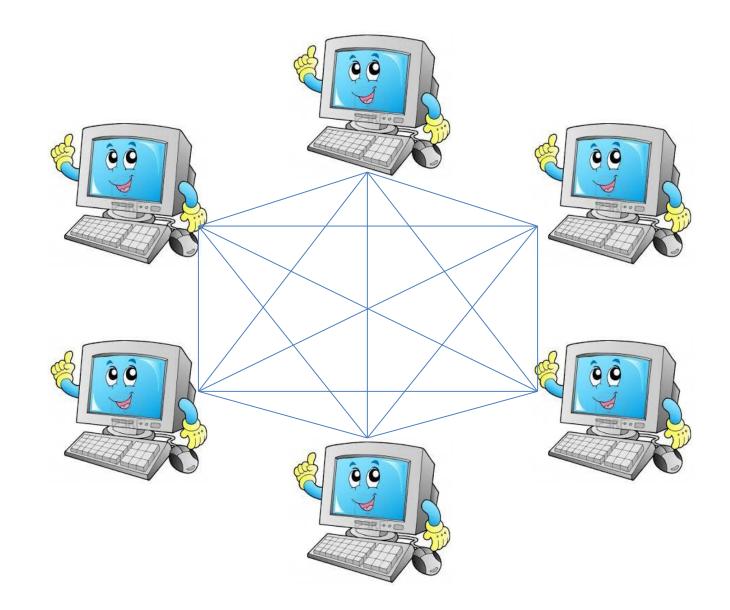
Must the Communication Graph of MPC Protocols be an Expander?

Elette Boyle (IDC) Ran Cohen (MIT & Northeastern) Deepesh Data (UCLA) Pavel Hubacek (Charles University)

Secure Multiparty Computation



Classical Results

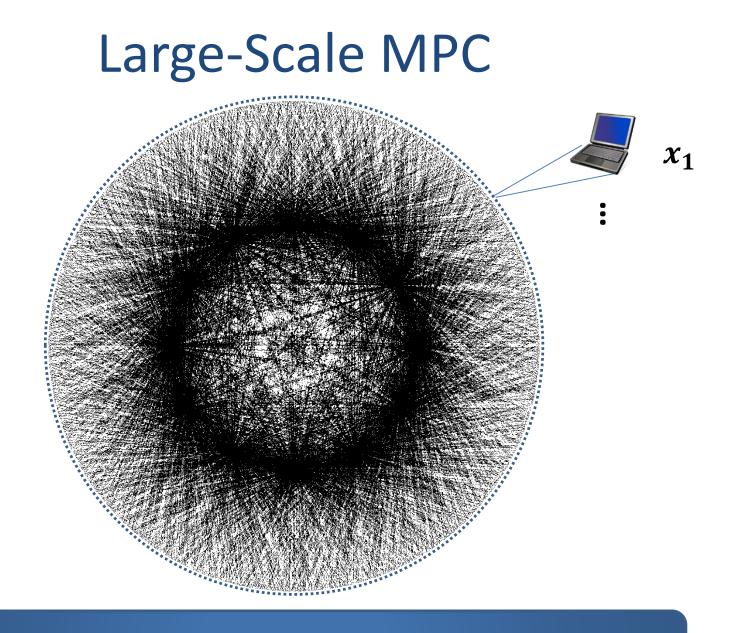
• Byzantine Agreement

- [Pease, Shostak, Lamport'80]
- [Lamport, Shostak, Pease'82]
- [Dolev, Strong'83]
- [Feldman, Micali'88]
- [Garay, Moses'93]
- Secure Function Evaluation
 - [Yao'82/86]
 - [Goldreich, Micali, Wigderson'87]
 - [Ben-Or, Goldwasser, Wigderson'88]
 - [Chaum, Crepeau, Damgard'88]
 - [Rabin, Ben-Or'89]

Everyone talks to everyone

Complete communication graph

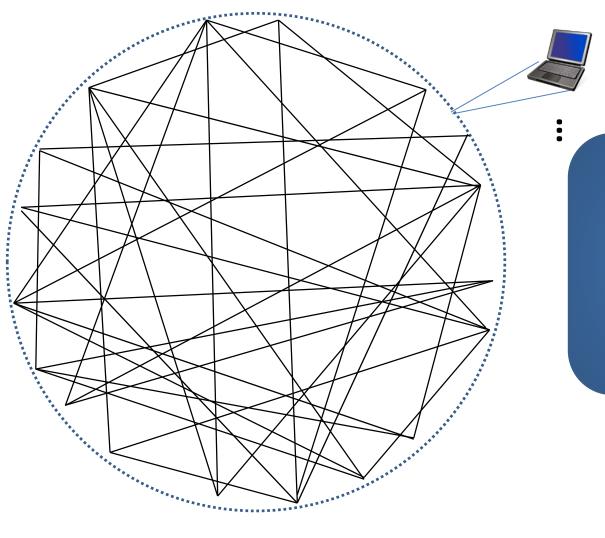
•••



Can we use a *sparse graph*?

Model #1: Fixed Partial Graph

The graph known ahead of time



Corruptions based on the graph

 x_1

Model #1: Fixed Partial Graph

• Lower bounds for BA

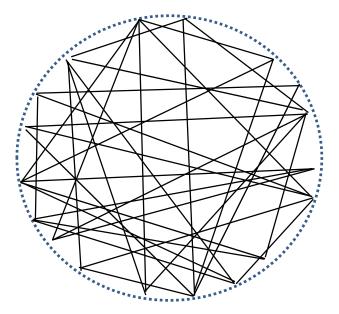
- Connectivity t + 1 (without setup 2t + 1) [Dolev'82] [Fischer, Lynch, Merritt'85]
- Comm. complexity $\Omega(n^2)$ [Dolev, Reischuk'82]
- Weaker correctness/privacy guarantees

➢ Byzantine Agreement

- [Dwork, Peleg, Pippenger, Upfal'86]
- [Berman, Garay'90]
- [Upfal'92]

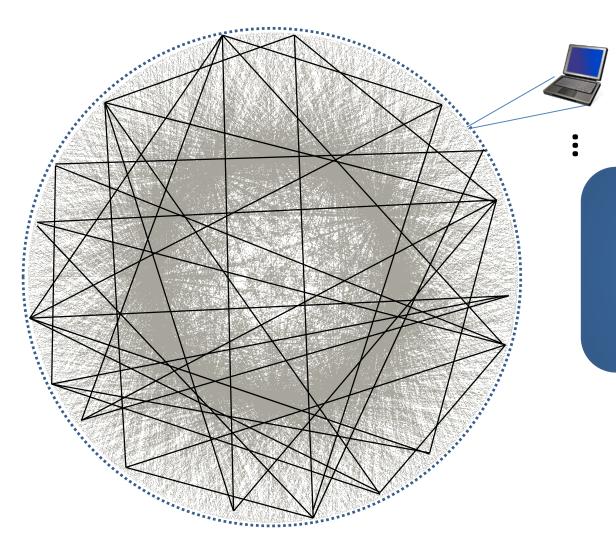
Secure Function Evaluation

- [Beimel'07] [Garay, Ostrovsky'08] [Halevi, Lindell, Pinkas'11]
- [Chandran, Garay, Ostrovsky'12]
- [Halevi, Ishai, Jain, Kushilevitz, Rabin'16]



