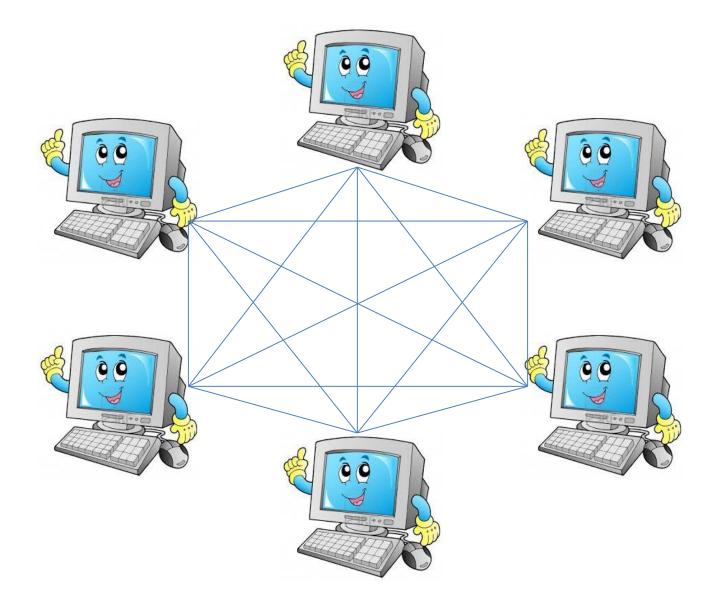
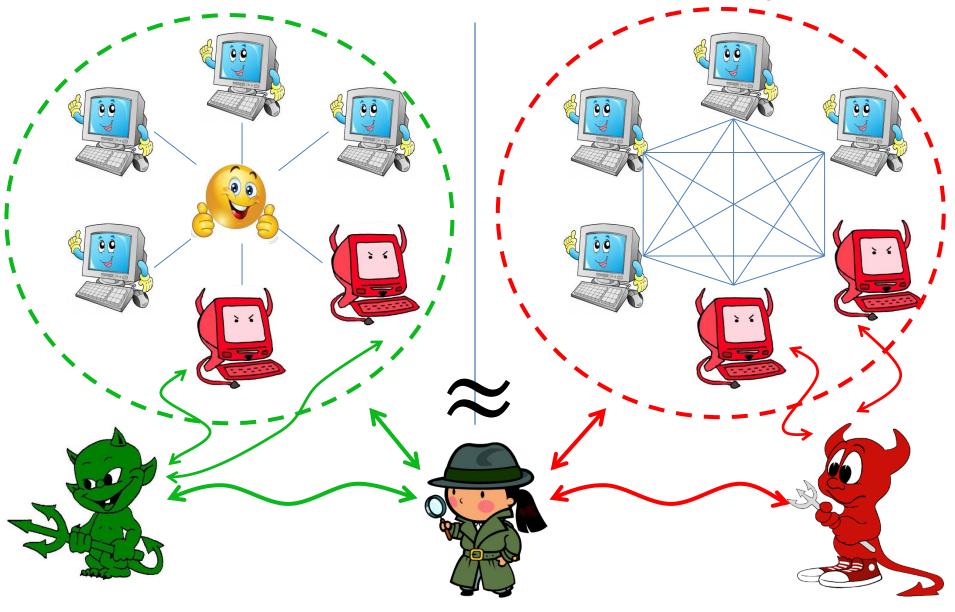
Asynchronous Secure Multiparty Computation in Constant Time [PKC'16]

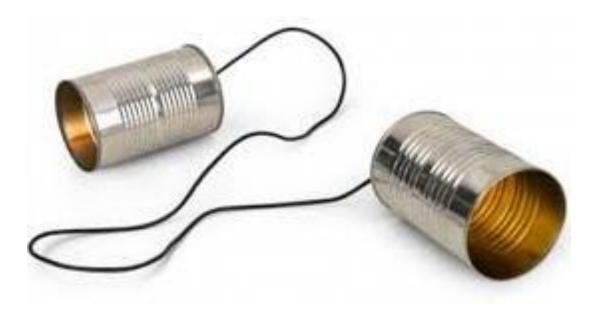

Ran Cohen Bar-Ilan University

Information Sharing

- A terrorist threat over the world
- Several intelligence agencies try to stop it
- Each agency has secret data can't stop attack alone
- If sufficiently many agencies join forces they can stop the attack together
- The terrorists have **double agents** in some agencies
- The terrorists can **delay communication**

Can the world be saved in time?

