup | Resiliency (t) |
| :--- | :--- | :--- | :--- | Total comm | Locality |
| :--- |
| (non-sender) |

Starting point

Setup	Resiliency (t)	Total comm	Locality (non-sender)		
Strongly	bare pki	$t<n$	$O\left(n^{3}\right)$	n	[Ds'83]
adaptive	any	$\Theta(n)$	$\Omega\left(n^{2}\right)$	$\Omega(n)$	[ACDNPRS19]
Weakly adaptive					
Static					

Starting point

Setup		Resiliency (t)	Total comm	Locality (non-sender)	
Strongly	bare pki	$t<n$	$O\left(n^{3}\right)$	n	[DS'83]
adaptive	any	$\Theta(n)$	$\Omega\left(n^{2}\right)$	$\Omega(n)$	[ACDNPRS19]
Weakly adaptive	trusted pki	$\Theta(n)$	$\tilde{O}\left(n^{2}\right)$	$O(n)$	[CPS'20]
Static					

Starting point

Setup		Resiliency (t)	Total comm	Locality (non-sender)	
Strongly adaptive	bare pki	$t<n$	$O\left(n^{3}\right)$	n	[DS'83]
Weakly adaptive	trusted pki	$\Theta(n)$	$\Omega\left(n^{2}\right)$	$\Omega(n)$	[ACDNPRS19]
Static	any (deterministic)	$\Theta(n)$	$\Omega\left(n^{2}\right)$	$O(n)$	[CPS'20]
	bare pki	$\Theta(n)$	$\tilde{O}\left(n^{2}\right)$	$\tilde{O}(1)$	[TLP'22]

No lower bounds for randomized broadcast for static/weakly adaptive

Can we get $o\left(n^{2}\right)$ communication?

Yes! Under strong assumptions

- [CPS'20] use a polylog-size committee to run DS \Rightarrow small signature-chains (but messages are propagated in an all-to-all network)
- [TLP'22] use a polylog-degree expander to propagate all-to-all messages
- Together we get:

Thm 1: Let $0<\epsilon<1$ be a constant and $t=(1-\epsilon) n$. Assuming cryptography (signatures + VRF) and trusted-PKI setup
\exists statically t-secure broadcast with $\widetilde{\boldsymbol{O}}(\boldsymbol{n})$ communication and $\widetilde{\boldsymbol{O}}(\mathbf{1})$ locality

Can we do better?

An analog for Thm 1 with more static corruptions?
Thm 2: Let $\epsilon(n) \in o(1)$ and $t=(1-\epsilon(n)) \cdot n$
For any (statically) t-secure broadcast, the message complexity is

$$
\Omega\left(n \cdot \frac{1}{\epsilon(n)}\right)
$$

Examples:

- $n-\frac{n}{\log ^{d} n}$ corruptions (ie, $\epsilon(n)=\frac{1}{\log ^{d} n}$) require $\Omega\left(n \cdot \log ^{d} n\right.$) messages
- $n-\sqrt{n}$ corruptions (ie, $\epsilon(n)=\frac{1}{\sqrt{n}}$) require $\Omega(n \cdot \sqrt{n})$ messages
- $n-c$ corruptions (ie, $\epsilon(n)=\frac{c}{n}$) require $\Omega\left(n^{2}\right)$ messages

Can we do better (\#2)?

An analog for Thm 1 with a constant fraction of adaptive corruptions?
Recall that Thm 1 guarantees \tilde{O} (1) locality
With adaptive corruptions the sender must talk to $t+1$ (o/w gets isolated)
What about non-sender parties?

Thm 3: Let $0<k<n / 2$ and $t=n / 2+k$, let $P_{i^{*}}$ be a non-sender, and let π be a weakly adaptive t-secure broadcast protocol Then, there exists an adversary that can force $P_{i^{*}}$ to talk to k parties
E.g., for $t=0.51 \cdot n$, the (non-sender) locality is $\Theta(n)$

Protocol design: ensure that each party has a path with high communication

Main Results

	Setup	Resiliency (t)	Total comm	Local (non	
Strongly adaptive	bare pki	$t<n$	$O\left(n^{3}\right)$	n	[DS'83]
	any	$\Theta(n)$	$\Omega\left(n^{2}\right)$	$\Omega(n)$	[ACDNPRS19]
Weakly adaptive	trusted pki	$\Theta(n)$	$\widetilde{O}\left(n^{2}\right)$	$O(n)$	[CPS'20]
	any	$n / 2+k$		$>\boldsymbol{k}$	Thm 3
Static	any (deterministic)	$\Theta(n)$	$\Omega\left(n^{2}\right)$	$\Omega(n)$	[DR'85]
	bare pki	$\Theta(n)$	$\widetilde{O}\left(n^{2}\right)$	O(1)	[TLP'22]
	trusted pki	$\boldsymbol{O}(\boldsymbol{n})$	$\widetilde{O}(\boldsymbol{n})$	$\widetilde{O}(1)$	Thm 1
	any	$(1-\epsilon(n)) n$	$\boldsymbol{\Omega}(\boldsymbol{n} / \boldsymbol{\epsilon}(\boldsymbol{n})$)		Thm 2

High-level idea for Thm 2

Thm 2: Let $\epsilon(n) \in o(1)$ and $t=(1-\epsilon(n)) \cdot n$
For any (statically) t-secure broadcast, the message complexity is

$$
\Omega\left(n \cdot \frac{1}{\epsilon(n)}\right)
$$

High-level idea for Thm 2

- Split all receivers to two subsets \mathcal{A} and \mathcal{B}
- Choose set $\mathcal{S} \subseteq \mathcal{A}$ of size $\epsilon(n) \cdot n-1$ and a party $P^{*} \in \mathcal{B}$ and corrupt all others

High-level idea for Thm 2

- Split all receivers to two subsets \mathcal{A} and \mathcal{B}
- Choose set $\mathcal{S} \subseteq \mathcal{A}$ of size $\epsilon(n) \cdot n-1$ and a party $P^{*} \in \mathcal{B}$ and corrupt all others

High-level idea for Thm 2

- Lemma 1: if P^{*} and \mathcal{S} do not communicate $\Rightarrow \mathcal{S}$ outputs 0 and P^{*} outputs 1

High-level idea for Thm 2

- Lemma 1: if P^{*} and \mathcal{S} do not communicate $\Rightarrow \mathcal{S}$ outputs 0 and P^{*} outputs 1

High-level idea for Thm 2

- Lemma 1: if P^{*} and \mathcal{S} do not communicate $\Rightarrow \mathcal{S}$ outputs 0 and P^{*} outputs 1

High-level idea for Thm 2

- Lemma 1: if P^{*} and \mathcal{S} do not communicate $\Rightarrow \mathcal{S}$ outputs 0 and P^{*} outputs 1
- Lemma 2: P^{*} and \mathcal{S} do not communicate with noticeable probability

Subtle: communication patterns may depend on \mathcal{S} and P^{*}

Open Questions

Static: match the LB (e.g., for $\epsilon(n)=\log ^{-d} n$ and $\epsilon(n)=\sqrt{n}$)

Static: sub-quadratic broadcast from weaker assumptions

Weakly adaptive: is there sub-quadratic broadcast?

Understand the limitations of cryptography in distributed systems

Thank Yow 2