Model #2: Dynamic Partial Graph

Everyone *can* talk to everyone



Choose whom to talk to dynamically

 x_1

Model #2: Dynamic Partial Graph

max degree

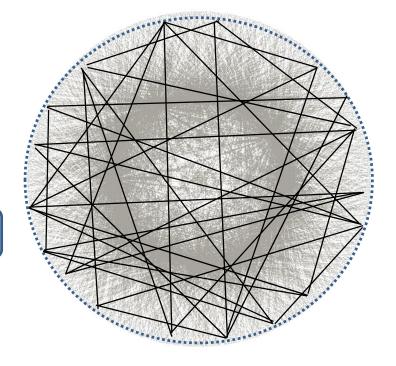
- Overcoming lower bounds (BA)
 - Comm. complexity $\tilde{O}(n)$
- Scalability & low communication locality

Byzantine Agreement

- [King, Saia, Sanwalani, Vee'06]
- [Kapron, Kempe, King, Saia, Sanwalani'08]
- [King, Saia'09] [King, Saia'10]
- [Braud-Santoni, Guerraoui, Huc'13]

Secure Function Evaluation

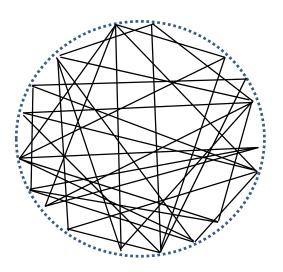
- [Dani, King, Movahedi, Saia'12]
- [Boyle, Goldwasser, Tessaro'13]
- [Chandran, Chongchitmate, Garay, Goldwasser, Ostrovsky, Zikas'15]
- [Boyle, Chung, Pass'15]



Partial Graph Models

Fixed Graph

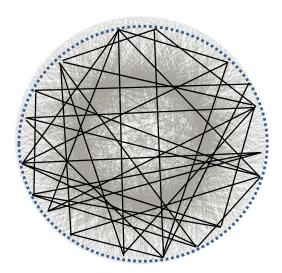
- Strong lower bounds
 - $\Theta(n)$ connectivity
 - Comm. complexity $\Omega(n^2)$
- Well studied



Dynamic Graph

- Overcoming lower bounds
 - Polylog locality
 - Comm. complexity $\tilde{O}(n)$

–Less understood

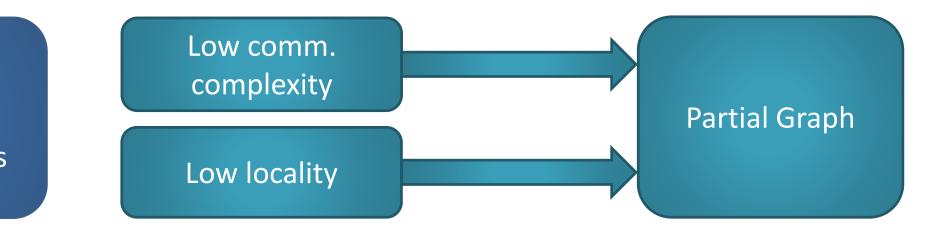


Main Question

What graph properties are *necessary* to support secure protocols?

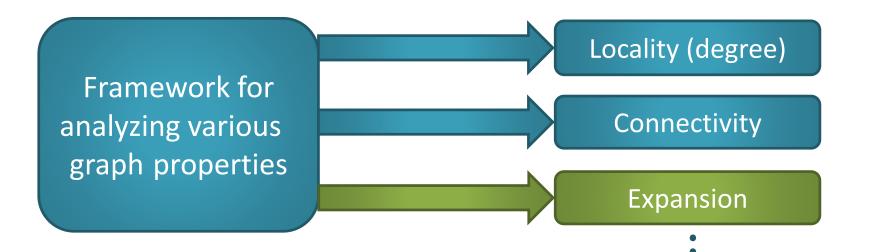
Dynamic-Graph Model

Goal: optimize specific protocol properties



- This work:

Goal: foundational study of dynamic graph model

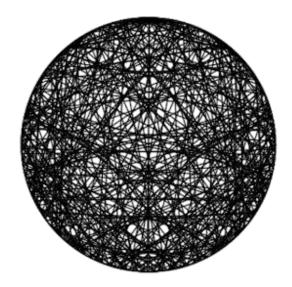


Expander Graph

"(Sparse) graph with strong connectivity properties"

All existing protocols induce expander graphs

- Classical protocols (complete graph)
- Protocols with low locality (dynamic partial graph)
 - E.g., every party randomly chooses its neighbors

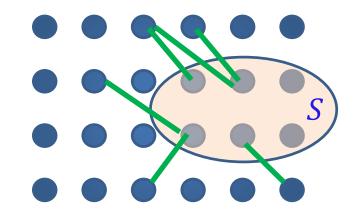


Expansion is natural (high connectivity, good mixing properties,...)

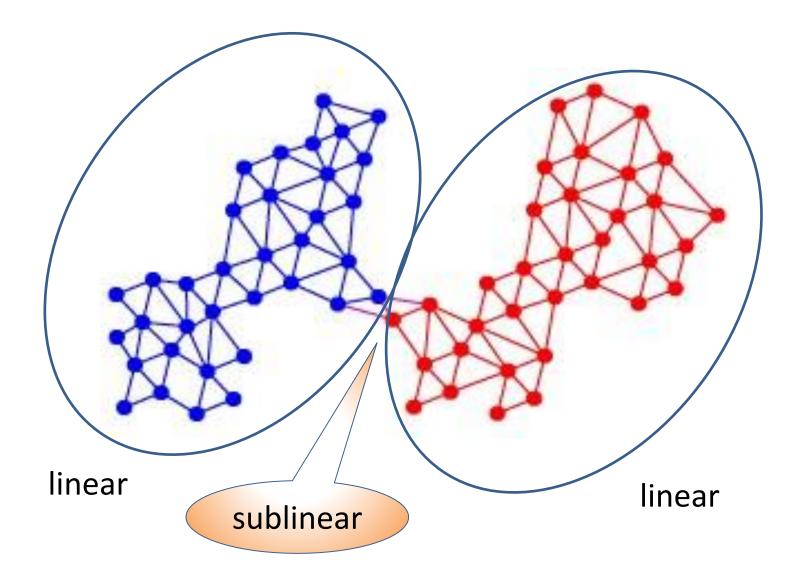
Expander Graph (2)

We focus on edge expansion

- Let G = (V, E) be a graph of size |V| = n
- For every $S \subseteq V$ define $h(G, S) = \frac{|edges(S, \overline{S})|}{|S|}$
- The edge expansion ratio of G is $h(G) = \min_{0 < |S| \le n/2} h(G, S)$
- $-\{G_n\}_{n\in\mathbb{N}}$ is a family of expander graphs if $\exists \epsilon > 0$ s.t. $\forall n: h(G_n) \ge \epsilon$



Example of Non-Expander Graph



More Focused Question

Must the comm. graph of MPC protocols (tolerating linear corruptions) be an *expander*?

It depends...

