Communication Lower Bounds for Cryptographic Broadcast Protocols

Erica Blum: University of Maryland

Elette Boyle: Reichman University & NTT Research

Ran Cohen: Reichman University

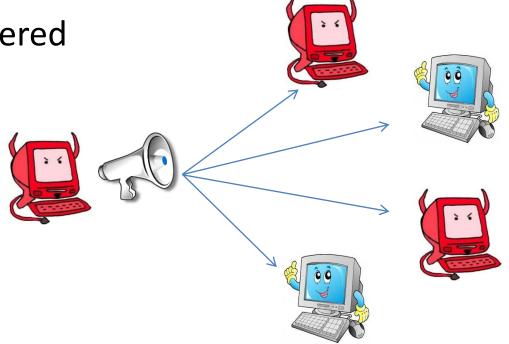
Chen-Da Liu-Zhang: HSLU & Web3 Foundation

Broadcast Protocols

A broadcast protocol with sender S is considered secure if it satisfies the following properties:

- Validity: if the sender is honest and has input *x*, then *y* = *x*
- Agreement: every honest party outputs the same value *y*

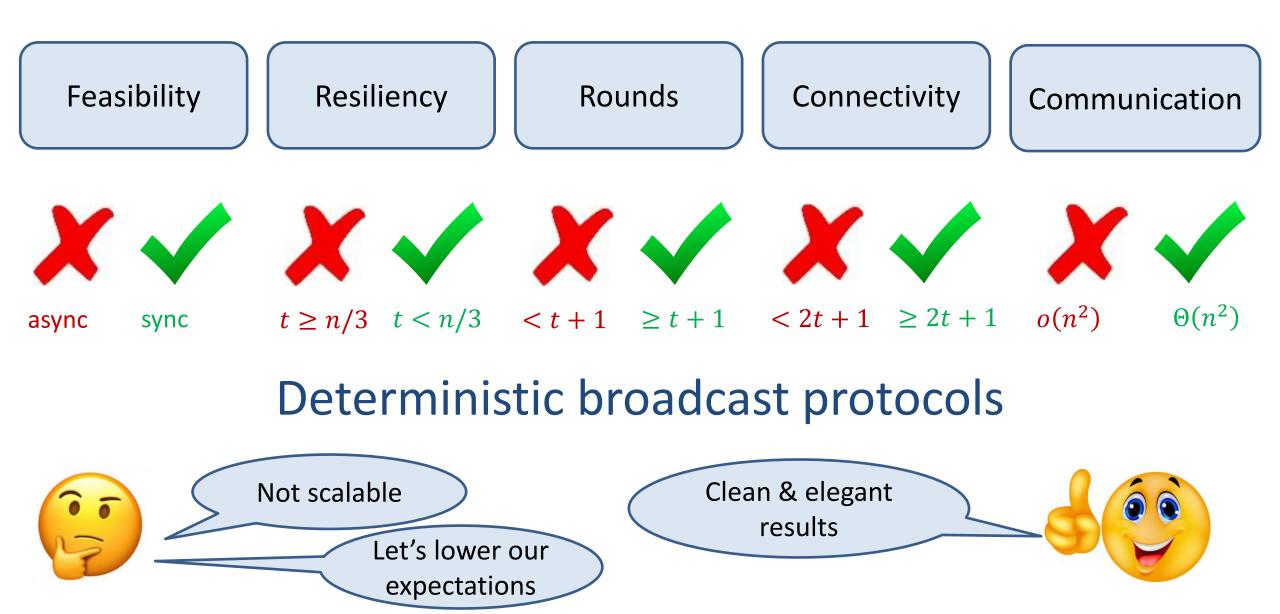
Byzantine agreement: a closely related multi-input version

