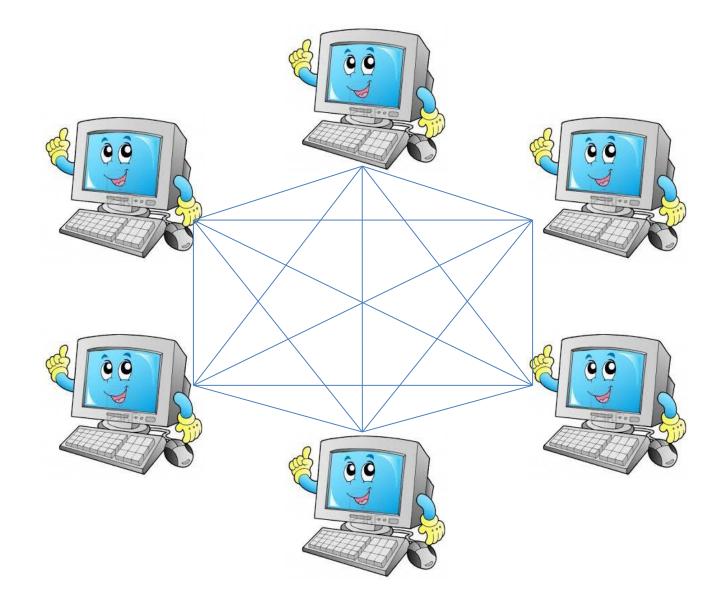
Round-Preserving Parallel Composition of Probabilistic-Termination Cryptographic Protocols

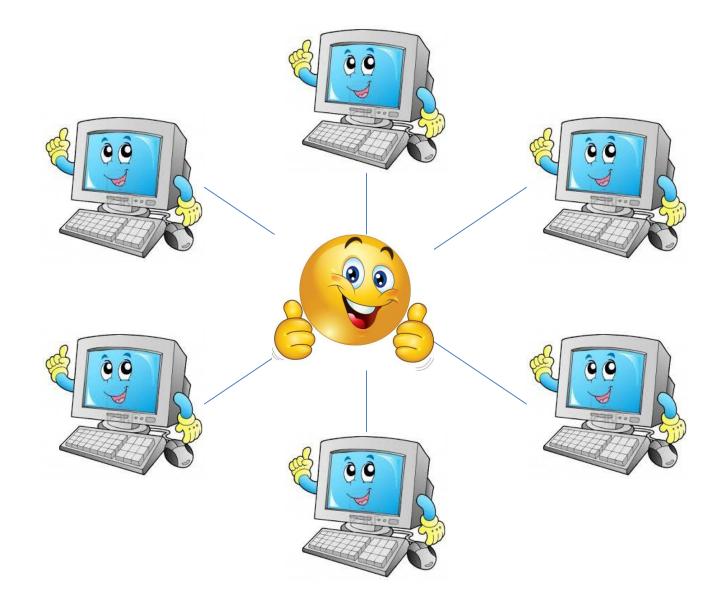
[ICALP'17]

Ran Cohen (TAU) Sandro Coretti (NYU) Juan Garay (Yahoo Research) Vassilis Zikas (RPI)