Main Results

Upper bound:

SFE protocols with **non-expander** graph (in **PKI model**):

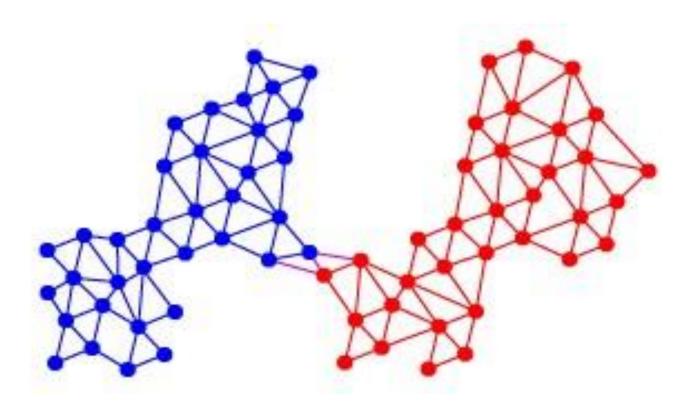
- Static/adaptive corruptions
- Information-theoretic/computational security
- With/out polylog locality

Lower bound:

 $\exists f$ s.t. every secure protocol for f induces an **expander**

Adaptive corruptions, CRS model

Upper Bound: Non-Expander Protocols

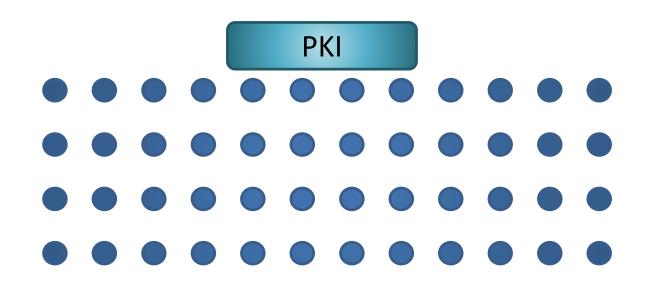


Theorem (Upper Bound)

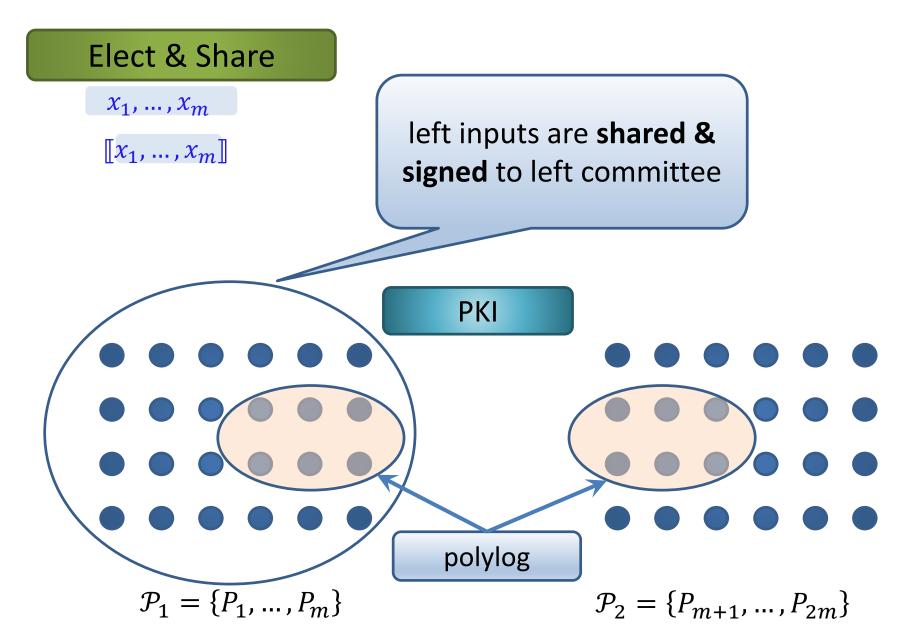
Let *f* be *n*-party function and assume **digital signatures** exist

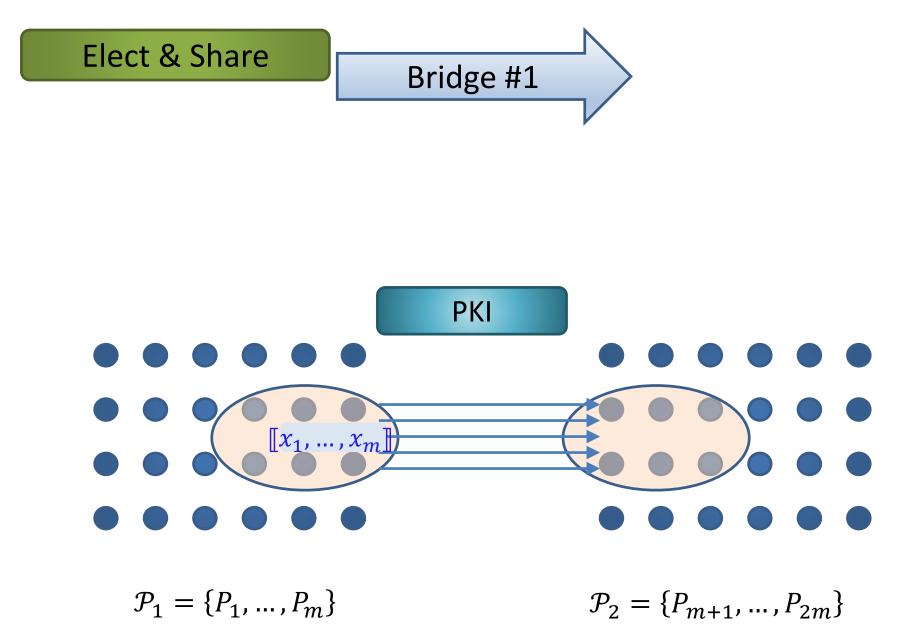
Then, \exists protocol π in the **PKI model** such that

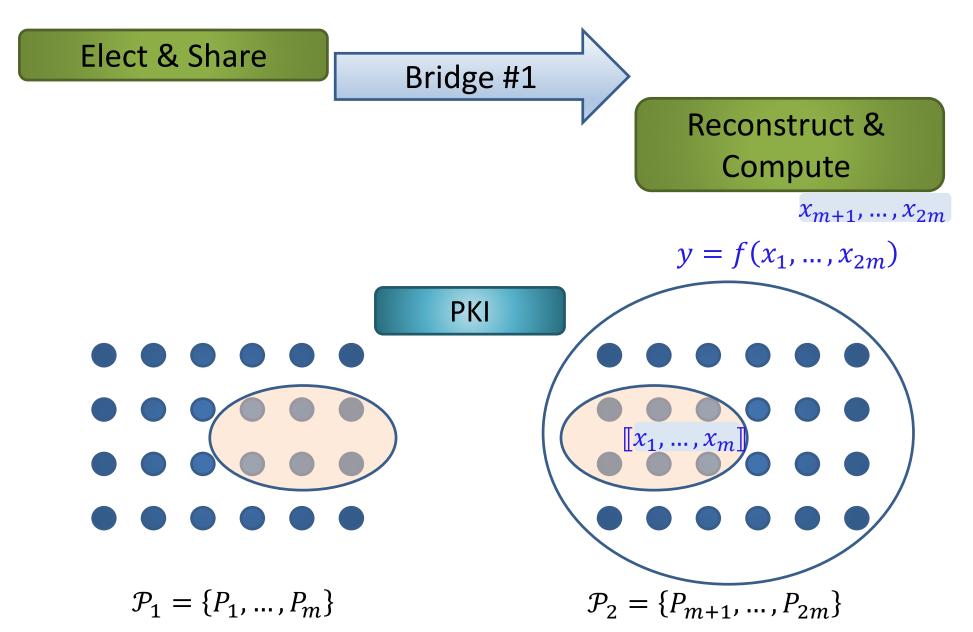
- π computes f tolerating $(1/4 \epsilon)n$ static corruptions
- The communication graph of π is **not an expander**

