Information-Theoretic Topology-Hiding Broadcast:

Wheels, Stars, Friendship, and Beyond

Elette Boyle

Ran Cohen

Broadcast

n parties t corrupted

Sender with an input message

Agreement: all honest parties output the same value

Validity: if sender is honest, the common output is its message

Broadcast on incomplete graph

Each party talks to its neighbors in the communication graph

Broadcast on incomplete graph

Each party talks to its neighbors in the communication graph

Potentially disconnected graphs

- Agreement in each component
- Validity in sender's component

Topology-Hiding Broadcast [Moran, Orlov, Richelson '15]

The **communication graph** itself can be **sensitive** information

Can we run a broadcast protocol while hiding the network topology?

What does it even mean?

Topology-Hiding Broadcast [Moran, Orlov, Richelson '15]

- Class of potential communication graphs
- Protocol is executed on one of the graphs
- Every node knows only its immediate neighbors
- Adv doesn't learn honest-to-honest communication patterns

Topology-Hiding Broadcast [Moran, Orlov, Richelson '15]

Everything Adv learns can be simulated from:

- Corrupted party's neighbor-set
- Class of potential graphs

Topology-Hiding Broadcast isn't easy (even for semi-honest corruptions)

We focus on **semi-honest** corruptions, in a **synchronous** model

Each party learns:

- Its **distance** from the sender
- Its neighbors' distances

Can we achieve THB?

Yes!

- THB for t < n under standard cryptography assumptions
 - DDH, LWE, or QR [MOR'15,HMTZ'16,AM'17,ALM'17,LLMMMT'18]
 - Constant-round constant-rate OT [BBKM'23]

But, do we need cryptography?

THB requires cryptography

Sometimes, yes

• 2-secure THB on 4-node class ⇒ OT [BBMM'18]

Can we trade cryptography with honest majority?

- Extreme case: what if t = 1?
- 1-secure THB on 4-node class ⇒ KA [BBCMM'19]

Do we **really** need cryptography?

Information-Theoretic THB

• IT-THB over n-node cycle with t = 1 [BBCMM'19]

Notation: Labelless graphs contain all the permutations on the labels

Information-Theoretic THB

- IT-THB over n-node cycle with t = 1 [BBCMM'19]
- Note: cycles are 2-connected

Removing 2 nodes can disconnect Removing 1 node cannot

Information-Theoretic THB

- IT-THB over n-node cycle with t = 1 [BBCMM'19]
- Note: cycles are 2-connected

Conjecture: t + 1 connectivity $\Leftrightarrow t$ -security

- Conjecture holds for **TH-MPC** with t = 1 [BBCKMMM'20]
 - 2-connectivity ⇒ generic IT-TH-MPC (with statistical error)
 - 1-connectivity ⇒ no generic IT-TH-MPC (KA necessary)

What about THB?

- Conjecture doesn't hold [BBCKMMM'20]
- IT-THB over 1-connected butterfly with t=1

Agenda

- Our results in a nutshell
- Characterization of wheel subgraphs
- Friendship graphs
- Lower bound

Our work, question #1: feasibility

Which properties characterize feasibility of 1-secure IT-THB?

For class of subgraphs of **wheels** (star-embedded) the answer is the **degree structure**

Our work, question #2: perfect security

- IT-THB from [BBCKMMM'20] for 2-connected graphs has a positive error
- Perfect 1-secure IT-THB was only known for:

5-nodes butterfly

Perfect IT-THB with n > 5 beyond cycles?

Yes! For certain star-embedded subgraphs of wheels

Our work, question #3: t > 1 corruptions

Is there non-degenerate IT-THB with t > 1?

- 1-secure IT-THB from [BBCKMMM'20] completely breaks for t=2
- The butterfly for t = 2 is degenerate (nothing to hide)
- [BBCMM'19] 2-secure THB for cycles ⇒ KA

Our work, question #3: t > 1 corruptions

Is there non-degenerate IT-THB with t > 1?

Yes! Perfect IT-THB for **friendship** graphs with t < n

Agenda

- Our results in a nutshell
- Characterization of wheel subgraphs
- Friendship graphs
- Lower bound

Wheel graphs

What is there to hide?

Wheel graphs

What is there to hide?

Wheel graphs

What is there to hide?

Corrupted perimeter

IT-THB for wheel graphs

1-secure perfect IT-THB

What about sub-graphs of wheels?

Removing edges from a wheel

Disconnecting the center:

Cycle: IT-THB

• Path: require KA

What about sub-graphs of wheels?