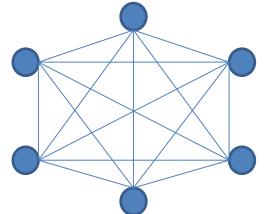

Secure Multiparty Computation


Security Requirements

- Correctness: parties obtain correct output (even if some parties misbehave)
- **Privacy**: only the output is learned (nothing else)
- Input completeness: the inputs of <u>all honest parties</u> are considered in the computation
- Guaranteed termination: the <u>computation completes</u> after a finite number of steps

Simulation-Based Security

Communication Model



Point-to-Point (P2P) Model

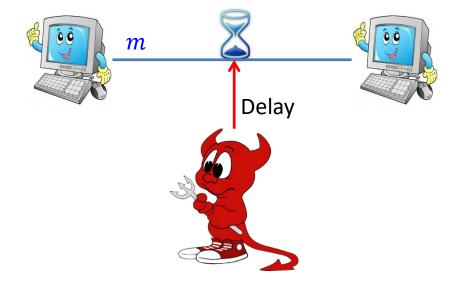
Authenticated communication lines between every pair of parties

Message delivery:

– Synchronous

- Asynchronous (with eventual delivery)
- Fully-asynchronous (no guaranteed delivery)

Message Delivery


- Synchronous communication
 - Guaranteed delivery (within known time window)
 - Round structure (time-outs)
 - Mainly used in stand-alone setting
- Fully-asynchronous communication
 - *A* has **full control** over message delivery
 - Delivery of each message is **not guaranteed**
 - The communication model in UC [Canetti'01]

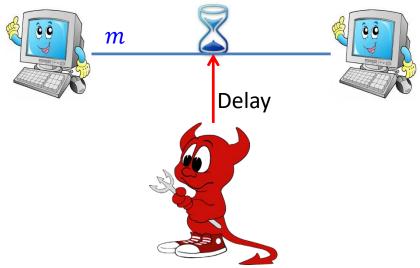
Asynchronous with Eventual Delivery

- Delivery of each message is guaranteed
- *A* has control over **timing** of message delivery
- Eventual-delivery channels [KMTZ'13] (arbitrary & finite delay)

Time complexity:

Normalize the maximal delay of a message to 1

ED-Asynchronous – Main Obstacle

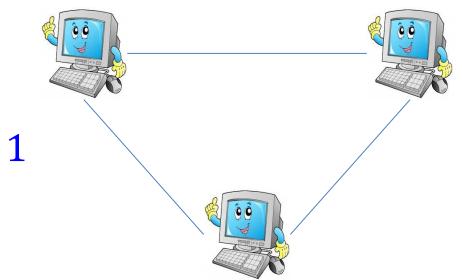

No time-out

Honest parties cannot distinguish between:

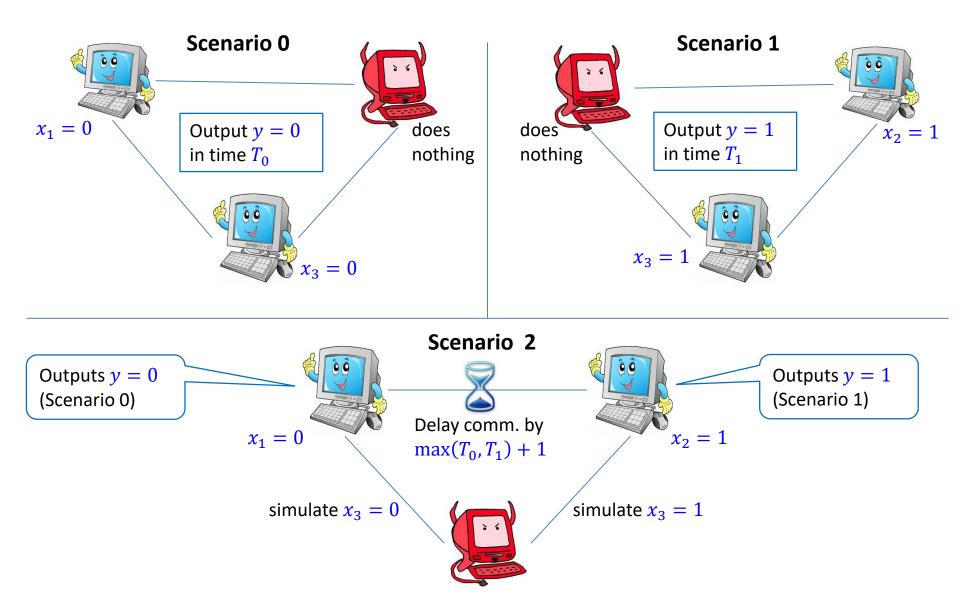
1) A corrupted party not sending a message

2) An honest party whose messages are delayed

Asynchronous Byzantine Agreement (ABA)


Each party P_i has an input bit $x_i \in \{0,1\}$

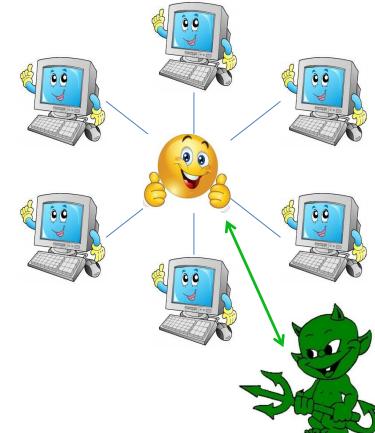
- Agreement: all honest parties output the same bit
- Validity: if all honest parties have the same input, this is the common output