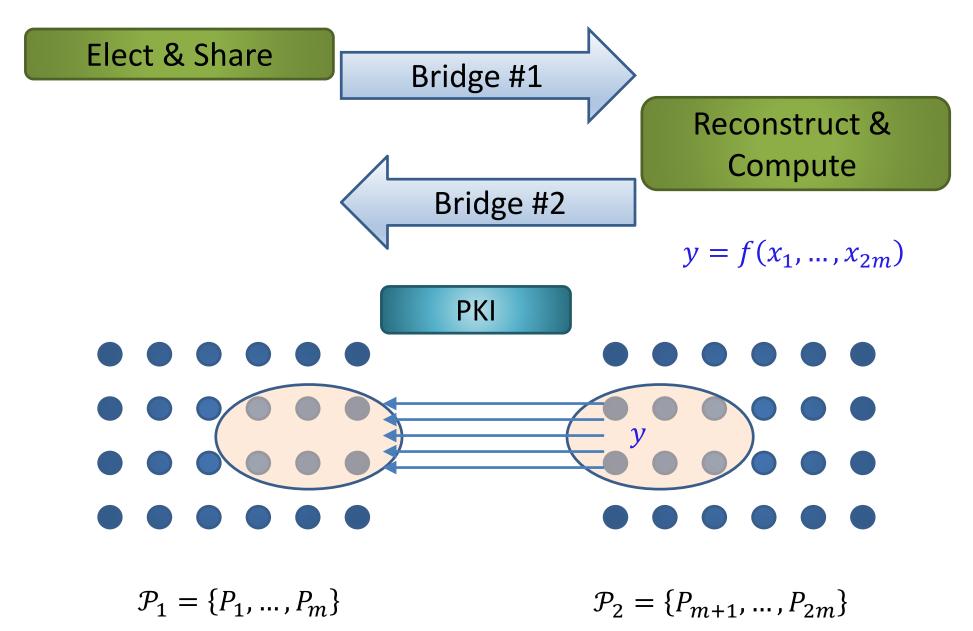


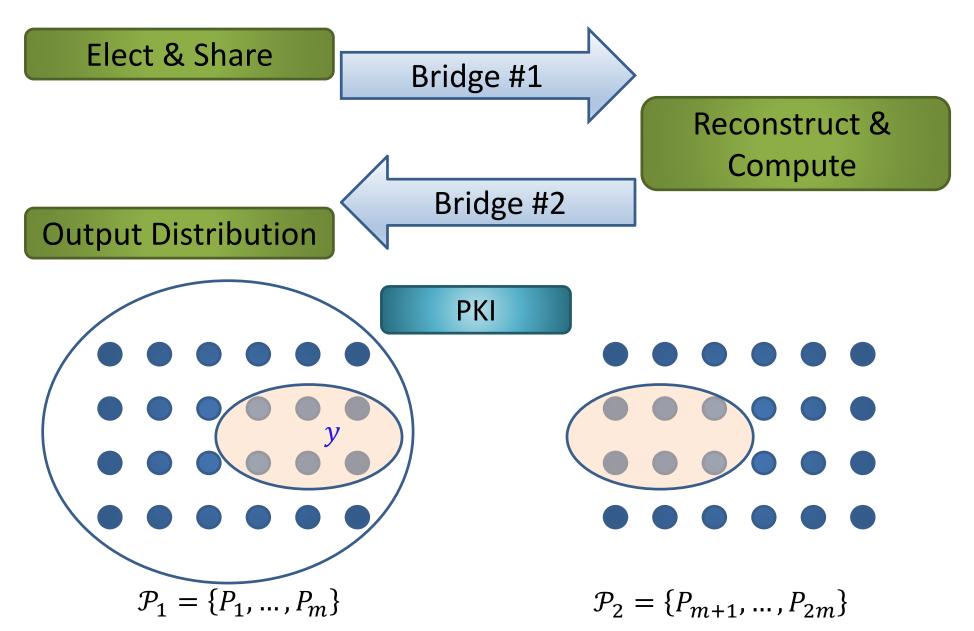
 $\mathcal{P}_1 = \{P_1, \dots, P_{2m}\}$

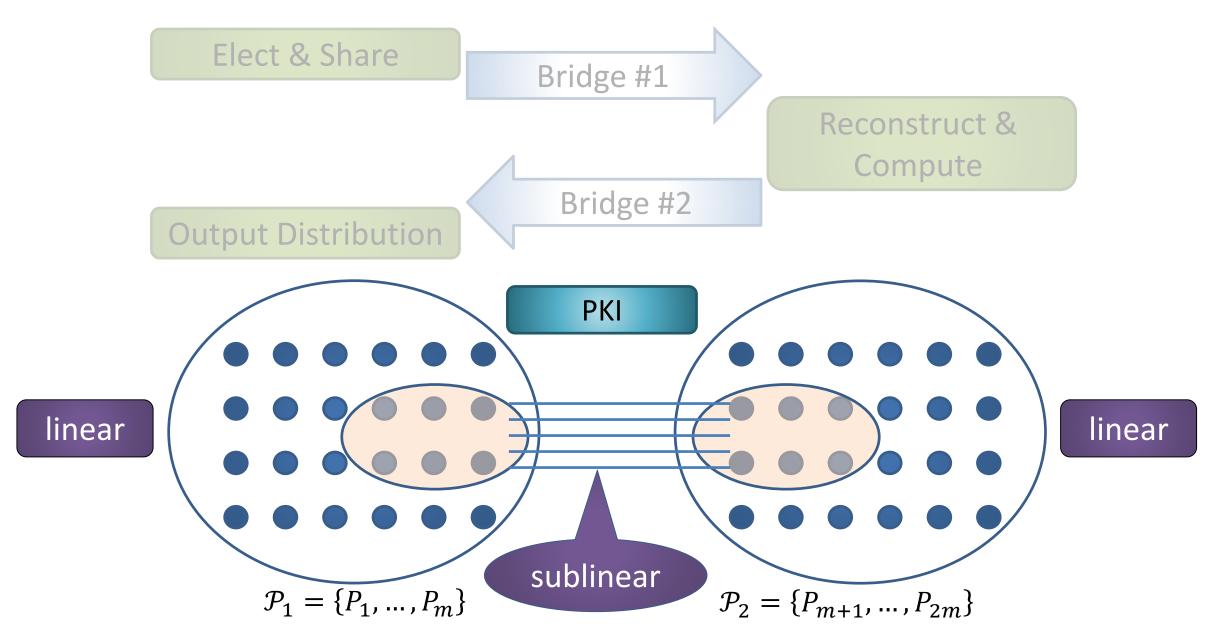






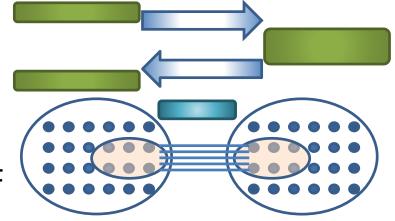






Corollaries (Static Corruptions)

- Computational (PKI model)
 - $-t = (1/4 \epsilon)n$, assuming OWF using [Beaver, Micali, Rogaway'90]

