Peeking into the Future
MPC Resilient to Super-Rushing Adversaries

Gilad Asharov Anirudh Chandramouli Ran Cohen Yuval Ishai
Y7 Y7 Ny =
Bar-Ilan Bar-llan -
University AA University AA Bngeelg}gan M ZES',;'!}',L?EN aWs
- of Technology

Eurocrypt 2025

BRE K
TORIITURE

“Well, hey, Doc, what’s the harm in bringing back
a little info on the future?
You know, maybe we could place a couple bets”

Biff’s Attack on the Timeline

1955 2015

Biff steals the almanac

=22 Hill Valley Telegraph =

BIFF TANNEN

lucklest Man On Earth

" Nasser Accuses Reds of
PlngH O rthrow

State Likely

to Start
C PyollT
n 1960

“No, Marty, we've already agreed that having information
about the future could be extremely dangerous!”

4

i'-"

This Work

“Back to the Future” attacks on MPC

Optimistic implementations of certain synchronous MPC protocols
may be vulnerable

Goal: understand what makes a protocol immuned to such attacks
(enable optimistic implementations)

Communication Models for MPC

Fully asynchronous

* Adversarial message delivery
(can drop messages)

* Most UC secure MPC

* No guaranteed termination

Asynchronous with
eventual delivery

Every message
eventually arrives

Guaranteed termination
No “input completeness”
Inherentt < n/3

Same limitations for
partial synchrony

Synchronous

Round-by-round,
potentially with broadcast

Guaranteed termination
Input completeness

Guaranteed output delivery
fort <n/2
(sometimes t < n)

Vast majority of literature

Communication Models for MPC

Synchronous

 Round-by-round,
potentially with broadcast

e Guaranteed termination
* |nput completeness

* Guaranteed output delivery
fort <n/2
(sometimes t < n)

e Vast majority of literature

Synchronous Protocols

[| \

Round 1 Round 2 Round 3 and so on ...

e All round r messages are
delivered before round r + 1

 Can detect if a cheating party
doesn’t talk (timeout)

Synchronous Protocols

[\ \

Round 1 Round 2 Round 3 and so on.

Simplifying assumptions:

e All-to-all communication

in every round

(possibly dummy messages)
* Adv. also talks in every round

(possibly say nothing)

How much time should we wait?)X{

Say the expected duration is 1 second

2 secC

Round 1 Round 2 Round 3

Idea #1:

Py is e Set round duration to 2 seconds
cheating
e But...
honest parties might be falsely detected as cheaters

How much time should we wait?)X{

Say the expected duration is 1 second

2 sec 1 hour

Round 1 Round 2 Round 3

Idea #2:

e Set round duration to 1 hour \
e No party falsely accused \,
e But...

who’s gonna use my protocol

Proceed optimistically: once all round » message arrive

Round 1 Round 2 Round 3

AYA

Proceed optimistically: once all round » message arrive

Proceed at network speed! °°é [Assume we can detect parties who don’t talk

Round 1 Round 2 Round 3

AVAYA

Wait... What???

Round 1

Round 2

Round 3

/ N\

:

Wait... What???

Round 1 Round 2 Round 3

A

‘

P, can “peek into the future”
and send round 1 message to P;
based on round 2 message from P;

Peeking = Super-Rushing

Non-Rushing

Adversary sends round-r messages before
receiving the honest parties’ round-r messages

Adversary can send round-r messages after
receiving the honest parties’ round-r messages

Adversary can send round-r messages after
receiving some round-(r + 1) messages

A Gap in the Security Analysis

Applied research
Theory —DProetice—

(ideal synchrony) (optimistic implementations);

Are existing synchronous
MPC protocols vulnerable
to super-rushing attacks?

s it really
a meaningful attack?