Remove edges from the perimeter

What about sub-graphs of wheels?

Remove edges from the perimeter

Admissible graph:

a star-embedded graph without tails (degree of non-center is 0, 2 or 3)

Star:

A center and all tails (degree of non-center is 0 or 1)

Star-Embedded sub-graphs of wheels

Main connected component

- At least 5 nodes
- Well-defined center

All other nodes are isolated

Three types of nodes:

- Center
- Perimeter
- Isolated nodes

Consider a star-embeded graph-class G with n nodes

There exists a perfectly 1-secure IT-THB over G if:

• The maximal degree of perimeter-node is 1 (stars), OR

Consider a star-embeded graph-class G with n nodes

There exists a perfectly 1-secure IT-THB over G if:

- The maximal degree of perimeter-node is 1 (stars), OR
- The minimal degree of perimeter-node is 2 or 3 (admissible), OR

Consider a star-embeded graph-class G with n nodes

There exists a perfectly 1-secure IT-THB over G if:

- The maximal degree of perimeter-node is 1 (stars), OR
- The minimal degree of perimeter-node is 2 or 3 (admissible), OR
- G consists of stars and admissible graphs, but of different sizes

Consider a star-embeded graph-class G with n nodes

There exists a perfectly 1-secure IT-THB over G if:

- The maximal degree of perimeter-node is 1 (stars), OR
- The minimal degree of perimeter-node is 2 or 3 (admissible), OR
- *G* consists of stars and admissible graphs, but of *different* sizes

Otherwise, 1-secure THB over $G \Leftrightarrow KA$ exists

${\mathcal G}$ consists of admissible graphs of different sizes

$\mathcal G$ consists of stars of different sizes

$\mathcal G$ consists of **admissble** and **star of the same size**

${\cal G}$ consists of **admissble** and **star of different sizes**

Agenda

- Our results in a nutshell
- Characterization of wheel subgraphs
- Friendship graphs
- Lower bound

Friendship graphs

The friendship theorem [Erdös, Réyni, Sós '66]

If each pair of parties have one common friend ⇒ ∃ someone who's friend with everyone

What's so special about friendship graphs?

Can enforce local behavior in each triangle

All information about each triangle is through the center

- ⇒ Can "decompose" the protocol to triangles
- \Rightarrow We obtain perfect security for t < n

• Sender with input *m*

- Sender with input *m*
- Send to one receiver at a time
- Important: sender & receiver are known

- Sender sends m to its neighbors
- Can the center forward m to receiver?
- No! Receiver will learn who's the center

- Say the center knows that D
 is the third node in the triangle
 - \blacksquare Set $m=m_0 \oplus m_1$
 - Send m_1 to D
 - Each send their share to C
- But who is it?

- Say the center knows that D
 is the third node in the triangle
 - \blacksquare Set $m=m_0 \oplus m_1$
 - Send m_1 to D
 - Each send their share to C
- But who is it?
- Center plays towards everyone as if they're the neighbor of C

- Say the center knows that D
 is the third node in the triangle
 - \blacksquare Set $m=m_0 \oplus m_1$
 - Send m_1 to D
 - Each send their share to C
- But who is it?
- Center plays towards everyone as if they're the neighbor of C
- ⇒ every node plays as if it's the center towards their neighbors (sharing 0)

More subtle if the receiver is the center

1-secure IT-THB beyond friendship

- Extend to arbitrary admissble graphs (non-center degree is 0, 2 or 3)
- Careful: graphs no longer have the local behavior
- ⇒ Many subtle attacks to address (see paper for details)
- ⇒ Supports only 1 corruption

Agenda

- Our results in a nutshell
- Characterization of wheel subgraphs
- Friendship graphs
- Lower bound

1-secure THB on Wheel & Star ⇒ KA

Assume a 1-secure THB for

Proof will use the following labeled graphs:

Used to construct KA

Required by security proof

Protocol analysis

If $x_A \neq x_B$ then THB runs are

If $x_A = x_B$ then THB runs are

Output is m_1, m_2 wp $2^{-\kappa}$

THB security \Rightarrow KA security

Protocol analysis

Summary

- Characterizing 1-secure IT-THB for wheels & star-embedded subgraphs
- First feasibility of **perfect** 1-secure IT-THB beyond cycles
- First feasibility of IT-THB with t < n

Many open questions

- Which graph properties enable IT-THB?
- Which graph properties enable t > 1 corruptions?
- Malicious security?

Thank you for listening