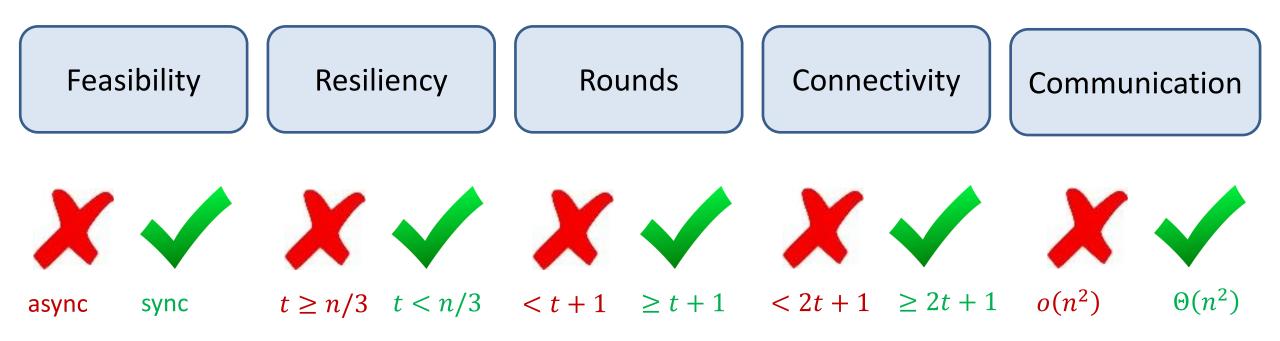


Setting

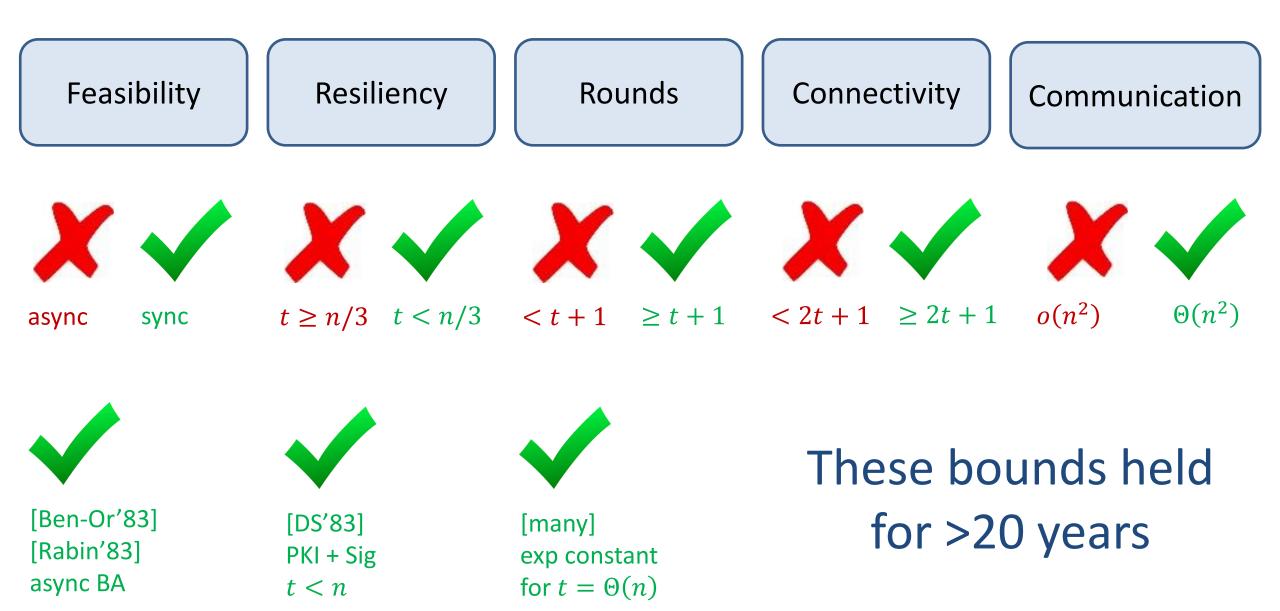
- Synchronous message passing
- Malicious (Byzantine) adversary
- Corruption timing:
 - Static: before the protocol begins
 - Adaptive: on-the-fly during the protocol
 - Strongly adaptive: "after the fact" message removal
 - Weakly adaptive: no "after the fact" removal