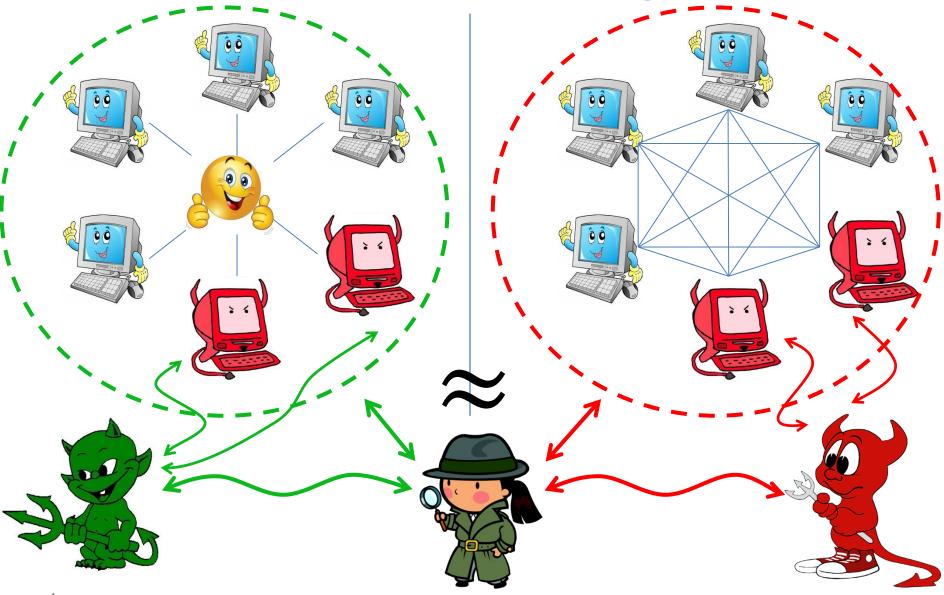
Secure Multiparty Computation



Ideal World



Real/Ideal Paradigm



Broadcast is Good for MPC

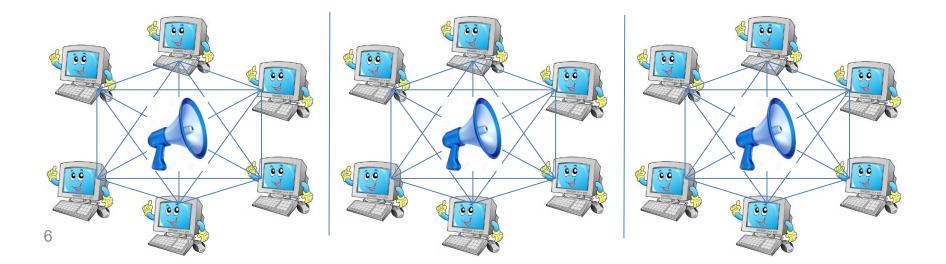
Every function *f* can be computed with guaranteed output delivery (honest majority)

- Round complexity depends only on *f* (unconditional)
- Constant-round protocols (OWF)
- Optimal three-round protocols (FHE)

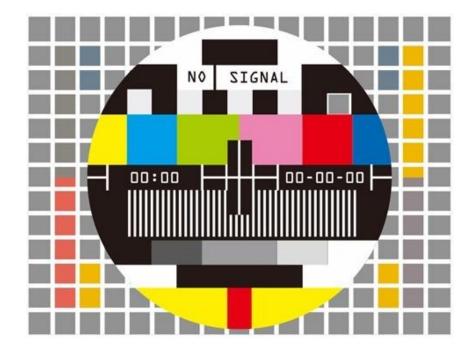
Broadcast is Very Good for MPC

Parallel composition preserves round complexity

If *r*-round π is secure under parallel composition \Rightarrow poly-many parallel executions of π in *r* rounds

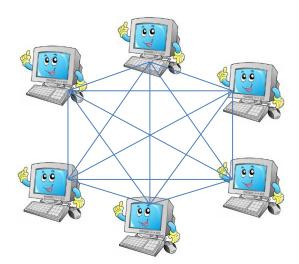


What if Broadcast Doesn't Exist?