A Gap in the Security Analysis

Applied research
Theory - Practice

(ideal synchrony) (optimistic implementations)i

/

o

Yes!
Some protocols are insecure against super-rushing adversaries

J

Simultaneous Broadcast [CGMAS85]

5 parties, 2 senders ™
P; holds m, and P, holds m, f@
Everyone outputs (m, m,) (my,m;) m,
Security against 1 corruption
P, cannot choose m; as a function of m, (mq, m;) (mq, m;)

(and vice versa)

(my, m;) (my, m;)

A Simple Simultaneous Broadcast Protocol [GIKRO2]

5 parties, 2 senders, 1 corruption

* Round 1:
P; and P, send input message to -, P,, P

A Simple Simultaneous Broadcast Protocol [GIKRO2]

3 3
5 parties, 2 senders, 1 corruption (my,m;)
(m1,m;)

* Round 1:) -
P, and P, send input message to /5, P, P;

* Round 2:
, P1, P= echo message to everyone

A Simple Simultaneous Broadcast Protocol [GIKRO2]

5 parties, 2 senders, 1 corruption (my, m3)
(mlll-’ mg) 3 3
* Round 1: (my,
P; and P, send input message to /-, Py, P-
* Round 2: (m3,m3)
, P1, P= echo message to everyone (m1, m3)
(m3,m3)
* Qutput:
(m7, m;) echoed by at least 2 parties
(mi,m3) |Neq
Security against rushing adversary (m1,m3)
* Corrupt sender: independent message (m3,m3)

e Corrupt non-sender: cannot affect majority

A Super-Rushing Attack

* Attack: corrupted P;

* Round 1:
P, sends m, to 5, Py, P-
P; send 0 only to P-

A Super-Rushing Attack

* Attack: corrupted P;

e Round 1: (Om2) 4

P, sends m, to /5, Py, P- e

P; sends 0 only to P (0,mz)
 Round 2:

P- echos (0,m,) to Py, P,, I, P,

(O' mZ) (0' mZ)

A Super-Rushing Attack

Attack: corrupted P;

Round 1:

P, sends m, to /5, Py, P-

P; sends 0 only to P-

Round 2:

Pe echos (0,m,) to Py, Py, P+, Py
Round 1:

P; sends m, to /5, P,

(0, my)

(0m2) , 4

A Super-Rushing Attack

Attack: corrupted P,
Round 1:
P, sends m, to 5, Py, P-
P; sends 0 only to F-
Round 2:
P- echos (0,m,) to Py, P,, -, P,
Round 1:
P; sends m, to /5, P,
Round 2:
, P, echo (m,, m,) to everyone

(0,m2) » y (Mg, my)
(my, m;)
(0, mz)
(mz,mz)
(my, my) Ps
(0,my)
(my,m;) ke 'i P; I(’mzymz)
(m,, my,) (M2, my)

(O' mZ) (0' mZ)

A Super-Rushing Attack

Attack: corrupted P,
Round 1:
P, sends m, to ", Py, P-
P; sends 0 only to F-
Round 2:
P- echos (0,m,) to Py, P,, I, P,
Round 1:
P; sends m, to /5, P,
Round 2:
, P, echo (m,, m,) to everyone
Output:
everyone outputs (m,, m,)

Oma)y 4 (M2, M)
c@ (mz, mZ)
(0, mZ)
(mz, mZ)
(my, my) ‘@
(0,m;)
(my, my) a - (my, my)
(my, my) (my, my)
(O' mZ) (0' mZ)

A Super-Rushing Attack

Attack: corrupted P,
Round 1:
P, sends m, to ", Py, P-
P; sends 0 only to F-
Round 2:
P- echos (0,m,) to Py, P,, I, P,
Round 1:
P; sends m, to /5, P,
Round 2:
, P, echo (m,, m,) to everyone
Output:
everyone outputs (m,, m,)

Input m, (m,, my)
(M3, my)
(0; mZ)

)

O°
(my, my) . ‘@
(O mz) Looks like Ps

is cheating

(mz, my) a - (mz, my)

mz, mz mz, mz
(0, my) (0,m)