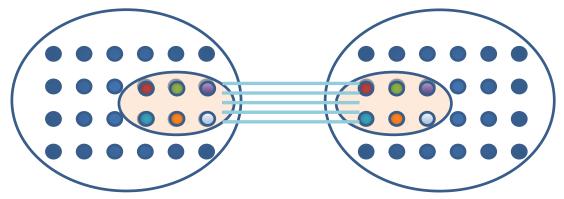


- $-t = (1/6 \epsilon)n$, with **polylog locality**, assuming OWF using [Boyle, Goldwasser, Tessaro'13]
- $-t = (1/4 \epsilon)n$, with **polylog locality**, stronger assumptions using [Chandran, Chongchitmate, Garay, Goldwasser, Ostrovsky, Zikas'15]
- Information-theoretic (PKI for IT signatures)
 - $-t = (1/4 \epsilon)n$, using [Rabin, Ben-Or'89]
 - $-t = (1/12 \epsilon)n$, with polylog locality, [This work]

Adaptive Corruptions

Can the protocol template support *adaptive* corruptions?

- **Problem**: *A* sees messages between committees
- Solution: use hidden channels [CCGGOZ'15]
 A is unaware of messages between honest parties
- **Problem**: committees are known can be fully corrupted
- Solution: hide the committees
 Every member only learns one corresponding partner



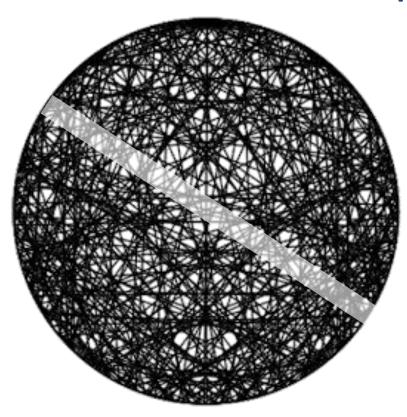
Inherent for **this template** and **low-locality** protocols

Corollaries (Adaptive Corruptions)

- Computational (PKI model)
 - $-t = (1/8 \epsilon)n$, assuming OWF, using [Damgard, Ishai'05]
 - $-t = (1/8 \epsilon)n$, with **polylog locality**, stronger assumptions, using [Chandran, Chongchitmate, Garay, Goldwasser, Ostrovsky, Zikas'15]
- Information-theoretic (using IT signatures)

 $-t = (1/8 - \epsilon)n$, using [Cramer, Damgard, Dziembowski, Hirt, Rabin'99]

Lower Bound: Protocols that must be Expanders



Lower Bound

The setting:

- Adaptive adversary
- Common Reference String (CRS)
- Private (visible) channels

Parallel broadcast (aka interactive consistency [PSL'80]):

- Every party broadcasts $x_i \in \{0,1\}^n$
- Common output is (y_1, \dots, y_n) , if P_i is honest $y_i = x_i$

Theorem (Lower Bound)

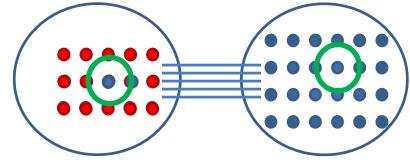
Let π be **parallel broadcast** protocol tolerating PPT adversary adaptively corrupting $\beta \cdot n$ parties (for any constant $\beta > 0$)

Then, there are **no sublinear cuts** in the communication graph of π

In particular, π is an **expander**

Lower Bound – isn't it trivial?

- Idea: linear corruptions, sublinear cut corrupt the "bridge"
- **Problem 1:** the location is unknown ahead of time
- **Problem 2:** maybe one side is fully corrupt Need to separate two honest parties
- Idea: wait until the location of the cut is known
- **Problem:** this is too late information already crossed over



Our approach: Gradually learn the location of cut while blocking information flow

Proof Idea (Very High Level)

- Can focus on $\beta < 1/3$ [PSL'80]
- Execute π over **random** inputs
- Assume there exists $\alpha(n)$ -cut (sublinear)

Phase 1: Isolate a random party until its degree is n/c(*c* is const depends on β)

Phase 2: Block all messages between every U_i and U_j

After Phase 1:

- With noticeable probability all nodes have degree n/c
- Can efficiently find $(\alpha(n), n/c)$ -partition of the graph

Partition $\{U_1, \dots, U_c\}$ of nodes

- $|U_i| \ge n/c$
- $\left| \operatorname{edges}(U_i, U_j) \right| \leq \alpha(n)$
- "basis" for $\alpha(n)$ -cuts

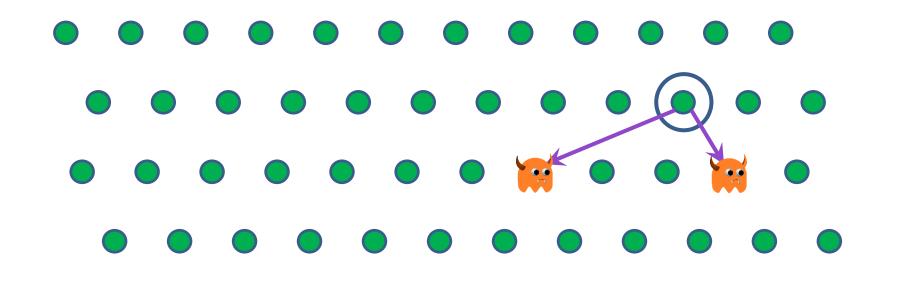
Phase 1

- Choose a random party P_i*
- Block all outgoing messages

parties might change behavior start talking faster to/from P_{i^*}

- Important: all parties must be unaware of the attack
 - Simulate P_{i^*} on random input to all other (red execution)
 - Simulate honest execution towards P_{i^*} (blue execution)