Use Broadcast Protocols

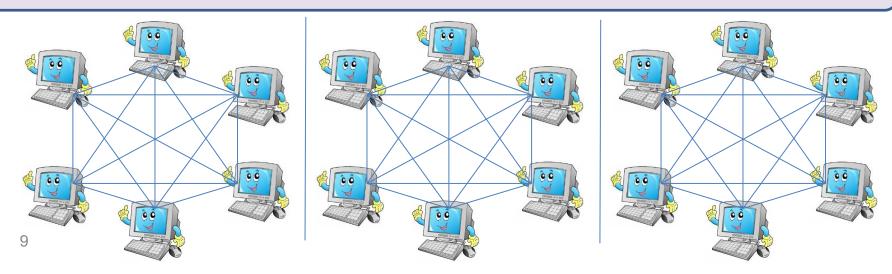
- Trusted setup required for broadcast $t \ge n/3$ (PKI/information-theoretic signatures)
- Some functions can be comp. without setup [C-Lindell'14, C-Haitner-Omri-Rotem'16]



Termination of Broadcast Protocols

- Protocols with simultaneous termination require
 t + 1 rounds [Fischer-Lynch'82, Dolev-Reischuk-Strong'90]
- Exp. constant round ⇒ probabilistic termination [Feldman-Micali'88, Fitzi-Garay'03, Katz-Koo'06, Micali'17]
 - Termination round not a priori known
 - Non-simultaneous termination

Naïve parallel composition not round preserving



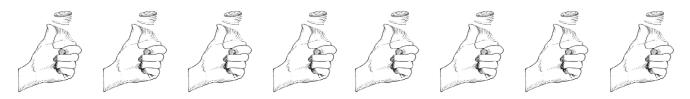
Naïve Parallel Composition

Protocol with expected O(1) rounds (geometric dist.) $\Rightarrow n$ parallel instances take $\Theta(\log n)$ rounds

Example: Coin flipping

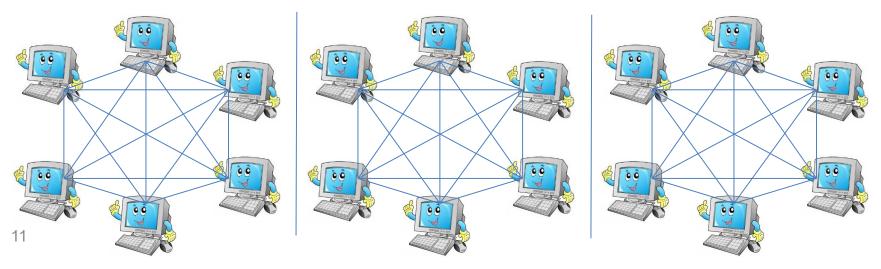
Stand-alone coin flip: Pr(*heads*) = 1/2
 ⇒ output is *heads* in expected 2 rounds

Flipping in parallel *n* coins, each coin until *heads* ⇒ expected log *n* rounds



Parallel Composition of Broadcast

- Expected constant round parallel broadcast [BenOr-ElYaniv'03, Fitzi-Garay'03, Katz-Koo'06]
- Composable parallel bcast [C-Coretti-Garay-Zikas'16]
- ⇒ Recipe for MPC: ______ same exp. round complexity as in broadcast model
 - 1) Construct protocol assuming broadcast channel
 - 2) Instantiate bcast channel using PT parallel bcast



Parallel Composition of Broadcast

- Expected constant round parallel broadcast [BenOr-ElYaniv'03, Fitzi-Garay'03, Katz-Koo'06]
- Composable parallel bcast [C-Coretti-Garay-Zikas'16]
- ⇒ Recipe for MPC: ______ same exp. round complexity as in broadcast model
 - 1) Construct protocol assuming broadcast channel
 - 2) Instantiate bcast channel using PT parallel bcast

Problem:

Solutions for broadcast crucially rely on its privacy-free nature

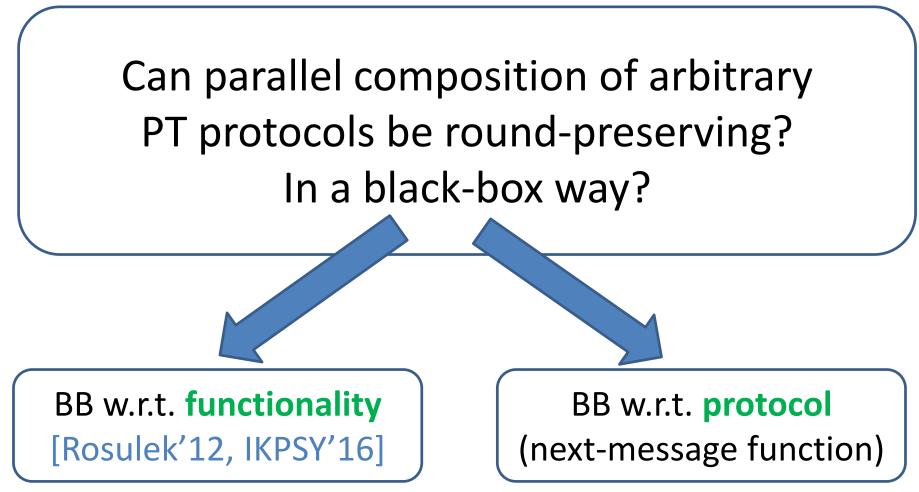
The MPC protocol has probabilistic termination

(Naïve parallel composition not round preserving)

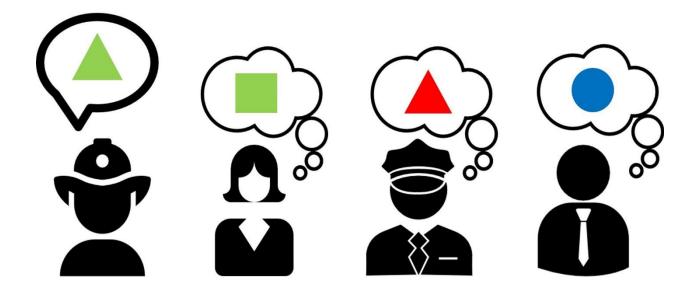
Main Question

Can parallel composition of arbitrary PT protocols be round-preserving?

Main Question

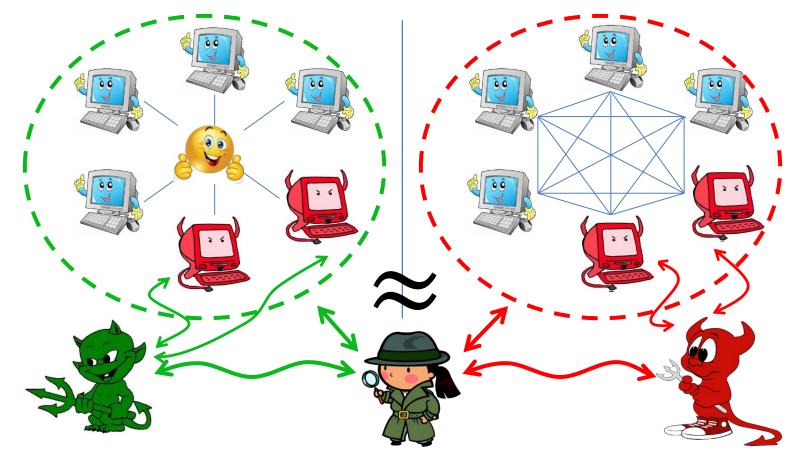


Common Terminology



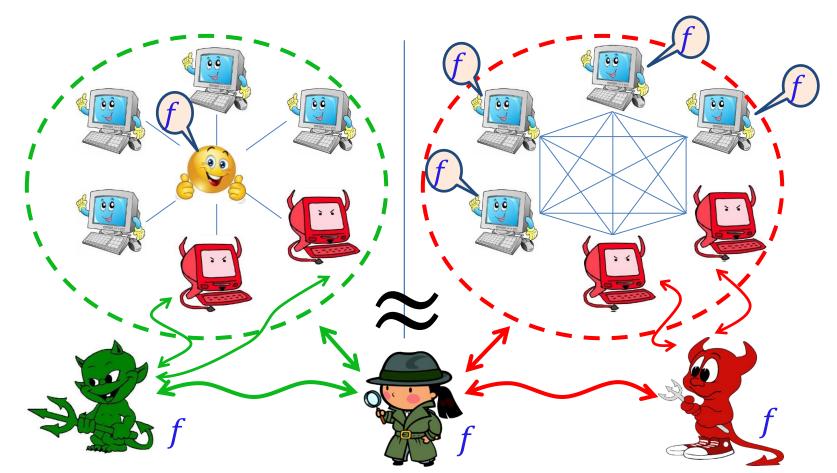
Synchronous MPC [KMTZ'13, CCGZ'16]

