
Université Paris Cité
Ecole Doctorale Sciences Mathématiques de Paris Centre – ED386
Institut de Recherche en Informatique Fondamentale (UMR 8243)

et

Reichman University
Efi Arazi School of Computer Science

Foundations and Applications of Cryptographic Theory – FACT Center

Calcul multipartite sécurisé
avec communication sous-linéaire

Par Pierre MEYER

Thèse de doctorat d’Informatique

Dirigée par Elette BOYLE
et par Geoffroy COUTEAU

Présentée et soutenue publiquement le 14 septembre 2023 devant un jury composé de:

Elette BOYLE Associate Professor Reichman University and NTT Research. Directrice
Geoffroy COUTEAU Chargé de Recherche CNRS, Université Paris Cité, IRIF. Directeur

Claudio ORLANDI Full Professor Aarhus Universitet. Rapporteur
David POINTCHEVAL Directeur de Recherche DIENS, ENS, CNRS, Inria, Université PSL. Rapporteur

Yuval ISHAI Full Professor Technion. Examinateur
Tal MALKIN Full Professor Columbia University. Examinatrice
Tal MORAN Associate Professor Reichman University. Examinateur

Résumé
Le calcul multipartite sécurisé (en anglais, MPC) [Yao82,GMW87a] permet à des agents
d’un réseau de communication de calculer conjointement une fonction de leurs entrées
sans avoir à n’en rien révéler de plus que le résultat du calcul lui-même. Une question
primordiale est de savoir dans quelle mesure le coût en communication entre les agents
dépend de la complexité calculatoire de la fonction en question. Un point de départ
est l’étude d’une hypothétique barrière de la taille du circuit. L’existence d’une telle
barrière est suggérée par le fait que tous les protocoles MPC fondateurs, des années 80
et 90, emploient une approche “porte-logique-par-porte-logique” au calcul sécurisé: la
communication d’un tel protocole sera nécessairement au moins linéaire en le nombre
de portes, c’est-à-dire en la taille du circuit. De plus ceux-ci constituent moralement
l’état de l’art encore de nos jours en ce qui concerne la sécurité dite “par théorie de
l’information”.

La barrière de la taille du circuit a été franchie pour le MPC avec sécurité cal-
culatoire, mais sous des hypothèses structurées impliquant l’existence de chiffrement
totalement homomorphe (en anglais, FHE) [Gen09] ou de partage de secret homomor-
phe (en anglais, HSS) [BGI16a]. De plus, il existe des protocoles avec sécurité par
théorie de l’information dont la communication en-ligne (mais pas la communication
totale) est sous-linéaire en la taille du circuit [IKM+13,DNNR17,Cou19].

Notre méthodologie de recherche consiste à s’inspirer des techniques developpées
dans le modèle de l’aléa corrélé—dans lequel tout résultat pourra être considéré comme
plus “fondamental” que le modèle calculatoire (de par le type de sécurité obtenue) mais
qui est néanmoins un modèle inadapté à comprendre la complexité de communication
du MPC (puisque que l’on s’autorise à ne pas compter toute quantité de communication
qui peut être reléguée à une phase “hors-ligne”, c’est-à-dire avant que les participants
au calcul ne prennent connaissance de leurs entrées)—pour développer de nouvelles
méthodes dans le modèle calculatoire. Avec cette approche, nous obtenons des pro-
tocoles franchissant la barrière de la taille du circuit sous l’hypothèse de la sécurité
quasipolynomiale de LPN [CM21] ou sous l’hypothèse QR+LPN [BCM22]. Ces hy-
pothèses calculatoires n’étant pas précédement réputées impliquer l’existence de MPC
sous-linéaire, la pertinence de notre méthodologie est, dans une certaine mesure, validée
a posteriori. Plus fondamentalement cependant, nos travaux empruntent un nouveau
paradigme pour construire du MPC sous-linéaire, sans utiliser les outils “avec de fortes
propriétés d’homomorphisme” que sont le FHE ou du HSS. En combinant toutes nos
techniques héritées de l’étude du modèle de l’aléa corrélé, nous parvenons à briser la
barrière des deux joueurs pour le calcul sécurisé avec communication sous-linéaire, sans
FHE [BCM23]. Spécifiquement, nous présentons le premier protocole à plus de deux
participants dont la communication est sous-linéaire en la taille du circuit et qui ne
soit pas fondé sur des hypothèses sous lesquelles on sait déjà faire du FHE.

Parallèlement à ces travaux centrés sur la sécurité calculatoire, nous montrons
[CMPR23] comment adapter les approches à deux joueurs utilisant du HSS, à la
[BGI16a], pour gurantir une sécurité “théorie de l’information” à l’un des deux joueurs
et une sécurité calculatoire à l’autre. Ceci est, de façon prouvable, la notion de sécurité
la plus forte que l’on puisse espérer en présence de seulement deux joueurs (sans aléa
corrélé). Nous obtenons le premier protocole de ce type avec communication sous-
linéaire, qui ne soit fondé sur des hypothèses sous lesquelles on sait déjà faire du FHE.

Mots-Clefs: Cryptographie · Fondations · Calcul Multipartite Sécurisé · Partage
de Fonction Secrète

ii

Résumé Substantiel

La cryptographie. Jusqu’aux années 1970, la cryptographie pouvait être décrite
comme l’art de communiquer de façon privée au travers de canaux a priori non sécurisés.
Un art, puisque les “codes secrets” depuis l’Antiquité au milieu de la Guerre Froide
(le code de César ou celui de la machine Enigma par exemple) ne sont pas invul-
nérables, et peuvent être cassés avec suffisament d’astuce. Tout l’enjeu du travail d’un
cryptographe était alors de prédire les vecteurs d’attaque potentiels, et de trouver un
moyen d’y remédier. Dès la Seconde Guerre Mondiale, cette faible notion de sûreté
basée sur l’espoir qu’aucune faille n’émerge se montre obsolète avec l’apparition des
premiers ordinateurs, explosant la capacité de calcul d’attaquants. La cryptographie
moderne se caractérise au contraire par la notion de sécurité prouvable—bien qu’il eût
été préférable que fût retenu par l’usage le terme de sûreté prouvable—, et permet
d’accomplir des tâches plus complexes que la communication sécurisée. Si l’on établit
un cadre formel définissant les capacités des adversaires et les propriétés de securité que
l’on souhaite guarantir, il devient en effet possible de fournir une preuve mathématique
qu’aucun tel adversaire ne peut briser un schéma ou protocole donné, et de fait exclure
l’existence de toute astuce ou vecteur d’attaque efficace. Il est cependant primordial
de garder à l’esprit que la cryptographie n’est qu’un moyen de guarantir la sécurité
et la sûreté des systèmes d’information, et qu’en pratique elle est à combiner avec des
moyens physiques (issus de l’ingénierie électronique par exemple, ou même plus simple-
ment par des moyens “humains”). En effet, la cryptographie théorique permet d’établir
des théorèmes, accompagnés de leurs preuves de sécurité, mais ceux-ci ne sauraient être
appliqués si leurs hypothèses ne sont pas réunies. À titre d’exemple, la sécurité de la
plupart des schémas cryptographiques supposent que les utilisateurs honnètes—c’est-à-
dire ceux auquels ont veut pouvoir donner des guaranties de sécurité—ont accès à une
source d’aléa parfaite et que cet aléa pourra être stocké à l’abri de l’adversaire contre
lequel on cherche à se prémunir. Il s’agira donc d’assurer ces guaranties par d’autres
moyens, ou à défaut de retravailler le théorème pour se passer de ces hypothèses. L’art
d’appliquer la cryptographie dans le but d’assurer la sûreté des systèmes d’information
consiste à trouver un équilibre subtil entre les modèles théoriques et les situations pra-
tiques. Plus celles-ci permettront à ceux-là de faire des hypothèses fortes, et plus les
guaranties pourront être élevées.

Une fois qu’un modèle théorique adéquat a été choisi, on peut espérer prouver
qu’un protocole donné satisfait effectivement telle ou telle propriété de sécurité. Pour
appréhender ce concept, considérons que deux personnes, que nous nommerons selon
l’usage Alice et Bob, souhaitent échanger un message privé par le biais de canaux de
communication public, épiés par un espion passif (c’est-à-dire qui ne fait qu’enregistrer
les messages, sans les modifier) que nous appelerons Eve1. Si on arrive à établir que
l’ensemble des informations accessibles à l’adversaire, soit la transcription intégrale
des messages échangés entre les participants par des canaux publics, est une variable
aléatoire (où l’espace de probabilité est pris relativement à l’entropie de l’aléa local
de Alice et Bob) qui soit indépendente d’un message à caractère privé échangé par les
participants, alors clairement les messages ne seront d’aucune utilité à l’adversaire qui
n’aura donc aucun vecteur d’attaque. Ce type d’argument donne lieu à ce que l’on
appelle la sécurité de type théorie de l’information. Sans définir cette dernière notion,
l’idée est que nul adversaire, même avec un temps de calcul illimité, ne pourra récupérer

1Le jeu de mots sur “eavesdropper” étant proprement intraduisible, nous admettrons sans démon-
stration la pertinence du nom.

iii

d’information sensible puisque ce qui lui est donné n’encode aucune information. C’est
cependant une très forte notion de sécurité qui est prouvablement inatteignable dans de
nombreuses circonstances. Lorsque nous considérons des adversaires avec une capacité
de calcul bornée, il suffit que les informations auquelles ils ont accès leur “paraissent
indépendantes”. Cette fois-ci les messages contiendront bien—au sens de la théorie de
l’information—des informations sensibles, mais qui sont inaccessibles avec les ressources
calculatoires de l’adversaires. Idéalement, nous aimerions pouvoir prouver l’existence
de deux distributions qui soient statistiquement éloignées (très abusivement, “elles cor-
respondent à des chiffrés de deux messages différents”) mais calculatoirement proches
(c’est à dire qu’elle ne peuvent pas être distinguées “efficacement”), et s’en servir comme
base pour la cryptographie. Malheureusement un tel théorème est bien au-delà de l’état
actuel des mathématiques, et il nous devons nous contenter pour l’heure de travailler
avec des hypothèses de sécurité supplémentaires. Heureusement, la communauté math-
ématique a su produire des candidats pour des problèmes “cryptographiquement durs”,
ayant résisté à de nombreux efforts de cryptanalyse. Admettant qu’un tel problème
soit effectivement dur, il est alors possible de prouver la sécurité d’un schéma ou pro-
tocole via une réduction de sécurité. En substance, on montre que s’il existait une
attaque contre le protocole, alors il existerait une attaque contre le problème sous-
jacent, pourtant réputé dur. Réduire la sécurité de tous nos protocoles à une liste
restreinte d’hypothèses a, entre autres, le mérite de permettre de concentrer les efforts
de cryptanalyse.

Le calcul multipartite sécurisé. Historiquement, la cryptographie était employée
exclusivement dans le but de sécuriser la communication, et c’est encore de nos jours
son application principale. Ainsi, Alice et Bob cherchent à communiquer de façon fiable
et privée en la présence d’un adversaire avec a minima la faculté d’épier tous les mes-
sages qu’ils s’échangent, voire même celle de les modifier. L’attaquant est ici externe
au système, et tous les participants, considérés honnêtes, se font confiance. Cepen-
dant, depuis la fin des années soixante-dix la cryptographie est capable de fournir des
solutions pour assurer la sûreté des systèmes distribués en présence d’un adversaire
qui soit interne au système. Admettons qu’un ensemble de deux entités ou plus, dé-
tenant chacune une entrée, souhaitent calculer conjointement une fonction de leurs
entrées respectives. Formellement, les N participants détiennent respectivement x1,
x2, x3, etc. et cherchent à calculer la valeur de f(x1, . . . , xN), où f est une fonction
entendue de tous. Si les entrées relèvent d’un caractère privé et que les agents ne peu-
vent pas se faire confiance, il semblerait a priori—sans la cryptographie—que la seule
solution serait de choisir un tiers de confiance qui serait parfaitement incorruptible
et de lui déléguer le calcul. Cette solution a un certain nombre d’avantages, comme
celui d’empêcher les agents de “tricher”, par exemple en choississant leur propre entrée
en fonction de celles des autres. Le calcul multipartite sécurisé (en anglais, Secure
Multi-Party Computation, abbrégé MPC) permet de remplacer l’hypothèse (souvent
irréaliste) de l’existence d’un tel tiers par un protocole distribué, tout en préservant
les guaranties. Spécifiquement, le MPC permet à des agents de calculer une fonction
de leurs entrées conjointes sans avoir à n’en rien révéler qui ne puisse être déduit de
la sortie de l’adversaire. Cette quantité d’information est le strict minimum qu’il soit
nécessaire de révéler tout en réalisant correctement le calcul. En effet, l’adversaire étant
interne au système, on ne peut espérer prouver qu’il n’apprenne rien des entrées des
agents honêtes: si par exemple la fonction calculée et de determiner l’intersection des
données des agents, il est inévitable que l’adversaire pourra déduire que sa sortie est un
sous-ensemble de l’entrée de tous les participants. Une question naturelle est celle de

iv

comment on peut espérer prouver un tel théorème. La solution retenue par la commu-
nauté MPC est la notion de preuve par simulation: si l’on produit un algorithme (que
l’on appelle un simulateur) qui, étant donnée les entrées et sorties des joueurs corrom-
pus par l’adversaire, est capable de génerer une “fausse transcription” d’une exécution
du protocole qui soit indistinguable de la vraie du point de vue de l’adversaire, alors
essentiellement par définition il est impossible à l’adversaire d’apprendre plus dans une
véritable exécution du protocole que ce qui est donné en entrée au simulateur dans
l’expérience de pensée.

Le MPC trouve son utilité principale dès lors qu’il est nécessaire d’interagir avec
des parties ayant des objectifs opposés ou concurrents. La diplomatie (et plus générale-
ment, toute forme de négociation ou d’enchères) repose souvent sur des informations
secrètes telles que ce chaque partie apprécie le plus, et ce que chaque partie sait des in-
tentions de l’autre partie. Même—ou peut-être surtout—dans la diplomatie informelle,
toutes les informations pertinentes ne peuvent pas être mises sur la table ouvertement
(Le prisonnier à échanger est-il en fait un espion, et si oui, que sait-il ? Quelle est
sa valeur ?). Un protocole de calcul sécurisé peut être utilisé pour “émuler les né-
gociations” (avec une preuve mathématique rigoureuse que cette émulation s’est faite
“honnêtement”, sans chercher à avantager qui que ce soit) et de telle sorte que ne soit
révélée aucune information intermédiaire au-delà des termes de l’accord final. Le MPC
est un outil versatile qui peut même éventuellement permettre aux participants de nier
l’existence de toutes négociations jusqu’au moment de l’accord final! Nous remarquons
toutefois que les applications ne se limitent pas au domaine traditionnel de la cryp-
tographie militaire, et qu’il s’agit d’un outil qui peut tout à fait trouver sa place dans
la vie quotidienne. Un exemple classique, et léger, est son application à outrepasser
la peur du rejet. Ainsi deux personnes (ou plus) ne seraient peut-être pas disposées à
se faire une déclaration d’intérêt directement, de peur que leurs sentiments ne soient
pas réciproques. La cryptographie leur permet alors de se passer du besoin d’amis de
confiance pour agir en tant qu’intermédiaires.

Une barrière à la taille du circuit? Une question fondamentale dans l’étude
du MPC est de comprendre le coût de la sécurité. En effet, apporter des quaranties de
sécurité requiert que les participants dépensent un certain nombre de ressources telle
que des bits de calcul, d’aléa, et de communication. Cette dernière peut être considérée
comme la plus “chère”, motivant tout particulièrement la question de chercher à min-
imiser la complexité de communication de nos protocoles. De façon intriguante, tandis
que le calcul distribué d’une fonction ne nécessite que l’échange de ses entrées, tous
les protocoles séminaux utilisent une quantité de communication qui croît linéairement
avec le nombre de portes de sa représentation sous forme de circuit. Cette observation
nous mène à considérer la question suivante.

La complexité de communication du calcul multipartite sécurisé est-elle
fortement correlée avec la complexité de calcul de la fonction calculée? 2

Le premier pas est de déterminer la nature de cette “barrière à la taille du circuit” sug-
gérée par les protocoles fondateurs du domaine: s’agit-il d’une limitation inhérente au
problème, ou simplement d’un artefact historique? Il aura fallu une trentaine d’années

2Cette élégante formulation de la question (à traduction près) est à attribuer à Yuval Ishai, et
est issue de sa présentation “Private Information Retrieval, Part I” à la 10ème école d’Hiver sur la
Cryptography de Bar-Ilan.

v

de recherche en cryptographie pour un premier élément de réponse. En 2009, Gen-
try [Gen09] construisit un schéma de chiffrement totalement homomorphe (en anglais,
Fully Homomorphic Encryption, abbrégé FHE) qui mènerait ensuite à des construc-
tions de MPC avec communication indépendente de la taille du circuit sous des hy-
pothèses calculatoires standard, quoique fortes et spécifiques [DFH12,AJL+12]. Plus
récemment, une famille de protocoles à deux joueurs, dont la communication est tout
juste sous-linéaire en la taille du circuit, a vu le jour avec l’introduction du partage de
secret homomorphe (en anglais, Homomorphic Secret Sharing, abbrégé HSS) [BGI16a].
D’abord sous l’hypothèse DDH [BGI16a], puis sous DCR [FGJS17,OSY21,RS21]. Ces
percées prometteuses rendent envisageable la perspective de briser la barrière de la
taille du circuit sous des hypothèses de moins en moins structurées, voires idéalement
sous des hypothèses minimales.

Malgré ces avancées dans le modèle de la sécurité calculatoire, aucun tel résultat
n’existe pour la sécurité de type “théorie de l’information”, que l’on pourra pourtant
considérer comme le modèle le plus fondamental. Une série de travaux a bien réussi
à franchir la barrière de la taille du circuit [IKM+13, DNNR17, Cou19], mais dans le
modèle de l’aléa corrélé. Bien que celui-ci permette de comprendre la complexité de
communication en-ligne, c’est-à-dire après que les participants aient connaissance de
leurs entrées, il ne saurait apporter une réponse satisfaisante à notre question dans la
mesure où il s’autorise à ne pas prendre en compte toute communication hors-ligne.

Nos résultats relatifs au MPC avec communication sous-linéaire. Notre
méthodologie de recherche consiste à s’inspirer des techniques developpées dans le mod-
èle de l’aléa corrélé pour développer de nouvelles méthodes dans le modèle standard,
en commençant par viser la sécurité calculatoire.

• Calcul sécurisé avec communication sous-linéaire sous de “nouvelles” hypothèses.
À mesure que nous développons de nouvelles approches pour franchir la barrière
de la taille du circuit, il nous faudra un moyen concret de juger de l’originalité
d’un protocole. Nous nous proposons de suivre le critère de déterminer si l’on
obtient un protocole sous une hypothèse calculatoire standard qui n’était pas
précédement réputée impliquer l’existence de MPC sous-linéaire. Nous insistons
cependant sur le fait qu’il ne s’agisse que d’un critère, et qu’obtenir des protocoles
sous une multiplicité d’hypothèses n’est pas une fin en soit, mais plutôt une étape
dans l’appréhension du problème. Nous espérons qu’en s’éloignant des spécificités
de telle ou telle hypothèse structurée nous verrons émerger des principes plus
fondamentaux, que nous pourrions extraire.

• Converger au cœur de la barrière de la taille du circuit. Une fois que plusieurs ap-
proches ont été trouvées pour briser la barrière de la taille du circuit, les différents
protocoles pourront être classés selon leur “puissance”. Bien qu’il soit en général
hautement désirable qu’un protocole présente de fortes propriétés de sécurité ou
ait une complexité de communication bien inférieure à la taille du circuit, ces
propriétés peuvent se montrer “parasitiques” si notre but est de comprendre la
barrière de la taille du circuit. À mesure que nous développons des méthodes
différentes et en extrayons des principes communs, nous devrions nous attendre
à ce que ces propriétés (telles que le fait d’obtenir de la sécurité statistique pour
l’un des joueurs, ou celle d’avoir une communication indépendente de la taille du
circuit) disparaissent, à moins bien sûr que celles-ci ne soient inhérentes. Ainsi,
comprendre les différences entre les différents protocoles que nous pouvons établir
est primordial.

vi

Nos résultats se divisent en quatre grandes parties.

2PC avec communication sous-linéaire sous “quasi-polynomial LPN”
[CM21]. Nous présentons un schéma de partage de secret homomorphe singleton
(en anglais single-circuit HSS) pour n’importe quel circuit log / log log-local. Les parts
d’entrées peuvent être générées avec une quantité de communication linéaire en la
largeur du circuit (et une quantité polynomiale de calcul), et la sécurité du schéma se
réduit à la sécurité super-polynomiale de l’hypothèse LPN. Le cœur de notre construc-
tion est une nouvelle famille de PCG pour toute correlation additive et log / log log-
locale.

Notre application principale, et la motivation pour ces travaux, est la construction
d’un protocol de calcul bipartite sécurisé pour tout circuit—arithmétique ou booléen—
dont les portes peuvent être partitionnées en couches ordonnées de telle sorte que
chaque arête du circuit raccorde un nœud d’une couche à un nœud de la couche suivante.
Ce résultat étend la liste des hypothèses calculatoires sous lesquelles on sait briser la
“barrière de la taille du circuit”, pour une classe de circuit expressive. Par ailleurs,
la force de l’hypothèse est très liée au facteur de sous-linéarité. Ainsi, pour tout
k(s) ≤ (log log s)/4, nous obtenons un protocole à communication O(s/k(s)) sous
l’hypothèse de la s2

k(s)-sécurité de LPN.
Seules les hypothèses LWE, DDH, et une variante de la sécurité circulaire de DCR

étaient précédemment réputées impliquer l’existence d’un PCG pour des corrélations
de degrée super-constant ou du calcul sécurisé “générique” avec communication sous-
linéaire.

Fonctions pseudo-aléatoires contraintes (en anglais, CPRF) à partir de
partage de secret homomorphe [CMPR23]. Nous proposons et analysons une
stratégie simple pour obtenir une fonction pseudo-aléatoire contrainte (CPRF) à partir
de partage de secret homomorphe. Nous contributions intermédiaires sont les suiv-
antes. D’abord, nous identifions des propriétés utiles qu’un schéma de HSS doit pos-
séder pour que notre approche aboutisse. Ensuite, nous montrons que la plupart des
constuctions connues de HSS satisfont effectivement ces propriétés, ce qui nous permet
entre autre d’obtenir des CPRF (pour diverses classes de contraintes) sous une multi-
tude d’hypothèses calculatoires. En particulier, nous produisons la première CPRF (à
une clef, avec sécurité selective, et avec contrainte privée) pour des contraintes de type
“produit scalaire” ainsi que la première CPRF (à une clef, avec sécurité selective) pour
des contraintes dans NC1 sous l’hypothèse DCR. Enfin, nous démontrons l’utilité des
propriétés de HSS que nous avons identifiées en revisitant deux applications classiques
du HSS au MPC. Premièrement, nous obtenons du 2PC dans le modèle du pré-calcul
silencieux, où l’une des deux parties peux pré-calculer l’intégralité de son aléa correlé
avant même d’intéragir avec l’autre partie. Deuxièmement, nous obtenons du 2PC avec
communication sous-linéaire avec sécurité statistique pour l’un des deux joueurs (avec
toutefois certaines restrictions sur les calculs que l’on peut tolérer).

Calcul sécurisé avec communication sous-linéaire sous de “nouvelles” hy-
pothèses [BCM22]. Le calcul multipartite sécurisé permet à des parties se méfiant
mutuellement de néanmoins calculer une fonction de leurs entrées sans avoir à n’en rien
révéler de plus que (ce qui peut être déduit de) la sortie du calcul elle-même. Compren-
dre la quantité de communication que requiert un tel protocole est un problème ouvert
majeur, et un premier pas consiste à determiner quand celle-ci peut être sous-linéaire
en la taille de tout circuit représentant la fonction à calculer. Pour certains fonctions

vii

spécifiques, telle que le PIR, la question s’étant même à la sous-linéarité en la taille
des entrées.

Nous développons ici de nouvelles techniques permettant entre autres d’étendre
l’ensemble des hypothèses calculatoires sous lesquelles nous savons obtenir du calcul
sécurisé avec communication sous-linéaire, à la fois dans le cas du calcul général et
dans celui du PIR.

• Sous-linéarité en la taille du circuit. Nous présentons un protocole pour calculer
de façon sécuriser tout circuit “layered”, avec communication sous-linéaire en la
taille du circuit. Ce protocole est basé sur l’existence d’un protocole de trans-
fert inconscient en deux tours et un rendement asymptotiquement optimal, et
possédant de plus une certaine propriété de “décomposabilité”. Cette propriété
n’est pas purement théorique, mais est satisfaite par les protocoles de transfert
inconscient de Brakerski-Branco-Döttling-Pu [BBDP22].

En particulier, nous obtenons ainsi du calcul sécurisé avec communication sous-
linéaire sous la conjonction des hypothèses QR et LPN, ce qui n’était pas connu
précédemment. De plus s’agit d’une approche fondamentalement nouvelle, dans
la mesure où c’est le premier protocole qui ne soit basé ni sur le chiffrement
totalement homormophe ni sur le partage de secret homomorphe.

• Sous-linéarité en la taille des entrées. Nous construisons un protocole de PIR cal-
culatoire avec communication polylogarithmique sous l’hypothèse CDH. Tous les
protocoles précédents sous cette hypothèse utilisent une communication linéaire
(en la taille de la base de données).

Calcul multipartite sécurisé avec communication sous-linéaire, sans FHE
[BCM23]. Des progrès significatifs ont été faits dans la quête d’obtenir sous une mul-
titude d’hypothèses des protocoles de calcul sécurisé avec communication sous-linéaire
en la taille du circuit, mais presque exclusivement dans le cas bipartite. Cependant,
dans le cas du calcul multipartite (à plus de deux parties), la seule approche connue
est basée sur le FHE, même s’il n’y a que trois parties (dont deux corrompues).

Nous présentons un paradigme pour obtenir du calcul sécurisé (N +1)-partite avec
communication sous-linéaire, basé sur une forme de partage de fonction secrète qui
soit seulement N -partite. Ceci nous permet d’obtenir des protocoles tri-, quadra-, ou
penta-partites pour diverses classes de fonctions sous lesquelles on ne sait pas construire
de FHE.

viii

Liste des Articles Présentés dans cette Thèse

En adéquation avec les instructions de l’Université Paris Cité, nous recensons ici les
articles présentés dans cette thèse, et présents en texte (quasi-)intégral.

1. Breaking the Circuit Size Barrier for Secure Computation under Quasi-Polynomial
LPN.

• Co-auteur: Geoffroy Couteau.

• Statut: Publié dans Canteaut, A., Standaert, FX. (eds) Advances in Cryp-
tology – EUROCRYPT 2021. EUROCRYPT 2021. Lecture Notes in Com-
puter Science, vol 12697. Springer, Cham.

• DOI: https://doi.org/10.1007/978-3-030-77886-6_29

• Accès ouvert: https://eprint.iacr.org/2021/943

2. Sublinear Secure Computation from New Assumptions.

• Co-auteurs: Elette Boyle et Geoffroy Couteau.

• Statut: Publié dans Kiltz, E., Vaikuntanathan, V. (eds) Theory of Cryptog-
raphy. TCC 2022. Lecture Notes in Computer Science, vol 13748. Springer,
Cham.

• DOI: https://doi.org/10.1007/978-3-031-22365-5_5

• Accès Ouvert: https://eprint.iacr.org/2023/513

3. Constrained Pseudorandom Functions from Homomorphic Secret-Sharing.

• Co-auteurs: Geoffroy Couteau, Mahshid Riahinia, et Alain Passelègue.