cannot work with PKI

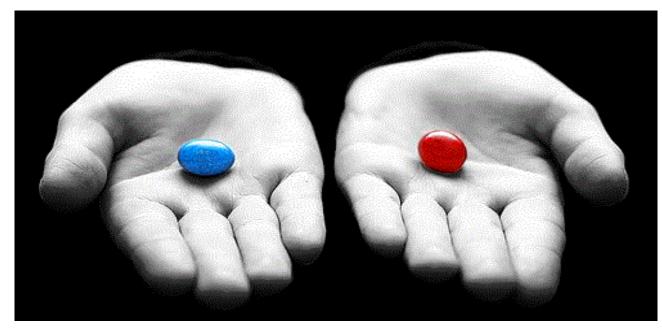


Phase 1

- Choose a random party P_{i^*}
- Block all outgoing messages

parties might change behavior start talking faster to/from P_{i^*}

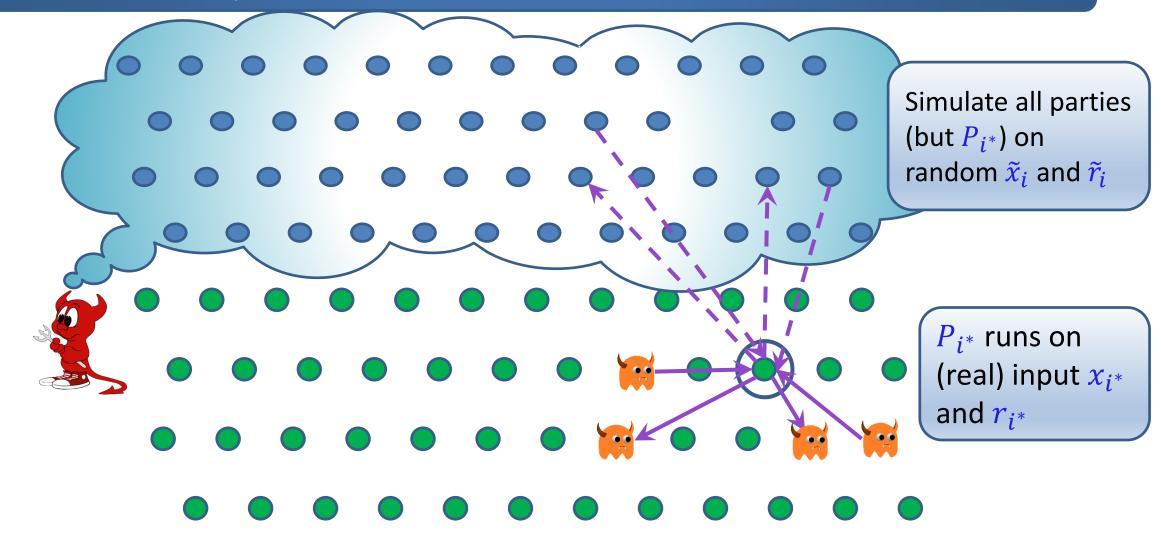
- Important: all parties must be unaware of the attack
 - Simulate P_{i^*} on random input to all other (red execution)
 - Simulate honest execution towards P_{i^*} (blue execution)



cannot work with PKI

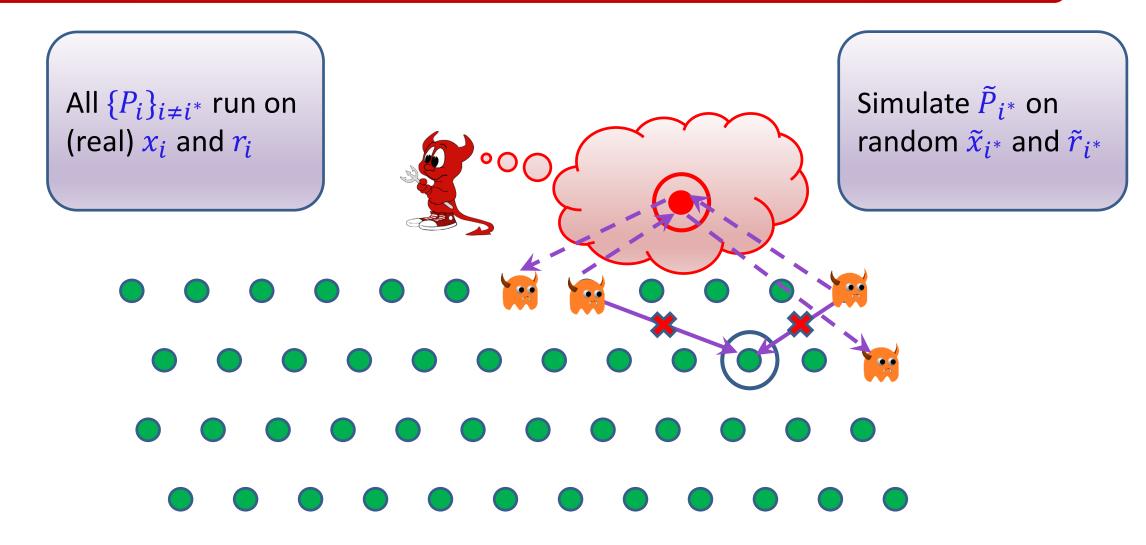
Blue Execution

Goal: make P_{i^*} think he runs in an honest (virtual) execution



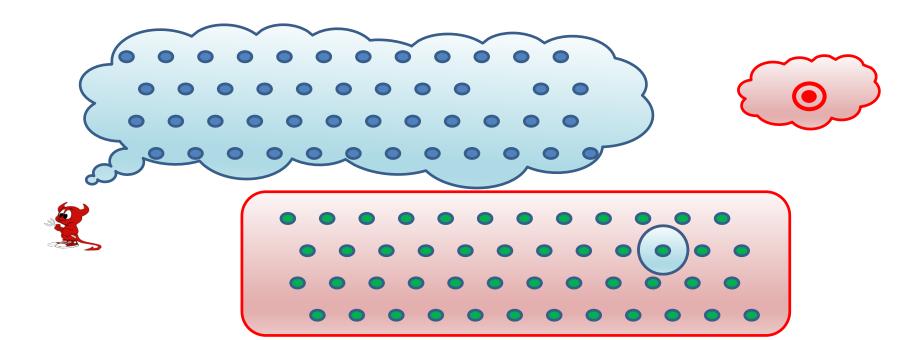
Red Execution

Goal: trick other honest parties to think there is no attack



Phase 1 - Summary

- Both red and blue executions are distributed as independent honest executions over random inputs
- Continue until P_{i^*} has $\beta n/4$ neighbors in **both** executions
 - wp $1/n^2$ party P_{i^*} is **last** to have degree $\beta n/4$ in both
 - \Rightarrow All parties have degree $\geq n/c$ where c depends on β

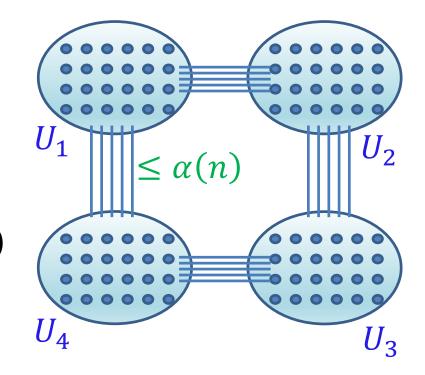


Graph-Theoretic Pause

Theorem (Linear degree \Rightarrow constant number of sublinear cuts):

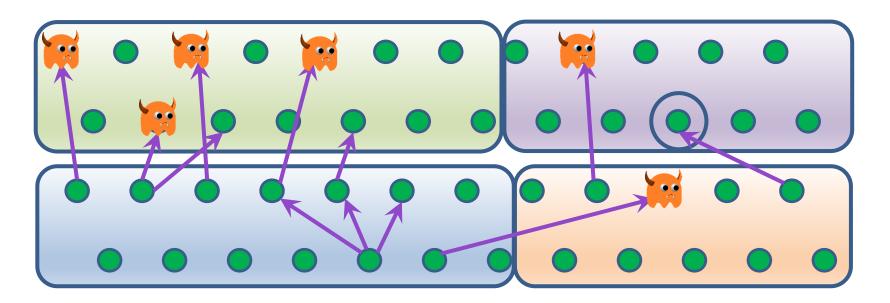
Let G = ([n], E) with linear degree n/c and let $\alpha(n) \in o(n)$

- 1. There is an $(\alpha(n), n/c)$ -partition $\Gamma = \{U_1, \dots, U_m\}$ of the nodes s.t.
 - $m \leq c$
 - $|U_i| \ge n/c$
 - $\left| \operatorname{edges}(U_i, U_j) \right| \leq \alpha(n)$
 - Γ is a "basis" for $\alpha(n)$ -cuts
- 2. The number of $\alpha(n)$ -cuts is constant ($\leq 2^{c-1}$)
- 3. Γ can be found in polynomial time