- Ideal world captures round complexity of π
- Trusted party samples $r_{term} \leftarrow D = D(\pi)$
- Parties continuously ask for output (receive by r_{term})
- *S* can instruct early delivery for specific parties



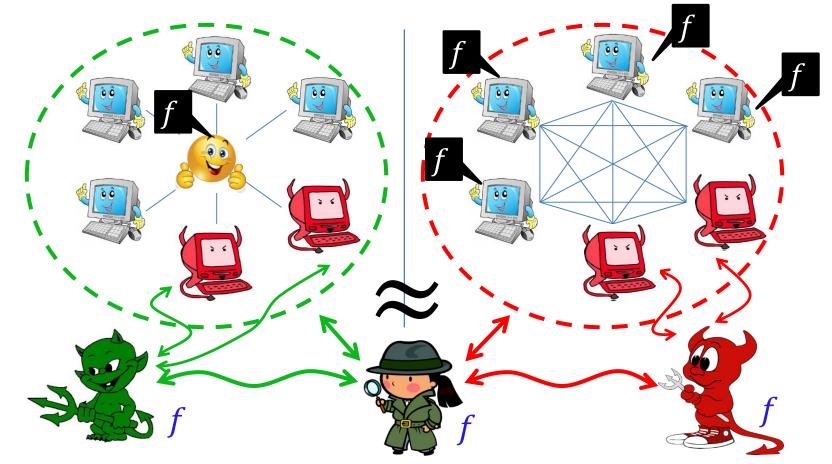
Functionally BB Protocols

• Traditional MPC: all parties know *f*



Functionally BB Protocols

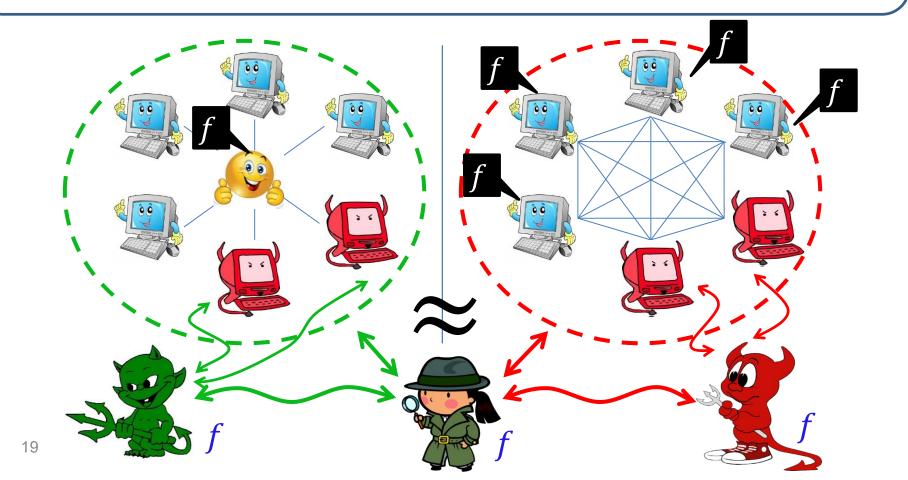
- Traditional MPC: all parties know *f*
- FBB protocol is defined for function class $\mathcal{F} = \{f_1, \dots, f_N\}$
- Parties have oracle access to $f \in \mathcal{F}(\mathcal{Z}, \mathcal{A}, \mathcal{S} \text{ know } f)$