• Statut: Publié dans Hazay, C., Stam, M. (eds) Advances in Cryptology
– EUROCRYPT 2023. EUROCRYPT 2023. Lecture Notes in Computer
Science, vol 14006. Springer, Cham.

• DOI: https://doi.org/10.1007/978-3-031-30620-4_7

• Accès Ouvert: https://eprint.iacr.org/2023/387

4. Sublinear-Communication Secure Multiparty Computation does not require FHE.

• Co-auteurs: Elette Boyle et Geoffroy Couteau.

• Statut: Publié dans Hazay, C., Stam, M. (eds) Advances in Cryptology
– EUROCRYPT 2023. EUROCRYPT 2023. Lecture Notes in Computer
Science, vol 14005. Springer, Cham.

• DOI: https://doi.org/10.1007/978-3-031-30617-4_6

Nous recensons de plus les articles dont seul un résumé est présent dans cette thèse.

5. Topology-Hiding Communication from Minimal Assumptions.

• Co-auteurs: Marshall Ball, Elette Boyle, Ran Cohen, Lisa Kohl, Tal Malkin,
et Tal Moran.

ix

https://doi.org/10.1007/978-3-030-77886-6_29
https://eprint.iacr.org/2021/943
https://doi.org/10.1007/978-3-031-22365-5_5
https://doi.org/10.1007/978-3-031-30620-4_7
https://eprint.iacr.org/2023/387
https://doi.org/10.1007/978-3-031-30617-4_6

• Version Conférence: Publié dans Pass, R., Pietrzak, K. (eds) Theory of
Cryptography. TCC 2020. Lecture Notes in Computer Science, vol 12551.
Springer, Cham.

• DOI: https://doi.org/10.1007/978-3-030-64378-2_17

• Version Journal: Accepté pour publication dans Journal of Cryptology.

• Accès Ouvert: https://eprint.iacr.org/2021/388.pdf

6. On Low-End Obfuscation and Learning.

• Co-auteurs: Elette Boyle, Yuval Ishai, Robert Robere, et Gal Yehuda

• Statut: Publié dans Yael Tauman Kalai, editor, 14th Innovations in Theo-
retical Computer Science Conference (ITCS 2023), volume 251 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), pages 23:1–23:28, Dagstuhl,
Germany, 2023. Schloss Dagstuhl – Leibniz- Zentrum für Informatik.

• DOI: https://doi.org/10.4230/LIPIcs.ITCS.2023.23

7. Towards Topology-Hiding Computation from Oblivious Transfer.

• Co-auteurs: Marshall Ball, Alexander Bienstock, et Lisa Kohl.

• Statut: Accepté pour publication à TCC 2023.

• Accès Ouvert: https://eprint.iacr.org/2023/849.pdf

8. New Random Oracle Instantiations from Extremely Lossy Functions.

• Co-auteurs: Chris Brzuska, Christoph Egger, Geoffroy Couteau, et Pihla
Karanko.

• Statut: Manuscrit en soumission.

• Accès Ouvert: https://eprint.iacr.org/2023/1145.pdf

x

https://doi.org/10.1007/978-3-030-64378-2_17
https://eprint.iacr.org/2021/388.pdf
https://doi.org/10.4230/LIPIcs.ITCS.2023.23
https://eprint.iacr.org/2023/849.pdf
https://eprint.iacr.org/2023/1145.pdf

Université Paris Cité
Ecole Doctorale Sciences Mathématiques de Paris Centre – ED386
Institut de Recherche en Informatique Fondamentale (UMR 8243)

and

Reichman University
Efi Arazi School of Computer Science

Foundations and Applications of Cryptographic Theory – FACT Center

Doctoral Thesis

Sublinear-communication
secure multiparty computation
or: How I Stopped Communicating and Started Computing

Candidate: Pierre Meyer Advisors:
Prof. Elette Boyle

Dr. Geoffroy Couteau

A thesis submitted in fulfillment of the requirements for the Degree of Doctor of
Philosophy (Ph.D.) in Computer Science

And defended publicly on September 14th 2023 before a jury comprised of:

Elette Boyle Associate Professor Reichman University and NTT Research. Advisor
Geoffroy Couteau Chargé de Recherche CNRS, Université Paris Cité, IRIF. Advisor

Claudio Orlandi Full Professor Aarhus Universitet. Reviewer
David Pointcheval Directeur de Recherche DIENS, ENS, CNRS, Inria, Université PSL. Reviewer

Yuval Ishai Full Professor Technion. Examiner
Tal Malkin Full Professor Columbia University. Examiner
Tal Moran Associate Professor Reichman University. Examiner

Abstract
Secure Multi-Party Computation (MPC) [Yao82, GMW87a] allows a set of mutually
distrusting parties to perform some joint computation on their private inputs without
having to reveal anything beyond the output. A major open question is to understand
how strongly the communication complexity of MPC and the computational complexity
of the function being computed are correlated. An intriguing starting point is the study
of the circuit-size barrier. The relevance of this barrier is a historical, and potentially
absolute, one: all seminal protocols from the 1980s and 1990s use a “gate-by-gate”
approach, requiring interaction between the parties for each (multiplicative) gate of
the circuit to be computed, and this remains the state of the art if we wish to provide
the strongest security guarantees.

The circuit-size barrier has been broken in the computational setting from specific,
structured, computational assumption, via Fully Homomorphic Encryption (FHE)
[Gen09] and later Homomorphic Secret Sharing [BGI16a]. Additionally, the circuit-size
barrier for online communication has been broken (in the correlated randomness model)
information-theoretically [IKM+13,DNNR17,Cou19], but no such result is known for
the total communication complexity (in the plain model).

Our methodology is to draw inspiration from known approaches in the correlated
randomness model, which we view simultaneously as fundamental (because it provides
information-theoretic security guarantees) and inherently limited (because the best we
can hope for in this model is to understand the online communication complexity of
secure computation), in order to devise new ways to break the circuit-size barrier in the
computational setting. In the absence of a better way to decide when concrete progress
has been made, we take extending the set of assumptions known to imply sublinear-
communication secure computation as “proof of conceptual novelty”. This approach
has allowed us to break the circuit-size barrier under quasipolynomial LPN [CM21] or
QR and LPN [BCM22]. More fundamentally, these works constituted a paradigm shift,
away from the “homomorphism-based” approaches of FHE and HSS, which ultimately
allowed us to break the two-party barrier for sublinear-communication secure compu-
tation and provide in [BCM23] the first sublinear-communication protocol with more
than two parties, without FHE. Orthogonally to this line of work, purely focusing on
computational security, we showed in [CMPR23] that [BGI16a] could be adapted to
provide information-theoretic security for one of the two parties, and computational se-
curity for the other: these are provably the strongest security guarantees one can hope
to achieve in the two-party setting (without setup), and ours is the first sublinear-
communication protocol in this setting which does not use FHE.

Keywords: Cryptography · Foundations · Secure Multiparty Computation · Func-
tion Secret Sharing

2

To my parents, my sisters, and my grandfather.

Foreword
When a section of this thesis describes results obtained as part of joint work with
other researchers, we emphasise that fact in order to assign proper credit for what we
describe as “our results”; however even within such sections the meaning of “we” will
vary from “my co-authors and I” to pluralis majestatis3 (in particular, when providing
retrospective analyses and subjective interpretations of jointly authored works). This
should not be taken to mean named parties necessarily endorse any claims made within
this document.

Acknowledgments
Thanks to David Pointcheval and Claudio Orlandi for taking time ouf of their busy
schedules to review this thesis, and in doing so became the first, and probably last,
people to read this document. Thanks to Yuval Ishai, Tal Malkin, and Tal Moran for
agreeing to serve on the committee as examiners. Thanks to Elette Boyle and Geoffroy
Couteau for advising me these past few years. I am honored to have such a distin-
guished committee assess my PhD proposal.

It always struck me as odd that cryptographers, who work so hard to guarantee
others’ privacy, would be willing to broadcast sensitive information in this section of
their manuscript. One way to achieve perfect privacy would be to simply copy and
paste someone else’s acknowledgements (with bonus points if they happened to therein
thank me by name...). Unfortunately, this would fail to achieve any reasonable notion
of “correctness”, so I set out to design a cryptosystem which would allow me to have
this section be a long pseudo-random string (to be generated with a corresponding
backdoor) which could be opened to each reader’s own personalised message.

D’‘‘@p>J[|4X2VUSe@?b0<Ln,+k#i’g2|A/R~}|_):xwYotsrk1oQPlkd*)JIedcb[!BXWV
[ZSwWPONMRQPImM/KDhHGFED=%;_?>=6|:32Vwv432+O/.-&+$H(’&feBz@~}|^]yxq7utV
rkji/mOkdcb(‘ed]#a‘_A@\[TxXQ9UTMqQJ2NMLKDhHA)E>b%A@?87[;{z810/S-,+0/(’&
J*#(’~Dedzyx>_{tyr8vuWslkj0hPfkdc)afe^]ba‘Y}@VUyS;QPOsMRKJONGkEJCBGFE>b
%A@?87[5:921U5u-,10/(Lm+*)"!&%${Ab~}vut:xwpXn4Ukji/mleM*hgfH%cb[ZY}]\U=
SwWVUN6Lp3ONMLEDh+*F?D=BA@?8\<;432765.R210)o’&Jk)"F&f$#"!~}v<zy[qpunml2
pohg-kjihJI_%cba‘_A@VzZ<XWPUTMqQJnNMLEJCgG@E>CB;_?>~<5Y3y705.-Q1qp(’&Jk
)"!&}C{c!x>_{tyr8Yutsl2pRhmfkjiha’eGcba‘Y}]\>=SwWVUTMqQPImG/EJCHAeE’=<A
@?8\}54321U/u-,+Op.’K+$)(!EfeB"y~}v{zyr8punm3qpihg-kdcha’Hd]\[ZY}]VUZSR
vVUTMLpP2NGFEiC+A@EDCB;_?>=6|:32V6/.32+O/.-,+*#(!E%${"y?}|utyxwpo5srkpi
/mlkjchg‘&dFE[‘_X]VzTSRQu8NMRKPIHGkKJCgGF(DCBA@9]~<5:381U/4-,10/(L,+$#G
!~%|{A!~w_{zs9wYunmrqpi/mfN+ib(‘H^]\[!l

When I realised this would require me to implement one of my own protocols, I
decided to instead resort to the traditional format of acknowledgements, albeit in a
somewhat reserved form. I shall confine more involved expressions of sentiment to
secure point-to-point channels, but know that many of you mean much, much, more
to me than you probably realise (and certainly more than I am capable of expressing).

My journey as a researcher up to this point has been such a wonderfully natural
sequence of events it is nigh impossible to describe in purely secular terms. First and
foremost, I thank my parents for my upbringing and allowing each of their children to

3To be understood here as “my ego and I”.

4

develop and express themselves in their own unique way, and for nurturing my calling
as a mathematician. I thank my grandfather M.J.P. for being such a great source of
inspiration, and one of the most remarkable people I know. I would like to thank “le
Maître” Abehsira, whose pedagogical genius (a term I use very sparingly) kept alive
the spark of mathematical research in a young mind sometimes prone to self-doubt. I
would like to thank Binh-Minh Bui-Xuan and Clémence Magnien for providing such a
positive first experience of academic research: the fact they always kept an open door,
and were so willing to listen to and accept ideas coming from a student has shaped the
way I view research today. I would like to thank Damien Stehlé and Alain Passelègue
for pointing a Masters’ student in search for the right internship in the perfect direction.
I thank Daniel Tschudi and the Aarhus crypto group for being so welcoming into the
cryptographic community. Finally, I thank Elette Boyle and Geoffroy Couteau for
being such exceptional advisors, and everything I had hoped for when I came to them.

None of this would have been possible without the kind support of my friends over
the years. I cannot congratulate you on your choice of friend, but I am deeply grateful
for it. Antoine, Idan, Louis-Henri, Timothée, Gauthier, Adrien, Anne-Lise, Elizabeth,
Audrey, Yannick, Solveig, Maximilien, Blandine P., Enguérand, Blandine F., Léonard,
Julu J, HélèH, Joso J, Dene D, and “Chef”.

Thanks to Storm Storm and Hund for being there when I needed you. Thanks to
the members of the “IRIF coffee break team”, and especially Dancsi, Conker, Avi, and
Simona4. Thanks to Cecilia, Simon, Divya, Amos, Hila, Dor, Matan, Shuli, Jessica,
Hai for the many fun times in the Tel Aviv area. Also thanks to FACT’s Ran, Tal,
Adi, Rita, Alon. Thanks to Geoffroy, Elette, Lisa, Marshall, Ran, Tal Ma., Tal Mo.,
Yuval, Gal, Robert, Mahshid, Alex, Dung, Alain, Chris, Christoph, and Pihla for the
wonderful research.

Finally, my thanks to all those of you who have brightened one of my days.

Organisation of this Thesis
In this thesis, chapter 1 contains an introduction to the topic and a detailed summary
of our results, chapter 2 preliminarily regroups standard notions from the literature,
chapter 3 recalls the state of the art on low-communication secure computation (ex-
cluding our own results presented in this thesis), chapter 4 describes our construction
of sublinear-communication secure two-party computation from quasipolyomial LPN
via single-circuit HSS, chapter 5 provides our two-party construction with one-sided
statistical security from DCR or DDH, chapter 6 presents our protocol for sublinear-
communication secure two-party computation from QR+LPN via correlated SPIR,
chapter 7 expands on our breakthrough to the multiparty setting (i.e. beyond two par-
ties) without fully homomorphic encryption, and finally chapter 8 lists a few immediate
open questions raised by our work.

A tutorial on skimming through this manuscript. The expert reader look-
ing for a ten-page comprehensive overview, exclusive to this thesis, of our published
works [CM21,CMPR23,BCM22,BCM23] may wish to start with section 3.2.3 and then
read section 1.3 (except section 1.3.2). Furthermore, each of the technical chapters
(chapters 4 to 7) starts with a high-level section which is akin to a technical overview
(sections 4.1, 5.1, 6.1 and 7.1).

4If you are currently reading this in book format instead of the traditional (and impractical) A4,
you have Simona and her own thesis to thank for inspiring this great idea!

5

Contents

1 Introduction 9
1.1 Cryptography . 9
1.2 Secure Multiparty Computation . 11
1.3 Our Results on Sublinear-Communication Secure Multiparty Computation 13

1.3.1 The Power of Retrospection: A Romanticised Story 15
1.3.2 The Historical Perspective: The “Raw Data” 20

1.4 Other Selected Contributions . 21

2 Preliminaries 25
2.1 Notations . 25
2.2 Universal Composability . 26
2.3 Cryptographic Primitives . 26

2.3.1 Homomorphic Secret Sharing (HSS) 26
2.3.2 Function Secret Sharing (FSS) 28
2.3.3 Pseudorandom Correlation Generator (PCG) 29

2.4 Computational Assumptions . 30
2.4.1 Learning Parity with Noise (LPN) 30
2.4.2 Quadratic Residuosity Assumption (QR) 31
2.4.3 Decisional Diffie-Hellman (DDH) 32
2.4.4 Decision Composite Residuosity (DCR) 32

3 Prior (and Concurrent) Works on Sublinear-Communication Secure
Computation 35
3.1 Information-Theoretic MPC (in the plain model) 36

3.1.1 Linear Communication . 36
3.1.2 Sublinear Communication . 36

3.2 MPC in the Correlated Randomness Model 36
3.2.1 Sublinear Online Communication 37
3.2.2 Lower Bounds? . 37
3.2.3 (Sub)linear-Communication Secure Computation in the Corre-

lated Randomness Model, via Circuit Randomisation 37
3.3 Computational MPC . 41

3.3.1 Linear Communication . 41
3.3.2 Sublinear Communication . 41

4 Offline-Online Sublinear-Communication Two-Party Computation 43
4.1 An Overview of Our Protocol . 45

4.1.1 Block Decomposition of Layered Circuits 47
4.1.2 Securely Computing C in the Correlated Randomness Model . . 48

4.2 Generating the Correlated Randomness from Quasi-Polynomial LPN . 53
4.2.1 Substrings Tensor Powers Correlations (stp) 54

6

4.2.2 Good Cover . 54
4.2.3 PCG for Subsets Tensor Powers (PCGstp) 56
4.2.4 Instantiating the MPFSS . 59
4.2.5 Securely Distributing MPFSS.Gen and Πstp 60

5 Bridging the Gap between HSS and FHE 63
5.1 An Overview of this Chapter’s Results 64

5.1.1 An overview of staged HSS . 64
5.1.2 An overview of sublinear-communication from staged HSS . . . 66

5.2 Staged HSS . 67
5.2.1 Homomorphic Secret Sharing 67
5.2.2 HSS following the RMS Template 68
5.2.3 Extended Evaluation and Simulatable Memory Values 69
5.2.4 Staged Homomorphic Secret Sharing 70

5.3 Staged HSS from DCR . 71
5.3.1 HSS Following the RMS Template from DCR. 73
5.3.2 HSS with Simulatable Memory Values from DCR. 73
5.3.3 Staged HSS from DCR. 74

5.4 Sublinear-Communication Secure Two-Party Computation with One-
Sided Statistical Security from Staged HSS 77
5.4.1 In the FHSS

update-Hybrid Model. 77
5.4.2 Instantiating FHSS

update under DCR. 81

6 Towards a Complete Primitive for Sublinear-Communication Two-
Party Computation 85
6.1 Overview of this Chapter’s Results . 86

6.1.1 Starting point: An SPIR viewpoint. 87
6.1.2 Toward batch SPIR with correlated queries. 87
6.1.3 Decomposable batch OT. 88
6.1.4 Sublinear 2PC from decomposable batch OT. 89

6.2 Correlated Symmetric PIR . 90
6.2.1 Correlated Symmetric PIR with “Mix and Match” Queries . . . 90

6.3 Sublinear-Communication Secure Computation from Correlated SPIR . 93
6.3.1 Sublinear Computation of log log-Depth Circuits from corrSPIR . 93
6.3.2 Extension to Layered Circuits 95

6.4 A “Generic” Construction from Decomposable Batch OT 95
6.4.1 Decomposable Two-Round Batch Oblivious Transfer 95
6.4.2 Bounded Query Repetitions . 97
6.4.3 Two-Round Batch SPIR with Correlated Queries from Two-Round

Decomposable Batch OT (with Bounded Query Repetitions) . . 103
6.5 Instantiation from Standard Assumptions 110

6.5.1 Decomposable Packed Linearly Homomorphic Encryption 110
6.5.2 Two-Round co-PIR . 115
6.5.3 Decomposable OT from Decomposable LHE 116

7 Breaking the Multi-Party Barrier for Sublinear-Secure Computation,
without FHE 121
7.1 Overview of this Chapter’s Results . 124
7.2 General Template for (N+1)-Party Sublinear Secure Computation from

N -Party FSS . 129
7.2.1 Requirements of the FSS Scheme 130

7

7.2.2 The Secure Computation Protocol 131
7.3 Oblivious Evaluation of LogLog-Depth FSS from PIR 135

7.3.1 LogLog-Depth FSS . 136
7.3.2 Oblivious Evaluation of LogLog-Depth FSS from PIR 136

7.4 LogLog-Depth FSS from Compact and Additive HSS 140
7.4.1 From Compact and Additive HSS 140
7.4.2 Defining the LogLog-Depth FSS Scheme. 141
7.4.3 From Compact and Additive HSS with Errors 146

7.5 Instantiations . 153
7.5.1 Sublinear-Communication Secure Multiparty Computation from

PIR and Additive HSS . 153
7.5.2 Four-Party Additive HSS from DCR 154
7.5.3 Sublinear-Communication Secure Multiparty Computation from

New Assumptions . 156

8 Open Questions 161

8

Chapter 1

Introduction

1.1 Cryptography

One typically thinks of cryptography as the art of designing or breaking secret codes,
used by intelligence agencies to achieve secure communication over public channels, and
this was an apt description up until the mid 1970s. Over the past fifty years however,
its use has been democratised with the rise of everyday global communication over the
Internet, and furthermore the nature of cryptography has evolved in two significant
ways.

From an art to a science. The main drawback of what was historically referred to
as a “secret code” is that its security relies solely on the hope an attacker will not find a
flaw the designer overlooked. In contrast, the main feature of modern cryptography is
that it provides provable security guarantees and rules out the existence of any attack.
This is done by first establishing a formal framework modelling an adversary’s power
and defining desirable security properties, and then providing a rigorous mathematical
proof that a scheme satisfies these security definitions. Still, it is important to keep
in mind that cryptography is only one way to guarantee the security of information
systems, and in practice it is crucial it be combined with other crafts and sciences. For
instance, cryptography can allow two parties Alice and Bob to agree on a secret value
even in the presence of an eavesdropper given access to the complete transcript of their
communication. However, the security proof guaranteeing that the agreed-upon value
remains secret may not—and should not be expected to—hold if the adversary is given
extra power, such as the ability to surreptitiously modify the messages between Alice
and Bob. What if the eavesdropper is able to gain additional information beyond the
communication between them? For instance, monitoring the electrical consumption of
Alice’s computer might give away information about her local computation. Bob could
be tricked through social engineering into revealing part of the secret. Furthermore,
most security proofs only hold provided the parties use a cryptography-grade source of
randomness. These vulnerabilities and many more can be handled by cryptography—
provided they are factored into the model—but it will often be preferable to also use
a combination of engineering and other physical methods to safeguard information
systems.

Once a satisfactory model for the capabilities of users (e.g. Alice and Bob in the
above paragraph) and adversaries has been established, we can prove that a given
protocol satisfies a formal security definition. One might hope to prove that the tran-
script of the communication between Alice and Bob is a sequence of uniformly random
messages which is independent (in the mathematical sense of formal random variables)

9

of the underlying private information they are exchanging. Of course these messages,
when considered in conjunction with either of the parties’ local state (i.e. “the random-
ness they used”), are not independent of the payload since both parties should be able
to retrieve this information: it is only the adversary’s partial view of the transcript
which can be truly random. This strong notion of security is referred to as perfect,
as informally the adversary’s view carries no information which allows them to deter-
mine the users’ secrets. Unfortunately perfect security may be provably impossible to
achieve in some settings, and even when it is possible, it can be prohibitively expensive
in terms of the users’ resources. When we consider adversaries with bounded computa-
tional resources, it will be sufficient that their views only “seem independent” to them
because of their restricted power.

Ideally we would want unconditional1 security guarantees (against a given class of
adversaries, e.g. computationally bounded). This is a tall order, and in most cases far
beyond the scientific community’s current state of knowledge. Most often the best we
can hope for is a security reduction: the ability to break a given scheme is reduced
to the ability to solve an underlying problem, which is presumed to be hard (but not
necessarily proven to be so). In other words, assuming the underlying problem cannot
be broken (by some class of adversaries), the scheme is secure. If an assumption is
not broken despite being extensively studied by the community it will be considered
standard, although it should be noted there is a perpetual debate in the community
as to which assumptions should be considered standard and which should not. There
are many sources of “potential hardness” used to provide candidates for computational
assumptions, such as integer factorisation or lattice and code-based problems.

The security of a cryptographic scheme can alternatively be reduced to the security
of another. Should the second scheme be sufficiently “elementary” we will talk about
a generic assumption. These include (the existence of) one-way functions (OWF),
which are “easy to compute, but hard to invert”, or (the existence of a) key-agreement
(protocol) (KA), which allows parties to establish a shared secret over a public channel.
If a converse reduction exists (i.e. object A can be reduced to object B and object B
can be reduced to object A), then we will talk about minimal assumptions. In the same
way not everyone agrees on which computational assumptions are standard, there is
some level of subjectivity involved in deciding which assumptions deserve to be called
generic or minimal2. The main advantage of constructions from generic assumptions
rather than from specific computational assumptions is modularity: we have complete
freedom over the choice of implementation of the starting point of the reduction.

From secret codes to complex protocols. Typically, one thinks of cryptography
as a tool used to achieve communication which is secure against external adversaries.
In its modern form however, cryptography can be achieved to achieve more complex
tasks. In section 1.2, we describe secure multiparty computation, which can be used to
perform complex computations (beyond secure communication) while guarding against

1This is the first and last time we will use this term (in the context of security proofs) in this
thesis, or indeed in any of our works. The issue is it obfuscates the fact that the model itself (e.g. if
the reader is familiar with these technical terms, the fact an adversary is passive or that there is an
honest-majority) should arguably be seen as an assumption. If these assumptions are overlooked when
applying cryptographic tools to a problem, consequences might be devastating. More concretely, the
term unconditionally secure is often used in the context of MPC even though the scheme protocol
requires the parties communicate over secure point-to-point channels, which can itself be a challenge
of (software and hardware) engineering to implement.

2Since everything can be reduced to itself—whether it even exists or not—one has to be careful in
which assumptions are labelled “minimal” least the concept become meaningless.

10

threats which are internal to the information system.

1.2 Secure Multiparty Computation

Two or more parties may wish to perform some joint computation of their private in-
puts, but they may not trust each other enough to simply share their inputs. If all
parties could agree on a trusted third party, they could simply delegate this computa-
tion: everyone would send their inputs to this trusted party, then wait to receive the
result. The existence of such a third party is of course often an unrealistic assump-
tion, and the goal of secure multiparty computation (MPC) is to instead provide the
parties with a protocol they can run amongst themselves. Before describing how it
might be achieved, we start by listing a few scenarios where secure computation may
be desirable.

Usecases. MPC has a range of applications in settings when one is required to in-
teract with a party with opposing or competing goals. Diplomacy (and more generally,
any form of negotiation or auction) often relies on secret information such as what
each party values most, and what each party knows about the other party’s intentions.
Even—or perhaps especially—in backchannel diplomacy, not every piece of relevant
information can be put on the table openly (Is the prisoner to be exchanged in fact a
spy, and if so what do they know? How much are they worth?). A secure computation
protocol can be used to “emulate the negotiations” (with a rigorous mathematical proof
that this emulation was done “honestly”, without trying to advantage any party) in a
garbled way which reveals no intermediary information beyond the final agreement. As
an additional benefit, this can also be used to hide the fact any negotiation is even tak-
ing place, up until the point of final agreement. The classic example for this is private
dating. Alice and Bob may not be willing to declare interest to each other directly, and
so—without 2PC—would have to rely on trusted friends to act as intermediaries. We
leave it to the reader to extend the above example to the multiparty setting.

As a second example, let’s say a patient is brought to the hospital with unusual
symptoms. In order to find the best treatment, the doctors in this hospital—hereafter
considered a collective party we refer to as “the hospital”—needs to know if other pa-
tients presented the same symptoms, possibly in different hospitals, and if so which
treatment worked for them. The problem is that previous patients’ privacy is very im-
portant, so the different hospitals cannot simply share their databases with each other
in the clear. However, if the different hospitals run a secure multiparty computation
protocol, they can use the data without violating patient privacy.

Simulation-based security. When an adversary is external (for instance an eaves-
dropper), then we can hope to guarantee they learn “no information”. However, when
an adversary is internal to the communication system, they can corrupt parties who
hold some information as inputs and are entitled to learn their own outputs. There-
fore, intuitively, the security notion we can hope to capture is that the adversary, who
corrupts some of the parties and gains access to their view of the protocol’s execu-
tion, should learn nothing about the honest parties’ inputs beyond what they could
infer from the corrupted parties’ inputs and outputs. Proving this statement more
formally can be done by providing a simulator, which is given this exact information
(the corrupted parties’ inputs and outputs) as input and outputs the joint view of the
corrupted parties. If no adversary can distinguish between the simulated view (which,

11

by definition, cannot possibly leak any information beyond what is allowed) and the
real view of a protocol’s execution, we will call the protocol standalone secure. We
refer to Lindell’s [Lin16] tutorial on the simulation proof technique for a more in-depth
introduction to the topic.