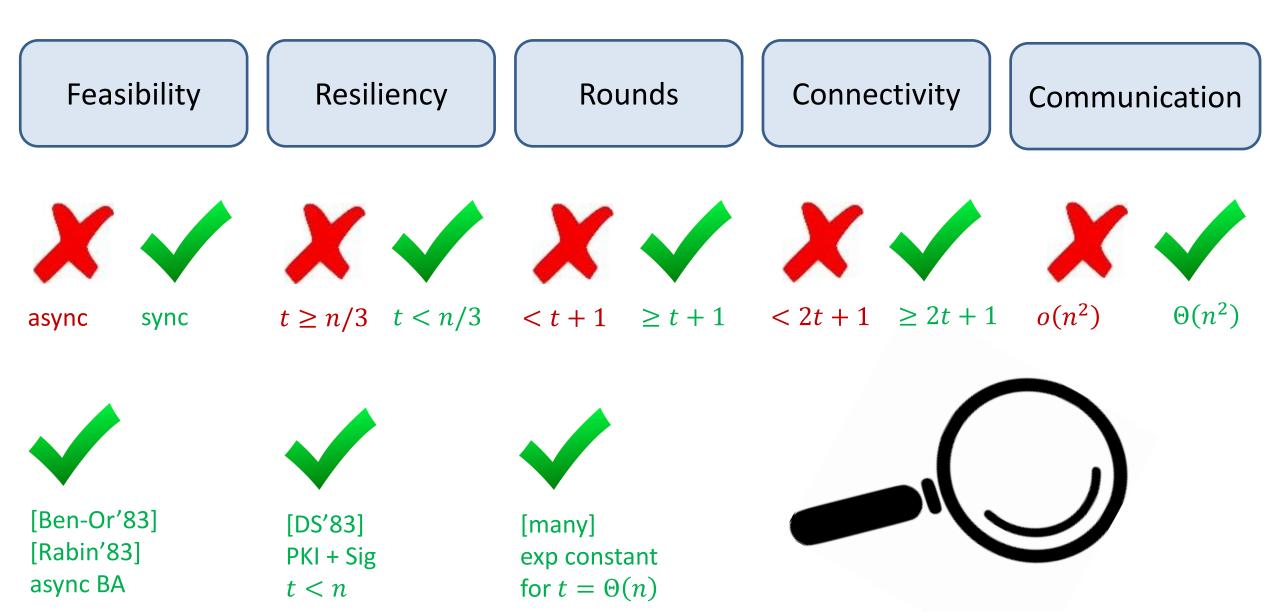
strongly adaptive





Security wrt PPT adversaries





Communication complexity (partial)

Honest majority

- [KS'09] statically secure BA with $o(n^2)$ communication and o(n) connectivity
- [BGT'13] used cryptography for polylog(n) locality (max degree in induced communication graph)
- [BCG'21] balanced BA with $\tilde{O}(n)$ comm. (polylog(n) bits per party)
- [Micali'17] & [ACDNPRS'19] unbalanced BA with $\tilde{O}(n)$ comm. against weakly adaptive
- [ACDNPRS'19] security wrt t strongly-adaptive $\Rightarrow \Omega(t^2)$ messages

Communication complexity (partial)

Dishonest majority

- All communication-efficient broadcast based on [DS'83]
 O(n²) messages and O(n³) communication
 (bare pki + sig)
- [CPS'20] for $t = \Theta(n)$ constructed broadcast with $\tilde{O}(n^2)$ communication against weakly adaptive (trusted pki + cryptography)
- [TLP'22] for $t = \Theta(n)$ constructed broadcast with $\tilde{O}(n^2)$ communication and $\tilde{O}(1)$ locality against static adaptive (bare pki + sig)

	Setup	Resiliency (<i>t</i>)	Total comm	Locality (non-sender)
Strongly adaptive				
Weakly adaptive				
Static				

	Setup	Resiliency (<i>t</i>)	Total comm	Locality (non-sender)	
Strongly adaptive	bare pki	t < n	$O(n^{3})$	n	[DS'83]
	any	$\Theta(n)$	$\Omega(n^2)$	$\Omega(n)$	[ACDNPRS19]
Weakly adaptive					
Static					

	Setup	Resiliency (<i>t</i>)	Total comm	Locality (non-sender)	
Strongly adaptive	bare pki	t < n	$O(n^{3})$	n	[DS'83]
	any	$\Theta(n)$	$\Omega(n^2)$	$\Omega(n)$	[ACDNPRS19]
Weakly adaptive	trusted pki	$\Theta(n)$	$\tilde{O}(n^2)$	0(n)	[CPS'20]
Static					