Functionally BB Protocols

Protocol π is **FBB protocol** for \mathcal{F}

if $\forall f \in \mathcal{F}$ protocol π^f securely computes f



Impossibility of FBB Protocols

Theorem [Ishai-Kushilevitz-Prabhakaran-Sahai-Yu'16]: $\exists 2$ -party function class \mathcal{F} such that **no** FBB protocol computes \mathcal{F} facing semi-honest adversary

Proof intuition:

The function class $\mathcal{F} = \{f_{\alpha}\}_{\alpha \in \{0,1\}^{\kappa}}$ defined as

$$f_{\alpha}(x_1, x_2) = \begin{cases} 1, & x_1 \bigoplus x_2 = \alpha \\ 0, & x_1 \bigoplus x_2 \neq \alpha \end{cases}$$

Impossibility of FBB Protocols

- For random α , x_1 , x_2 consider protocol $\pi^{f_{\alpha}}$
- Following events occur with negl probability:
 - A party queries f_{α} with (p,q) s.t. $p \bigoplus q = \alpha$
 - A party queries f_α with (p,q) s.t. p ⊕ q = x₁ ⊕ x₂
 ⇒ All oracle queries in π^{f_α} return 0
- Consider coupled experiment with $\alpha^* = x_1 \bigoplus x_2$
- For random coins such that events don't occur all oracle queries in $\pi^{f} \alpha^{*}$ also return 0

 \Rightarrow both $\pi^{f_{\alpha}}$ and $\pi^{f_{\alpha^*}}$ output the same value

output 0 except negl

Parallel Composition of Functions

Given *n*-party functions $f_1, f_2, ..., f_m$

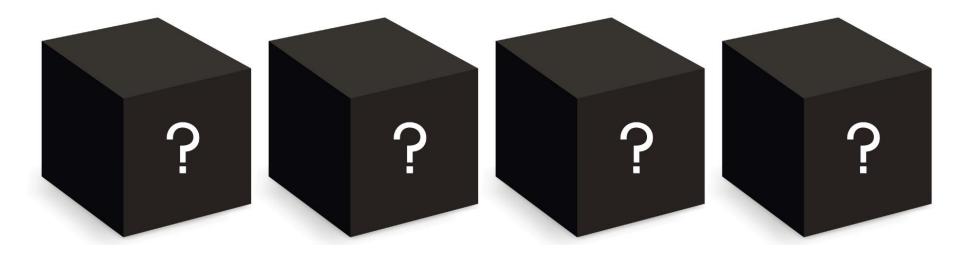
denote by $f_1 \parallel f_2 \parallel \cdots \parallel f_m$ the following function:

- Each P_i has input $\mathbf{x}_i = (x_i^1, x_i^2, \dots, x_i^m)$
- Output is $y = (y_1, y_2, ..., y_m)$

 $f_1(x_1^1, x_2^1, \dots, x_n^1)$

 $f_m(x_1^m, x_2^m, \dots, x_n^m)$

FBB Parallel Composition

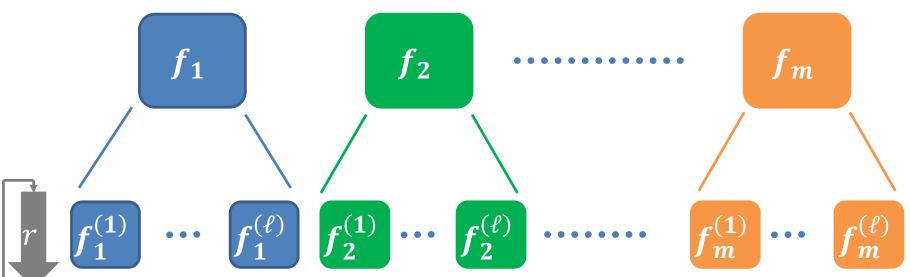


Semi-Honest FBB Protocol

Theorem 1:

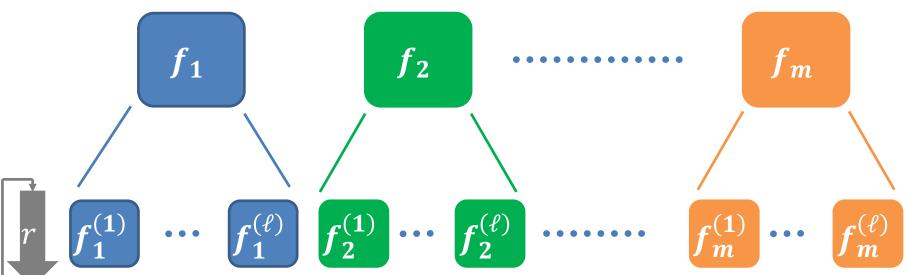
- Let $\mathcal{F}_1, \dots, \mathcal{F}_m$ be deterministic function classes
- Consider $(\mathcal{F}_1, ..., \mathcal{F}_m)$ -hybrid model that $\forall j$ computes the function $f_j \in \mathcal{F}_j$ with expected constant round complexity μ
- Then \exists FBB protocol for $\mathcal{F}_1 \parallel \cdots \parallel \mathcal{F}_m$ with expected constant round complexity

Semi-Honest FBB Protocol



- 1) Parties invoke ℓ instances of each f_i
- 2) Each P_i sends x_i^j to all instances of f_j parameters and asks output for r rounds
- 3) If some P_i received output y_j for each f_j distribute $(y_1, ..., y_m)$ and halt, otherwise restart

Semi-Honest FBB Protocol



Proof intuition:

- ✓ Correctness
- Privacy: corrupt parties always use the same input values (semi-honest)
- ✓ Round complexity: for $\ell = \Omega(\log m)$ and constant $r > \mu$, the expected number of "restarts" is constant (Markov)

What About Malicious?

- The previous protocol is **not secure** for malicious
- The adversary can send different x_i^j and \tilde{x}_i^j to f_j and learn multiple outputs
- This is inherent for batched-parallel composition protocols
 - > All parties use original inputs $(x_1^k, ..., x_n^k)$ in two calls to the trusted party
 - > Possibly in different rounds ρ and ρ'
 - > Possibly for computing different f_j and $f_{j'}$

Malicious FBB Protocol

- **Theorem 2:** Let $m = O(\kappa)$ $\exists n$ -party function classes $\mathcal{F}_1, \dots, \mathcal{F}_m$ s.t. if π computes $\mathcal{F}_1 \parallel \dots \parallel \mathcal{F}_m$ in $(\mathcal{F}_1, \dots, \mathcal{F}_m)$ -hybrid model (with exp. 2 rounds, geometric dist.) then, facing a **single** malicious corrupted party:
- π must call each \mathcal{F}_i at least once \checkmark

until some get output

- If π is naïve parallel composition \Rightarrow not round preserving ($\log \kappa$)
- call each \mathcal{F}_j until **all** parties get output
- π is not batched-parallel composition protocol

using same inputs in two calls

Proof Intuition

Define $\mathcal{F}_1 = \dots = \mathcal{F}_m = \{f_\alpha\}_{\alpha \in \{0,1\}^{\kappa}}$ where $\begin{aligned} f_\alpha(x_1, x_2, \lambda, \dots, \lambda) \\ &= \begin{cases} (x_2, x_1, \alpha, \dots, \alpha), & x_1 \bigoplus x_2 = \alpha \\ (0^{\kappa}, 0^{\kappa}, \dots, 0^{\kappa}), & x_1 \bigoplus x_2 \neq \alpha \end{cases}$

- Naïve composition fails for geometric dist.
- No FBB protocol (without invoking trusted party) – extending [IKPSY'16]
- No batched-parallel protocol