Standalone simulation security does not necessarily provide any guarantees as multi-
ple instance of a protocol are composed, sequentially or in parallel. While a in-depth ex-
planation is beyond the scope of this introduction, we mention that in Canetti’s [Can01]
Universal Composability (UC) framework, in order to compose protocols one must be
able to simulate the behaviour of the adversary, as opposed to simply simulating its
view. The simulator is then called an ideal adversary which, by definition, cannot be
passing on sensitive information to a malicious environment.

The cost of security. Once secure multiparty computation is defined, we can ask
whether it is even possible to achieve. We will assume that n parties, who are fully
connected by secure and authenticated point-to-point channels, wish to perform secure
computation (of arbitrary functions). As mentioned in section 1.1, proving formal
security claims requires modelling adversaries and parties. An adversary is allowed to
corrupt some of the parties running a protocol, and the principle parameters governing
the strength of the adversaries are the type and number of corruptions, as well as
the computational power of the adversary. An adversary is passive (or semi-honest)
if corrupt parties follow the protocol (and only try to “passively” gain information
by recording their transcript), semi-malicious if corrupt parties follow the protocol
but the adversary sets the value of their random tape, and malicious if the adversary
can control the behaviour of corrupt parties arbitrarily. A threshold-t adversary can
corrupt up to t parties out of n; if t < n/2 we will say there is an honest majority and
if t < n/3 that there is an honest super-majority.

In the presence of a computationally unbounded adversary, it is known [BGW88,
CCD88] that any functionality can be securely computed with perfect correctness and
security, against a passive adversary if there is an honest majority of parties (threshold
t < n/2), and against an active adversary if there is an honest two-thirds super-majority
of parties (t < n/3). If the parties additionally have access to a secure broadcast
channel, then statistical correctness can be achieved against active adversaries even if
we only assume a simple honest majority [RBO89].

In the cryptographic setting, where the adversary is limited to run in polynomial-
time, and still under the assumption that the parties have access to a full set of pairwise
connected channels, then it is known that any function can be securely computed
while tolerating all-but-one corruptions (t < N) from Oblivious Transfer (OT) [Yao86,
GMW87b,GMW87a,Kil91].

However, the communication complexity of all these seminal protocols is linear in
the circuit size of the function computed. Fundamentally, this is because all these works
can be seen as reducing the ability to compute a function by providing the parties the
means to compute a single (multiplication) gate, then compile up to general circuits
in a “gate-by-gate” fashion. In contrast, (non-private) distributed computation simply
requires the parties to exchange their inputs, and perform the computation locally,
with no further interaction. This begs the question of whether a high amount of
communication is inherently part of the cost of security.

Is the communication complexity of secure computation strongly corre-
lated with the computational complexity of the function being computed? 3

3This elegant phrasing of the question is shamelessly lifted from Yuval Ishai’s talk entitled “Private

12

We present in chapter 3 an overview of the state of the art in regards to providing an
answer to this question, excluding our own results which we summarise in section 1.3.

1.3 Our Results on Sublinear-Communication Secure
Multiparty Computation

This section describes results previously com-
municated in [CM21,BCM22,BCM23,CMPR23].

Based on joint work with Elette Boyle, Geoffroy
Couteau, Alain Passelègue, and Mahshid Riahinia.

Our goal in this thesis is to make a step towards establishing the communication
complexity of secure multiparty computation by understanding in which circumstances
the circuit-size barrier can be broken. That is to say, we seek to know when “general
purpose” secure multiparty computation can be done using an amount of communica-
tion which grows only sublinearly in the circuit-size. The relevance of this barrier is a
historical, and potentially absolute, one: all seminal protocols from the 1980s and 1990s
require linear communication, and this remains the state of the art if we wish to provide
the strongest security guarantees, i.e. information-theoretic security in the plain model.

Previous works have already demonstrated that communication need not scale lin-
early with the size of the circuit, under specific computational assumptions or in the
correlated randomness model. Our methodology is to draw inspiration from known
approaches in the correlated randomness model, which we view simultaneously as fun-
damental (because of information-theoretic security guarantees) and inherently limited
(because the best we can hope for in this model is to understand the online commu-
nication complexity of secure computation), in order to devise new ways to break the
circuit-size barrier. We put forward two ways to track our progress.

Sublinear-communication secure computation from “new” assumptions. As we de-
velop various approaches to breaking the circuit-size barrier, we will need a way
to decide how novel each one is. We propose to take extending the set of (stan-
dard) assumptions known to imply sublinear-communication secure computation
as concrete “proof of conceptual novelty”.

This first metric has the merit of being of an objective measure (up to how we decide
which assumptions are “standard”) by which to quantify our progress. Note however
that achieving sublinear-communication secure computation from new assumptions4

is not our direct goal per se. Rather, our hope is that by studying protocols from
a multitude of structured computational assumptions, we can start abstracting out
generic methods, and ultimately converge on minimal assumptions.

Once we develop several ways to break the circuit-size barrier, we can start classify-
ing protocols into different categories depending one how well they solve the problem.
In the high-end regime, we consider protocols which provide the strongest security

Informal Retrieval, Part I” at the 10th Bar-Ilan Winter School on Cryptography.
4We emphasise that all the computational assumptions we work with are standard and well-

founded; “new” should be taken to mean “not previously known to imply sublinear-communication
secure computation”.

13

guarantees5 or achieve the lowest communication complexity. In the low-end regime,
we consider protocols which “only just qualify” as sublinear communication. Beyond
simply understanding the landscape of protocols, we hope this classification can help
us identify the more fundamental techniques (and ideally minimal assumptions), as
opposed to the “heavy hammers”, which overshoot the problem.

Converging to the circuit-size barrier. It is usually desirable for a protocol to
present extra features (e.g. low round or computational complexity, parallelisa-
tion, or pre-processability). However, since our goal is to understand the sig-
nificance of the circuit-size barrier, such additional properties can be viewed as
parasitic. As we develop new approaches to breaking the circuit-size barrier, we
will try and identify the different ways in which each one overshoots the problem.
If we can isolate the source of these additional properties within the assumptions
we make, we can (hopefully, heuristically) gain insight into more “minimal” tech-
niques.

We note however that this second way to determine progress is less of a metric and
more of a helpful, albeit informal, guideline. Indeed, it would be fairly straightforward
to “sabotage” any given sublinear-communication protocol so that it only barely qual-
ifies as such. Still, provided each protocol’s conceptual novelty is demonstrated by its
reliance on a new assumption, this should remain a good heuristic way to converge on
more fundamental methods.

Despite concrete progress, our work is somewhat open-ended in nature6. For this
reason, we split the presentation of our results in two. To borrow from more experi-
mental sciences, we start by explaining the theory we find best explains our datapoints.
Then, to safeguard against the insidious dangers of wishful-thinking-driven overfitting,
we present the “raw data”, i.e. the main theorems, our conclusions are based on. After
all, one can learn from the unsound nearly as well as from the sound, but it is easier
when claims are precise enough that one can determine when their author left the path
of reason.

5For two-party computation, the best we can hope for (in the plain model) is one-sided statistical
security, providing statistical security for one party and computational security for the other.

6Three years being a very short amount of time in the grand scheme of things, we candidly see this
as empirically evidence we work on not-too-uninteresting questions.

14

1.3.1 The Power of Retrospection: A Romanticised Story

“– Unsound?
– Well that’s a general opinion. Sloppily argued from some highly

dubious data.
– Well then please take [the book] back.
– Why?
– Well I have no wish to clutter my mind with useless information.
– My dear sir, your mind may not have elastic walls, but it does at

least possess both an entrance and an exit. Read the book, decide
for yourself what to retain. One can learn from the unsound as well
as the sound you know. ”

“The Saviour of Cripplegate Square”, The Further Adventures of Sherlock
Holmes, written by Bert Coules.

In 2009, Gentry [Gen09] demonstrated the feasibility of fully homomorphic encryp-
tion, which led to optimal-communication secure multiparty computation in the com-
putational setting [DFH12,AJL+12]. For seven years, this remained the only avenue
for breaking the circuit-size barrier, and in particular instantiations were restricted to
lattice-based assumptions. That is, until Boyle, Gilboa, and Ishai [BGI16a] demon-
strated that sublinear-communication secure two-party computation does not require
FHE. The introduction of homomorphic secret sharing opened the way for breaking
the circuit-size barrier under DDH [BGI16a] and later DCR [FGJS17, OSY21, RS21]
(but using essentially te same blueprint). However it seems that a fundamentally
new approach is required if we want to move away from computational assumptions
with a rich algebraic structure.7 In search for new insights, we turn to the correlated
randomness model for inspiration, as it is the only model in which we can achieve
low-communication secure multiparty computation with information-theoretic security
guarantees.

First Insight: Feasibility of offline-online sublinear-communication secure
multiparty computation. Couteau [Cou19], building chiefly upon the works of
Ishai, Kushilevitz, Meldgaard, Orlandi, Paskin-Cherniavsky [IKM+13] and Damgård,
Nielsen, Nielsen, Ranellucci [DNNR17], designed a protocol for securely computing any
layered8 circuit with a sublinear amount of communication while only using a polyno-
mial amount of computation and correlated randomness. However, the model “cheats”
by only counting online communication, and sweeping under the rug resources involved
in generating the setup in the absence of a trusted dealer. Fortunately, Couteau also
showed that this setup could be generated from Boyle, Gilboa, and Ishai’s [BGI16a]
HSS (in the two-party setting), or from FHE (in the multiparty setting). Still, since
these assumptions were already known to imply sublinear-communication secure com-

7A concrete first goal is to achieve sublinear-communication secure computation from assumptions
e.g. not known to imply linearly homomorphic encryption. However, the relevance of this barrier
is unclear beyond the obvious, and somewhat misleading, semantic link between fully homomorphic
encryption and homomorphic secret-sharing.

8A circuit is layered [GJ11] if all gates and inputs are arranged into layers, such that any wire only
connects one layer to the next, but each input may occur multiple times at different layers. A layered
circuit is locally synchronous [Bel84] if each input occurs exactly once (but at an arbitrary layer). A
locally synchronous circuit is synchronous [Har77] if all inputs are in the first layer.

15

putation, one may wonder as to the actual novelty of this approach, when transposed
into the plain model (with computational security).

First Contribution: Offline-online sublinear-communication two-party
computation “does not require homomorphism”. As our first contribution, we
show that, in the two-party setting, the correlated randomness used by Couteau’s
[Cou19] protocol can be generated with sublinear communication under the quasipoly-
nomial Learning Parity with Noise (LPN) assumption. Very concretely, this extends
the set of assumptions under which the circuit-size barrier is known to be broken. Fur-
thermore, while our techniques could in retrospect be used to build a special-purpose
form of HSS, and therefore fall into Boyle et al.’s [BGI16a] framework, we argue that
the tools we use are conceptually much weaker. Indeed, from quasipolynomial LPN,
we only build a “single-circuit HSS scheme”, for which it is crucial at the time of
sharing the secret input that the parties know the topology of the circuit they want
to evaluate homomorphically. The parties must first agree of a loglog-depth circuit,
then share the input, and finally generate shares of that circuit’s outputs. In con-
trast Boyle et al.’s [BGI16a] HSS from DDH (as well as subsequent construction from
DCR [FGJS17,OSY21]) allows the parties to first generate input shares and then gen-
erate output shares for any (and even many!) log-depth circuits.

Second Contribution: Sublinear-communication two-party computation
with one-sided statistical security does not require FHE. It may seem unclear
at first just how much our LPN-based single-circuit HSS is different from the DDH- or
DCR-based HSS for branching programs. We now put forward evidence of a “conceptual
separation” by showing that the latter yields sublinear-communication protocols with
strong properties, previously believed to be only achievable from FHE.

From initial inspection, FHE enjoys two competitive advantages over HSS. The
first is that the communication complexity of HSS-based protocols (even with HSS
for P/poly) is inherently symmetric in that communication must scale with the size
of both inputs9, whereas FHE-based protocols can be allowed to scale only with the
size of the smaller of the two parties’ inputs. The second advantage is that provided
the fully homomorphic encryption scheme is statistically function-hiding, which many
schemes are, then the resulting sublinear-communication secure two-party computation
protocol provides one-sided statistical security and one-sided computational security.

Our second contribution is to bridge the gap between FHE and HSS by showing
that most known HSS schemes for NC1 enjoy limited programming properties on the
HSS shares10, which mean that one of the two HSS shares of an input x can be sampled
before knowing x. In turn, this yields sublinear-communication secure two-party com-
putation with one-sided statistical security. Concretely, this is the first positive result
for sublinear-communication secure two-party computation with one-sided statistical
security from assumptions not known to imply FHE.

Second Insight: Break a circuit into small chunks, then run correlated in-
stances of communication-optimal computation. Using computational tools to
instantiate protocols in the correlated randomness model has allowed us to break the

9We thank Yuval Ishai for bringing this fact to our attention during the defence of this PhD’s
initial proposal, thereby planting the seeds for some of this work.

10This is an eminently non-black box statement. We observe that most constructions of HSS schemes
for branching programmes follow a common “template”, which we show to yield these additional
properties.

16

circuit-size barrier in a fundamentally new fashion, but this approach is inherently
limited if the goal is to identify the minimal assumptions for doing so. Indeed, by
definition the resulting protocol must follow the offline-online paradigm, which does
not seem it should be an inherent property of sublinear-communication protocols. To
make further progress, we propose to identify the key ideas of existing protocols which
achieve low online communication (in the correlated randomness model), and try and
exploit them directly in the plain model.

In the correlated randomness model, the “one-time truth table” protocol of Ishai,
Kushilevitz, Meldgaard, Orlandi, Pasking-Cherniavsky [IKM+13] achieves optimal-
communication secure computation, but requires doubly exponential (in the input size)
computation and correlated randomness. In order to bring the amount of computa-
tion down to a polynomial amount—which is of paramount importance if we want to
instantiate this protocol with computational security—(but at the cost of increasing
communication from optimal to “barely sublinear”) Couteau’s protocol [Cou19] and
Damgaard, Nielsen, Nielsen, Ranellucci’s “Tiny Tables” protocol [DNNR17] in the cor-
related randomness model relies on breaking down a (layered, boolean or arithmetic)
circuit into tiny computations, each one small enough that Ishai et al.’s [IKM+13] pro-
tocol (or an arithmetic alternative) can be used with polynomial computation (in the
overall circuit’s size). We note that the gates of the layered circuits are not partitioned
into smaller circuits: rather, due to the way the circuit is broken into chunks, there
is some overlap. As a result it is not enough to perform these smaller computations
independently, as even with optimal-communication subroutines, the overall protocol
would not be sublinear. Instead, these smaller computations must be treated as cor-
related, and redundancies in communication across them must be exploited. Without
going into any detail here, the correlated randomness model is well equipped to handle
this issue.

Third Contribution: Sublinear-communication two-party computation
from Correlated Symmetric PIR. Our third contribution is to introduce and
instantiate the notion of correlated symmetric PIR (correlated SPIR), and show that
it yields sublinear-communication secure two-party computation. Correlated SPIR is
a form of batch SPIR11 with correlated queries. The server holds k databases, and the
client wishes to query one element per database, but these queries are not independent:
rather, the client holds a small input w (which we refer to as the “entropy” used
to generate the correlated queries) and each query is a public function of w. We
impose that the total upload communication, from client to server, scale with the
size of |w|, which may be significantly smaller than the total size k · n of all the
queries. Without going into too much detail here, the way we use correlated SPIR to
get low-communication 2PC of loglog-depth boolean circuits (and in turn sublinear-
communication 2PC of layered boolean circuits) is analogous to Couteau’s protocol in
the randomness model, except using the eminently computational tool of single-server
PIR as a substitute for one-time truth tables: Alice hardcodes her input in the circuit
and exploits log-locality to break the resulting circuit into polynomial-size truth tables,
and Bob then uses correlated SPIR to retrieve the appropriate values from these truth

11Recall that a (single-server) private information retrieval (PIR) [CGKS95, KO97] is a protocol
which allows a client to privately retrieve an item from a database, held by a server, using an amount
of communication which is sublinear in the size of the database. Privacy here means the server should
not learn the index of the element retrieved by the client; we refer the symmetric private information
retrieval (SPIR) if there is an additional privacy requirement that the client should not learn anything
about the rest of the database.

17

tables. The main technical difficulty in realising correlated SPIR is keeping upload
communication proportional to Bob’s “query-entropy”, in this case Bob’s input to the
overall computation.

We then show how to achieve correlated SPIR (for the specific class of correlations
needed for our application to go through) from a new primitive we coin as decomposable
rate-1 batch OT. This is rate-1 batch OT where the sender message for the batch is
equipped with a certain decomposability property: roughly speaking any subset of the
rate-1 sender message for the batch can be correctly decoded to the corresponding
subset of the payload. Fortunately, Brakerski-Branco-Döttling-Pu’s [BBDP22] recent
construction of rate-1 batch OT from LPN as well as any of QR, DDH, DCR, or LWE,
can be shown to be decomposable. In turn, this means we have found a new set of
standard assumptions under which we break the circuit-size barrier for secure two-
party computation, namely QR+LPN. Note that the parameter regime of this flavour
of LPN, while technically incomparable to quasipolynomial LPN, is significantly more
standard.

From a certain point of view, correlated SPIR is an optimal-communication special-
purpose protocol for securely computing the function

(({0, 1}n)k × {0, 1}ℓ) → {0, 1}k
((x1, . . . , xk), w) 7→ (x1[Q1(w)], . . . , xk[Qk(w)])

where the functions Q1, . . . , Qk (used to generate correlated queries from a common
“entropy” w) are public. As such, our protocol can be seen as achieving a trade-off
between functionality (from special-purpose computation to general computation of
layered circuits) and communication-complexity (from optimal to “barely sublinear”).
This constitutes an intriguing first step towards establishing the minimal assumptions
for sublinear-communication secure two-party computation.

Fourth Contribution: Breaking the Two-Party Barrier for Sublinear-Com-
munication Secure Computation, without FHE. Summarising, our two low-
communication secure two-party computation protocols follow the template of breaking
a loglog-depth circuit into tiny computations [DNNR17,Cou19]. These computations
are correlated in the sense that each party’s input to the computation is a subset of
some global input to the entirety of the computation. Where our protocols diverge is
in how these tiny computations are performed (while exploiting the correlated nature
of these computations to avoid redundancies in communication):

• In our first protocol, the parties are able to generate the correlated randomness
used in Couteau’s protocol [Cou19] by using a pseudorandom correlation genera-
tor (PCG) for a circuit-dependent correlation (which can be seen as a dual form
of single-circuit HSS).

In order to continue this presentation of our results, we need to provide more
details of Couteau’s protocol at this point. We refer the reader to section 3.2.3
for a more in-depth description of both this protocol and the underlying paradigm
of circuit randomisation.

More precisely each output gate of the loglog-depth circuit is computed by a func-
tion with a polynomial-size truth table, whose input is a log-sized subset of the
inputs: C(x) = (y1, . . . , ym) = (f1(x[S1]), . . . , fm(x[Sm])), where |S1|, . . . , |Sm| ≤
log |C|. The (pseudo)random correlated material the parties generate is com-
prised of an additive shares of a (pseudo)random mask r for their joint input x
to the loglog-depth computation, as well as additive shares of the truth tables of

18

the functions gi(·) := fi(· − r[Si]) for i ∈ [m], which are of polynomial size. To
perform theses computations, the parties reconstruct the shifted value c := x+ r,
and finally locally compute a share of C(x) by selecting the entry indexed by c[Si]
in the share of the truth table of gi (which can be seen as the truth table of a
“share of the function” gi) for i ∈ [m]. The parties can then optionally reconstruct
the output C(x) after broadcasting these shares.

• In our second protocol, one party first hardcodes their input into the fi and
prepares the corresponding truth tables, then the other party retrieves the entry
in each table corresponding to its own input by using correlated SPIR.

These approaches seem a priori stuck at the two-party barrier, but for different rea-
sons. The bottleneck of the first approach is the existence of a sufficiently expressive
PCG or HSS (with security against all-but-one corruptions) for more than two par-
ties (from assumptions not already known to imply FHE). In fact, no instantiation
of such a primitive was known until late into this candidate’s PhD studies. Thank-
fully, Chillotti, Orsini, Scholl, Smart, van Leeuwen [COS+22] provided a construction
of four-party HSS for constant-depth circuits from DCR. While this is not enough
to yield sublinear-communication four-party computation on its own, we showed that
their techniques can be adapted to build single-circuit HSS for any loglog-depth circuit
from DCR or from DDH. In particular, this yields the first construction of sublinear-
communication four-party computation without FHE. However, this result is a rela-
tively minor contribution, and not what we refer to as breaking the two-party barrier
for sublinear-communication secure multiparty computation.

The bottleneck of the second approach is the fact that correlated SPIR is a two-
party primitive, and it appears unclear how it could be generalised to more parties.
Intriguingly, our two seemingly orthogonal approaches in the two-party setting can be
combined to obtain sublinear communication secure multiparty computation (for more
than two parties). More precisely we provide a protocol for sublinear-communication
secure (N +1)-party computation for loglog-depth circuits from single-circuit N -party
HSS for any loglog-depth circuit and (the two-party primitive of) correlated SPIR. The
idea is to have N parties break the loglog-depth circuit C into tiny functions f1, . . . , fm
with polynomial-size truth tables. They then use N -party HSS to generate shares of
the truth tables of these functions but with all their N inputs hardcoded. The last
party, who did not participate in this first procedure, then uses correlated SPIR with
each of the parties to retrieve the appropriate output shares, corresponding to its own
input (observe that once the first N parties hardcode their inputs into the functions
fi, the resulting function only expects the last party’s input). This approach can be
instantiated for the three-party setting (i.e. N = 2) from quasipolynomial LPN+QR,
DDH+LPN, DCR+LPN, or LWE+LPN. The last three sets of assumptions can also
be used to instantiate the (four or) five-party setting (i.e. N = 4).

To a certain extent our final protocol can be seen as extending HSS-based techniques
for breaking the circuit-size barrier, which were mostly stuck at the two-party barrier,
to the multiparty setting, which was previously achieved only from the heavy hammer
of FHE.

19

1.3.2 The Historical Perspective: The “Raw Data”

We now provide a standalone description of our each of our main results, without the
distractions of an overarching story.

Breaking the Circuit-Size Barrier Under Quasi-Polynomial LPN [CM21].
In this work we introduce a new (circuit-dependent) homomorphic secret sharing (HSS)
scheme for any log / log log-local circuit, with communication proportional only to the
width of the circuit and polynomial computation, which is secure assuming the super-
polynomial hardness of learning parity with noise (LPN). At the heart of our new
construction is a pseudorandom correlation generator (PCG) which allows two parties
to locally stretch short seeds into pseudorandom instances of an arbitrary log / log log-
local additive correlation.

Our main application, and the motivation behind this work, is a generic two-party
secure computation protocol for every layered (boolean or arithmetic) circuit of size s
with total communication O(s/ log log s) and polynomial computation, assuming the
super-polynomial hardness of the standard learning parity with noise assumption (a
circuit is layered if its nodes can be partitioned in layers, such that any wire connects
adjacent layers). This expands the set of assumptions under which the “circuit-size
barrier” can be broken, for a large class of circuits. The strength of the underlying
assumption is tied to the sublinearity factor: we achieve communication O(s/k(s))
under the s2

k(s)-hardness of LPN, for any k(s) ≤ (log log s)/4.
Previously, the set of assumptions known to imply a PCG for correlations of de-

gree ω(1) or generic secure computation protocols with sublinear communication was
restricted to LWE, DDH, and a circularly secure variant of DCR.

Constrained Pseudorandom Functions from Homomorphic Secret-Sharing
[CMPR23]. We propose and analyse a simple strategy for constructing 1-key con-
strained pseudorandom functions (CPRFs) from homomorphic secret sharing. In the
process, we obtain the following contributions. First, we identify desirable properties
for the underlying HSS scheme for our strategy to work. Second, we show that (most
of) recent existing HSS schemes satisfy these properties, leading to instantiations of
CPRFs for various constraints and from various assumptions. Notably, we obtain the
first (1-key selectively secure, private) CPRFs for inner-product and (1-key selectively
secure) CPRFs for NC1 from the DCR assumption, and more. Lastly, we revisit two
applications of HSS, equipped with these additional properties, to secure computation:
we obtain secure computation in the silent preprocessing model with one party being
able to precompute its whole preprocessing material before even knowing the other
party, and we construct one-sided statistically secure computation with sublinear com-
munication for restricted forms of computation.

Sublinear Secure Computation from New Assumptions [BCM22]. Secure
computation enables mutually distrusting parties to jointly compute a function on
their secret inputs, while revealing nothing beyond the function output. A long-running
challenge is understanding the required communication complexity of such protocols—
in particular, when communication can be sublinear in the circuit representation size
of the desired function. For certain functions, such as Private Information Retrieval
(PIR), this question extends to even sublinearity in the input size.

We develop new techniques expanding the set of computational assumptions for
sublinear communication in both settings:

20

• Circuit size. We present sublinear-communication protocols for secure evalua-
tion of general layered circuits, given any 2-round rate-1 batch oblivious transfer
(OT) protocol with a particular “decomposability” property. In particular, this
condition can be shown to hold for the recent batch OT protocols of (Brakerski et
al. Eurocrypt 2022), in turn yielding a new sublinear secure computation feasibil-
ity result: from Quadratic Residuosity (QR) together with polynomial-noise-rate
Learning Parity with Noise (LPN).

Our approach constitutes a departure from existing paths toward sublinear secure
computation, all based on fully homomorphic encryption or homomorphic secret
sharing.

• Input size. We construct single-server PIR based on the Computational Diffie-
Hellman (CDH) assumption, with polylogarithmic communication in the database
input size n. Previous constructions from CDH required communication Ω(n).
In hindsight, our construction comprises of a relatively simple combination of
existing tools from the literature.

Sublinear-Communication Secure Multiparty Computation does not require
FHE [BCM23]. Secure computation enables mutually distrusting parties to jointly
compute a function on their secret inputs, while revealing nothing beyond the function
output. A long-running challenge is understanding the required communication com-
plexity of such protocols—in particular, when communication can be sublinear in the
circuit representation size of the desired function.

Significant advances have been made affirmatively answering this question within
the two-party setting, based on a variety of structures and hardness assumptions. In
contrast, in the multi-party setting, only one general approach is known: using Fully
Homomorphic Encryption (FHE).

This remains the state of affairs even for just three parties, with two corruptions.
We present a framework for achieving secure sublinear-communication (N + 1)-

party computation, building from a particular form of Function Secret Sharing for
only N parties. In turn, we demonstrate implications to sublinear secure computation
for various function classes in the 3-party and 5-party settings based on an assortment
of assumptions not known to imply FHE.

1.4 Other Selected Contributions

This section describes joint work with Marshall Ball,
Alexander Bienstock, Elette Boyle, Chris Brzuska, Ran Cohen,
Christoph Egger, Yuval Ishai, Pihla Karanko, Lisa Kohl, Tal
Malkin, Tal Moran, Robert Robere, and Gal Yehuda.

For completeness, we now mention our other results obtained during the course of
our PhD studies. While they have a priori little link to the question of sublinear-
communication secure computation, we acknowledge these works and their co-authors
for bringing us broader insights into cryptography. As such, they inexorably con-
tributed to our understanding of the main topic of this thesis, and we therefore include
them.