	Setup	Resiliency (<i>t</i>)	Total comm	Locality (non-sender)	
Strongly adaptive	bare pki	t < n	$O(n^{3})$	n	[DS'83]
	any	$\Theta(n)$	$\Omega(n^2)$	$\Omega(n)$	[ACDNPRS19]
Weakly adaptive	trusted pki	Θ(<i>n</i>)	$\tilde{O}(n^2)$	0(n)	[CPS'20]
Static	any (deterministic)	$\Theta(n)$	$\Omega(n^2)$	$\Omega(n)$	[DR'85]
	bare pki	$\Theta(n)$	$\tilde{O}(n^2)$	$\tilde{O}(1)$	[TLP'22]

No lower bounds for randomized broadcast for static/weakly adaptive

Can we get $o(n^2)$ communication?

Yes! Under strong assumptions

- [CPS'20] use a polylog-size committee to run DS ⇒ small signature-chains (but messages are propagated in an all-to-all network)
- [TLP'22] use a **polylog-degree expander** to propagate all-to-all messages
- Together we get:

Thm 1: Let $0 < \epsilon < 1$ be a constant and $t = (1 - \epsilon)n$. Assuming cryptography (signatures + VRF) and trusted-PKI setup \exists statically *t*-secure broadcast with $\tilde{O}(n)$ communication and $\tilde{O}(1)$ locality

Can we do better?

An analog for Thm 1 with **more static corruptions**?

Thm 2: Let $\epsilon(n) \in o(1)$ and $t = (1 - \epsilon(n)) \cdot n$ For any (statically) *t*-secure broadcast, the message complexity is $\Omega\left(n \cdot \frac{1}{\epsilon(n)}\right)$

Examples:

- $n \frac{n}{\log^d n}$ corruptions (ie, $\epsilon(n) = \frac{1}{\log^d n}$) require $\Omega(n \cdot \log^d n)$ messages
- $n \sqrt{n}$ corruptions (ie, $\epsilon(n) = \frac{1}{\sqrt{n}}$) require $\Omega(n \cdot \sqrt{n})$ messages

• n-c corruptions (ie, $\epsilon(n) = \frac{c}{n}$) require $\Omega(n^2)$ messages

Can we do better (#2)?

An analog for Thm 1 with a constant fraction of adaptive corruptions? Recall that Thm 1 guarantees $\tilde{O}(1)$ locality

With adaptive corruptions the sender must talk to t + 1 (o/w gets isolated) What about non-sender parties?

Thm 3: Let 0 < k < n/2 and t = n/2 + k, let P_{i^*} be a non-sender, and let π be a weakly adaptive *t*-secure broadcast protocol Then, there exists an adversary that can force P_{i^*} to talk to *k* parties

E.g., for $t = 0.51 \cdot n$, the (non-sender) locality is $\Theta(n)$

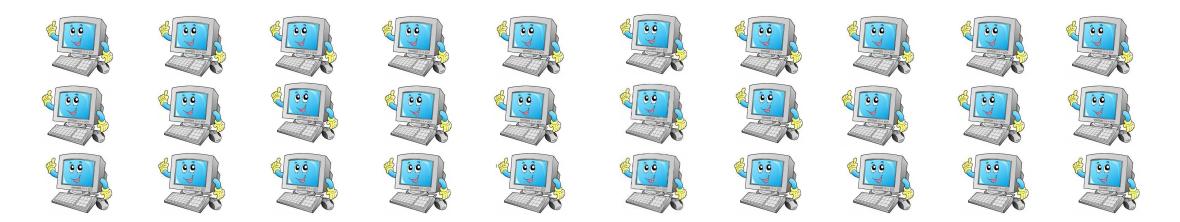
Protocol design: ensure that each party has a path with high communication