Back to the Attack - Phase 2

- With prob. $1/n^2$ every party has linear degree n/c
- Find $(\alpha(n), n/c)$ -partition $\Gamma = \{U_1, \dots, U_m\}$
- Block messages between every U_i and U_j
 - Stop blocking if $|edges(U_i, U_j)| \ge \alpha(n)$
 - Never corrupt P_{i^*}



Where do we stand

- P_{i^*} is honest \Rightarrow by **correctness** all honest parties output $y_{i^*} = x_{i^*}$
- By assumption \exists an $\alpha(n)$ -cut at the end
- Phase 1: messages across the cut **independent** of x_{i^*}
- Phase 2: no messages across the cut

Does this imply that

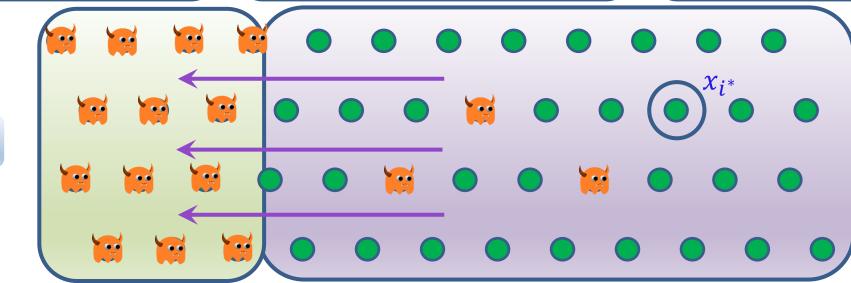
some honest parties

output $y_{i^*} \neq x_{i^*}$?

Problem 1: maybe the entire side of the cut is corrupt? Phase 1: linear red corruptions in *S* Problem 2: maybe information is flowing by other means?

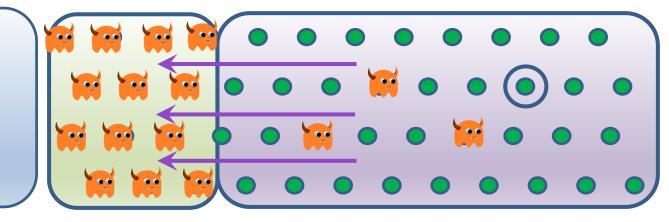
Phase 2: o(n) corruptions

Phase 1: o(n) blue corruptions in S



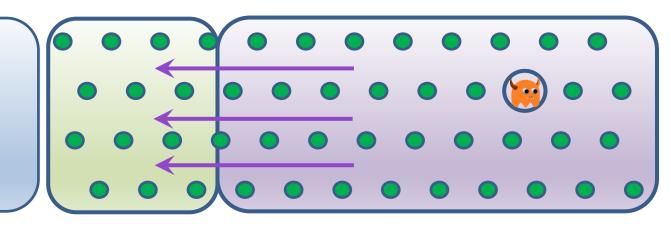
Problem 1: Guaranteeing Honest Party Across the Cut

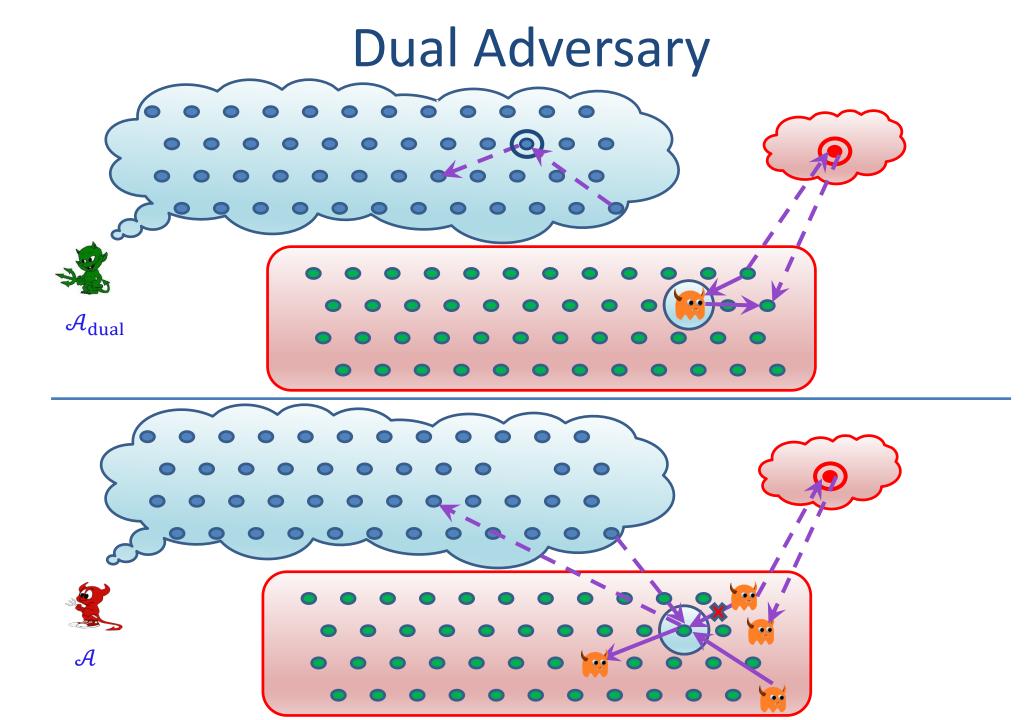
We **DO NOT** guarantee honest party across the cut



Instead, define dual adversary \mathcal{A}_{dual}

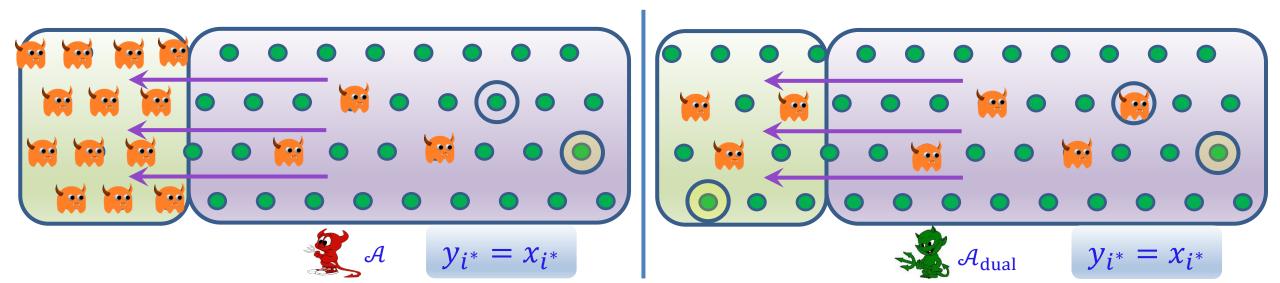
- Only P_{i^*} is corrupt in Phase 1
- Emulate its behavior as if being attacked