Thm [Toueg'84]: No ABA for $t \ge n/3$ (even with PKI)

<u>Proof</u>

Assume that a 3-party protocol is secure for t = 1

Asynchronous Byzantine Agreement (ABA)


Known Feasibility Results

	Synchronous	Fully Asynchronous	ED Asynchronous	
	[GMW'87] [BGW'88]	[CLOS'02]	[CLOS'02]	[BCG'93] [BKR'94]
Input Completeness				X
Guaranteed Termination		X	X	\checkmark
Constant Time	[BMR'90]	[IPS'08]	[IPS'08]	?
Comm. ind. of <i>f</i>	[AJLTVW'12]	[AJLTVW'12]	[AJLTVW'12]	?

The Ideal Model

No input completeness with guaranteed termination:

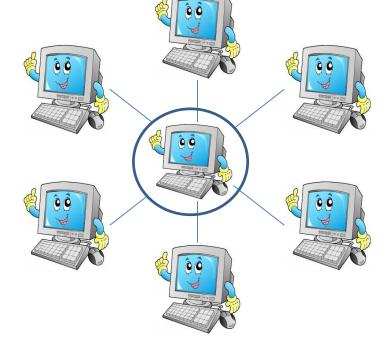
- \mathcal{A} specifies a core-set \mathcal{C} of n t input providers (t might be corrupted)
- When \mathcal{T} receives inputs for C: fix default inputs for $\mathcal{P} \setminus C$ compute y = f(x)prepare (y, C) as output
- Each party requests the output from \mathcal{T}
- *A* can instruct *T* to ignore an arbitrary (polynomial) number of requests from *P_i*

Our Results

Theorem:

Assuming threshold signatures and threshold FHE:

- 1) There exists a **constant-time** AMPC protocol in the ABA-hybrid model, for t < n/2Communication complexity independent of the circuit
- 2) There exists an **expected constant-time** AMPC protocol, for t < n/3


No constant-time protocols [FLP'85]

(2) follows from (1) using the concurrent ABA protocol of [BE'03]

Warmup – Multiparty ZKP

A prover P proves a statement x to all other parties

- Threshold signatures: sk is (n t)-out-of-n secret shared (n t signature shares are needed to sign)
- 1) *P* proves x to each party V_i (using 2-party ZKP)
- 2) Once V_i accepts the proof signs a share σ_i for $\langle x | is valid \rangle$
- 3) V_i proves to P that σ_i valid (2-ZKP)
- 4) Upon receiving n t valid shares *P* reconstructs signature σ
- 5) σ is a non-interactive proof for x

The Protocol (Builds on [HNP'08])

Threshold FHE: sk is (t + 1)-out-of-n secret shared (t + 1 decryption shares are needed to decrypt)

• Pre-process: key distribution

Distribute keys for threshold signatures and threshold FHE schemes

- 1) Input-distribution phase
- 2) Computation and threshold-decryption phase
- 3) Termination phase

Input-Distribution Phase

Goal: agree on a core-set of n - t input providers and their encrypted inputs

- 1) Each P_i computes $c_i \leftarrow Enc_{pk}(x_i)$ and proves to all parties knowledge of the plaintext
- 2) P_i collects valid proofs from n t parties $A_i = \{P_{i_1}, \dots, P_{i_{n-t}}\}$, and sends the set A_i to all the parties
- 3) P_i collects n t such sets $\{A_{j_1}, \dots, A_{j_{n-t}}\}$, denotes $A = \bigcup A_j$
- 4) For every $k \in [n]$ run ABA with input 1 iff $P_k \in A$
- 5) Let w_k be the *k*th ABA result. Set $C = \{P_k \mid w_k = 1\}$

Computation and Threshold Decryption

Goal: evaluate the circuit and decrypt result

- 1) Party P_i sets default inputs for $\mathcal{P} \setminus C$ and evaluates the circuit over $\{c_j\}_{j \in C}$, obtaining \tilde{c}
- 2) P_i decrypts \tilde{c} (obtains share of the output) distributes to all parties proves correctness
- 3) When P_i collects t + 1 valid decryption shares, reconstructs the output y
- 4) Next, P_i distributes y and proves correctness

Termination Phase

Goal: ensure termination of all honest parties

(After P_i obtains output he must assist proving other parties' statements)

Using **Bracha-style termination**:

- When P_i receives t + 1 messages for the output y with a valid proof, it accepts y and forwards the proof
- When P_i receives n t messages for the output y with a valid proof, it terminates

Summary

- 1) Constant-time AMPC in ABA-hybrid for t < n/2
- 2) Expected constant-time AMPC for t < n/3
- Communication complexity independent of *f*