Main Results

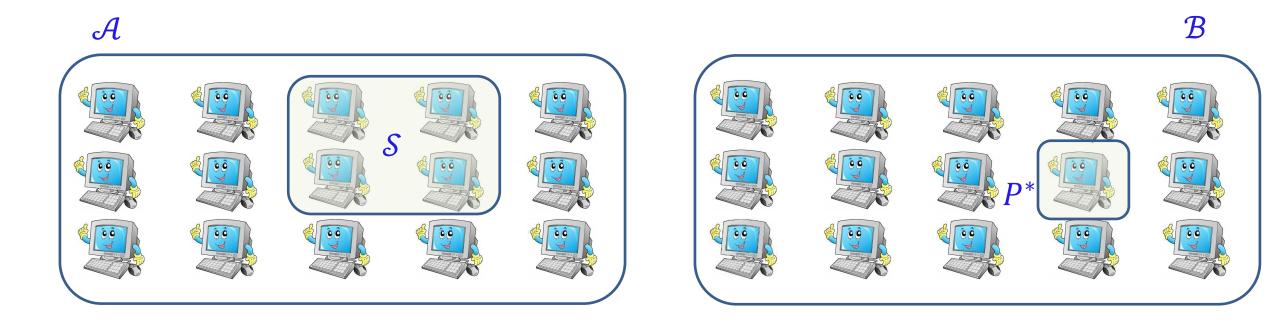
	Setup	Resiliency (<i>t</i>)	Total comm	Locality (non-sender)	
Strongly adaptive Weakly adaptive Static	bare pki	t < n	$O(n^3)$	n	[DS'83]
	any	$\Theta(n)$	$\Omega(n^2)$	$\Omega(n)$	[ACDNPRS19]
	trusted pki	$\Theta(n)$	$\tilde{O}(n^2)$	0(n)	[CPS'20]
	any	n/2 + k		> k	Thm 3
	any (deterministic)	$\Theta(n)$	$\Omega(n^2)$	$\Omega(n)$	[DR'85]
	bare pki	$\Theta(n)$	$\tilde{O}(n^2)$	$ ilde{O}(1)$	[TLP'22]
	trusted pki	$\Theta(n)$	$\widetilde{\boldsymbol{0}}(\boldsymbol{n})$	$\widetilde{\boldsymbol{0}}(1)$	Thm 1
	any	$(1-\epsilon(n))n$	$\Omega(n/\epsilon(n))$		Thm 2

Thm 2: Let $\epsilon(n) \in o(1)$ and $t = (1 - \epsilon(n)) \cdot n$ For any (statically) *t*-secure broadcast, the message complexity is

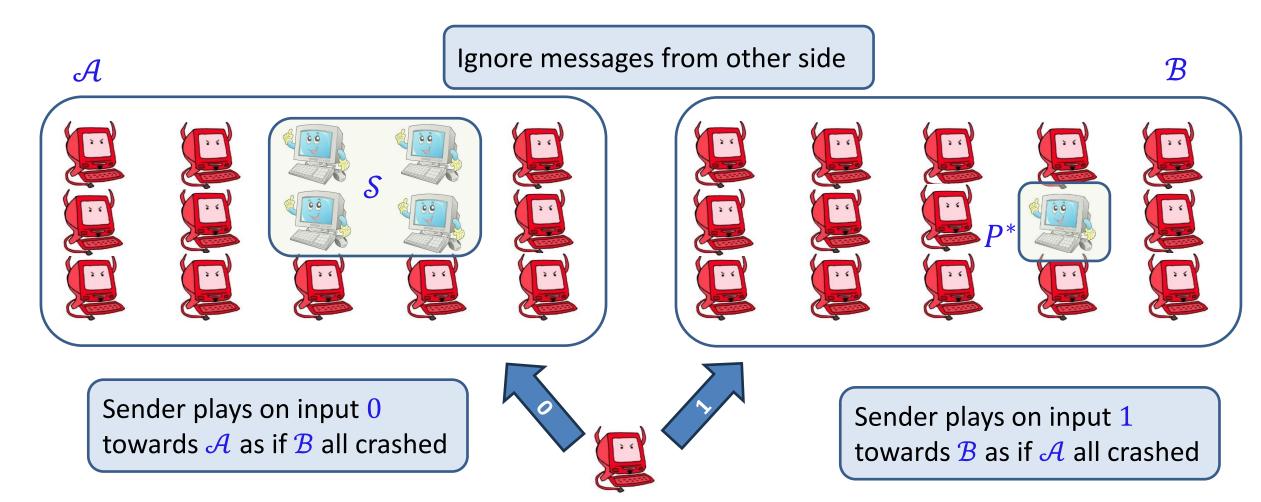
 $\Omega\left(n\cdot\frac{1}{\epsilon(n)}\right)$