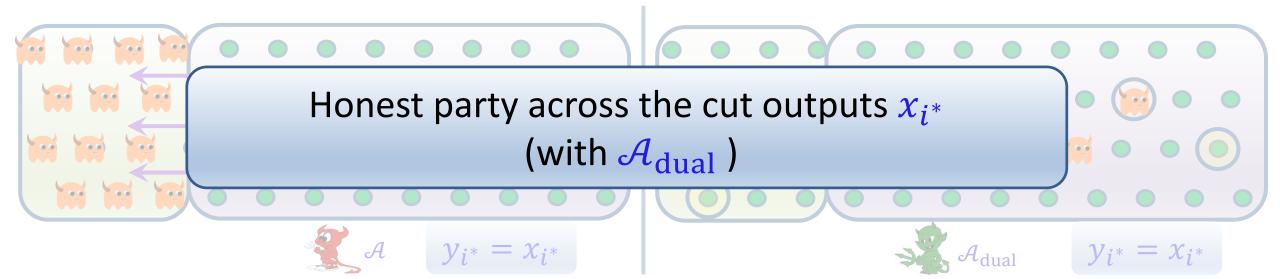
Guaranteeing Honest Party Across the Cut

- 1) With \mathcal{A} , party P_{i^*} is honest \Rightarrow the common output is $y_{i^*} = x_{i^*}$
- 2) Some honest parties have same view under attacks of \mathcal{A} and \mathcal{A}_{dual} \Rightarrow such parties output $y_{i^*} = x_{i^*}$ also with \mathcal{A}_{dual}
- 3) By correctness all honest parties output the same y_{i^*} with \mathcal{A}_{dual}
- 4) With \mathcal{A}_{dual} there exists honest party across the cut



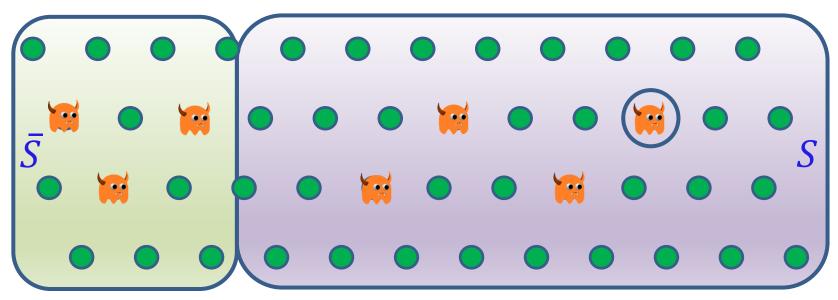
Guaranteeing Honest Party Across the Cut

- 1) With \mathcal{A} , party P_{i^*} is honest \Rightarrow the common output is $y_{i^*} = x_{i^*}$
- 2) Some honest parties have same view under attacks of \mathcal{A} and \mathcal{A}_{dual} \Rightarrow such parties output $y_{i^*} = x_{i^*}$ also with \mathcal{A}_{dual}
- 3) By correctness all honest parties output the same y_{i^*} with \mathcal{A}_{dual}
- 4) With \mathcal{A}_{dual} there exists honest party across the cut



Problem 2: Bounding Information on x_{i^*}

- 1) The input x_{i^*} is a random *n*-bit string
- 2) Let (S, \overline{S}) be the $\alpha(n)$ -cut at the end of the protocol
- 3) End of Phase 1: $view_{Honest}(\overline{S})$ is function of **red** execution (ind. of x_{i^*})
- 4) End of Phase 2: only new info is identity of cut (S, \overline{S}) (all else is simulatable)
- 5) Graph-theoretic Thm: \exists at most 2^{c-1} possible cuts (*c* bits of info)
- 6) $\Rightarrow H(x_{i^*} | \text{view}_{\text{Honest}}(\bar{S})) \ge n c$



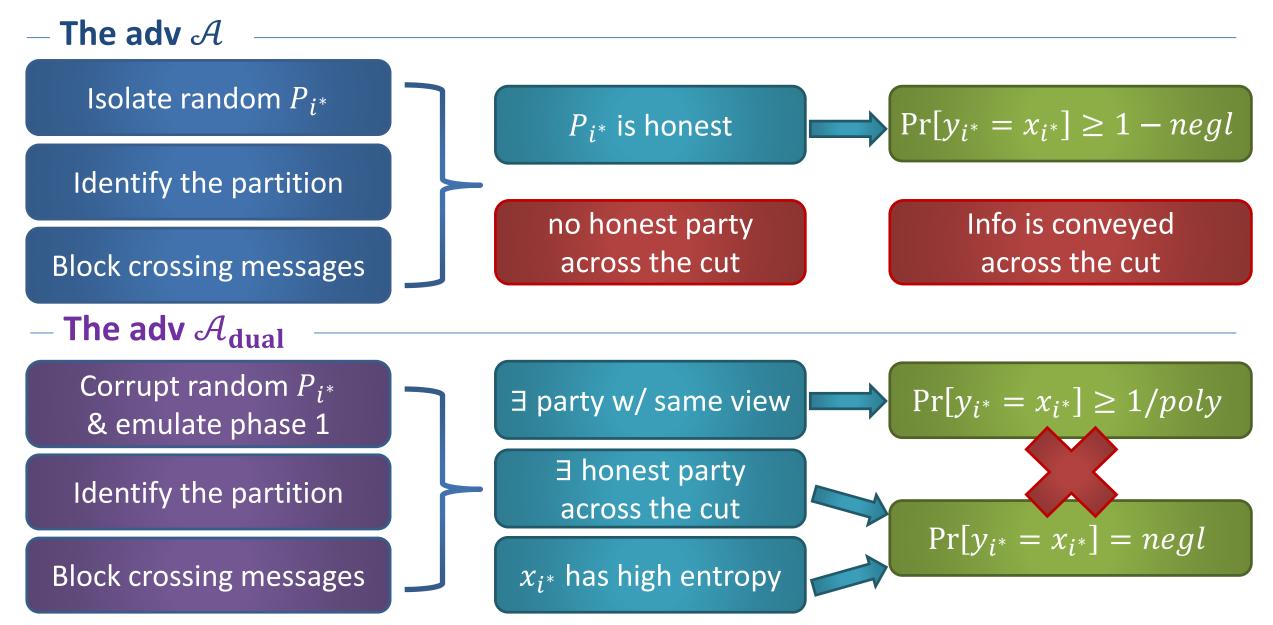
Problem 2: Bounding Information on x_{i^*}

- 1) The input x_{i^*} is a random *n*-bit string
- 2) Let (S, \overline{S}) be the $\alpha(n)$ -cut at the end of the protocol
- 3) End of Phase 1: $view_{Honest}(\overline{S})$ is function of **red** execution (ind. of x_{i^*})
- 4) End of Phase 2: only new info is identity of cut (S, \overline{S}) (all else is simulatable)
- 5) Graph-theoretic Thm: \exists at most 2^{c-1} possible cuts (*c* bits of info)
- 6) $\Rightarrow H(x_{i^*} | \text{view}_{\text{Honest}}(\bar{S})) \ge n c$

Honest party across the cut outputs x_{i^*} (with \mathcal{A}_{dual})

Contradiction

Recap of the Attack



Summary

Initiate a foundational study of dynamic graph model

Upper bound:

SFE protocols with **non-expander** graph (in **PKI model**):

- Static/adaptive corruptions
- Information-theoretic/computational security
- With/out polylog locality

Lower bound:

 $\exists f$ s.t. every secure protocol for f induces an expander

Adaptive corruptions, CRS model

Open Questions

- Fill the gap between upper & lower bounds
 - Adaptive corruptions
 - Trusted setup (PKI) Hidden channels

- No setup
- Private (visible) channels
- What other graph properties are necessary for MPC?
- New connection between graph theory and MPC
 - Necessity of expansion \Rightarrow new comm. complexity lower bounds?