See the paper for details

Protocol-BB Parallel Composition

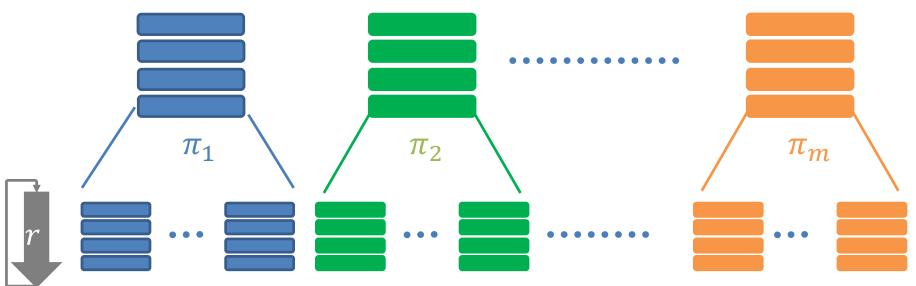
Protocol-BB Parallel Composition

Theorem 3:

- Let PT protocols π_1, \dots, π_m realizing f_1, \dots, f_m
- Then $\pi = \operatorname{compiler}(\pi_1, \dots, \pi_m)$ realizes $f_1 \parallel \cdots \parallel f_m$
 - > Round preserving $\mathbb{E}(\pi) = O\left(\max_{i} \mathbb{E}(\pi_{i})\right)$
 - > Black-box w.r.t. protocols π_1, \ldots, π_m

The compiler doesn't know the code of π_i (oracle access to next-message function)

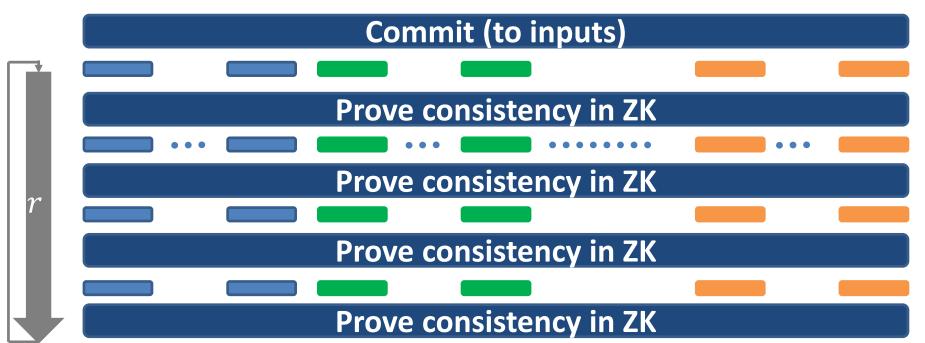
Protocol Compiler



Prevent Multiple Inputs

Use Setup, Commit, then Prove functionality with a tweak [Canetti-Lindell-Ostrovsky-Sahai'02] [Ishai-Ostrovsky-Zikas'14]

Prevent Multiple Inputs



Use Setup, Commit, then Prove functionality with a tweak [Canetti-Lindell-Ostrovsky-Sahai'02] [Ishai-Ostrovsky-Zikas'14]

Some Challenges

- 1-to-many ZK black-box in $\pi_1, ..., \pi_m$ (based [IKOS'07]) Adjust [IOZ'14] to security without abort (t < n/2)
- Recover from invalid ZK proofs without:
 - 1) Breaching privacy (*A* might have learned output)
 - 2) Blowing up round complexity
- Implement the Setup in constant rounds (use only correlated randomness for broadcast)
- Reactive functionalities with probabilistic termination

See the paper for details

Summary

We study parallel composition of PT protocols Functionally black-box (FBB) protocols

- No round-preserving FBB parallel composition (using known techniques)
- Round-preserving FBB parallel composition with semi-honest security
- Black-box w.r.t. protocols
- Round-preserving compiler for parallel composition