
Asynchronous Secure Multiparty
Computation in Constant Time

[PKC‘16]

Ran Cohen
Bar-Ilan University

Information Sharing

• A terrorist threat over the world

• Several intelligence agencies try to stop it

• Each agency has secret data – can’t stop attack alone

• If sufficiently many agencies join forces – they can
stop the attack together

• The terrorists have double agents in some agencies

• The terrorists can delay communication

Can the world be saved in time?

Secure Multiparty Computation

Security Requirements

– Correctness: parties obtain correct output
(even if some parties misbehave)

– Privacy: only the output is learned (nothing else)

– Input completeness: the inputs of all honest parties are
considered in the computation

– Guaranteed termination: the computation completes
after a finite number of steps

Simulation-Based Security

≈

Communication Model

Point-to-Point (P2P) Model

Authenticated communication lines between every
pair of parties

Message delivery:

– Synchronous

– Asynchronous (with eventual delivery)

– Fully-asynchronous (no guaranteed delivery)

Message Delivery

• Synchronous communication

– Guaranteed delivery (within known time window)

– Round structure (time-outs)

– Mainly used in stand-alone setting

• Fully-asynchronous communication

–𝒜 has full control over message delivery

– Delivery of each message is not guaranteed

– The communication model in UC [Canetti’01]

• Delivery of each message is guaranteed

• 𝒜 has control over timing of message delivery

• Eventual-delivery channels [KMTZ’13]
(arbitrary & finite delay)

Asynchronous with Eventual Delivery

𝑚

DelayTime complexity:
Normalize the maximal
delay of a message to 1

No time-out
Honest parties cannot distinguish between:

1) A corrupted party not sending a message

2) An honest party whose messages are delayed

ED-Asynchronous – Main Obstacle

𝑚

Delay

Asynchronous Byzantine Agreement (ABA)

Each party 𝑃𝑖 has an input bit 𝑥𝑖 ∈ 0,1

– Agreement: all honest parties output the same bit

– Validity: if all honest parties have the same input,
this is the common output

Thm [Toueg’84]: No ABA for 𝑡 ≥ 𝑛/3 (even with PKI)

Proof

Assume that a 3-party
protocol is secure for 𝑡 = 1

𝑥2 = 1

𝑥3 = 1

𝑥1 = 0 𝑥2 = 1

Scenario 2

Scenario 1

𝑥1 = 0

𝑥3 = 0

does
nothing

Scenario 0

does
nothing

Output 𝑦 = 0
in time 𝑇0

Output 𝑦 = 1
in time 𝑇1

Delay comm. by
max 𝑇0, 𝑇1 + 1

simulate 𝑥3 = 0 simulate 𝑥3 = 1

Outputs 𝑦 = 0
(Scenario 0)

Outputs 𝑦 = 1
(Scenario 1)

Asynchronous Byzantine Agreement (ABA)

Known Feasibility Results

Synchronous Fully
Asynchronous

ED
Asynchronous

Input
Completeness

Guaranteed
Termination

[GMW’87]
[BGW’88] [CLOS’02]

[BCG’93]
[BKR’94][CLOS’02]

[BMR’90] [IPS’08] [IPS’08]
Constant Time

Comm. ind. of 𝑓
[AJLTVW’12] [AJLTVW’12] [AJLTVW’12]

The Ideal Model

No input completeness with guaranteed termination:

– 𝒜 specifies a core-set 𝐶 of 𝑛 − 𝑡 input providers
(𝑡 might be corrupted)

– When 𝒯 receives inputs for 𝐶:
fix default inputs for 𝒫 ∖ 𝐶
compute 𝑦 = 𝑓 𝑥
prepare 𝑦, 𝐶 as output

– Each party requests the
output from 𝒯

– 𝒜 can instruct 𝒯 to ignore
an arbitrary (polynomial)
number of requests from 𝑃𝑖

Theorem:

Assuming threshold signatures and threshold FHE:

1) There exists a constant-time AMPC protocol in the
ABA-hybrid model, for 𝑡 < 𝑛/2
Communication complexity independent of the circuit

2) There exists an expected constant-time AMPC protocol,
for 𝑡 < 𝑛/3

Our Results

2 follows from 1 using the
concurrent ABA protocol of [BE’03]

No constant-time
protocols [FLP’85]

Warmup – Multiparty ZKP

A prover 𝑃 proves a statement 𝑥 to all other parties

– Threshold signatures: 𝑠𝑘 is 𝑛 − 𝑡 -out-of-𝑛 secret shared (𝑛
− 𝑡 signature shares are needed to sign)

1) 𝑃 proves 𝑥 to each party 𝑉𝑖 (using 2-party ZKP)

2) Once 𝑉𝑖 accepts the proof
signs a share 𝜎𝑖 for <𝑥 is valid>

3) 𝑉𝑖 proves to 𝑃 that 𝜎𝑖 valid (2-ZKP)

4) Upon receiving 𝑛 − 𝑡 valid shares
𝑃 reconstructs signature 𝜎

5) 𝜎 is a non-interactive proof for 𝑥

The Protocol (Builds on [HNP’08])

Threshold FHE: 𝑠𝑘 is 𝑡 + 1 -out-of-𝑛 secret shared
(𝑡 + 1 decryption shares are needed to decrypt)

• Pre-process: key distribution

Distribute keys for threshold signatures and threshold
FHE schemes

1) Input-distribution phase

2) Computation and threshold-decryption phase

3) Termination phase

Goal: agree on a core-set of 𝑛 − 𝑡 input providers
and their encrypted inputs

1) Each 𝑃𝑖 computes 𝑐𝑖 ← 𝐸𝑛𝑐𝑝𝑘 𝑥𝑖 and proves to all parties

knowledge of the plaintext

2) 𝑃𝑖 collects valid proofs from 𝑛 − 𝑡 parties

𝐴𝑖 = 𝑃𝑖1 , … , 𝑃𝑖𝑛−𝑡 , and sends the set 𝐴𝑖 to all the parties

3) 𝑃𝑖 collects 𝑛 − 𝑡 such sets 𝐴𝑗1 , … , 𝐴𝑗𝑛−𝑡 , denotes 𝐴 =∪ 𝐴𝑗

4) For every 𝑘 ∈ 𝑛 run ABA with input 1 iff 𝑃𝑘 ∈ 𝐴

5) Let 𝑤𝑘 be the 𝑘th ABA result. Set 𝐶 = 𝑃𝑘 ∣ 𝑤𝑘 = 1

Input-Distribution Phase

Goal: evaluate the circuit and decrypt result

1) Party 𝑃𝑖 sets default inputs for 𝒫 ∖ 𝐶 and evaluates

the circuit over 𝑐𝑗 𝑗∈𝐶
, obtaining 𝑐

2) 𝑃𝑖 decrypts 𝑐 (obtains share of the output)

distributes to all parties proves correctness

3) When 𝑃𝑖 collects t + 1 valid decryption shares,

reconstructs the output 𝑦

4) Next, 𝑃𝑖 distributes 𝑦 and proves correctness

Computation and Threshold Decryption

Goal: ensure termination of all honest parties

(After 𝑃𝑖 obtains output he must assist proving other

parties’ statements)

Using Bracha-style termination:

• When 𝑃𝑖 receives 𝑡 + 1 messages for the output 𝑦
with a valid proof, it accepts 𝑦 and forwards the proof

• When 𝑃𝑖 receives 𝑛 − 𝑡 messages for the output 𝑦
with a valid proof, it terminates

Termination Phase

Summary

1) Constant-time AMPC in ABA-hybrid for 𝑡 < 𝑛/2

2) Expected constant-time AMPC for 𝑡 < 𝑛/3

• Communication complexity independent of 𝑓