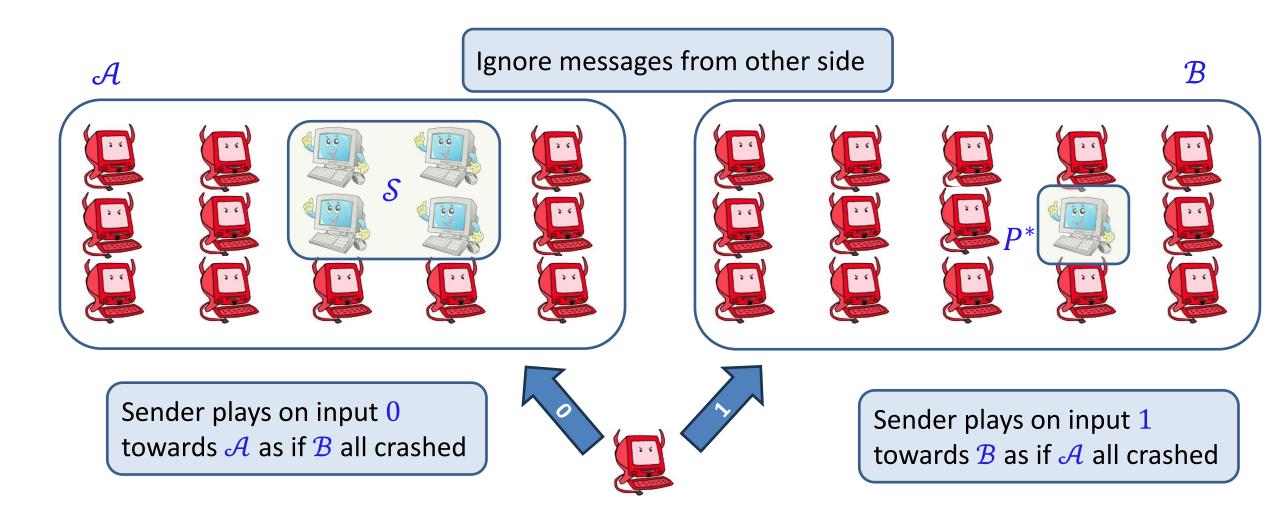
- Split all receivers to two subsets \mathcal{A} and \mathcal{B}
- Choose set $S \subseteq A$ of size $\epsilon(n) \cdot n 1$ and a party $P^* \in B$ and corrupt all others



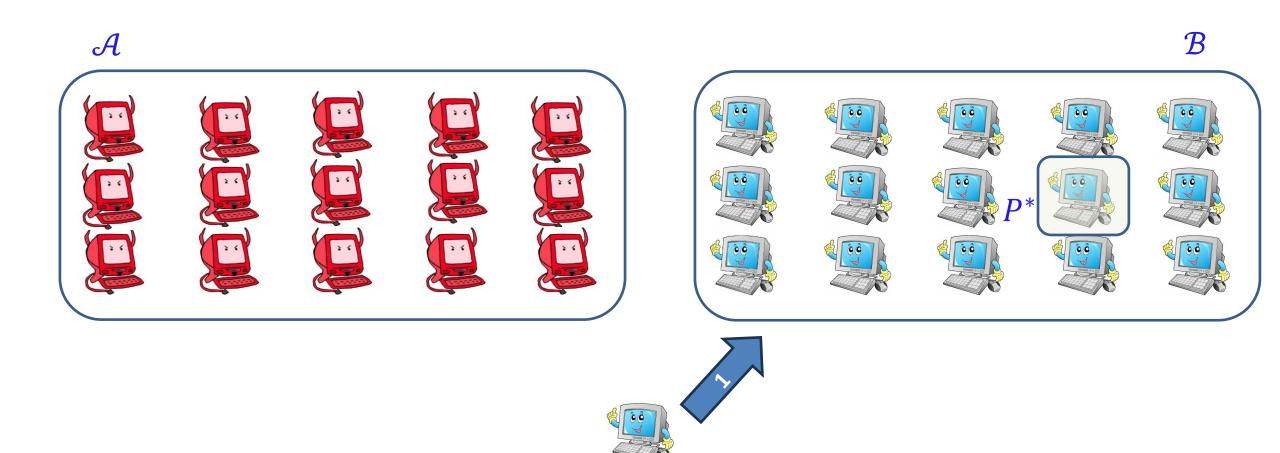
- Split all receivers to two subsets \mathcal{A} and \mathcal{B}
- Choose set $S \subseteq A$ of size $\epsilon(n) \cdot n 1$ and a party $P^* \in B$ and corrupt all others