21

Topology-Hiding Communication from Minimal Assumptions [BBC+20,BBC+23].
Topology-hiding broadcast (THB) enables parties communicating over an incomplete
network to broadcast messages while hiding the topology from within a given class
of graphs. THB is a central tool underlying general topology-hiding secure computa-
tion (THC) (Moran et al. TCC’15). Although broadcast is a privacy-free task, it was
recently shown that THB for certain graph classes necessitates computational assump-
tions, even in the semi-honest setting, and even given a single corrupted party.

In this work we investigate the minimal assumptions required for topology-hiding
communication: both Broadcast or Anonymous Broadcast (where the broadcaster’s
identity is hidden). We develop new techniques that yield a variety of necessary and
sufficient conditions for the feasibility of THB/THAB in different cryptographic set-
tings: information theoretic, given existence of key agreement, and given existence of
oblivious transfer. Our results show that feasibility can depend on various properties
of the graph class, such as connectivity, and highlight the role of different properties of
topology when kept hidden, including direction, distance, and/or distance-of-neighbors
to the broadcaster.

An interesting corollary of our results is a dichotomy for THC with a public number
of at least three parties, secure against one corruption: information-theoretic feasibility
if all graphs are 2-connected; necessity and sufficiency of key agreement otherwise.

Towards Founding Topology-Hiding Computation on Oblivious Transfer
[BBKM23]. Topology-Hiding Computation (THC) enables parties to securely com-
pute a function on an incomplete network without revealing the network topology. It
is known that secure computation on a complete network can be based on oblivious
transfer (OT), even if a majority of the participating parties are corrupt. In con-
trast, THC in the dishonest majority setting is only known from assumptions that
imply (additively) homomorphic encryption, such as Quadratic Residuosity, Decisional
Diffie-Hellman, or Learning With Errors.

In this work we move towards closing the gap between MPC and THC by pre-
senting a protocol for THC on general graphs secure against all-but-one semi-honest
corruptions from constant-round constant-overhead secure two-party computation. Our
protocol is therefore the first to achieve THC on arbitrary networks without relying on
assumptions with rich algebraic structure.

As a technical tool, we introduce the notion of locally simulatable MPC, which we
believe to be of independent interest.

On Low-End Obfuscation and Learning [BIM+23]. Most recent works on cryp-
tographic obfuscation focus on the high-end regime of obfuscating general circuits
while guaranteeing computational indistinguishability between functionally equivalent
circuits. Motivated by the goals of simplicity and efficiency, we initiate a system-
atic study of “low-end” obfuscation, focusing on simpler representation models and
information-theoretic notions of security. We obtain the following results.

• Positive results via “white-box” learning. We present a general technique for
obtaining perfect indistinguishability obfuscation from exact learning algorithms
that are given restricted access to the representation of the input function. We
demonstrate the usefulness of this approach by obtaining simple obfuscation for
decision trees and multilinear read-k arithmetic formulas.

• Negative results via PAC learning. A proper obfuscation scheme obfuscates
programs from a class C by programs from the same class. Assuming the exis-

22

tence of one-way functions, we show that there is no proper indistinguishability
obfuscation scheme for k-CNF formulas for any constant k ≥ 3; in fact, even
obfuscating 3-CNF by k-CNF is impossible. This result applies even to compu-
tationally secure obfuscation, and makes an unexpected use of PAC learning in
the context of negative results for obfuscation.

• Separations. We study the relations between different information-theoretic
notions of indistinguishability obfuscation, giving cryptographic evidence for sep-
arations between them.

New Random Oracle Instantiations from Extremely Lossy Functions (ELFs)
[BEC+23]. We instantiate two random oracle (RO) transformations using Zhandry’s
(Crypto’16) extremely lossy function (ELF) technique. Firstly, using ELFs and indis-
tinguishabililty obfuscation (iO), we instantiate a modified version of the Fujisaki-
Okamoto (FO) transform which upgrades a public-key encryption scheme (PKE) from
indistinguishability under chosen plaintext attacks (IND-CPA) to indistinguishability
under chosen ciphertext attacks (IND-CCA).

We side-step a prior uninstantiability result for FO by Brzuska, Farshim, and Mit-
telbach (TCC’15) by (1) hiding the randomness from the (potentially ill-designed)
IND-CPA encryption scheme and (2) embedding an additional secret related to the
hash-function into the secret-key of the IND-CCA-secure PKE, an idea brought for-
ward by Murphy, O’Neill, Zaheri (Asiacrypt 2022) who also instantiate a modified FO
variant also under ELFs and iO for the class of lossy PKE. Our transformation applies
to all PKE which can be inverted given their randomness.

Secondly, we instantiate the hash-then-evaluate paradigm for pseudorandom func-
tions (PRFs), PRF(k, x) := wPRF(k,RO(x)), using ELFs together with minicrypt prim-
itives, by observing that many weak PRFs are plausibly also secure under pseudoran-
dom inputs, since analogous cryptanalysis applies. Our simple transformation applies
to the entire family of PRF-style functions. Specifically, we obtain results for oblivious
PRFs, which are a core building block for password-based authenticated key exchange
(PAKE) and private set intersection (PSI) protocols, and we also obtain results for
pseudorandom correlation functions (PCF), which are a key tool for silent oblivious
transfer (OT) extension.

23

24

Chapter 2

Preliminaries

2.1 Notations

Notations for Chapter 4 We say that a function negl : N → R+ is negligible if
it vanishes faster than every inverse polynomial. For two families of distributions
X = {Xλ} and Y = {Yλ} indexed by a security parameter λ ∈ N, we write X

c
≈ Y

if X and Y are computationally indistinguishable (i.e. any family of circuits of size
poly(λ) has a negligible distinguishing advantage), X

s
≈ Y if they are statistically

indistinguishable (i.e. the above holds for arbitrary, unbounded, distinguishers), and
X ≡ Y if the two families are identically distributed.

We usually denote matrices with capital letters (A,B,C) and vectors with bold
lowercase (x⃗, y⃗). By default, vectors are assumed to be column vectors. If x⃗ and y⃗
are two (column) vectors, we use x⃗||y⃗ to denote the (column) vector obtained by their
concatenation. We write x⃗⊗ y⃗ to denote the tensor product between x⃗ and y⃗, i.e., the
vector of length nxny with coordinates xiyj (where nx is the length of x⃗ and ny is the
length of y⃗). We write x⃗⊗2 for x⃗⊗ x⃗, and more generally, x⃗⊗n for the n-th tensor power
of x⃗, x⃗⊗ x⃗⊗ · · · ⊗ x⃗. Given a vector x⃗ of length |x⃗| = n, the notation HW (x) denotes
the Hamming weight x⃗, i.e. , the number of its nonzero entries. Let k be an integer.
We let {0, 1}k denote the set of bitstrings of length k. For two strings (x, y) in {0, 1}k,
we denote by x⊕ y their bitwise xor.

Notations for Chapter 5 We use λ to denote the security parameter. For a nat-
ural integer n ∈ N, the set {0, 1, . . . , n − 1} is denoted by [n]. We mostly use bold
lowercase letters (e.g., r) to denote vectors. For a vector r = (r1, . . . , rn), the vector
(gr1 , grn) is sometimes denoted by gr. We write poly(λ) to denote an arbitrary
polynomial function. We denote by negl(λ) a negligible function in λ, and PPT stands
for probabilistic polynomial-time. For a finite set S, we write x

$← S to denote that x
is sampled uniformly at random from S. For an algorithm A, we denote by y ← A(x)
the output y after running A on input x.

Notations for Chapter 6 Throughout the chapter, [v⃗]I denotes the subvector of v⃗
induced by set of indices I.

Notations for Chapter 7 N denotes a number of parties (but the total number
of parties is sometimes N + 1). The number of inputs and outputs of an arithmetic
circuit are denoted n and m respectively. If f is a function, f̃ is used to describe a
polynomial-size description of f .

25

By default, vectors are assumed to be column vectors. If x⃗ and y⃗ are two (column)
vectors, we use x⃗||y⃗ to denote the (column) vector obtained by their concatenation. We
write x⃗⊗ y⃗ to denote the tensor product between x⃗ and y⃗, i.e., the vector of length nxny

with coordinates xiyj (where nx is the length of x⃗ and ny is the length of y⃗). We write
x⃗⊗2 for x⃗⊗ x⃗, and more generally, x⃗⊗k for the k-th tensor power of x⃗, x⃗⊗ x⃗⊗ · · · ⊗ x⃗
(k times). Observe that evaluating a degree-d n-variate polynomial on some size-n
vector x⃗ can be done by computing the inner product of the vector of coefficients of
the polynomial with x⃗⊗d∥ . . . ∥x⃗⊗1∥1). Indeed, each x⃗⊗k corresponds the vector of every
degree-k monomial in the coordinates of x⃗.

For k ∈ N, [k] denotes the set {1, . . . , k}, [0, k] denotes the set {0, 1, . . . , k}, and
Sk denotes the symmetric group of order k, i.e. the set of all permutations on [k]. If
A and B are sets, AB denotes the set of all functions from A to B.

We say that a function negl : N → R+ is negligible if it vanishes faster than every
inverse polynomial. For two families of distributions X = {Xλ} and Y = {Yλ} indexed
by a security parameter λ ∈ N, we write X

c
≈ Y if X and Y are computationally

indistinguishable (i.e. any family of circuits of size poly(λ) has a negligible distinguishing
advantage), X

s
≈ Y if they are statistically indistinguishable (i.e. the above holds for

arbitrary, unbounded, distinguishers), and X ≡ Y if the two families are identically
distributed.

2.2 Universal Composability
We refer the reader to [Can01] for details on the universal composability framework.
The framework is based on the real/ideal paradigm for arguing about the security of
a protocol. We say that a protocol π UC-realises (with computational security) an ideal
functionality F in the presence of static semi-honest adversary corrupting at most t
parties, if for any p.p.t. static semi-honest t-adversary A and any p.p.t. environment Z,
there exists a p.p.t. ideal-model t-adversary Sim such that the output distribution of
Z in the ideal-model computation of F with Sim is computationally indistinguishable
from its output distribution in the real-model execution of π with A. The composition
theorem of [Can01] states the following.

Theorem 1 (Composition Theorem [Can01], informal). Let ρ be a protocol that UC-
realizes F in the presence of adaptive semi-honest t-adversaries, and let π be a pro-
tocol that UC-realizes G in the F-hybrid model in the presence of adaptive semi-
honest t-adversaries. Then, for any p.p.t. adaptive semi-honest t-adversary A and
any p.p.t. environment Z, there exists a p.p.t. adaptive semi-honest t-adversary Sim
in the F-hybrid model such that the output distribution of Z when interacting with
the protocol π and Sim is computationally indistinguishable from its output distribution
when interacting with the protocol πρ (where every call to F is replaced by an execution
of ρ) and A in the real model.

2.3 Cryptographic Primitives

2.3.1 Homomorphic Secret Sharing (HSS)

We consider here a definition of Homomorphic Secret Sharing with simulation-based
security guarantee (as it is the most natural to use for chapter 7). This notion is
equivalent to the natural indistinguishability-based definition (where simulation takes
place by simply sharing a fixed input of appropriate length, e.g. 0n(λ)).

26

Definition 1 (Homomorphic Secret Sharing, [BGI16a]). An N-party homomorphic
secret-sharing (HSS) scheme (with additive reconstruction) for a class F of functions
over a finite field F is a pair of algorithms HSS = (HSS.Share,HSS.Eval) with the
following syntax and properties:

• Share(1λ, x): On input 1λ (the security parameter) and x ∈ Fn(λ) (the input), the
sharing algorithm Share outputs N input shares (x(1), . . . , x(N)).

• Eval(i, f, x(i)): On input i ∈ [N] (the party index), f ∈ F (the function to be
homomorphically evaluated, implicitly assumed to specify input and output lengths
n,m), and x(i) (the ith input share), the evaluation algorithm Eval outputs the ith

output share y(i) ∈ Fm.

• Correctness: For any 1λ, input x ∈ Fn(λ), and any function f ∈ F ,

Pr

[
y(1) + · · ·+ y(N) = f(x) :

(x(1), . . . , x(N))
$← HSS.Share(1λ, x)

y(i)
$← HSS.Eval(i, f, x(i)), i = 1 . . . N

]
= 1 .

• Security: For every set of corrupted parties D ⊊ [N], there exists a probabilistic
polynomial-time algorithm SimHSS (a simulator), such that for every sequence of
inputs x1, x2, · · · ∈ Fn(λ) the outputs of the following experiments RealHSS and
IdealHSS are computationally indistinguishable:

– RealHSS(1λ) : (x(1), . . . , x(N))
$← HSS.Share(1λ, xλ); Output (x(i))i∈D.

– IdealHSS(1λ) : Output SimHSS(1λ, 1N , 1n).

Remark 1 (Compact Single-Function HSS). A single-function HSS is an HSS scheme
for a singleton function class. Let F be a (not necessarily singleton) function class.
We say there exists compact single-function HSS for any function in C, if for every
f : Fn → Fm ∈ F there exists an HSS scheme HSSf for {f} such that the circuit-size
of HSSf .Share is a fixed polynomial in n (and otherwise independent of f).

This notion can be seen as a weakening of compact HSS for C where the function
to be homomorphically evalluated is known when running the sharing algorithm.

Definition 2 (Las Vegas HSS). A Las Vegas N-party homomorphic secret-sharing
scheme with additive reconstruction is defined as above, with the following modification:

1. The algorithm Eval takes as input a failure bound δ, and additonally outputs a
confidence flag flagb ∈ {⊥,⊤} to indicate full confidence (⊤) or a possibility of
failure (⊥). Eval can run in time polynomial in its input length and in 1/δ.

2. The correctness notion is relaxed to the following notion of Las Vegas correctness:
for every input x ∈ Fn, function f ∈ F with input length n, and failure bound
δ > 0, we have:

Pr [∃i ≤ N, (flagi = ⊥)] ≤ δ,

and Pr[(∃i ≤ N, (flagi = ⊤) ∧ (⊕i≤ny
(i) ̸= f(x))] = 0,

where the probability is taken over the coins of Gen and Eval(·, ·, ·, δ). We im-
plicitly assume each execution of Eval to take an additional nonce input, which
enables different invocations to have (pseudo)-independent failure probabilities.
(See [BGI16a] for discussion.)

27

2.3.2 Function Secret Sharing (FSS)

Informally, an FSS scheme for a class of functions C is a pair of algorithms FSS =
(FSS.Gen,FSS.Eval) such that:

• FSS.Gen given a function f ∈ C outputs a pair of keys (K0, K1);

• FSS.Eval, given Kb and input x, outputs yb such that y0 and y1 form additive
shares of f(x).

The security requirement is that each key Kb computationally hide f , except for re-
vealing the input and output domains of f . Formally, we follow the function secret
sharing definition of [BGI16b], for the specific leakage function which reveals the input
and output domain sizes (1n, 1m) of the secret function.

Definition 3 (Function Secret Sharing (FSS)). An N-party Function Secret-Sharing
(FSS) scheme (with additive reconstruction) for a function family F is a pair of algo-
rithms FSS = (FSS.Gen,FSS.Eval) with the following syntax and properties:

• Gen(1λ, f̃) is a probabilistic polynomial-time key generation algorithm, which on
input 1λ (a security parameter) and f̃ ∈ {0, 1}⋆ (the description of some function
f : {0, 1}n → {0, 1}m ∈ F), outputs an N-tuple of keys (k1, . . . , kN). Each key is
assumed to contain 1n and 1m.

• Eval(i, ki, x) is a deterministic polynomial-time evaluation algorithm, which on
input i ∈ [N] (the party index), ki (a key defining fi : {0, 1}n → {0, 1}m), and
x ∈ {0, 1}n (an input for fi), outputs a value yi ∈ {0, 1}m (the value of fi(x), the
ith share of f(x)).

• Correctness: For all λ ∈ N, all f ∈ F (described by f̃), and all x ∈ {0, 1}n,

Pr

[
y1 + · · ·+ yN = f(x) :

(k1, . . . , kN)
$← FSS.Gen(1λ, f̃)

yi ← FSS.Eval(i, ki, x), i = 1 . . . N

]
= 1 .

• Security: For every set of corrupted parties D ⊊ [N], there exists a probabilistic
polynomial-time algorithm SimFSS (a simulator), such that for every sequence of
functions f1, f2, · · · ∈ F (described by f̃1, f̃2, . . .), the outputs of the following
experiments RealFSS and IdealFSS are computationally indistinguishable:

– RealFSS(1λ) : (k1, . . . , kN)
$← Gen(1λ, f̃λ); Output (ki)i∈D.

– IdealFSS(1λ) : Output SimFSS(1λ, 1N , 1n, 1m).

Our applications of FSS sometimes require applying the evaluation algorithm on
all inputs. Following [BGI16b, BCGI18, BCG+19b, BCG+19a], given an FSS scheme
(FSS.Gen,FSS.Eval), we denote by FSS.FullEval an algorithm which, on input a bit b,
and an evaluation key Kb (which defines the input domain I), outputs a list of |I| ele-
ments of BilinearGen corresponding to the evaluation of FSS.Eval(b,Kb, ·) on every input
x ∈ I (in some predetermined order). Below, we recall some results from [BGI16b] on
FSS schemes for useful classes of functions.

28

2.3.2.1 Distributed Point Functions

A distributed point function (DPF) [GI14] is an FSS scheme for the class of point
functions fα,β : {0, 1}ℓ → BilinearGen which satisfies fα,β(α) = β, and fα,β(x) = 0
for any x ̸= α. A sequence of works [GI14,BGI15,BGI16b] has led to highly efficient
constructions of DPF schemes from any pseudorandom generator (PRG).

Theorem 2 (PRG-based DPF [BGI16b]). Given a PRG G : {0, 1}λ → {0, 1}2λ+2,
there exists a DPF for point functions fα,β : {0, 1}ℓ → BilinearGen with key size ℓ · (λ+
2)+ λ+ ⌈log2 |BilinearGen|⌉ bits. For m = ⌈ log |BilinearGen|

λ+2
⌉, the key generation algorithm

Gen invokes G at most 2(ℓ+m) times, the evaluation algorithm Eval invokes G at most
ℓ + m times, and the full evaluation algorithm FullEval invokes G at most 2ℓ(1 + m)
times.

2.3.2.2 FSS for Multi-Point Functions

A k-point function evaluates to 0 everywhere, except on k specified points. When
specifying multi-point functions we often view the domain of the function as [n] for
n = 2ℓ instead of {0, 1}ℓ.
Definition 4 (Multi-Point Function [BCGI18]). An (n, t)-multi-point function over
an abelian group (BilinearGen,+) is a function fS,y⃗ : [n] → BilinearGen, where S =
(s1, · · · , st) is an ordered subset of [n] of size t and y⃗ = (y1, · · · , yt) ∈ BilinearGent,
defined by fS,y⃗(si) = yi for any i ∈ [t], and fS,y(x) = 0 for any x ∈ [n] \ S.

We assume that the description of S includes the input domain [n] so that fS,y⃗
is fully specified. A Multi-Point Function Secret Sharing (MPFSS) is an FSS scheme
for the class of multi-point functions, where a point function fS,y⃗ is represented in a
natural way. We assume that an MPFSS scheme leaks not only the input and output
domains but also the number of points t that the multi-point function specifies. An
MPFSS can be easily obtained by adding t instances of a DPF.

2.3.3 Pseudorandom Correlation Generator (PCG)

Pseudorandom correlation generators (PCG) have been introduced in [BCG+19b]. In-
formally, a pseudorandom correlation generator allows to generate pairs of short keys
(or seeds) (k0, k1) such that each key kσ can be expanded to a long string Rσ =
Expand(σ, kσ), with the following guarantees: given the key k1−σ, the string Rσ is
indistinguishable from a random string sampled conditioned on satisfying the target
correlation with the string R1−σ = Expand(1 − σ, k1−σ). We provide below the formal
definition of pseudorandom correlation generators, after defining the notion of reverse-
sampleable correlation generator.

Definition 5 (Correlation Generator). A PPT algorithm C is called a correlation
generator, if C on input 1λ outputs a pair of elements in {0, 1}n×{0, 1}n for n ∈ poly(λ).

In order to define security, we require the notion of a reverse-sampleable correlation
generator introduced in the following.

Definition 6 (Reverse-sampleable Correlation Generator). Let C be a correlation gen-
erator. We say C is reverse sampleable if there exists a PPT algorithm RSample such
that for σ ∈ {0, 1} the correlation obtained via:

{(R′0, R′1) |(R0, R1)
$← C(1λ), R′σ := Rσ, R

′
1−σ

$← RSample(σ,Rσ)}

is computationally indistinguishable from C(1λ).

29

Definition 7 (Pseudorandom Correlation Generator (PCG)). Let C be a reverse-
sampleable correlation generator. A pseudorandom correlation generator (PCG) for
C is a pair of algorithms (PCG.Gen,PCG.Expand) with the following syntax:

• PCG.Gen(1λ) is a PPT algorithm that given a security parameter λ, outputs a
pair of seeds (k0, k1);

• PCG.Expand(σ, kσ) is a polynomial-time algorithm that given party index σ ∈
{0, 1} and a seed kσ, outputs a bit string Rσ ∈ {0, 1}n.

The algorithms (PCG.Gen,PCG.Expand) should satisfy the following:

• Correctness. The correlation obtained via:

{(R0, R1) |(k0, k1) $← PCG.Gen(1λ), Rσ ← PCG.Expand(σ, kσ) for σ ∈ {0, 1}}

is computationally indistinguishable from C(1λ).

• Security. For any σ ∈ {0, 1}, the following two distributions are computationally
indistinguishable:

{(k1−σ, Rσ) | (k0, k1) $← PCG.Gen(1λ),Rσ ← PCG.Expand(σ, kσ)} and

{(k1−σ, Rσ) | (k0, k1) $← PCG.Gen(1λ),R1−σ ← PCG.Expand(σ, k1−σ),

Rσ
$← RSample(σ,R1−σ)}

where RSample is the reverse sampling algorithm for correlation C.

Note that the above definition is trivial to achieve in general: We can let PCG.Gen
on input 1λ return (R0, R1) ← C(1λ), and simply define Expand to be the identity.
Typically, we will be interested in non-trivial constructions of PCGs, in which the
seed size is significantly shorter than the output size. A pseudorandom generator with
image in {0, 1}n is a simple example for an expanding PCG for the equality correlation
{(R,R) | R ∈ {0, 1}n}.

2.4 Computational Assumptions

2.4.1 Learning Parity with Noise (LPN)

Our constructions rely on the Learning Parity with Noise assumption [BFKL94] (LPN)
over a field F (the most standard variant of LPN typically assumes F = F2, but other
fields can be considered). Unlike the LWE assumption, in LPN over F the noise is
assumed to have a small Hamming weight. Concretely, the noise is a random field
element in a small fraction of the coordinates and 0 elsewhere. Given a field F, Berr(F)
denote the distribution which outputs a uniformly random element of F \ {0} with
probability r, and 0 with probability 1− r.

Definition 8 (LPN). For dimension k = k(λ), number of samples (or block length)
q = q(λ), noise rate r = r(λ), and field F = F(λ), the F-LPN(k, q, r) assumption states
that

{(A, b⃗) | A $← Fq×k, e⃗
$← Berr(F)q, s⃗ $← Fk, b⃗← A · s⃗+ e⃗}

c
≈{(A, b⃗) | A $← Fq×k, b⃗

$← Fq}

30

Here and in the following, all parameters are functions of the security parameter
λ and computational indistinguishability is defined with respect to λ. Note that the
search LPN problem, of finding the vector can be reduced to the decisional LPN as-
sumption [BFKL94,AIK09]. In this paper, our protocols will mostly rely on a variant
of LPN, called exact LPN (xLPN) [JKPT12]. In this variant, the noise vector e⃗ is not
sampled from Berr(F)q, but it is sampled uniformly from the set HWrq(Fq) of length-q
vectors over F with exactly rq nonzero coordinates (in contrast, a sample from Berr(F)q
has an expected number r · q of nonzero coordinates). While standard LPN is usually
preferred since the Bernouilli distribution is convenient to analyze, xLPN is often pre-
ferred in concrete implementations, since it offers a potentially higher level of security
for similar parameters (by avoiding weak instances with a low amount of noise). Fur-
thermore, as outlined in [JKPT12], xLPN and LPN are equivalent: xLPN reduces to
its search version using the sample-preserving reduction of [AIK07], and search-xLPN
is easily seen to be polynomially equivalent to search-LPN.

Dual LPN. In our protocols, it will also prove convenient to work with the (equiva-
lent) alternative dual formulation of LPN.

Definition 9 (Dual LPN). For dimension k = k(λ), number of samples (or block
length) q = q(λ), noise rate r = r(λ), and field F = F(λ), the dual-F-LPN(k, q, r)
assumption states that

{(H, b⃗) | H $← Fq−k×q, e⃗
$← Berr(F)q, b⃗← H · e⃗}

c
≈{(H, b⃗) | H $← Fq−k×q, b⃗

$← Fq}

Solving the dual LPN assumption is easily seen to be at least as hard as solving
LPN: given a sample (A, b⃗), define H ∈ Fq−k×q to be the parity-check matrix of A

(hence H · A = 0), and feed (H,H · b⃗) to the dual LPN solver. Note that the parity
check matrix of a random matrix is distributed as a random matrix. Furthermore, when
b⃗ = A · s⃗+ e⃗, we have H · b⃗ = H · (A · s⃗+ e⃗) = H · e⃗. For discussions regarding existing
attacks on LPN and their efficiency, we refer the reader to [BCGI18,BCG+19b].

2.4.2 Quadratic Residuosity Assumption (QR)

We say that N is a Blum integer if N = p · q for some primes p and q such that p
(mod 4) ≡ q (mod 4) ≡ 3. We denote by JN the multiplicative group of the elements in
Z⋆

N with Jacobi symbol +1 and by QRN the multiplicative group of quadratic residues
modulo N with generator g. Note that QRN is a subgroup of JN , and that QRN and
JN have order ϕ(N)

4
and ϕ(N)

2
respectively, where ϕ(·) is Euler’s totient function. It is

useful to write JN : H × QRN , where H is the multiplicative group (±1, ·) of order 2.
Note that is N is a Blum integer then gcd(2, ϕ(N)

4
) = 1 and −1 ∈ JN \QRN .

Definition 10 (Quadratic Residuosity Assumption, [GM82]). Let N be a uniformly
sampled Blum integer and let QRN be the multiplicative group of quadratic residues
modulo N with generator g. We say the QR assumption holds with respect to QRN if
for any p.p.t. adversary A

| Pr
a

$←QRN

[A(N, g, a) = 1]− Pr
a

$←QRN

[A(N, g, (−1) · a) = 1]| ≤ negl(λ).

31

2.4.3 Decisional Diffie-Hellman (DDH)

Definition 11 (Decisional Diffie-Hellman, [Bon98]). We say that the Decisional Diffie-
Hellman assumption (DDH) holds if there exists a PPT group generator IG with the
following properties. The output of IG(1λ) is a pair (G, g) where G describes a cyclic
group of a prime order q (where we use multiplicative notations for the group operation)
and g describes a group generator. We assume that q is included in the group description
G. We also assume the existence of an efficient algorithm that given G and descriptions
of group elements h1, h2 outputs a description of h1h2. Finally, we require that for every
nonuniform polynomial-time algorithm A there is a negligible function ϵ such that:

|Pr[A(G, g, ga, gb, gab) = 1: (G, g)
$← IG; (a, b) $← Z2

q]−
Pr[A(G, g, ga, gb, gc) = 1: (G, g)

$← IG; (a, b, c) $← Z3
q]| ≤ ϵ(λ).