Our Results #1

Theorem: There exists a protocol (with two input providers)

that is perfectly secure against rushing adversaries
but is insecure against super-rushing adversaries

Which synchronous protocols are secure
against super-rushing adversaries?
(without modifications)

What happened in this “Back to the Future' Attack

P; and P, provide inputs

, P., P= learn the output , P., P- reveal the output
%
Round 1 Pro~ ~ Round 2 Ps
~
~
~
@ P; advances P- to round 2
P; peeks into round-2 (P:’s round-2 message)
@ P; chooses input message & learns P,’s input message
as a function of P,’s input message
4)

What if only one party
provides input?
(Broadcast, VSS, etc.)

Super-rushing breaks
input independence

Our Results #2

For perfectly secure MPC with one input provider

Theorem: every protocol with a single input provider

that is perfectly secure against non-rushing adversaries
is also perfectly secure against super-rushing adversaries

. (’\\‘
Till now we workem\ (f’/zf\\”,«
too hard to show too little!! BN >€/{®

/ ">\> e ,".I

The Story So Far (Perfect Security)
v Single Input Provider: Super-Rushing = =

2 Two Input Providers: 3 a protocol for simultaneous broadcast
that is secure against but not against super-rushing

The protocol feels different from MPC protocols:
no privacy in the first round

Parties commit to inputs Adv cannot change inputs
hothing learned about output, __ & output is revealed

Committal Round CR

Maybe a CR prevents O ©o-
super-rushing attacks?

Simultaneous Broadcast with CR

Uses 5-party, 1-secure, 1-round VSS [GIKRO1]
(2 shares suffice to reconstruct)

* Round 1:
P; and P, VSS their input message

Simultaneous Broadcast with CR
Uses 5-party, 1-secure, 1-round VSS [GIKRO1]

(2 shares suffice to reconstruct) (si,sD) (s2,52)
* Round 1: 1—;@

P; and P, VSS their input message /
e Round 2:)

everyone echo their shares (s5, 55) / P
\// ‘
Py

P; | (s{,s5)

(s1,52)

Simultaneous Broadcast with CR
Uses 5-party, 1-secure, 1-round VSS [GIKRO1]

(2 shares suffice to reconstruct) {(s{,sé)}ie[s]

* Round 1: 1‘&(0
P; and P, VSS their input message /

* Round 2:

everyone echo their shares (s, 55)} \'/

Simultaneous Broadcast with CR

Uses 5-party, 1-secure, 1-round VSS [GIKRO1]
(2 shares suffice to reconstruct)

* Round 1:
P; and P, VSS their input message

 Round 2:
everyone echo their shares ((s],s]

* Output:
reconstruct (m7y, ms)

Security against rushing adversary
 Round 1: committal round (CR)
 Round 2: output revealing round (ORR)

A Super-Rushing Attack

* Attack: corrupted P;
* Round 1:
P, VSS m,
P; sends a random share only to P

A Super-Rushing Attack

* Attack: corrupted P;
* Round 1:

P, VSS m,

P; sends a random share only to F:
* Round 2:

P- echos (Sf, 525) to Py, Py, 5, Py

A Super-Rushing Attack @

* Attack: corrupted P; o
* Round 1: S

P, VSS m,

P; sends a random share only to F:
* Round 2:

P echos (515, 525) to Py, P, 5, P,
> P, reconstructs m, from s3 and s>

A Super-Rushing Attack @
* Attack: corrupted P,
* Round 1:

P, VSS m,

P; sends a random share only to P
* Round 2:

P echos (515, 525) to Py, Py, 5, Py
> P, reconstructs m, from s3 and s3

* Round 1:
P1VSSm2tOP2, ,P4

A Super-Rushing Attack

* Attack: corrupted P;
* Round 1:

P, VSS m,

P; sends a random share only to F:
* Round 2:

P- echos (Sf, 525) to Py, Py, 5, Py
> P, reconstructs m, from s3 and s>
* Round 1:

P, VSS m, to P,, I’5, P,

* Round 2:
P, P, 5, P, echo their shares

A Super-Rushing Attack

* Attack: corrupted P;

* Round 1:
P, VSS m,
P; sends a random share only to /5 (ma,m;)

* Round 2: OO OO ‘@
P echos (515, 525) to P, Py, 5, Py (my, my) No one is
cheating

> P, reconstructs m, from s3 and s> O

"0

e Round 1: 0
P1 VSS‘mZ tOPZ, ,P4 (mz,mz)
* Round 2:

, (my, my)
P;, P, 5, P, echo their shares

* Qutput:
everyone outputs (m,, m,)

CR doesn’t help!
Super-rushing still breaks

independence ofil’ly

So, what are the sufficient conditions
for tolerating super-rushing attacks?

What happened in this “Back to the Future" Attack

Committal round (CR) Output revealing round (ORR)

Round 1 P~ ~ Round 2
~

Ps

~

@ P; advances P- to round 2
P; peeks into round-2 (P:’s round-2 message)

& learns P,’s input message

@ P; chooses input message
as a function of P,’s input message

What happened in this “Back to the Future" Attack

Committal round (CR) Output revealing round (ORR)

%
Round 1 Round 2

* HereCR =1and ORR =2
e Thatis, ORR=CR+1
e All-to-all communication = Peeking up to 1 round

Whatif ORR > CR + 1

Our Sufficient Condition

Committal Round CR >1 Output Revealing Round ORR
— simulator AI E
Simulate & extract inputs Simulate w/o the output Simulate with the output
Send inputs to T* Get output from F

| f |

Mitigates Super-Rushing: can peek into ORR
only after everyone have completed CR

|

Our Results #3

Theorem: every protocol that is
1) Perfectly secure against rushing adversaries

2) Has all-to-all communication
3) ORR>CR +1

is also perfectly secure against super-rushing adversaries

Can we still support
ORR=CR+ 17

* security is via "compatible simulation" (see the paper) '

Our Results #3.5

Theorem: every protocol that is

1) Perfectly secure against rushing adversaries (Adv cannot change
. . its message

2) Has all-to-all communication ©

3) ORR = CR + 1, but CR is over broadcast
is also perfectly secure against super-rushing adversaries

Can we still support
ORR=CR+ 17

* security is via "compatible simulation” (see the paper)

Corollary

BGW is secure against super-rushing attacks!

VSS multiplications ORR

CR

—— P
e We have all-to-all & ORR > CR + 1

Corollary

BGW is secure against super-rushing attacks!

VSS cR ORR
We have all-to-all & ORR > CR + 1
What about linear functions with ORR = CR + 17
The VSS ends with a broadcast round
Same for round-efficient variants [ABT19,AKP20]

Our Main Result

Corollary: BGW is secure against super-rushing attacks!

Stronger
o security for free! 4)
BGW be executed optimistically: (
» Parties advance upon receiving messages '\»-_.%__)

» Everyone talk = no need for continuous synchronization & long delays
» Timeouts only needed to detect parties who don’t talk

) |
\

_
@

Our Results #4

S
What about statistical security?

Theorem: 3 a protocol that is
1) Statistically secure against rushing adversaries

2) Has all-to-all communication
3) ORR>CR+1
But is not statistically secure against super-rushing adversaries

Our Results #5

Theorem: super-rushing security is not sequentially composable

1 functionalities F and §

1 a protocol that realizes G against super-rushing in the F-hybrid model
1 a protocol p that realizes F against super-rushing

But 7” does not realize G against super-rushing

The Story So Far (Perfect Security)
v/ Single Input Provider: Super-Rushing = =
2 Two Input Providers: Super-Rushing Z *
¥+ Committal round does not help (on its own)
¥ Modular analysis is tricky (no sequential composition)