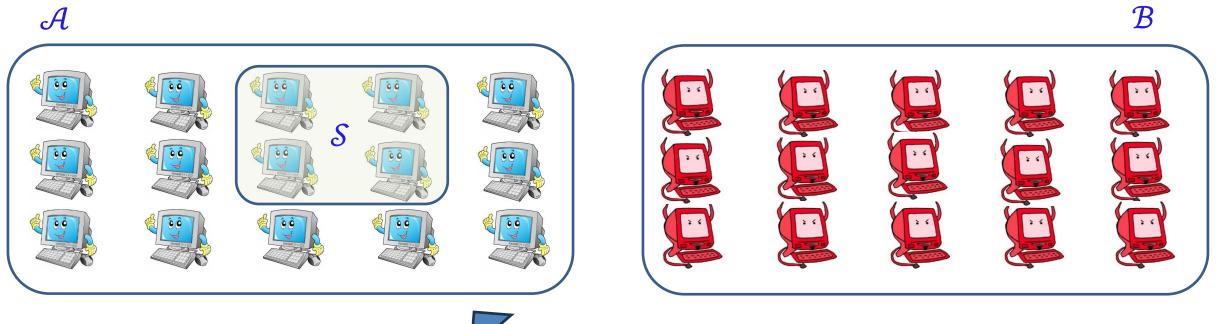
• Lemma 1: if P^* and S do not communicate $\Rightarrow S$ outputs 0 and P^* outputs 1

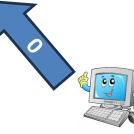


• Lemma 1: if P^* and S do not communicate $\Rightarrow S$ outputs 0 and P^* outputs 1

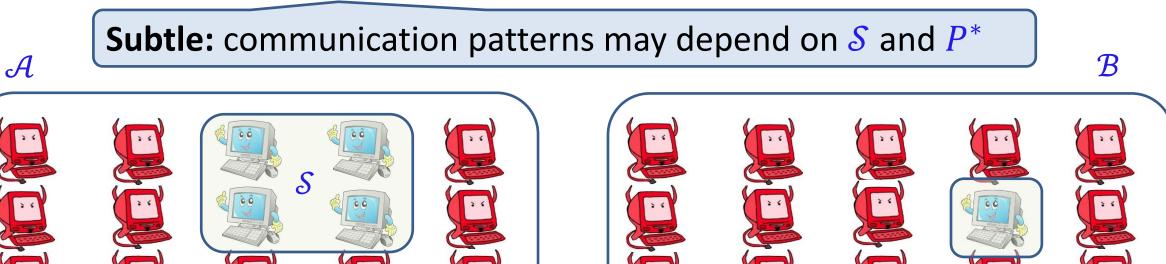


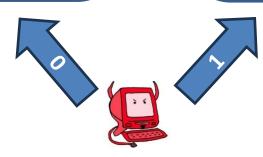
• Lemma 1: if P^* and S do not communicate $\Rightarrow S$ outputs 0 and P^* outputs 1





- Lemma 1: if P^* and S do not communicate $\Rightarrow S$ outputs 0 and P^* outputs 1
- Lemma 2: P^* and S do not communicate with noticeable probability





Open Questions

Static: match the LB (e.g., for $\epsilon(n) = \log^{-d} n$ and $\epsilon(n) = \sqrt{n}$)

Static: sub-quadratic broadcast from weaker assumptions

Weakly adaptive: is there sub-quadratic broadcast?

Understand the limitations of cryptography in distributed systems