2.4.4 Decision Composite Residuosity (DCR)

Let SampleModulus be a polynomial-time algorithm which, on input the security pa-
rameter λ, outputs (N, p, q) where p and q are λ-bit primes and N = p · q.

Definition 12 (Decision Composite Residuosity assumption, [Pai99]). Let λ be a secu-
rity parameter. We say that the Decision Composite Residuosity (DCR) problem is hard
relative to SampleModulus if (N, x) ≈c (N, xN) where (N, p, q)

$← SampleModulus(1λ),
x

$← Z∗N2, and xN is computed modulo N2.

Note that Z∗N2 can be written as a product of subgroups H × NRN , where H =
{(1+N)i : i ∈ [N]} is of order N , and NRN = {xN : x ∈ Z∗N2} is the subgroup of N -th
residues that has order ϕ(N).

Circular-Secure Paillier Cryptosystem. We also recall in fig. 2.1 the circular-
secure cryptosystem presented by Brakerski and Goldwasser in [BG10] which can be
seen as a circular-secure version of Paillier’s cryptosystem [Pai99]. The security of the
scheme follows from the DCR assumption. The scheme is parameterised by ℓ ∈ N that
is polynomial in the security parameter λ.

PKE Circular-Secure Paillier Cryptosystem, [BG10]

BG.KeyGen(1λ):

1. Sample (N, p, q)← SampleModulus(1λ).

2. Sample g = (g0, . . . , gℓ−1)
$← NRℓ

N .

3. Sample d = (d(0), . . . , d(ℓ−1))
$← {0, 1}ℓ.

4. Compute ĝ =
ℓ−1∏
i=0

gd
(i)

i (mod N2).

5. Output pk = (N,g, ĝ) and sk = d.

BG.Enc(pk, x):

1. Sample r
$← ZN .

2. Compute and output ct = (gr0, . . . , g
r
ℓ−1, ĝ

r · (1 +N)x).

32

BG.Dec(sk, ct)

1. Parse ct = (c0, . . . , cℓ−1, ĉ).

2. Compute c̄ = (
ℓ−1∏
i=0

c−d
(i)

i) · ĉ(mod N2).

3. Compute and output x = (c̄− 1)/N .

Figure 2.1: Brakerski and Goldwasser’s Circular-Secure variant of the Paillier Cryp-
tosystem.

Paillier-ElGamal Cryptosystem. The Paillier-ElGamal cryptosystem [CS02,
DGS03, BCP03] is defined as in fig. 2.2, and boils down to using the ElGamal cryp-
tosystem over the group (Z⋆

N2 ,×) where N is a Blum integer of the form N = pq, where
p and q are primes.

PKE Paillier-ElGamal Cryptosystem, [CS02,DGS03,BCP03]

PaillierEG.Gen(1λ):

1. Sample g′
$← [N2]

2. Set g ← (g′)2N mod N2

3. Sample d
$← [N2]

4. Output (pk = gd mod N2, sk = d)

PaillierEG.Enc(pk, x):

1. Sample r
$← N

2. Output ct = (gr, pkr · (1 +N)x)

PaillierEG.Dec(sk, ct = (ct0, ct1)):

1. Set ct′ ← ct1 · (ct0)−d mod N2

2. Output x = ct′−1
N

Figure 2.2: The Paillier-ElGamal Cryptosystem.

Assuming the DCR assumption (Definition 12), the Paillier-ElGamal cryptosystem is
semantically secure. Observe that Paillier-ElGamal is a special case of the circular-
secure Paillier cryptosystem of [BG10], where ℓ = 1 (where ℓ is defined as in the
previous paragraph). If we wish to encrypt (digits of) the secret key under Paillier-
ElGamal however, we will need to assume the circular security of the Paillier-ElGamal
encryption scheme.

33

2.4.4.1 Learning With Errors (LWE)

Definition 13 (Decisional Learning with Errors, [Reg05]). Let n ≥ 1 and q ≥ 2 be
integers. Let χ be an error distribution over Z and χsk be a secret key distribution over
Zn. For s⃗ $← χsk, define LWEχ,s⃗ to be the distribution obtained by sampling a⃗

$← Zn
q uni-

formly at random, e⃗ $← χ, and outputting (⃗a, b =< a⃗, s > +e) ∈ Zn+1
q . The decisional-

LWEn,q,χ,χsk
problem asks to distinguish polynomially many samples (⃗ai, bi)

$← LWEχ,s⃗

from the same number of samples taken from the uniform distribution on (Zn
q ,Zp),

where the secret s⃗ is sampled accordng to χsk.

34

Chapter 3

Prior (and Concurrent) Works on
Sublinear-Communication Secure
Computation

We say an N -party protocol for securely computing an F-arithmetic circuit with s
gates, n inputs, and m outputs is:

• optimal-communication if it uses an amount of communication of the form

O(n+m) ·N · log |F|
We note that we are using the word “optimal” a bit loosely, and that other works
may use a different definition.

• circuit-independent if it uses an amount of communication of the form

(N + λ+ log |F|+ n+m)O(1)

• linear-communication if it uses an amount of communication of the form

(N + λ+ log |F|+ n+m)O(1) · s
Note that the literature sometimes reserves this term for protocols with commu-
nication O(N · log |F| · s) + (λ+ n+m)O(1)

• sublinear-communication if it uses an amount of communication of the form

(N + λ+ log |F|+ n+m)O(1) + o(s) · log |F|
Again the term is sometimes reserved for the more stringent O(N +n+m) ·o(s) ·
log |F|+ λO(1). In either case, the term o(s) cannot hide any λO(1) term.

Finally, the term “low-communication” is meant as an informal catch-all for all of the
above.

In this chapter we survey prior results on sublinear-communication secure multiparty
computation. We include some linear-communication protocols, insofar they can inform
the state-of-the-art on sublinear-communication MPC. We restrict this survey to low-
communication general-purpose protocols, loosely defined a protocols for computing
a “large and expressive class of circuits”, e.g. the class of all depth-d polynomial-size
circuits for some d = ω(1). Special-purpose low-communication protocols, such as
private information retrieval, are out of scope for this thesis.
We consider the three settings of information-theoretic security in the plain model,
information-theoretic security in the correlated randomness model, and computational
security (in the plain model).

35

3.1 Information-Theoretic MPC (in the plain model)

3.1.1 Linear Communication

In this paragraph, we will assume that N parties, who are fully connected by secure
and authenticated point-to-point channels, wish to perform secure computation in the
presence of a computationally unbounded adversary. It is known [BGW88, CCD88]
that any functionality can be securely computed with perfect correctness and security,
against a passive adversary if there is an honest majority of parties (threshold t < N/2),
and against an active adversary if there is an honest two-thirds super-majority of parties
(t < N/3). If the parties additionally have access to a secure broadcast channel, then
statistical correctness can be achieved against active adversaries even if we only assume
a simple honest majority [RB89]. A boolean function can be securely computed in the
presence of a passive adversary, but without an honest majority (t ≥ N/2), if and only
if it can be cast as a big exclusive-OR of arbitrary functions of each party’s input, and
what’s more such functions can even be computed with any number of corruptions (t ≤
N) [CK89]. Therefore information-theoretic “general-purpose” computation requires an
honest majority.

3.1.2 Sublinear Communication

Early works sought to understand how much communication was required for general
information-theoretic MPC as well as for specific functionalities [Kus89, FY92,CK93,
FKN94]. Beaver et al. [BFKR91] showed that any function f : {0, 1}n → {0, 1} can be
securely computed by N = O(t · n/ log n) computationally unbounded parties (which
in fact will be using an exponential amount of computation) using poly(n+N) commu-
nication, while tolerating t corruptions. This can be seen as breaking the circuit-size
barrier information-theoretically, but in a restricted setting and incurring an exponen-
tial cost in computation.
Lower-bounding the communication complexity is tied to long-standing open problems
in complexity theory. Indeed, [IK04] showed that establishing non-trivial bounds on
the communication that a constant number of parties needs to perform honest-majority
MPC with information-theoretic security against semi-honest adversaries would have
strong implications to information-theoretic constant-server Private Information Re-
trieval (PIR) and short Locally Decodable Error-Correcting Codes (LDC). The setting of
MPC with a constant number of parties has also been studied in [DPP14] (specifically,
they consider three-party computation).
Recently, the question of determining how much communication is required for
information-theoretic MPC has regained interest, both with in the semi-honest set-
ting with an honest majority and in the malicious setting with a two-thirds honest
supermajority [DNOR16, DNPR16, DLN19, DLS21]. In particular, these works show
that there is a circuit of size s with n inputs which requires communication Ω(n · s),
that any gate-by-gate protocol must communicate Ω(N) bits per multiplication gate,
where N is the number of parties, and that general secure computation requires com-
munication linear in the size of the inputs and in the outputs.

3.2 MPC in the Correlated Randomness Model

The question of achieving MPC with linear online-communication in the correlated
randomness model was settled early on by Beaver [Bea92], who introduced the circuit-

36

randomisation technique (and “Beaver Multiplication Triples”, both with passive and
with active security. We mention there is a rich literature on achieving offline-online
MPC with low (albeit constant) overhead (in the circuit-size), in particular by using
somewhat homomorphic encryption, [IPS08,BDOZ11,DPSZ12,DZ13].

3.2.1 Sublinear Online Communication

All the protocols mentioned in this paragraph make no honest majority assumption
and tolerate up to all-but-one corruptions. [IKM+13] showed that if parties have access
to an exponential amount of correlated randomness then they only require communi-
cation linear in the inputs, which is optimal, in order to securely realise any multiparty
functionality; this is achieved with perfect security against semi-honest adversaries, or
with statistical security against malicious ones. In the special case of a two-party func-
tionality where only one of the parties receives an output, [IKM+13] achieves perfect
security even in the malicious setting. [BIKK14] later improved the correlated random-
ness complexity of the two-party setting with active security to the subexponential
2Õ(
√
logn) (where log n is the bit-length of the inputs). Couteau [Cou19] constructed an

unconditionally secure TwoPC protocol for the computation of layered circuits, which
uses only a polynomial amount of correlated randomness and with communication
sublinear in the circuit-size; security in the semi-honest setting is guaranteed for both
arithmetic and boolean circuits, but only for boolean circuits in the malicious setting.

3.2.2 Lower Bounds?

[IKM+13] shows that achieving low communication with a small amount of correlated
randomness would lead to a major breakthrough in private information retrieval. More
specifically [IKM+13, Theorem 14] establishes that the existence of protocol for comput-
ing every (sender-receiver) functionality {0, 1}n×{0, 1}n → {⊥}×{0, 1} with commu-
nication c(n) and an amount of correlated randomness r(n) would imply the existence
of 3-server statistical PIR with communication complexity O(r(logN) + c(logN) +
log(N)), where N is the size of the database. This can be seen as an implausibility
result (or at least a “meta hardness” result) for achieving secure computation with
circuit-independent communication in the correlated randomness model using only a
polynomial amount of correlated randomness.

3.2.3 (Sub)linear-Communication Secure Computation in the
Correlated Randomness Model, via Circuit Randomisa-
tion

In previous sections, we surveyed protocols in the correlated randomness model
with at most linear communication complexity (in the circuit size). We now focus
on a single paradigm, namely circuit randomisation, and provide a more in depth
description of protocols following this approach. While other protocols in the litera-
ture may be cast to follow this paradigm, we restrict this presentation to the works
of [Bea92,BCG+19b, IKM+13,DNNR17,Cou19] as these are central to understanding
the protocol of [Cou19], and in turn our own works.

The “gate-by-gate” design is a popular paradigm for securely computing an F-

37

arithmetic1 circuit amongst N parties in the presence of a semi-honest adversary2

corrupting at most t parties is to have the parties maintain (t, N)-threshold linear se-
cret shares of the values at each wire. Initially, parties ensure they hold shares of the
input wires (if an input is held only by a single party for instance, they can sample
everyone’s secret shares locally then deal them out using (N − 1) · log |F| bit of com-
munication), then proceed through the circuit gate by gate in topological order (linear
operations can be done locally, but multiplications of two secret-shared values require
interaction), and finally reconstruct the outputs by broadcast their shares. The com-
munication’s dependency on the circuit-size is due to the multiplications, which can be
performed information-theoretically if there is an honest majority, and using oblivious
transfer otherwise. Beaver [Bea92] showed that these expensive multiplications can
be pre-processed in an offline phase using circuit randomisation, in such a way that
each one only requires two reconstructions (and therefore at most (t+(N − 1)) · log |F|
bits of communication). The way Beaver describes this trick is as follows: “set every
input to every gate in the circuit completely at random, and then make corrections”.
Boyle, Gilboa, and Ishai [BGI19] proposed a framework for achieving secure compu-
tation with input-independent preprocessing, based on function secret-sharing. This
framework can be seen as a generalisation of Beaver’s paradigm:
Paradigm (Circuit Randomisation, Informal, adapted from [BGI19]). Two or more
semi-honest parties wishing to securely evaluate some public function f on some linearly
secret-shared input x ∈ Fn can follow this protocol template:

• Initially, each party is assumed to hold a linear share of some random mask
r ∈ Fn, as well as a “(one-time) share of the function gr(·) := f(· − r)”. A (one-
time) share of a function h is syntactically defined as a (deterministic) function
whose value, on input X, is a share of X. The meaning of this will become clearer
given the examples in the rest of this section.

• Each party locally computes a linear share of cx := x + r, then broadcasts this
share. Then, everyone can reconstruct cx.

• Each party evaluates their function share of gr on the public value cx, thereby
generating a share of gr(cx) = f(x).

Depending on the setting, it may be convenient to assume the parties hold shares of
some joint input (as above), or to assume each party holds their own input. We now
present the modified version of circuit-randomisation, in the latter case. Suppose N
parties wish to compute an N -input function f .

• In an offline phase, each party is Pi is initially given a mask ri (of the same length
as their eventual input). Each party is additionally given a (one-time) share of
the function gr1,...,rN : (X1, . . . , XN) 7→ f(X1 − r1, . . . , XN − rN).

• At the beginning of the online phase, each party Pi, holding input xi broadcasts
ci := xi + ri.

• Each party evaluates their function share of gr1,...,rN on the public (c1, . . . , cN),
thereby generating a share of gr1,...,rN (c1, . . . , cN) = f(x1, . . . , xN).

We start by recalling Beaver’s circuit-randomisation technique for multiplication
[Bea92] (in other words, and with the above notations, f is simply a multiplication).

1This includes the boolean case, i.e. F = F2.
2It is well known that Beaver’s approach can be upgraded to active security if the multiplication

triples are authenticated. All protocols discussed in this section can similarly be upgraded to active
security, however for simplicity we focus on passive security.

38

Beaver’s circuit-randomisation technique for multiplication [Bea92]. Sup-
pose that each party Pi holds linear shares [x]i and [y]i of x and y respectively, and
further that they hold pre-computed secret-shares [a]i, [b]i, and [c]i which are assumed
to have been generated in an offline phase with a, b

$← F and c = a · b.
If each party Pi computes a share of α := x + a as [α]i ← [x]i + [a]i and a share of
β := y + b as [β]i ← [y]i + [b]i, they can broadcast these shares then reconstruct α and
β locally from the other parties’ shares. Each party Pi (i ∈ [N]) can set their share of
the multiplication as [x ·y]i ← [c]i+α ·β+α · [b]i+[a]i ·β . Correctness of reconstruction
follows from eq. (3.1).

x · y = ((x+ a)− a) · ((y + b)− b)
= (α + a) · (β + b)
= ab+ αβ + αb+ aβ
= c+ αβ + αb+ aβ

(3.1)

With the more modern formulation we proposed above the secret-shared input is (x, y),
and the mask is r = (a, b). Each party’s share of the function gr : (X, Y) 7→ (X − a) ·
(Y − b) is the function (A,B) 7→ [c]i + A · B + A · [b]i + [a]i · B. This last function is
“the ith party’s one-time share of the function gr”.

Boyle et al.’s constant-depth circuit randomisation [BCG+19b]. Let’s now
suppose that the parties hold shares of x1, . . . , xn and wish to compute shares of some
constant-depth (fan-in two) circuit in the xi . For simplicity, let us start with the
case of a single-output fan-in two circuit, i.e. a polynomial P , whose (constant) degree
we denote d. Suppose the parties hold shares of r1, . . . , rn (which are assumed to
have been sampled i.i.d. uniformly at random) as well as shares of

∏
i∈[n] r

di
i for every

(d1, . . . , dn) ∈ [0, n]n s.t. d1 + · · · + dn ≤ d (note that by a balls-and-bins argument
there are

(
n+d−1
d−1

)
such tuples, which is polynomial). Similarly to before, the parties can

locally compute shares of αi := xi + ri for i ∈ [n], then broadcast them so all parties
can reconstruct α1, . . . , αn.

P (x1, . . . , xn) =
∑

0≤d1,...,dn≤n
d1+···+dn≤d

cd1,...,dn
∏
i∈[n]

xdi
i

=
∑

0≤d1,...,dn≤n
d1+···+dn≤d

cd1,...,dn
∏
i∈[n]

((xi + ri)− ri)
di

=
∑

0≤d1,...,dn≤n
d1+···+dn≤d

cd1,...,dn
∏
i∈[n]

di∑
k=0

((−1)k
(
di
k

)
αdi−k
i rki)

=
∑

0≤d1,...,dn≤n
d1+···+dn≤d

c′d1,...,dn
∏
i∈[n]

αdi
i

where c′d1,...,dn =
∑

0≤d′1,...,d′n≤n
(d1+d′1)+···+(dn+d′n)≤d

(
c(d1+d′1),...,(dn+d′n)

∏
i∈[n]

(
(−1)d′i

(
di
d′i

)
r
d′i
i

))

=
∑

0≤d′1,...,d′n≤n
(d1+d′1)+···+(dn+d′n)≤d

((
c(d1+d′1),...,(dn+d′n)

∏
i∈[n]

(−1)d′i
(
di
d′i

))(∏
i∈[n]

r
d′i
i

))
(3.2)

There are two dual interpretations of eq. (3.2):

• A secret-shared function evaluated on a public input: the “FSS viewpoint” is that
P (x1, . . . , xn) can be expressed as a (secret) degree-d polynomial function in the
(public) (αi)i∈[n], whose coefficients are degree-d polynomials in the (ri)i∈[n];

39

• A public function evaluated on a secret-shared input: the “HSS viewpoint” is
that P (x1, . . . , xn) can be expressed as a (public, given the (αi)i∈[n]) degree-d
polynomial function in the (secret) (ri)i∈[n].

In either case, given the αi (= xi + ri) for i ∈ [n], as well as additive shares of the∏
i∈[n] r

di
i for every (d1, . . . , dn) ∈ [n]n s.t. d1 + · · · + dn ≤ d, each party Pj can locally

generate an additive share of P (x1, . . . , xn) as follows:

[P (x1, . . . , xn)]j ←
∑

0≤d1,d′1,...,dn,d′n≤n
d1+···+dn≤d

(d1+d′1)+···+(dn+d′n)≤d

(∏
i∈[n]

αdi
i

)(
c(d1+d′1),...,(dn+d′n)

∏
i∈[n]

(−1)d′i
(
di
d′i

))[∏
i∈[n]

r
d′i
i

]
j

.

More compactly, this can be rewritten as:

[P (x1, . . . , xn)]j ← [(1F∥r⃗)⊗d]j · c⃗α1,...,αn,P

where c⃗α1,...,αn,P ∈ F(n+1)d is the vector of coefficients of
P (x1, . . . , xn), seen as a polynomial function in (r1, . . . , rn) .

Finally, observe that holding the αi as well as shares of the
∏

i∈[n] r
di
i is enough to

compute shares of [P (x1, . . . , xn)] for every degree-d polynomial P . In particular, this
allows the parties to compute shares of every output wire of a constant-depth fan-in
two circuit.

Ishai et al.’s “One-time truth tables” [IKM+13]. Ishai, Kushilevitz, Meldgaard,
Orlandi, and Paskin-Cherniavsky introduced the “one-time truth table” protocol, per-
fectly realising (with active security) any N -party functionality with optimal commu-
nication, provided the parties are given access to an exponential amount of (function-
dependent) correlated randomness. One way to view their protocol is simply as circuit
randomisation, where the “function shares” of gr (= f(· − r)) are simply linear secret
shares of the truth table of gr. A convenient way to view this is that the ith party is
receiving the truth table of the function g

(i)
r , where the (g

(j)
r)j∈[N] are chosen uniformly

at random conditioned on
∑

j∈[N] g
(j)
r = gr . In other words, a share of the truth table

of a function is the truth table of a share of the function.

Couteau’s loglog-depth circuit randomisation [Cou19]. The key idea of behind
Couteau’s protocol, already implictly present in Damgård, Nielsen, Nielsen, Ranel-
lucci’s “TinyTables” protocol [DNNR17], is that a low-depth circuit can be decomposed
into chunks, such that each one has a polynomial-size truth table. More precisely, if a
function can be computed by a depth-d circuit, where each gate has fan-in at most 2,
then the function must be 2d-local, meaning each of the m output bit/field element of
f can be computed by only considering a size-2d subset of the inputs. If d ≤ log log n,
then each output of f has a polynomial-size truth table, which provides an avenue to
secret-share the function f with a polynomial amount of correlated randomness:

• Each party is given a linear share of r, as well as a linear share of g(i)r := fi(·−r[Si])
(which could e.g. be locally derived from (1F∥r[Si])

⊗2d)for i ∈ [m].

• Each party locally computes a linear share of cx := x + r, then broadcasts this
share. Then, everyone can reconstruct cx.

• Each party evaluates their function share of g(i)r on the public value cx[Si] (for
i ∈ [m]), then outputs the concatenation of the resulting shares.

40

3.3 Computational MPC

3.3.1 Linear Communication

In this setting, linear-communication protocols would be both too long to survey and
out of scope. We simply note that the communication complexity of the seminal
protocols is already only linear in the circuit-size. In the cryptographic setting, still
under the assumption that the parties have access to a full set of pairwise connected
channels, it is known that any function can be securely computed while tolerating all-
but-one corruptions (t < N) from Oblivious Transfer (OT) [Yao82, GMW87a, Kil91]
(note that Yao’s [Yao82] garbled circuits protocol additionally requires the existence of
one-way functions, which is implied by the existence of an OT protocol, while the other
protocols hold in the OT-hybrid model3). However, the communication complexity of
all these protocols (even in the OT-hybrid model) is linear in the circuit-size of the
function being computed.

3.3.2 Sublinear Communication

We emphasise that this section does not include the results presented in section 1.3 of
this thesis.

With the construction of Fully Homomorphic Encryption (FHE) (a problem introduced
by [RAD78]) from standard assumptions [Gen09], protocols emerged for secure com-
putation with constant communication and polynomial computation under variants of
the Learning With Errors (LWE) computational assumption [Gen09,DFH12,AJL+12].
Recent progress in breaking the circuit-size barrier for layered circuits in the computa-
tional setting from assumptions not known to imply FHE follows from the advances in
HSS (and PCGs, extended upon in the next paragraph) for super-constant depth circuits
from a variety of assumptions: [BGI16a] for DDH and [FGJS17] from (a circular-secure
variant of) DCR.
Finally, Stacked Garbled Circuits—which were first built in the Random Oracle Model
(ROM) [HK20], then in the standard model [HK21]—allow for two-party computation
with communication proportional to the longest execution path of the circuit. This
leads to sublinear 2PC for the large class of circuits with high conditional branching.
These results on secure computation with “free conditional branching” were extended
to the multiparty setting [GHAHJ22]. It seems unclear whether this line of work on
circuits with high conditional branching should be considered “general computation” or
“specialised computation”. Finally, we note that similar results exist in the correlated
randomness model, as [HKP20] showed that Beaver triples [Bea92] can be reused across
conditional branches.

3This distinction is relevant if we want to e.g. achieve oblivious transfer using noisy channels.

41

42

Chapter 4

Offline-Online
Sublinear-Communication Two-Party
Computation

This chapter describes results which have been communicated
previously in [CM21].

Based on joint work with Geoffroy Couteau.

In this chapter, we show that circuit-dependent homomorphic secret sharing—i.e. HSS
where the share generation requires knowing in advance the circuit to be evaluated
homomorphically—for the class of log-local circuits exists, conditioned on (the quasi-
polynomial hardness of) a well-studied 20th century assumption: the learning parity
with noise (LPN) assumption [BFKL94]. Informally, the LPN assumption captures
the hardness of solving an overdetermined system of linear equations over F2, when a
small subset of the equations is perturbed with a random noise. The LPN assumption
has a long history in computational learning theory, where it emerged. Furthermore,
our results only require a flavour of LPN where the adversary is given a very limited
number of samples (typically, O(n) equations in n indeterminates). In this regime,
LPN is equivalent to the hardness of decoding random linear codes over F2, which is
the well-known syndrome decoding problem in the coding theory community, where it
has been studied since the 60’s [Pra62].

Details on the underlying assumption. In a bit more detail, given a security
parameter λ, the (T, n,N, r)-LPN assumption with dimension n = n(λ), number of
samples N = N(λ) and noise rate r = r(λ) states that for every adversary Adv running
in time at most T = T (λ),

Pr
[
A

$← FN×n
2 , e⃗

$← BerNr , s⃗
$← Fn

2 : Adv(A,A · s⃗+ e⃗) = s⃗
]
= negl(λ),

where Berr denotes the Bernouilli distribution which outputs 1 with probability r, and
negl denote some negligible function. When T can be any polynomial (resp. any super-
polynomial function, some super-polynomial function), we say that we assume the poly-
nomial (resp. quasi-polynomial, super-polynomial) hardness of LPN. For arithmetic
circuits, we need to assume LPN over large fields, or equivalently syndrome decoding
for random linear codes over large fields; this is also a well-founded and well-studied
assumption, used in several previous works, e.g. [BCGI18,BCG+19b].

43

HSS for Any loglog-Depth Circuit. We introduce a new circuit-dependent HSS
scheme for the class of any log log-depth circuits. We emphasise that unlike traditional
forms of HSS, here the input-sharing phase depends on the homomorphic evaluation
circuit: in other words it is an HSS scheme for any singleton class comprised of a single
circuit of depth log log, not for the class of all such circuits simultaneously.

Main Theorem 1 (HSS for any loglog-Depth Circuit, Informal). Let C be a size-s,
n-input, m-output, (ϵ · log log)-depth arithmetic circuit over F (for some ϵ ≤ 1/4). If
the F-LPN assumption with super-polynomial dimension ℓ, O(ℓ) samples, and inverse
super-polynomial rate holds then there exists a secure HSS scheme for the class {C} with
share size n+O(m · s · log s/clog1−ϵ s−log1−2ϵ s) (for some constant c) and computational
complexity O(m · poly(s) · (log |F|)2).

Restricting the circuit class to depth-k size-s circuits where k(s) ≤ log log s/4 leads to
quantitative improvements in the size of the shares, the computational complexity of
expanding shares, and the strength of the LPN assumption.

Application to Sublinear Computation. Our HSS scheme has (non black-box)
implications for sublinear computation. As in [BGI16a], our results holds for all layered
(boolean or arithmetic) circuits, in the two-party setting.

Main Theorem 2 (Sublinear Computation of Layered Circuits, Informal). For any
layered arithmetic circuit C of polynomial size s = s(λ) with n inputs and m outputs,
for any function k(s) ≤ log log s− log log log s+O(1), there exists a two party protocol
for securely computing C in the honest-but-curious model, with total communication
2(n+m+ s/k) · log |F|+ o(s/k) and computation bounded by s3 · polylog(s) · (log |F|)2
under a set of LPN assumptions, the exact nature of which depends on the sublinearity
factor k.
In particular, setting k ← O(log log s) leads to a protocol with total communication
O(n+m+ s/ log log s), secure under the super-polynomial hardness of:

• F-LPN with super-polynomial dimension ℓ, O(ℓ) samples, and inverse super-
polynomial rate,

• F2-LPN with super-polynomial dimension ℓ′, O(ℓ′) samples, and inverse polyno-
mial rate 1/sO(1) (which is implied by the above if F = F2).