«/ Sufficient conditions: Rushing = super-rushing if
* All-to-all communication
* ORR>CR+1,0or ORR = CR + 1 and CR over broadcast

X This result doesn’t extend to statistical security

An Alternate Strategy

e Kushilevitz, Lindell, and Rabin [STOC '06]

» A generic compiler of synchronous MPC to asynchronous UC

» In each round:

1) Each party waits for all messages

2) Sends OK to all

3) Once receiving OK from all, advances to the next round
» Can be used for optimistically execute synchronous MPC

> But X 2 round complexity and + 0 (n?) communicaiton

* This work: analyze unmodified synchronous protocols

. BRO
Coming soon TFUTUREDT

Getting back was only
the beginning.

* New sufficient conditions for perfect MPC
with ORR = CR + 1 (capture [IKP10] and alike)

* Sequential composition theorem
* Capture protocols w/o all-to-all communication

» Where communication pattern is fixed and
known before each round

> Ala [DNO7, GLS19]

Conclusion

* Optimistic implementations may be vulnerable to “Back to the Future" attacks
e All-to-all & ORR > CR + 1 sufficient for —> Super-Rushing

Conjecture: most (if not all)
general purpose MPC remain secure

	Slide 1: Peeking into the Future MPC Resilient to Super-Rushing Adversaries
	Slide 2
	Slide 3: Biff’s Attack on the Timeline
	Slide 4: Biff’s Attack on the Timeline
	Slide 5: “No, Marty, we’ve already agreed that having information about the future could be extremely dangerous!”
	Slide 6: This Work
	Slide 7: Communication Models for MPC
	Slide 8: Communication Models for MPC
	Slide 9: Synchronous Protocols
	Slide 10: Synchronous Protocols
	Slide 11: How much time should we wait?
	Slide 12: How much time should we wait?
	Slide 13: How much time should we wait?
	Slide 14: How much time should we wait?
	Slide 15: Wait… What???
	Slide 16: Wait… What???
	Slide 17
	Slide 18: A Gap in the Security Analysis
	Slide 19: A Gap in the Security Analysis
	Slide 20: Simultaneous Broadcast [CGMA85]
	Slide 21: A Simple Simultaneous Broadcast Protocol [GIKR02]
	Slide 22: A Simple Simultaneous Broadcast Protocol [GIKR02]
	Slide 23: A Simple Simultaneous Broadcast Protocol [GIKR02]
	Slide 24: A Super-Rushing Attack
	Slide 25: A Super-Rushing Attack
	Slide 26: A Super-Rushing Attack
	Slide 27: A Super-Rushing Attack
	Slide 28: A Super-Rushing Attack
	Slide 29: A Super-Rushing Attack
	Slide 30: Our Results #1
	Slide 31: What happened in this “Back to the Future'' Attack
	Slide 32: Our Results #2
	Slide 33: The Story So Far (Perfect Security)
	Slide 34: Simultaneous Broadcast with CR
	Slide 35: Simultaneous Broadcast with CR
	Slide 36: Simultaneous Broadcast with CR
	Slide 37: Simultaneous Broadcast with CR
	Slide 38: A Super-Rushing Attack
	Slide 39: A Super-Rushing Attack
	Slide 40: A Super-Rushing Attack
	Slide 41: A Super-Rushing Attack
	Slide 42: A Super-Rushing Attack
	Slide 43: A Super-Rushing Attack
	Slide 44
	Slide 45: What happened in this “Back to the Future" Attack
	Slide 46: What happened in this “Back to the Future" Attack
	Slide 47: Our Sufficient Condition
	Slide 48: Our Results #3
	Slide 49: Our Results #3.5
	Slide 50: Corollary
	Slide 51: Corollary
	Slide 52: Our Main Result
	Slide 53: Our Results #4
	Slide 54: Our Results #5
	Slide 55: The Story So Far (Perfect Security)
	Slide 56: An Alternate Strategy
	Slide 57: Coming soon
	Slide 58: Conclusion
	Slide 59