Furthermore (but with a slighly different choice of parameters than the one described
above), as k is reduced to an arbitrarily small k = ω(1), we need only assume the
quasi-polynomial hardness of:

• F-LPN with quasi-polynomial dimension ℓ, O(ℓ) samples, and inverse quasi-poly-
nomial rate,

• F2-LPN with quasi-polynomial dimension ℓ′, O(ℓ′) samples, and inverse polyno-
mial rate 1/sO(1) (which is implied by the above if F = F2).

and the computation is reduced to O(s1+o(1) · (log |F|)2).

Remark 2. While we require security against super-polynomial-time adversaries, this
remains a relatively weak flavour of LPN where the dimension is very high, i.e. super-
polynomial as well (and the adversary is allowed to run in time O(ℓ2) where ℓ is the
dimension), and the number of samples which the adversary gets is very limited, O(ℓ).

44

On the other hand, we require a very small noise rate λ/N . For example, instantiat-
ing the above with k = (log log s)/5, we obtain a secure computation protocol with total
communication O(ℓ+m+s/ log log s) (sublinear in s) and polynomial computation, as-
suming that LPN is hard against adversaries running in super-polynomial time λO(log λ),
with dimension ℓ = λO(log λ), N = 2ℓ samples, and noise rate λ/N . More generally,
for any super-constant function ω(1), there is a two-party protocol with communication
O(n+m+ s/ logω(1)) assuming the λω(1)-hardness of LPN (i.e., the quasi-polynomial
hardness of LPN).

We note that, in this regime of parameters, the best known attacks are the informa-
tion set decoding attack [Pra62] and its variants (which only shave constant in the
exponents, hence have the same asymptotic complexity), which require time 2O(λ).1
Therefore, assuming hardness against λO(log λ)-time adversaries is a very plausible as-
sumption.

Remark 3 (On the Generality of Layered Circuits). Our construction is restricted
to the class of (boolean or arithmetic) layered circuits. This restriction stems from
the blockwise structure of the construction, and was also present in the previous works
of [BGI16a] and [Cou19]. As noted in [Cou19], layered circuits are a relatively large
and general class of circuits, which furthermore capture many “real-world” circuits such
as FFT-like circuits (used in signal processing, integer multiplication, or permutation
networks [?]), Symmetric crypto primitives (e.g. AES and algorithms that proceed
in sequences of low-complexity rounds are naturally “layered by blocks”), or dynamic-
programming algorithm (e.g. the Smith-Waterman distance, or the Levenshtein dis-
tance and its variants).

Generalisation to the malicious setting. Our result can directly be generalised to
the malicious setting using a generic GMW-style compiler [GMW87a], which is commu-
nication preserving when instantiated with succinct zero-knowledge arguments [NN01].
Such arguments exist under collision-resistant hash functions; hence, Theorem 2 ex-
tends to the malicious setting as well, at the cost of further assuming collision-resistant
hash functions (which is a mild assumption). We note that CRHFs have recently been
built from (sub-exponentially strong) flavours of LPN [AHI+17,YZW+19,BLVW19].

4.1 An Overview of Our Protocol
From now on, we set the number of parties to N = 2. The work of [BCG+19b, Section 6]
provides a pseudorandom correlation generator under the LPN assumption, which gen-
erates correlated (pseudo) random strings for the low-degree polynomial correlation,
i.e. shares of (r⃗, r⃗⊗2, . . . , r⃗⊗d) for some constant d, where r⃗ is a (pseudo)random vec-
tor. With the duality between PCGs and HSS this yields an HSS for constant-depth
circuits. Our goal is to design a PCG which would lead to an HSS for super-constant
depth circuits. More specifically, and keeping our end application in mind, we would
like for our PCG to have short enough seeds to lead to a compact HSS scheme (i.e.,
shares of an input x should be at most O(x)). This is fundamental when using the
scheme to generate correlated randomness in the protocol of [Cou19], which achieves
sublinear communication in the correlated randomness model, and which is the starting
point of our application to sublinear secure computation.

1BKW and its variants [BKW00,Lyu05] do not improve over information set decoding attacks in
this regime of parameters, due to the very low number of samples.

45

Our approach is therefore to directly plug in the construction of [BCG+19b] and see
where it fails. Two issues emerge: the computation is super-polynomial, and the com-
munication not sublinear. Below, we outline each of these issues, and explain how we
overcome them.

First Issue: Too Many Polynomials. The first problem which appears when
plugging the PCG of [BCG+19b] in the protocol of [Cou19] is that the latter requires
distributing many shares of multivariate polynomials Q̂ – more precisely, s/k such
polynomials (one for each coordinate of each first layer of a bloc). While the PCG
of [BCG+19b] allows to compress pseudorandom pairs (r⃗, Q(X⃗ − r⃗)) into short seeds,
these seeds will still be of length at least ω(log λ), where λ is the security parameter,
for the PCG to have any hope of being secure. That means that even if we could
manage to securely distribute all these seeds with optimal communication protocols,
the overall communication would still be at the very least ω((s log λ)/ log log s), which
cannot be sublinear since log log s = o(log λ) (as s is polynomial in λ).
We solve this first issue as follows: we fix a parameter β, and partition each y⃗i into w/β
subvectors, each containing β consecutive coordinates of y⃗i. Then, the core observation
is that a simple variant of the PCG of [BCG+19b] allows in fact to generate shares
of (r⃗, r⃗⊗2, · · · , r⃗⊗2k) for some pseudorandom r, where r⃗⊗j denotes the tensor product
of r⃗ with itself j times (which we call from now on the j-th tensor power of r⃗): this
correlation is enough to generate shares of all degree-2k polynomial in r⃗ rather than
a single one. We will build upon this observation to show how to generate a batch
of β shares of multivariate polynomials from a single tensor-power correlation, thus
reducing the number of PCG seeds required in the protocol by a factor of β, at the
tolerable cost of slightly increasing the size of each seed.

Solution: Batching β Multivariate Polynomials. Consider the first length-β
subvector of y⃗i+1, which we denote v⃗. Observe that the entire subvector v⃗ can depend
on at most β · 2k coordinates of y⃗i, since each coordinate of v⃗ depends on at most 2k

coordinates of y⃗i. Therefore, we can now see the computation of v⃗ from y⃗i as evaluating
β multivariate polynomials (Q1 · · · , Qβ), where all multivariate polynomials take as
input the same size-(β2k) subset of coordinates of y⃗i. To securely compute shares of
v⃗ from shares of y⃗i, the parties can use the following type of correlated randomness:
they will have shares of (r⃗, r⃗⊗2, · · · r⃗⊗2k), where r⃗ is a random mask of length β · 2k.
Consider the following polynomials:

(Q̂1(X⃗), · · · , Q̂β(X⃗)) def= (Q1(X⃗ − r⃗), · · · , Qβ(X⃗ − r⃗)).

Each coefficient of each Q̂ can be computed as a degree-2k multivariate poynomial
in the coordinates of r⃗ – or, equivalently, as a linear combination of the coordinates
of (r⃗, r⃗⊗2, · · · r⃗⊗2k). Hence, given additive shares of (r⃗, r⃗⊗2, · · · r⃗⊗2k), the parties can
locally compute additive shares of the coefficients of all the polynomials (Q̂1, · · · Q̂β).
Using the PCG of [BCG+19b], the seeds for generating pseudorandom correlations of
the form (r⃗, r⃗⊗2, · · · r⃗⊗2k) have length:

O
(
λ2k · log

((
β · 2k

)2k))
,

where λ is some security parameter related to the hardness of the underlying LPN
assumption. Or more simply, using the fact the computational cost of generating the
correlations contains the term

(
β · 2k

)2k which must remain polynomial in s. Therefore,
the total number of bits which the parties have to distribute (for all (d/k) · (w/β) =
s/(βk) such seeds) is O((s/k) · (λ2k · log s)/β).

46

Choosing the Parameter β. Suppose for simplicity that we already have at hand
an MPC protocol allowing to securely distribute such seeds between the parties, with
linear overhead over the total length of the seeds generated. This means that generating
the full material will require a total communication of c · s ·λ2k · log s/(βk). By setting
β to be larger than c · λ2k · log s, the total communication will be upper bounded
by O(s/k) = O(s/ log log s) when setting k ← O(log log s), which is the highest our
techniques will allow it to be pushed. The most important remaining question is
whether we can execute this process in polynomial time given such a large β. Put
more simply, the core issue is that the computational complexity of expanding short
seeds to shares of (r⃗, r⃗⊗2, · · · r⃗⊗2k) with the PCG of [BCG+19b] contains a term of the
form (β · 2k)2k . To make the computation polynomial, we must therefore ensure that
β is at most sO(2−k), which is subpolynomial. Fortunately, this can be done by setting
the security parameter λ of the underlying PCG to be sO(2−2k). For instance, for any
constant ϵ ∈]0, 1[, we can set λ ← 2log

ϵ s, k ← log log s/cϵ, and β ← sO(2−k) for some
explicit constant cϵ > 2, at the cost of now having to assume the quasi-polynomial
security of the LPN assumption.

4.1.1 Block Decomposition of Layered Circuits

Given an arithmetic circuit C and an input vector x⃗, we call value of the gate g on input
x⃗ the value carried by the output wire of a given gate g of C during the evaluation
of C(x⃗). The following decomposition of layered circuits is implicit in [Cou19]; for
completeness, we give the proof here. The decomposition of a layered circuits into
chunks computable by low-degree functions is illustrated on Figure 4.1.

Chunk i+ 1

Layers

i · k
. . .

i · k + (k − 1)

Layer Lji+1

Chunk i

Layers

(i− 1) · k
. . .

(i− 1) · k + (k − 1)

Layer Lji

Distance
≤ k ith Block

· · ·

· · ·

Figure 4.1: Block Decomposition of a Circuit.

Lemma 1 (Block-Decomposition of Layered Circuits, Implicit in [Cou19]). Let C be
a layered arithmetic circuit over a field F with n inputs and m outputs, of size s and
depth d = d(n). For any integer k, denoting t = t(k) = ⌈d/k⌉, there exists 2t + 1
integers (s0 = 0, s1, · · · , st−1, st = 0), (m0, · · · ,mt−1), and functions (f0, · · · , ft−1)
with fi : Fn × Fsi → Fsi+1 × Fmi, such that:

• The algorithm A given below satisfies, for any input vector x⃗ ∈ Fn, A(x⃗) = C(x⃗)
(that is, A computes C);

function A(x⃗)
x⃗0 ← x⃗

47

for i = 0 to t− 1 do (x⃗i+1, y⃗i)← fi(x⃗i)

y⃗ ← y⃗0|| · · · ||y⃗t−1
return y⃗

• For any i ∈ [[0, t−1]], j ≤ si+1+mi, the j-th output2 of fi : Fn×Fsi 7→ Fsi+1×Fmi

can be computed by a multivariate polynomial Pi,j over F2k of degree degPi,j ≤ 2k;

•
∑t−1

i=0 si ≤ s/k and
∑t−1

i=0 mi = m.

Proof. Let C be a layered boolean circuit with n inputs and m outputs, of size s and
depth d, with layers (L1, · · · , Ld). For i = 1 to d, we let wi denote the width of the
layer Li (that is, the number of computation gates it contains; note that s =

∑d
i=1 wi).

Fix an integer k and let t = ⌈d/k⌉.
We start by considering t ‘chunks’ of layers, each containing k consecutive layers (the
last may in fact contain fewer if k ∤ d). Observe there must exist a j ∈ [0, k − 1], such
that the sum of the widths of the jth layer of each chunk (with the convention that if the
last chunk has fewer than j layer, its jth one is empty; wi = 0 if i > d) is at most s/k,
i.e.

∑t
i=1wk·(i−1)+j ≤ s/k. Indeed otherwise ∀j ∈ [0, k],

∑t−1
i=0 wr0+1+k·(i−1)+j > s/k,

so s =
∑d

i=1wi ≥
∑d−r1

i=r0+1wi =
∑k−1

j=0

∑t
i=1wr0+1+k·(i−1)+j > k · s/k = s, which is a

contradiction. With j being fixed we now define ji ← k · (i− 1) + j for i ∈ [t− 1] and
jt ← min(d, k · (t− 1) + j).
Now, for each 0 ≤ i ≤ t, we let Bi the block containing the consecutive layers
(Lji , · · · , Lji+1

). Note that the depth of each block is at most k. Let mi denote the
number of output nodes contained in Bi (note that

∑t−1
i=0 mi = m). For each 1 ≤ i ≤ t,

set si ← wji , and s0, sd ← 0. This decomposition into blocks is illustrated in fig. 4.1.
The intuition behind the decomposition of C is the following: each function fi will take
as input the n inputs x⃗ to C, together with the si values of the gates in the first layer
of Bi. It evaluates the layers of Bi, starting from the si values of the first layer (using
the input x⃗ when the layer contains an input node), and outputs the si+1 values on the
first layer of Bi+1, together with the mi values of the output nodes contained in Bi.
Given this decomposition, the correctness of algorithm A is guaranteed by definition:
A simply corresponds to a “block-by-block” evaluation of the circuit C, where each
block evaluation outputs the current state x⃗i+1 (which must be given as input to the
next block in addition to the input vector x⃗) together with the outputs of C contained
in this block. Since each block has depth at most k, each output of fi can be computed
by multivariate polynomials with at most 2k inputs, and of degree at most 2k.

4.1.2 Securely Computing C in the Correlated Randomness
Model

We represent in fig. 4.2 the ideal functionality for securely evaluating the layered arith-
metic circuit C.

Functionality FSFE(C)

The functionality is parametrised with a number of parties N and an arithmetic
circuit C with n = ℓ1 + · · ·+ ℓN inputs and m outputs over a finite field F.

Input: Wait to receive (input, i, xi) from each party Pi (i ∈ [N]), where xi ∈ Fℓi ,
and set x⃗← x1∥ . . . ∥xN .

2i.e. the jth coordinate of the image by fi, seen as fi : Fn × Fsi → Fsi+1+mi .

48

Output: Compute y⃗ ← C(x⃗); Output y⃗ to all parties P1, . . . , PN .

Figure 4.2: Ideal functionality FSFE(C) for securely evaluating an arithmetic circuit C
among N parties.

We represent on fig. 4.3 an ideal functionality for distributing (function-dependent)
correlated randomness between the parties.

Theorem 3. Let k ≤ log log s − log log log s. There exists a protocol ΠC which (per-
fectly) securely implements the N-party functionality FC in the Fcorr-hybrid model,
against a static, passive, non-aborting adversary corrupting at most N − 1 out of N
parties, with communication complexity upper bounded by O(N · (n + s

k
+m) · log |F|)

and polynomial computation.

Functionality Fcorr

The functionality is parametrised with a number of parties N and an arithmetic
circuit C with n = ℓ1 + · · ·+ ℓN inputs and m outputs over a finite field F.

Parameters: For every i = 0, . . . , ⌈d/k⌉ − 1, functionality is parameterised with
subsets (U in

i,j, Ui,j)1≤j≤⌈si+1/β⌉ and (V in
i,j, Vi,j)1≤j≤⌈mi/β⌉.

Parties: An adversary A and N parties P1, · · · , PN .
The functionality aborts if it receives any incorrectly formatted message.

1. On input a message (corrupt, D) with D ⊊ [N] from A, set H ← [N]\D and
store (H,D).

2. On input a message input with from each party Pℓ, send ready to A.

3. Setup input masks: On input a message (setinputshare, (r⃗in,ℓ)ℓ∈D) fromA with
∀ℓ ∈ D, r⃗in,ℓ ∈ Fn, sample (r⃗in,ℓ)ℓ∈H

$← (Fn)|H|, and set r⃗in ←
∑

ℓ∈[N] r⃗in,ℓ.

4. For i = 1 to ⌈d/k⌉ − 1:

(a) Setup masks for the computation gates of the first layer of the ith

chunk: On input a message (setblockshare, i, (r⃗i,ℓ)ℓ∈D) from A with
∀ℓ ∈ D, r⃗i,ℓ ∈ Fsi , sample (r⃗i,ℓ)ℓ∈H

$← (Fsi)|H|, and set r⃗in ←
∑

ℓ∈[N] r⃗in,ℓ.

(b) Setup evaluation of the computation gates on the final layer of the ith

chunk:

• For j = 1 to ⌈si+1/β⌉, set:

π⃗(i,j) ←
(
1 || r⃗in[Uin

i,j] || r⃗i[Ui,j]
)⊗2k

.

• Wait for a message (setshare, (i, j), (π⃗
(i,j)
ℓ)ℓ∈D) from A with π⃗

(i,j)
ℓ ∈

Fδ;
• Compute uniformly random shares (π⃗(i,j)

ℓ)ℓ∈|H| of π⃗(i,j)−
∑

ℓ∈D π⃗
(i,j)
ℓ .

(c) Setup evaluation of the output gates in the ith chunk:

49

• For j = 1 to ⌈mi/β⌉, set:

π⃗(i,j) ←
(
1 || r⃗in[V in

i,j] || r⃗i[Vi,j]
)⊗2k

.

• Wait for a message (setoutputshare, (i, j), (π⃗
(i,j)
ℓ)ℓ∈D) from A with

π⃗
(i,j)
ℓ ∈ Fδ;

• Compute uniformly random shares (π⃗(i,j)
ℓ)ℓ∈|H| of π⃗(i,j)−

∑
ℓ∈D π⃗

(i,j)
ℓ .

5. Output (r⃗in,ℓ, (r⃗i,ℓ, (π⃗
(i,j)
ℓ)1≤j≤⌈si+1/β⌉, (π⃗

(i,j)
out,ℓ)1≤j≤⌈mi/β⌉)0≤i<⌈d/k⌉) to each party

Pℓ.

Figure 4.3: Ideal corruptible functionality Fcorr to deal out correlated randomness to
the parties.

The protocol follows closely the construction of [Cou19], with some tedious technical
adaptations which are necessary to rely on the specific type of correlated randomness
which we will manage to securely generate with low communication overhead. The rest
of this section is dedicated to making ΠC explicit and to analysing its security.
In the sequel, we fix a layered arithmetic C with block decomposition:

(s0, s1, · · · , st−1), (m0, · · · ,mt−1), and (f0, · · · , ft−1).

We now proceed with the description of the protocol ΠC , which securely implements FC

in the Fcorr-hybrid model, with security against a static adversary passively corrupting
at most N − 1 parties. Fix parameters β, k ∈ N∗. We let x⃗ℓ denote the input vector of
party Pℓ over F. We slightly abuse this notation and view each vector x⃗ℓ as a length-n
vector with zeroes at the positions were Pℓ does not hold an input, so that the vectors
x⃗ℓ form additive shares of the input vector x⃗ =

∑N
ℓ=1 x⃗ℓ.

For each block Bi, we denote by u⃗i the values on the nodes of the first layer of Bi,
and by v⃗i the values on all output nodes in Bi. Observe that by definition of fi,
we have fi(x⃗, u⃗

i) = (u⃗i+1, v⃗i). We further partition the outputs of fi in subvectors
(u⃗i+1

j)1≤j≤⌈si+1/β⌉ and (v⃗ij)1≤j≤⌈mi/β⌉, such that each subvector has length at most β.
Recall that each output of fi depends on at most 2k inputs; therefore, each subvector
u⃗i+1
j and v⃗ij depends on at most β · 2k coordinates of (x⃗, u⃗i). For each subvector u⃗i+1

j

(resp. v⃗ij), we denote by U in
i,j ⊂ [n] (resp. V in

i,j ⊂ [n]) the subset of coordinates of x⃗
which influence u⃗i+1

j (resp. v⃗ij), and by Ui,j ⊂ [si] (resp. Vi,j ⊂ [si]) the subset of
coordinates of u⃗i which influence u⃗i+1

j (resp. v⃗ij). Note that |U in
i,j| + |Ui,j| ≤ β · 2k and

|V in
i,j|+ |Vi,j| ≤ β · 2k. This decomposition is illustrated in fig. 4.4.

4.1.2.1 Initialisation.

• Each party Pℓ sends input to Fcorr and waits until it receives

(r⃗in,ℓ, (r⃗i,ℓ, (π⃗
(i,j)
ℓ)1≤j≤⌈si+1/β⌉, (π⃗

(i,j)
out,ℓ)1≤j≤⌈mi/β⌉)0≤i<t).

• Each party Pℓ broadcasts z⃗in
ℓ ← x⃗ℓ + r⃗in,ℓ. All parties compute z⃗in ←

∑
ℓ z⃗

in
ℓ =

x⃗+ r⃗in.

50

Input/Output Gates

x⃗ (size n)

v⃗i (size mi)

Computation Gates

u⃗i (size si)

u⃗i+1 (size si+1)

Layer Lji

Layer Lji+1

Input Gates

Output Gates
in Block i

u⃗i+1
j

(size β)

U⃗i,jU⃗ in
i,j

Q⃗(i,j)

Q⃗
(i,j)
out

v⃗ij
(size β)

V⃗ in
i,j V⃗i,j

Figure 4.4: Decomposition of the ith Block into low-degree Polynomials.

4.1.2.2 i-th Block Evaluation.

We now resume the description of the protocol, and assume that the protocol maintains
the following invariant: at the beginning of the i-th block evaluation, each party Pℓ

holds an additive share u⃗i
ℓ of the values u⃗i on the first layer of the block. The block

decomposition of fi guarantees that each output of fi : Fn × Fsi 7→ Fsi+1 × Fmi can be
computed by a multivariate polynomial of degree at most 2k. Let Q⃗(i,j) denote the vec-
tor of multivariate polynomials of degree at most 2k such that Q⃗(i,j)(x⃗[U in

i,j] || u⃗i[Ui,j]) =

u⃗i+1
j ∈ Fsi+1 . Similarly, let Q⃗(i,j)

out denote the vector of multivariate polynomials of degree
at most 2k such that Q⃗

(i,j)
out (x⃗[V

in
i,j] || u⃗i[Vi,j]) = v⃗ij ∈ Fmi .

• Each party Pℓ broadcasts z⃗iℓ ← u⃗i
ℓ+r⃗i,ℓ. All parties compute z⃗i ←

∑
ℓ z⃗ℓ = u⃗i+r⃗i,ℓ.

• Define the following vectors of multivariate polynomials:

⃗̂
Q(i,j)(X⃗)← Q⃗(i,j)(X⃗ − (r⃗in[U

in
i,j] || r⃗i[Ui,j]))

⃗̂
Q

(i,j)
out (X⃗)← Q⃗

(i,j)
out (X⃗ − (r⃗in[V

in
i,j] || r⃗i[Vi,j])).

Observe that each coefficient of ⃗̂
Q(i,j)(X⃗) is itself a multivariate polynomial of

degree at most 2k in the coordinates of (r⃗in[U
in
i,j] || r⃗i[Ui,j]). Therefore, all its

coefficients can be computed as linear combinations of the coordinates of π⃗(i,j) =

(1F || r⃗in[U
in
i,j] || r⃗i[Ui,j])

⊗2k . Similarly, all coefficients of ⃗̂Q(i,j)
out (X⃗) can be computed

as linear combinations of the coordinates of π(i,j)
out = (1F || r⃗in[V

in
i,j] || r⃗i[Vi,j])

⊗2k .

• Each party Pℓ computes shares (⃗̂Q(i,j)
ℓ (X⃗),

⃗̂
Q

(i,j)
out,ℓ(X⃗)) of (⃗̂Q(i,j)(X⃗),

⃗̂
Q

(i,j)
out (X⃗)) from

his shares (π⃗
(i,j)
ℓ , π⃗

(i,j)
out,ℓ) of (π⃗(i,j), π⃗

(i,j)
out), and sets:

u⃗i+1
ℓ ←

(
⃗̂
Q

(i,j)
ℓ (z⃗in[U in

i,j], z⃗
i[Ui,j])

)
1≤j≤⌈si+1/β⌉

v⃗iℓ ←
(
⃗̂
Q

(i,j)
out,ℓ(z⃗

in[V in
i,j], z⃗

i[Vi,j])
)
1≤j≤⌈mi/β⌉

.

4.1.2.3 Output Reconstruction.

Each party Pℓ sets and broadcasts v⃗ℓ, where:

v⃗ℓ ← (v⃗
(0,j)
ℓ)j≤q0 ||(v⃗

(1,j)
ℓ)1≤j≤⌈m1/β⌉|| · · · ||(v⃗

(⌈d/k⌉−1,j)
ℓ)1≤j≤⌈m⌈d/k⌉−1/β⌉.

51

All parties reconstruct and output v⃗ ←
∑

ℓ v⃗ℓ.
We now prove Theorem 3 by proving the above protocol satisfies the necessary require-
ments.

Proof. The efficiency of the protocol follows by inspection: the total length of all
messages broadcast in ΠC is

N ·

(
n+

t−1∑
i=0

si +
t−1∑
i=0

mi

)
≤ N ·

(
n+

s

k
+m

)
.

We now analyse the security of ΠC . We describe in fig. 4.5 a simulator Sim which
perfectly simulates an execution of ΠC .

Simulator Sim

Let D ⊊ [N] be the subset of statically corrupted parties, and H = [N] \D be the
(nonempty) subset of honest parties.

• Initialisation.

– Sim honestly simulates the functionality Fcorr and stores the following
values:

(r⃗in,ℓ, (r⃗i,ℓ, (π⃗
(i,j)
ℓ)1≤j≤⌈si+1/β⌉, (π⃗

(i,j)
out,ℓ)1≤j≤⌈mi/β⌉)0≤i<⌈d/k⌉)ℓ∈[N].

– Sim broadcasts a random vector z⃗in
ℓ on behalf of all honest parties. Let

z⃗in ←
∑

ℓ≤N z⃗in
ℓ . For each ℓ ∈ D, Sim extracts x⃗ℓ ← z⃗in

ℓ − r⃗in,ℓ.

– Sim sends (input, x⃗ℓ) to FC on behalf of all corrupted parties, and re-
ceives an output v⃗.

• i-th Block Evaluation.

Sim broadcasts uniformly random z⃗iℓ
$← Fsi on behalf of all honest par-

ties, waits to receive (z⃗iℓ)ℓ∈D, and sets z⃗i ←
∑

ℓ∈[N] z⃗
i
ℓ.

• Output Phase.

For each ℓ ∈ D, Sim computes v⃗iℓ ←
⃗̂
Q

(i,j)
out,ℓ(z⃗

in[V in
i,j], z⃗

i[Vi,j]) and sets
v⃗ℓ ← v⃗0ℓ || · · · ||v⃗t−1ℓ . Eventually, Sim broadcasts uniformly random shares
of v⃗ −

∑
ℓ∈D v⃗ℓ on behalf of the honest parties.

Figure 4.5: Simulator Sim for the sublinear protocol in the Fcorr-hybrid model.

It remains to show that Sim perfectly simulates a run of the real protocol ΠC in the
Fcorr-hybrid model. But this follows almost immediately by inspection, as the view of
all corrupted parties in ΠC contains exactly:

• the tuple (r⃗in,ℓ, (r⃗i,ℓ, (π⃗
(i,j)
ℓ)1≤j≤⌈si+1/β⌉, (π⃗

(i,j)
out,ℓ)1≤j≤⌈mi/β⌉)0≤i<t)ℓ∈D, which is chosen

by the adversary;

• the vectors (z⃗in
ℓ = x⃗ℓ + r⃗in,ℓ)ℓ∈H , which are perfectly random since each r⃗in,ℓ is

perfectly random, by definition of Fcorr;

52

• the vectors (z⃗iℓ = u⃗i
ℓ+ r⃗iℓ)ℓ∈H , which are perfectly random since each r⃗iℓ is perfectly

random, by definition of Fcorr;

• the vectors (v⃗ℓ)ℓ∈H = (v⃗0ℓ || · · · ||v⃗t−1ℓ)ℓ∈H . By construction, and by definition of

the ⃗̂
Q

(i,j)
v,ℓ (X⃗), the v⃗ℓ satisfy:

v⃗
(i,j)
ℓ =

⃗̂
Q

(i,j)
out,ℓ(w⃗[V

in
i,j], z⃗

i[Vi,j])

= Q⃗
(i,j)
out,ℓ((w⃗[V

in
i,j], z⃗

i[Vi,j])− (r⃗[V in
i,j], r⃗

i[Vi,j]))

= Q⃗
(i,j)
out,ℓ(x⃗[V

in
i,j], u⃗

i[Vi,j])).

Therefore, the v⃗ℓ are uniformly random conditioned on:∑
ℓ∈H

v⃗
(i,j)
ℓ = Q⃗

(i,j)
out (x⃗[V

in
i,j], u⃗

i[Vi,j])−
∑
ℓ∈D

v⃗
(i,j)
ℓ .

By definition of the Q⃗
(i,j)
out (X⃗), we have Q⃗

(i,j)
out (x⃗[V

in
i,j], u⃗

i[Vi,j]) = v⃗(i,j), where the
v⃗(i,j) are such that fi(x⃗, u⃗i) = (u⃗i+1, (v⃗(i,j))1≤j≤⌈mi/β⌉). Therefore, by definition of
the fi, the vectors v⃗ℓ are uniformly random conditioned on:∑

ℓ∈H

v⃗ℓ = v⃗ −
∑
ℓ∈D

v⃗ℓ, where v⃗ = C(x⃗).

This concludes the proof that Sim perfectly simulates ΠC .

4.2 Generating the Correlated Randomness from
Quasi-Polynomial LPN

In this section, we construct a protocol Πcorr, which implements the ideal functionality
Fcorr with small communication, under the quasi-polynomial LPN assumption. A very
natural approach to realise a functionality that distributes correlated random coins
using a small amount of communication is to rely on pseudorandom correlation genera-
tors, a primitive recently defined an constructed (for various types of correlations, and
under a variety of assumptions) in [BCG+19b]. At a high level, [BCG+19b] suggests
to distribute correlated randomness with the following approach:

• Use a generic secure computation protocol ΠGen to distributively execute the
PCG.Gen functionality of the pseudorandom correlation generator. Note that
PCG.Gen outputs short seeds, much smaller than the correlated pseudo-random
strings which can be stretched from these seeds. Therefore, ΠGen can potentially
have a relatively high communication overhead in its inputs and outputs, while
maintaining the overall communication overhead of Πcorr small.

• Expand the distributively generated seeds locally using the Expand algorithm
of the PCG. Each such string is guaranteed, by the security of the PCG, to
be indistinguishable (from the viewpoint of the other parties) from a uniformly
random string sampled conditioned on satisfying the target correlation with the
expanded strings held by the other parties.

53

While this approach does not necessarily leads to a secure implementation of an ideal
functionality generating correlated random coins, it was shown in [BCG+19b] (Theo-
rem 19 in [BCG+19b]) that it provides a provably secure implementation for all cor-
ruptible ideal functionalities for distributing correlated random coins. Note that this
property is satisfied by our functionality Fcorr. Our protocol Πcorr will follow this ap-
proach. We start by constructing a pseudorandom correlation generator for the type
of correlated randomness produced by Fcorr, building upon an LPN-based construction
of [BCG+19b].

4.2.1 Substrings Tensor Powers Correlations (stp)

We now describe our construction of a PCG for generating the type of correlated
randomness produced by Fcorr. As all constructions of [BCG+19b], our construction
will be restricted to the two-party setting; hence, we focus on N = 2 parties from now
on. Abstracting out the unnecessary details, the functionality Fcorr does the following.
It is parametrised with a vector length w, subsets (Si)1≤i≤ns ∈

(
[w]
≤K

)ns , a tensor power
parameter tpp, and generates shares of:

(r⃗, ((1F || r⃗[Si])
⊗tpp)1≤i≤ns), where r⃗ ∈ Fw is random.

We call C the correlation generator associated with Fcorr, i.e. the PPT algorithm that,
on input the security parameter in unary 1λ, samples correlated random string as above
(where the parameters (ns, K, tpp) are functions of λ). It is straightforward to see that
C is a reverse-samplable correlation generator (see Definition 6), since it is an additive
correlation: given any fixed share share0, a matching share can be reverse-sampled
by sampling r⃗ and setting share1 ← (r⃗, ((1F || r⃗[Si])

⊗tpp)1≤i≤ns) − share0. We call this
type of correlated randomness a subsets tensor powers (stp). Below, we describe a
pseudorandom correlation generator for such correlations.

4.2.2 Good Cover

Before we proceed with the description of a PCG to generate such correlations, we
need to introduce a concept, that of a good cover. The notations in this subsection are
completely self-contained, and may conflict with the parameters defined for the main
protocol. In the course of our construction we will want to solve the following problem:
given a vector v⃗ of size n, a family (Si)i∈[t] ∈ P([n])t of t (short) subsets of coordinates
of v⃗, and a (small) bound B > 0, the problem is to find a family (v⃗j)j∈[M] of some
number m of size-K subvectors of v⃗ such that:

1. The subvectors collectively cover v⃗;

2. For each i ∈ [t], there are at most B subvectors in (v⃗j)j∈[M] whose coordinates
intersect Si.

We call such a family a B-Good Cover of (v⃗, (Si)i∈[t]). First of all we note that the
values of the vectors and subvectors do not matter, so we will conflate them with sets
and subsets (of coordinates) for simplicity, which leads to a more natural formulation.

Definition 14 (Good Cover – Set Formulation). Let n,B,K, t, q,M ∈ N and (Si)i∈[t] ∈(
[n]
≤q

)t
a family of t subsets of [n] of size at most q each. A family A = (α⃗j)j∈[M] ∈

(
[n]
K

)M
is a B-Good Cover of (Si)i∈[t] if:

1. A covers [n]:
⋃M

j=1 α⃗
j = [n]

54

2. Each Si intersects at most B elements of A: ∀i ∈ [t], |{j ∈ [M] : α⃗j ∩ Si ̸= ∅}| ≤
B.

We abusively conflate the two views, where a good cover is just a family of subsets
A ∈

(
[n]
K

)M
and where the good cover is a family of sparse vectors—given by a set of

coordinates and a short vector of values—A ∈ (
(
[n]
K

)
× FK)M .

Lemma 2 (Random Covers are Good Covers.). Let n, κ, κ′ ∈ N∖{0, 1}, and (Si)i∈[t] ∈(
[n]
≤q

)t
a family of t subsets of [n] of size at most q each. Let A = (α⃗j)j∈[M] ∈

(
[n]
K

)M
be

a sequence of M i.i.d. uniform random size-K subsets of [n], with M = κ · n lnn/K.
Let B ← κ′κ · q · lnn.
It holds that A = (α⃗j)j∈[M] is a B-Good Cover of (Si)i∈[t] with probability at least:

1− 1

nκ−1 −
t

n(κ′−2)κ·q/2 .

The proof, which is obtained in a straightforward fashion by combining the union and
Chernoff bounds, is given below.

Proof.

1. The probability that i /∈ A (for any i ∈ [n]) is equal to (1 −
(
n−1
K−1

)
/
(
n
K

)
)M =

(1− K
n
)M = eM ·ln(1−K/n) ≤ e−MK/n = n−κ (using ∀x ≥ −1, ln(1 + x) ≤ x), so by

union bound, the probability that A does not cover [n] is at most n · n−κ.

2. For each i ∈ [q], we arbitrarily extend Si to an S̃i of size exactly q; in particular
∀i ∈ [q], Si ⊆ S̃i so |{j : α⃗j ∩Si ̸= ∅}| ≤ |{j : α⃗j ∩ S̃i ̸= ∅}|. For any j ∈ [M], the
indicator random variable of the event {α⃗j∩S̃i ̸= ∅} follows a Bernouilli law with
parameters (M, q

p
), where p = 1 −

(
n−q
K

)
/
(
n
K

)
. Its expectancy is µ := E(X) =

M · (1 −
(
n−q
K

)
/
(
n
K

)
). Note that, using Bernouilli’s inequality (∀r ∈ N∗, ∀x ≥

−1, (1 + x)r > (1 + rx)):

µ = M ·

(
1−

∏K−1
j=0 (n− q − j)∏K−1

j=0 (n− j)

)
≤ m · (1− (n− 2q)K

nK
)

= M · (1− (1− 2q/n)K) ≤M
2qK

n
= 2κ · q · lnn.

Therefore the probability that X := |{j : αj ∈ S̃i}| ≤ B is, by (a looser version
of the multiplicative form of) Chernoff’s bound, at most:

∀δ ≥ 0,Pr[X > (1 + δ)µ] ≤ exp

(
− δ2µ

2 + δ

)
.

Setting δ ← B/µ− 1 yields:

Pr[X > B] ≤ exp

(
− δ2µ

2 + δ

)
≤ exp(−δµ/2) = exp

(
−B − µ

2

)
≤ n−(κ

′−2)κ·q/2.

3. The desired bound is then obtained by union bound.

55

4.2.3 PCG for Subsets Tensor Powers (PCGstp)

We now proceed with the description of a pseudorandom correlation generator for
subsets tensor powers.

PCG for Low-Degree Polynomials from [BCG+19b]. We start by recalling a
natural variant of pseudorandom correlation generator of [BCG+19b, Section 6], which
generates shares of r⃗⊗tpp, for a parameter tpp and a pseudorandom r⃗. It relies on the
xLPN assumption with dimension n, number of samples n′ > n, and a number λ of noisy
coordinates. In our instantiation, we will typically consider n′ = O(n), e.g. n′ = 12n;
this corresponds to a particularly conservative variant of LPN with a very limited
number of samples, and is equivalent to the hardness of decoding a random constant-
rate linear code (which is known as the syndrome decoding problem). All known attacks
on the syndrome decoding problem for constant-rate codes have complexity 2O(λ). The
PCG of [BCG+19b] is parametrised by integers 1λ, n, n′, λ, tpp ∈ N (where n′ > n), a
field F, and a random parity-check matrix Hn′,n

$← F(n′−n)×n′ .

PCG for degree-tpp Polynomial Correlations

PCG.Gen: On input 1λ:

1. Pick a random λ-sparse vector e⃗
$← HWλ(Fn′

). Note that e⃗⊗tpp ∈
HWλtpp(F(n′)tpp). Let f : [(n′)tpp] 7→ F be the multi-point function with λtpp

points, such that f(i) returns the i-th coordinate of e⃗⊗tpp.

2. Compute (K fss
0 , K fss

1)
$← MPFSS.Gen(1λ, f). Output k0 ← (n,K fss

0) and k1 ←
(n,K fss

1).

PCG.Expand: On input (σ, kσ), compute v⃗σ ← MPFSS.FullEval(σ,K fss
σ) in F(n′)tpp

and set r⃗σ ← H⊗tppn′,n · v⃗σ. Output r⃗σ.

Figure 4.6: Pseudorandom Correlation Generator for Low-Degree Polynomials from
[BCG+19b].

Correctness follows from the fact that v⃗0+ v⃗1 = e⃗⊗tpp by the correctness of MPFSS, and
H⊗tppn′,n · e⃗⊗tpp = (Hn′,n · e⃗)⊗tpp by multilinearity of the tensor product. Hence, denoting
r⃗ = Hn′,n · e⃗, it holds that r⃗0+ r⃗1 = r⃗⊗tpp. For security, we must show that the following
distributions are indistinguishable for any σ = 0, 1:

{(kσ, r⃗1−σ) : (k0, k1)
$← Gen(1λ), r⃗1−σ ← Expand(1− σ, k1−σ)}

c
≈{(kσ, r⃗1−σ) : (k0, k1)

$← Gen(1λ), r⃗σ ← Expand(σ, kσ), r⃗
$← Fn,

r⃗1−σ ← r⃗⊗tpp − r⃗σ}

Proof. We sketch the analysis for the sake of completeness; the full proof is given
in [BCG+19b]. Security is shown with the following sequence of hybrids: first generate
(kσ, r⃗1−σ) as in the first distribution above. Then, generate (kσ, r⃗1−σ) as before, and
generate an alternative key k′σ solely from the parameters (1λ,F, n, n′, t, tpp), using
the simulator of the MPFSS. Output (k′σ, r⃗1−σ); under the security of the MPFSS,
this distribution is indistinguishable from the previous one. Note that k′σ does not

56

depend anymore on the noise vector e⃗. In the next hybrid, generate r⃗
$← Hn′,n · e⃗

and set r⃗1−σ ← r⃗⊗tpp−Expand(σ, kσ); this game is perfectly indistinguishable from the
previous one. Finally, replace r⃗

$← Hn′,n · e⃗ by r⃗
$← Fn; under the LPN assumption,

this last game (which correspond exactly to the second distribution) is computationally
indistinguishable from the previous one, and security follows.

Our New PCG. We now describe a variant of the above PCG, tailored to computing
the tensor powers of many short subsets. The PCG is parametrised by (Si)i∈[K] ∈(
[w]
≤K

)ns , ns subsets of at most K indices taken from [w]. We assume for simplicity, but
morally without loss of generality3, that

⋃ns
i=1 Si = [w]. Our goal is for the parties to

obtain shares of some pseudorandom vector r⃗ ∈ Fw as well as shares of (1 || r⃗[Si])
⊗tpp ∈

Fw·tpp for each i ∈ [ns].
We start by generating a B-good cover (for some integer B) of the (Si)i of the form
(αj, r⃗j)j∈[m] ∈ (

(
[w]
θ

)
× Fθ)m where each r⃗j is pseudorandom. We generate each of the

m pseudorandom masks r⃗j using a different instance of xLPN, i.e. r⃗j ← Hj · e⃗j, where
e⃗j ∈ Fθ′ is λ-sparse and Hj

$← Fθ×θ′ for some θ′ = O(θ). For each Si, we denote
Ii := {j ∈ [m] : αj ∩ Si ̸= ∅} = {j1, . . . , j|Ii|} the set of the indices of the masks which
‘intersect’ with Si. Note that ∀i ∈ [ns], |Ii| ≤ B by definition of a B-good cover. We
can now proceed with our main goal: generating shares of a subsets tensor powers
correlation.
We define r⃗ :=

∑m
j=1 fαj ,r⃗j ∈ Fw, where fαj ,r⃗j ∈ Fw is the sparse vector defined by

(fαj ,r⃗j)|αj
= r⃗j (and which is equal to 0F on [w]∖ αj). Since

⋃ns
i=1 Si = [w] and each of

the r⃗j is pseudorandom, r⃗ is also pseudorandom.
Note that for any given i ∈ [ns], (1F || r⃗[Si]) is a subvector of the vector ˜⃗ri obtained by
multiplying the block-diagonal matrix H ′i = Diag((1F), Hj1 , . . . , Hj|Ii|

) with the vector
e⃗′i = (1F||ej1|| · · · ||ej|Ii|). Therefore for any tensor power tpp (i.e. the degree of the
polynomial correlation), ˜⃗r⊗tppi = (H ′i · e⃗′i)⊗tpp = (H ′i)

⊗tpp · (e⃗′i)⊗tpp. If the parties use an
MPFSS scheme to generate small seeds which expand to (e⃗′i)

⊗tpp, they can then locally
obtain shares of ˜⃗r⊗tppi (since (H ′i)

⊗tpp is public), and therefore of (1F || r⃗[Si])
⊗tpp. From

all these shares of all the (1F || r⃗[Si])
⊗tpp, i ∈ [ns] the parties can locally extract shares

of all the r⃗[Si] and thence shares of r⃗ (since
⋃ns

i=1 Si = [w]). The protocol is given in
Figure 4.7.

PCG for subset tensor powers PCGstp

Parameters: w, tpp, λ ∈ N and (Si)1≤i≤ns ⊆ [w]ns .

Gen: On input 1λ:

1. Generate a family of subsets (αj)1≤j≤m ∈
(
[m]
θ′

)m
which form a B-good cover

of the (Si)i∈[ns] (when the αj are paired with length-θ′ vectors in Fθ′), and
contracting matricesa (Hj)j∈[m] ∈ (Fθ×θ′)m .

2. Pick m random λ-sparse vectors e⃗j
$← HWλ(Fθ′), j ∈ [m] and define:

r⃗j ← Hj · e⃗⊺j , for all j ∈ [m].

3If
⋃ns

i=1 Si ̸= ∅, and with the notations of the rest of the section, the vector r⃗ we generate is equal
to 0F on [w] ∖

⋃ns
i=1 Si, hence not pseudorandom. However, we can simply have the parties generate

another mask r⃗′ = H ′ · e⃗′, pseudorandom under xLPN, to cover [w]∖
⋃ns

i=1 Si. Since the parties do not
need shares of (r⃗′)⊗tpp, the communication complexity of generating the λ-sparse e⃗′ using an MPFSS
is not an issue.

57

3. For each i = 1 . . . ns :

(a) Denoting Ii := {j ∈ [m] : αj ∩ Si ̸= ∅} = {j1, · · · , jmi
} (with mi ≤ B),

set:
˜⃗ri ← (1F || Hj1 · e⃗

⊺
j1
|| · · · || Hjmi

· e⃗⊺jmi
)⊺.

(b) Let fi : [(1 + mi · θ′)tpp] → F be the multi-point function with (1 +
mi · λ)tpp points, such that fi(x) = (1F||e⃗j1|| · · · ||e⃗jmi

)⊗tpp[x]. Compute
(K fss

i,0, K
fss
i,1)

$← MPFSS.Gen(1λ, fi).

4. Output k0 ← (w, (K fss
i,0)i≤ns) and k1 ← (w, (K fss

i,1)i≤ns).

Expand: On input (σ, kσ), parse kσ as (w, (K fss
i,σ)i≤ns).

1. For each i = 1 . . . ns :

Set H ′i ← Diag((1F), Hj1 , . . . , Hjmi
), compute

v⃗i,σ ← MPFSS.FullEval(σ,K fss
i,σ) ∈ F(1+miλ)

tpp

and set y⃗σ ← ((H ′i)
⊗tpp · v⃗σ)1≤i≤ns .

2. Extract from y⃗σ the appropriate linear combinations of its elements corre-
sponding to a share of (r⃗, ((1F || r⃗[Si])

⊗tpp)i∈[ns]). // If there are several ways
to do so, it must be consistent accross σ ∈ {0, 1}.

aImplicitly, the Hj are supposed to be ‘suitably chosen’ for xLPN to be presumed hard,
e.g. that they were randomly and independently sampled.

Figure 4.7: Pseudorandom correlation generator PCGstp for generating pseudorandom
instances of the subsets tensor powers correlation over a field F.

Theorem 4. Let w > 0, and (Si)i∈[ns] a list of ns subsets of [w]. Let B, θ′ such that
there exists a B-good cover of (Si)i∈[ns] comprised of size-θ′ vectors, and let θ < θ′.
Assume that the F-xLPN(θ, θ′, λ) assumption holds, and that MPFSS is a secure multi-
point function secret-sharing scheme for the family of (1+µ ·λ)tpp-point functions from
[(1 + µ · θ′)tpp] to F for all µ ∈ [B]. Then PCGstp is a secure pseudorandom correlation
generator, which generates pseudorandom shares of a subsets tensor powers correlation
(r⃗, ((1F || r⃗[Si])

⊗tpp)1≤i≤ns) where r⃗ ∈ Fw.

• Communication: If the MPFSS seeds have size O[λ · (1+Bλ)tpp · log((1+Bθ′)tpp)]

and MPFSS.FullEval can be computed with O((1+Bλ)tpp·(1+Bθ′)tpp· log |F|
λ

) invoca-
tions of a pseudorandom generator PRG : {0, 1}λ 7→ {0, 1}2λ+2, then PCGstp.Gen
outputs seeds of size:

|kσ| = O
(
ns · λ · (1 +Bλ)tpp · log ((1 +Bθ′)tpp)

)
.

• Computation: The computational complexity of PCGstp.Expand is predominantly
that of O(ns · (1+Bλ)tpp · (1+Bθ′) · log |F|

λ
) invocations of a PRG, plus ns matrix-

vector products with a matrix of dimensions (1 + Bθ)tpp × (1 + Bθ′)tpp which
requires at most O(ns · (Bθ)tpp · (Bθ′)tpp) ⊆ O(ns · (Bθ′)2·tpp) arithmetic operations
over F.

58

Proof. Let us first show correctness of our candidate PCG. By correctness of the
MPFSS, v⃗i,0 + v⃗i,1 = (1F||(e⃗ℓ)ℓ∈Ii)⊺ for every i ∈ [ns]. Therefore,

y⃗0 + y⃗1 = ((H ′i)
⊗tpp · v⃗0 + (H ′i)

⊗tpp · v⃗1)1≤i≤ns
= ((H ′i)

⊗tpp · ((1F || (e⃗ℓ)ℓ∈Ii)⊺)1≤i≤ns = (˜⃗ir
⊗tpp)1≤i≤ns .

r⃗[Si] =
(∑m

j=1 fαj ,r⃗j

)
[Si] =

(∑
j∈Ii fαj ,r⃗j

)
[Si], where fαj ,r⃗j is the sparse vector ob-

tained by spreading the vector r⃗j over the coordinates in the ordered set αj. It follows
that (1F || r⃗[Si])

⊗tpp can be extracted from ˜⃗rj (since any degree-(≤ tpp) polynomial in
a⃗+ b⃗ is also a degree-(≤ tpp) polynomial in a⃗||⃗b).
Security follows exactly by the same sequence of hybrids as in the previous analysis.
We show the following indistinguishability:

{(kσ, r⃗1−σ) : (k0, k1)
$← Gen(1λ), r⃗1−σ ← Expand(1− σ, k1−σ)}

c
≈{(kσ, r⃗1−σ) : (k0, k1)

$← Gen(1λ), r⃗σ ← Expand(σ, kσ),

r⃗′
$← Fm, r⃗1−σ ← ((1F||r⃗′)⊗tpp)i≤ns − r⃗σ}.

We first switch all the K fss
i,σ to simulated keys using the security of the MPFSS, then

replace the Hi · e⃗⊺i by random vectors, applying m times the security of LPN, once
for each replacement. The sum of sparse random vectors which form a good cover is
itself a random vector (by item 1 in definition 14), therefore the resulting distribution
is exactly the second distribution above, hence security follows.
Finally, the efficiency claims can be read directly from the construction, and follows
from the fact that Gen consists of ns MPFSS seeds, and the cost of Expand is dominated
by ns calls to MPFSS.FullEval and ns matrix-vector products.

4.2.4 Instantiating the MPFSS

Theorem 4 assumes the existence of an MPFSS scheme MPFSS for the family of all
(1+µ·λ)tpp-point functions from [(1+µ·θ′)tpp] to F for some µ ∈ [B] (or, equivalently, an
MPFSS for each µ which can then all be combined into one scheme), with the following
efficiency guarantees: MPFSS.Gen(1λ) outputs seeds of size O((1 +Bλ)tpp · λ · log((1 +
Bθ′)tpp)), and MPFSS.FullEval can be computed with O((1+Bλ)tpp · (1+Bθ′)tpp · log |F|

λ
)

invocations of a pseudorandom generator PRG : {0, 1}λ 7→ {0, 1}2λ+2. The works
of [BGI16b, BCGI18] provides exactly such a construction, which makes a black box
use of any pseudorandom generator PRG : {0, 1}λ 7→ {0, 1}2λ+2.
We instantiate the PRG using the LPN-based construction of [BKW03], which we
now recall. Fix some (constant) noise rate ε, a random matrix A

$← Fn1×n2
2 . Given

a random bitstring r ∈ {0, 1}n2+n1·h(ε), where h is the binary entropy function, define
s⃗ = s⃗(r) ∈ Fn2

2 to be the n2 first bits of r, and use the remaining n1 ·h(ε) bits to sample
a random vector e⃗(r) from Berε(F2)

n1 (it is well known that this distribution can be
sampled using roughly n1·h(ε) bits of randomness). Define the pseudorandom generator
PRG : {0, 1}λ 7→ {0, 1}2λ+2 as PRG(r) = A · s⃗(r)+ e⃗(r) ∈ Fn1

2 . Security follows from the
F2-LPN(n2, n1, ε) assumption, and this PRG stretches λ = n2 + n1 · h(ε) bits to n1 =
2λ+2 bits when n2 = n1·(1/2−h(ε))−1. Hence, given the security parameter λ, security
follows from the F2-LPN(λ · (1− 2h(ε))− 2h(ε), 2λ+2, ε) assumption for any constant
ε; for example, setting ε = 1/8, this assumption is implied by the F2-LPN(λ/4, 3λ, 1/8)
assumption. The cost of evaluating PRG is dominated by the matrix-vector product
A · s⃗, which requires at most n1n2 = O(λ2) arithmetic operations.

59

4.2.5 Securely Distributing MPFSS.Gen and Πstp

The seeds of the MPFSS scheme of [BCGI18] can be securely generated by using
parallel instances of a generic secure computation protocols to securely evaluate the
above PRG. Using GMW to instantiate the generic protocol, we have:

Corollary 1. There exists a semi-honest secure two-party protocol ΠMPFSS which dis-
tributes the seeds of a multi-point function secret-sharing scheme MPFSS for the family
of t′-point functions from [(1 +Bθ′)tpp] to F, using O(t′ · ν · λ2) calls to an ideal obliv-
ious transfer functionality, where ν = log((1 + Bθ′)tpp) and t′ = (1 + Bλ′)tpp, with
an additional communication of O(t′ · ν · λ2) bits, and total computation polynomial in
t′ · ν · λ.

Proof. Let t′ ← (1 + Bλ)tpp. The MPFSS scheme MPFSS for the family of t′-point
functions from [(1 + Bθ′)tpp] to F of [BCGI18] is constructed using t′ independent
instances of a single-point function secret sharing scheme (also called distributed point
function [GI14]): any t′-point function f : [(1 + Bθ′)tpp] 7→ F can be written as the
sum

∑t′

i=1 fi of point functions fi : [(1 + Bθ′)tpp] 7→ F which evaluate to 0F everwhere,
except on a single entry ji where they take the value f(ji) (the ji being the entries on
which f does not evaluate to 0F). Given a distributed point function (Gen,Eval), the
construction and its analysis are straightforward:

• MPFSS.Gen : On input (1λ, f), decompose f as
∑t′

i=1 fi as above, and output
(Gen(1λ, fi))1≤i≤t′ .

• MPFSS.Eval : On input (σ, (Ki,σ)i∈[t′], x), output yσ ←
∑t′

i=1 Eval(Ki,σ, fi, x).

Therefore, securely distributing MPFSS seeds reduces to t′ invocations of a secure pro-
tocol for distributing the seeds of a distributed point function (DPF). The DPF.Gen con-
struction of [BGI16b] for point functions over the domain [(1+Bθ′)tpp] works as follows:
the two output keys are K0 = (s

(0)
0 , cw1, . . . , cwν+1) and K1 = (s

(0)
1 , cw1, . . . , cwν+1)

where s
(0)
0 , s

(0)
1 are two random seeds for the PRG and ν = log((1 + Bθ′)tpp). Gen

proceeds in ν + 1 steps. In the i-th step it expands s(i−1)0 and s
(i−1)
1 by using one PRG

invocation for each seed and obtains s
(i)
0 , s

(i)
1 , and cwi. In the final step the algorithm

computes cwν+1 as a function of the expanded seeds and the target value.

Securely Generating DPF Seeds. We recall that the well known GMW proto-
col [GMW87b] allows two parties to securely evaluate any circuit of size s (in the
semi-honest model) using O(s) calls to an oblivious transfer functionality, and O(s)
additional bits of communication. Using GMW for distributing the Gen procedure
of the DPF over a field F, the communication and computation of the protocol are
dominated by two factors: O(λ) oblivious transfers for a seed and location of the des-
ignated point and by O(ν) secure evaluations of the PRG. Since evaluating the PRG
can be done using O(λ2) arithmetic operations over F2, it can be generically computed
using O(λ2) calls to an oblivious transfer functionality, and O(λ2) additional bits of
communication. Hence the following lemma:

Lemma 3. There exists a semi-honest secure two-party protocol ΠDPF which distributes
the seeds of a distributed point function DPF for the family of point functions from
[(1 + Bθ′)tpp] to F, using O(ν · λ2) calls to an ideal oblivious transfer functionality,
where ν = log((1 + Bθ′)tpp), with an additional communication of O(ν · λ2) bits, and
total computation polynomial in ν · λ.

60

As a direct corollary of Corollary 1, since the seeds of PCGstp contain exactly ns inde-
pendent MPFSS seeds, we have:

Corollary 2. There exists a semi-honest secure two-party protocol Πstp which dis-
tributes the seeds of the pseudorandom correlation generator PCGstp represented on
Figure 4.7, using O(ns · t′ · ν · λ2) calls to an ideal oblivious transfer functionality,
where ν = log((Bθ′ + 1)tpp) and t′ = (1+Bλ)tpp, with an additional communication of
O(ns · t′ · ν · λ2) bits, and total computation O(ns · poly(t′ · ν · λ)).

Instantiating the oblivious transfer. To execute the GMW protocol, we need
an oblivious transfer. Under the F2-LPN(λ,O(λ), 1/λδ) assumption (δ is any small
constant), there exists oblivious transfers (with simulation security) with poly(λ) com-
munication and computation; see for example [DGH+20].

Constructing Πcorr. The work of [BCG+19b] shows that any corruptible functional-
ity distributing the output of a correlation generator C can be secure instantiated using
any semi-honest secure two-party protocol Π for distributing the Gen procedure of a
PCG for C, with the same communication as Π, and with computational complexity
dominated by the computational complexity of Π plus the computational complexity
for computing the PCG.Expand procedure. Therefore, using their result together with
our protocol Πstp for generating the seeds of a PCG for subsets tensor powers correlation
allows to securely instantiate Fcorr (with N = 2).
Recall that the computation of PCGstp.Expand is dominated by O(ns · (1+Bλ)tpp · (1+
Bθ′)tpp · log |F|

λ
) invocations of a PRG – which requires at most O(λ2 ·ns ·(1+Bλ)tpp ·(1+

Bθ′)tpp · log |F|
λ

) operations over F2 using the simple LPN-based PRG from [BKW03] –,
plus an additional O(ns · (1 +Bθ)tpp · (1 +Bθ′)tpp) arithmetic operations over F. Since
each operation over F can be computed with O(log |F|)2) boolean operations, combining
the two, we get computation O(λ · ns · (1 +Bθ)tpp · (1 +Bθ′)tpp · (log |F|)2).
All that remains is for the parties to generate the necessary material for PCGstp: m
random Fθ×θ′ matrices and m size-θ′ subsets of [w]. At its core, this is just a matter for
the parties to generate and hold the same m · (θ · θ′ · log |F|+ log

(
w
θ′

)
) (pseudo)-random

bits. This can be achieved by having one party sample a seed of size λ, send it to
the other, and both parties can expand it locally by calling the length-doubling PRG
from [BKW03] (and used above) m · θ′ · (θ · log |F|+logw)/λ times (in a GGM tree-like
approach). This requires λ bits of communication and O(m · θ′ · (θ · log |F|+ logw) · λ)
bits of local computation. This is summarised in an intermediate theorem, Theorem 5
below.

Theorem 5. Assume the F-xLPN(θ, θ′−θ, λ/θ′) and F2-LPN(λ,O(λ), 1/λδ) – where δ is
any small enough constant – assumptions hold. Then there exists a semi-honest secure
two-party protocol Πstp which securely generates a subsets tensor powers correlation for
subsets (Si)i∈[ns] of [w] and for which there exists a B-good cover comprised of m size-θ′
masks, using the following resources:

• Communication:

O
(
ns · poly(λ) · (1 +Bλ)tpp · log(1 +Bθ′)tpp

)
.

61

• Computation:

O
(
λ · ns · (1 +Bθ)tpp · (1 +Bθ′)tpp · (log |F|)2

+ ns · poly
(
(1 +Bλ)tpp · log(1 +Bθ′)tpp · λ

)
+m · θ′ · (θ · log |F|+ logw) · λ

)
.

Wrapping up, using Πstp with an appropriate good cover suffices to construct
a protocol Πcorr for securely implementing the functionality Fcorr. For each
i = 1 . . . ⌈d/k⌉ − 1, the parties need to generate a B-good cover of the
((U in

i,j)j∈[⌈si+1/β⌉], (Ui,j)j∈[⌈si+1/β⌉], (V
in
i,j)j∈[⌈mi/β⌉], (Vi,j)j∈[⌈mi/β⌉]) seen as subsets of [n+si].

A way to do so is to generate:

• a B/2-good cover Ain of ((U in
i,j)j∈[⌈si+1/β⌉], (V

in
i,j)j∈[⌈mi/β⌉])1≤i<⌈d/k⌉ seen as subsets

of [n] comprised of Min size-θ′ masks;

• for each i = 1 . . . ⌈d/k⌉−1, a B/2-good cover Ai of ((Ui,j)j∈[⌈si+1/β⌉], (Vi,j)j∈[⌈mi/β⌉])
seen as subsets of [si] comprised of Mi size-θ′ masks.

Let κ, κ′, κin be correctness parameters. We set Min ← κin · n · log n, Mi ← κ · si · log si
(which is upper-bounded by M := κ · s · log s), and B ← 2κ′ · κ · ln s. The probability
p = p(κin, κ, κ

′) all the above conditions are satisfied is then, by union-bound (and with
si/β ≤ s/β), at least:

1−
(

1

nκin−1
+

(s/k)/β

n(κ′−2)·κin·θ/2

)
− ⌈d/k⌉ ·

(
1

(s/k)κ−1
+

s/β

(s/k)(κ′−2)·κ·θ/2

)
.

Wrapping-up, we get the following parametrised theorem.

Theorem 6. Assume the F-xLPN(θ, θ′ − θ, λ/θ′) and F2-LPN(λ,O(λ), 1/λδ) – where
δ is any small enough constant – assumptions hold. Then there exists a probabilistic
semi-honest secure two-party protocol Πcorr which securely implements the functionality
Fcorr given on Figure 4.3 with success probability:

p∗ = 1−
(

1

nκin−1
+

(s/k)/β

n(κ′−2)·κin·θ/2

)
− ⌈d/k⌉ ·

(
1

(s/k)κ−1
+

s/β

(s/k)(κ′−2)·κ·θ/2

)
.

Furthermore, it uses the following resources, where B = 2κκ′ · ln s:

• Communication:

O
(⌈d/k⌉−1∑

i=1

si+1 +mi

β
· poly(λ) · (1 +Bλ)2

k · log(1 +Bθ′)2
k
)
.

• Computation:

O

(⌈d/k⌉−1∑
i=1

si+1 +mi

β

[
λ · (1 +Bθ)tpp · (1 +Bθ′)tpp · (log |F|)2

+ ·poly
(
(1 +Bλ)tpp · log(1 +Bθ′)tpp · λ

)]
+ (κin · n log n · θ′ · (θ · log |F|+ log n) · λ)

+ (2κ · s log s · θ′ · (θ · log |F|+ log s) · λ)

)
.

62

Chapter 5

Bridging the Gap between HSS and
FHE

This chapter describes results which have been communicated
previously in [CMPR23].

Based on joint work with Geoffroy Couteau, Alain Passelègue,
and Mahshid Riahinia.

In this chapter, we show how to adapt essentially all existing constructions of ho-
momorphic secret sharing schemes for branching programmes to enjoy some limited
“programmability” properties, thereby leading to sublinear-communication secure for
layered circuits with one-sided statistically security from DDH or DCR. Because this
chapter is mostly independent of the others (whereas in contrast chapter 7 builds heav-
ily on chapters 4 and 6), we will take the liberty of keeping the presentation of our
results at a relatively high level.

Extending HSS Properties. We identify two natural extensions of homomorphic
secret sharing, which we term respectively homomorphic secret sharing with simulatable
memory shares and staged homomorphic secret sharing. At a high level, both notions
capture the ability to perform some limited form of programming of HSS shares, i.e. ,
to construct one of the two HSS shares of an input x before knowing x. It turns out
that most of known HSS constructions already achieve these extensions, leading to
constructions based on a wide variety of assumptions.

One-sided statistically secure computation with sublinear communication.
A core feature of FHE-based sublinear secure computation is that it achieves one-
sided statistical security when using an FHE scheme with statistical circuit-privacy,
since homomorphic evaluation of f(·, y) leaks statistically no information about y be-
yond f(x, y). In other words, Bob’s security in the aforementioned protocol holds
unconditionally. One-sided statistical security is a desirable security notion and can
be achieved quite easily if we do not require sublinear communication, e.g., by using
the seminal GMW protocol [GMW87a] with a one-sided statistically secure oblivious
transfer [NP01] (to our knowledge, this was first observed in [Cha90]). Yet, as of today,
one-sided statistically secure computation with sublinear communication is only known
from FHE : all HSS-based constructions inherently achieve only computational security
for both parties.
Using staged HSS, we obtain the first non-FHE-based constructions of one-sided sta-
tistically secure protocols with sublinear communication. Concretely, we obtain secure

63

computation for any log log-depth circuits with optimal communication, where x re-
mains statistically hidden, provided that |x| < |y|/poly(λ) (where poly(λ) denotes some
fixed polynomial), via a black-box use of staged HSS. We also get secure computation
of any layered arithmetic circuit C of size s over a sufficiently large ring Zn, with sub-
linear communication O(s/ log log s) and one-sided statistical security (without any
restriction on the statistically protected input size), assuming the Paillier encryption
scheme is circular-secure. The latter construction is non-black box and exploits the
specific structure of a concrete Paillier-based staged HSS scheme from [OSY21].

5.1 An Overview of this Chapter’s Results

5.1.1 An overview of staged HSS

We start by providing a high-level description of HSS schemes, which applies to essen-
tially all known HSS constructions (beside FHE-based constructions).
HSS schemes rely on an additively homomorphic encryption scheme with some form
of linear decryption. The public key of the HSS scheme is the public key pk of the
underlying encryption scheme, and evaluation keys ek0, ek1 are additive shares of
the underlying secret key s. A scheme uses two types of data: (1) Input shares
(I0, I1) which are generated by running Input(pk, x) on some input x and consist in
an encryption of (x, x · s), and (2) Memory shares (M0,M1) which are typically
additive shares of (x, x · s) over Z. Two types of operations are handled: Additions
of memory shares (simply add the shares as (x, x · s)+(y, y · s) = (x+y, (x+y) · s)),
and a restricted form of Multiplication. Specifically, multiplication can only be
performed between an input share of some value x and a memory share of some
value y, and returns a memory share of their product x · y. Typically, multiplication
uses the memory share (y, y · s) to “linearly multiply-and-decrypt” the encryption of
(x, x · s), getting some encoding of (xy, xy · s). Then, the encoding is converted into a
valid memory share using a specific procedure, which depends on the concrete scheme
and is often a form of distributed discrete logarithm. We provide more details about
multiplication later. Note that one can transform any input share into a memory
share of the same value by multiplying it with a memory share of 1. At the end of
a computation, each party recovers a memory value consisting in an additive share
of (z, z · s), and therefore a share of the result z by dropping the second part. One
can evaluate any polynomial-size program following the above restrictions, which
precisely corresponds to restricted multiplication straight-line (RMS) programs, and
encompasses branching programs, NC1, and more.

Our starting point is the result of two observations. First, we observe that any HSS
following the above structure does in fact allow for a limited form of programming re-
garding memory values. Indeed, while input shares include a homomorphic encryption
of the input (which cannot be generated without knowing the input), memory shares
are simply additive shares. Thus, we can always simulate a memory share of one party
before knowing the value to share, by generating a first random share u. The other
share is later set to x− u when the actual value x to share is known.
Second, we remark that two parties sharing input shares of some values (x1, . . . , xn) as
well as memory shares of a value z can compute memory shares of z ·P (x1, . . . , xn) for
any RMS program P . The trick is to evaluate all the operations of P “with z in front”,
i.e. by maintaining as an invariant that any memory share for any value y that should
be used in the computation is replaced by a memory share for the value z · y. This

64

invariant being preserved by the two RMS operations (addition and multiplication),
it is sufficient to guarantee that every memory value satisfies it when created. This is
simply done by transforming an input x into a memory value by multiplying it with
the memory share of z in order to get a memory share for z · x rather than for x.

While the above already offers enough flexibility to evaluate linear functions (and
extensions thereof, such as low-degree polynomials), we still cannot handle general
computations like NC1 circuits. To overcome this limitation, we show by a deeper
analysis of known HSS schemes that most of them also achieve some specific, limited
form of programmability, which turns out to be sufficient to construct CPRFs for all
RMS programs (hence in particular for NC1).
Concretely, for a vector u⃗ = (u1, . . . , uℓ), our core observation is that it is possible to
share u⃗ between parties P0 and P1 with two alternate sharing algorithms (Input0, Input1)
such that: (1) P0’s share of u⃗, obtained from Input0, is independent of u⃗ (and can be
generated without u⃗), (2) P0 and P1 can use specific Eval0,Eval1 evaluation algorithms
to produce memory shares of P (u⃗) for any RMS program P , provided that P1 knows
u⃗ in the clear. We call staged-HSS an HSS scheme satisfying the latter properties, as
it intuitively allows to split share generation and evaluation in 2 stages: a first input-
independent stage, corresponding to P0’s view, and a second input-dependent stage
corresponding to P1’s view.
At first sight, staged-HSS might not seem particularly useful: if P1 knows u⃗ in
the clear, then P1 can already compute P (u⃗) for any RMS program P . The key
observation is that P0 and P1 get memory shares of P (u⃗), and not just P (u⃗). This
memory share can then be combined with the prior observations to let P0, P1 compute
additive shares of P (u⃗) ·Q(v⃗), for any other RMS program P,Q, given input shares of
v⃗. Setting u⃗ to be the description of the constraint C, P to be a universal circuit (with
input x hardwired) which on input C returns C(x), v⃗ to be a PRF key k, and Q to be
the RMS program (with x hardwired) which on input k returns Fk(x), parties P0 and
P1 can then compute shares of C(x) ·Fk(x), with shares of P0 being independent of C.
We can then instantiate our simple aforementioned strategy for constructing CPRFs
while circumventing the need for C during KeyGen. As a result, we obtain (1-key
selective) CPRFs for RMS programs (and therefore for NC1) from any staged-HSS,
i.e. from a wide variety of assumptions (including DCR [OSY21,RS21], class groups
assumptions, or variants of QR [ADOS22,CLT22], and more.). The security analysis
is similar to our construction for inner-product, though this new construction is no
longer constraint-hiding, since the CEval algorithm now relies on knowing C (i.e. u⃗
above) in clear.

It remains to explain why known HSS schemes are also staged-HSS schemes. To illus-
trate this, we use the simple ElGamal-based HSS scheme from [BGI16a]1. We assume
basic knowledge of ElGamal encryption in what follows. This scheme follows the gen-
eral structure detailed above by instantiating the additively homomorphic encryption
scheme with ElGamal encryption. That is, an input share for x is an ElGamal encryp-
tion of the pair (x, x · s)2, i.e. a tuple (c0, c

′
0, c1, c

′
1) = (gr0 , hr0 · gx, gr1 , hr1 · gx·s) with

s ∈ Zp being the secret key, h = gs being the public key, and r0, r1
$← Zp encryption

randomness3.

1This scheme does not yield CPRFs as it does not achieve statistical correctness, but staged-HSS
is easily illustrated with it.

2Actually of x and x · si’s for each bit si of s.
3s is encrypted bit-by-bit in the actual construction.

65

Multiplication between an input share (c0, c
′
0, c1, c

′
1) of x and a memory share (ασ, βσ)

of y (which is just an additive share of (y, y · s) over Zp owned by party Pσ) is
done as follows. First, party Pσ computes gσ ← (c′0)

ασ/cβσ

0 . Observe that g0 · g1 =
(c′0)

α0+α1/cβ0+β1

0 = (gsr · gx)y/(gr)sy = gxy. Hence, parties get multiplicative shares
g0, g1 of gxy. Doing the same with c1, c

′
1 allows to get multiplicative shares of gxy·s.

Then, an operation termed distributed discrete logarithm allows to transform these
multiplicative shares of (gxy, gxy·s) into additive shares of (xy, xy · s), i.e. memory
shares for the value xy, as desired. Despite being at the core of HSS constructions,
the details of the distributed discrete logarithm procedure do not matter here. The
only important observation is that the ci = gri components of input shares are inde-
pendent of the input x; only the c′i components actually depend on x. Furthermore,
in the multiplication above, the only place where c′i is involved is in the computation
of gσ ← (c′i)

ασ/cβσ

i . Now, assume that one of the parties, say, P1, already knows y in
the clear: in this case, one can simply define α1 ← y and α0 ← 0, which form valid
additive shares of y. But now, P0 does no longer need to know c′i components either,
since we now have g0 = 1/(ci)

β0 .

5.1.2 An overview of sublinear-communication from staged
HSS

Staged HSS allows Alice and Bob, respectively owning private inputs x and y, to
securely retrieve, given shares of their joint input (x, y), additive shares of f(x) · g(y)
for any RMS programs f, g—and even of any P (x, y) =

∑m
i=1 fi(x) · gi(y), where the

(fi, gi) are RMS programs since additive shares can be added locally—while statistically
protecting one of the two inputs (e.g., x). Moreover, the class of such functions F (x, y)
contains in particular all arithmetic circuits (with fan-in 2) of size s and depth log log s,
as in such circuits, every output bit depends on at most log s inputs, and can therefore
be written as a multivariate polynomial in the inputs, with at most s monomials. As
a consequence, if there is a secure computation protocol for generating staged HSS
shares of inputs x and y with communication c(|x|, |y|), then there exists a protocol
for securely computing all circuits of size s and depth log log s with |x| + |y| inputs
and m outputs with communication c(|x|, |y|) + 2m, which is asymptotically optimal.
It only remains to find a protocol to securely distribute staged HSS shares with linear
communication.
This is not easily done in general, as the standard technique to generate HSS shares
with low communication uses hybrid encryption: to share an input x, one generate HSS
shares of some seed seed (using a generic secure computation protocol), and publishes
x⊕PRG(seed). Then, the homomorphic evaluation first computes PRG(seed), unmaskes
x, and then applies the function. The issue is that this is inherently incompatible with
having (one-sided) statistical security. We describe two cases where we can get around
this issue:

1. The first way is to use hybrid encryption only on y, for which we just aim to
computational security, and to share x using the standard staged HSS sharing
algorithm. This yields a one-sided statistically secure protocol for all log log-
depth circuits with communication |y|+ |x| · poly(λ)+O(m), which is optimal as
soon as |x| < |y|/poly(λ). In other terms, if the input to be statistically protected
is polynomially smaller than the other input, we achieve optimal communication.

2. Our second solution relies on a specific construction of staged HSS scheme that
relies on the circular security of the Paillier-ElGamal encryption scheme. Here,

66

we manage to leverage the inherent compactness of this specific scheme to get
a protocol with optimal communication |y| + |x| + O(m) for arithmetic circuits
over a sufficiently large ring (since Paillier encryption is compact only when the
values are from a large ring), by designing a tailored low-communication HSS
share distribution protocol. By breaking the circuit into log log-depth blocks,
this generalizes naturally to a one-sided statistically secure protocol with sub-
linear communication O(s/ log log s) for any layered arithmetic circuits4 over a
sufficiently large field.

5.2 Staged HSS
The core notion underlying our constructions is homomorphic secret sharing (HSS),
introduced by Boyle et al. in [BGI16a]. In this section, we remind the standard
definition of HSS as well as propose several extensions, in particular defining some
special properties that play an important role in our constructions. We further remark
that these extensions are easily instantiated using the DCR-based HSS construction
from [OSY21].

5.2.1 Homomorphic Secret Sharing

We start by recalling the standard definition of homomorphic secret sharing, as well as
of Restricted Multiplication Straight-line (RMS) programs which is the common model
of computation in the context of HSS.

Definition 15 (Homomorphic Secret Sharing). Denote by λ a security parameter.
A Homomorphic Secret Sharing (HSS) scheme for a class of programs P which is
defined over a ring R and has input space I ⊆ R consists of three PPT algorithms
(Setup, Input,Eval) such that:

• Setup(1λ) → (pk, (ek0, ek1)): On input the security parameter λ, the setup algo-
rithm outputs a public key pk and a pair of evaluation keys (ek0, ek1).

• Input(pk, x)→ (I0, I1): On input the public key pk and an input x ∈ I, the input
algorithm outputs a pair of input information (I0, I1).

• Eval(σ, ekσ, Iσ = (I
(1)
σ , . . . , I

(ρ)
σ), P) → yσ: On input a party index σ ∈ {0, 1}, an

evaluation key ekσ, a vector of ρ input values (I(1)σ , . . . , I
(ρ)
σ), and a program P ∈ P,

the evaluation algorithm outputs the party σ’s corresponding share of the output
yσ.

We require an HSS scheme to satisfy the following two properties:

• Correctness. For any security parameter λ ∈ N, and any program P ∈ P with
input space I ⊆ R, we have:

Pr
[
y0 − y1 = P (x(1), . . . , x(ρ))

]
≥ 1− negl(λ) ,

where the probability is taken over (pk, (ek0, ek1)) ← Setup(1λ), (I
(i)
0 , I

(i)
1) ←

Input(pk, x(i)) for i ∈ [ρ], and yσ ← Eval(σ, ekσ, (I
(1)
σ , . . . , I

(ρ)
σ), P), for σ ∈ {0, 1}.

4An arithmetic circuit is layered if its nodes can be partitioned into layers, such that any wire
connects adjacent layers.

67

• Security. For any PPT adversaries A,A′, and any bit σ ∈ {0, 1} the following
value should be negligible in λ:∣∣∣∣∣∣∣∣∣∣

Pr

b′ = b :

(x0, x1, st)← A(1λ)
(pk, (ek0, ek1))← Setup(1λ)

b
$← {0, 1}

(I0, I1)← Input(xb)
b′ ← A′ (st, pk, ekσ, Iσ)

− 1

2

∣∣∣∣∣∣∣∣∣∣
We now remind the definition of Restricted Multiplication Straight-line (RMS) pro-
grams. RMS programs form a class of programs which encompasses branching pro-
grams of polynomial-size and therefore NC1 circuits. In an RMS program, the multi-
plication is restricted to happen between an input value and an intermediate value of
the computation (so-called “memory" value).

Definition 16 (RMS Programs). An RMS program with magnitude bound B is defined
as a sequence of the instructions as follows:

- ConvertInput(Ix)→ Mx: Loads an input x into memory.

- Add(Mx,My)→ Mx+y: Adds two memory values.

- Mul(Ix,My)→ Mx·y: Multiplies an input value and a memory value to produce a
memory value of their product.

- Output(Mx, n)→ x mod n: Outputs a memory value w.r.t. a modulus n < B.

5.2.2 HSS following the RMS Template

Similarly to [BCG+17], we first propose a more specific definition for HSS with addi-
tional algorithms that are relevant in the context of RMS programs.

Definition 17 (HSS Following the RMS Template). A homomorphic secret sharing
scheme HSS = (Setup, Input,MemGen,Eval) following the RMS template is an HSS
scheme as defined in definition 15 with an additional algorithm MemGen which serves
to produce memory values as follows:

• MemGen(σ, ekσ, x) → Mσ: On input a party index σ ∈ {0, 1}, an evaluation key
ekσ, and an input x ∈ I, the memory generator algorithm outputs a memory
value Mσ.

Moreover, the Eval algorithm proceeds with sub-routines following the RMS operations
ConvertInput,Add,Mul,Output as follows:

• Eval(σ, ekσ, (I
(1)
σ , . . . , I

(ρ)
σ), P) → yσ: On input a party index σ ∈ {0, 1}, an evalu-

ation key ekσ, a vector of ρ input values (I
(1)
σ , . . . , I

(ρ)
σ), and an RMS program P ,

this algorithm follows the instructions of P and processes them as follows:

– ConvertInput(σ, ekσ, I
x
σ)→ Mx

σ: This algorithm simply uses the MemGen and
Mult algorithms as follows:

∗ Run MemGen(σ, ekσ, 1)→ M1
σ.

∗ Run Mult(σ, ekσ, I
x
σ,M

1
σ)→ Mx

σ.

– Add(σ, ekσ,M
x,My)→ Mx+y: This algorithm directly adds the given memory

values of x and y. Namely, Mx+y
σ = Mx

σ +My
σ.

68

– Mul(σ, ekσ, I
x,My) → Mx·y: It multiplies an input value Ix and a memory

value My and outputs a memory value of x ·y. The template does not impose
any non-black box requirement on this algorithm.

– Output(σ,Mx, n)→ x mod n: It uses Mx to output xσ mod n.

Correctness and security properties are defined as in definition 15, and we further
require the following property:
Additively Homomorphic Memory. The memory values generated in HSS should
be additively homomorphic. Meaning that for any two x, y ∈ I and any party index
σ ∈ {0, 1}, it holds that

Mx
σ +My

σ = Mx+y
σ ,

where Mz
σ ← MemGen(σ, ekσ, z), for z ∈ {x, y}, and (pk, (ek0, ek1)) ← Setup(1λ).

Throughout this work, we may refer to memory values satisfying this property as “valid”
memory values.

5.2.3 Extended Evaluation and Simulatable Memory Values

Any HSS following the RMS template as defined above satisfies the following lemma,
which states that one can evaluate share of z · P (x(1), . . . , x(ρ)) using only a memory
value of z (instead of an input value) together with the input values of the rest of
variables (x(1), . . . , x(ρ)). This lemma plays a central role in our CPRF constructions.

Lemma 4. Let HSS = (Setup, Input,MemGen,Eval) be an HSS scheme following the
RMS template. There exists an extended evaluation algorithm ExtEval:

• ExtEval(σ, ekσ,Mσ, (I
(1)
σ , . . . , I

(ρ)
σ), P) → yσ: On input a party index σ ∈ {0, 1},

an evaluation key ekσ, a single memory value Mσ, a vector of ρ input values
(I
(1)
σ , . . . , I

(ρ)
σ), and an RMS program P , return a value yσ such that the following

holds.

For any security parameter λ ∈ N and any RMS program P , we have:

Pr
[
y0 − y1 = z · P (x(1), . . . , x(ρ))

]
≥ 1− negl(λ) , (5.1)

where the probability is taken of the choice of (pk, (ek0, ek1)) ← Setup(1λ),
(I
(i)
0 , I

(i)
1) ← Input(pk, x(i)), Mσ ← MemGen(σ, ekσ, z), and yσ ← ExtEval(σ, ekσ,

Mσ, (I
(1)
σ , . . . , I

(ρ)
σ), P), for σ ∈ {0, 1}, i ∈ [ρ].

The proof of the above lemma is detailed in [CMPR23]. It essentially consists in
recursively incorporating the memory value Mσ using the standard Eval algorithm by
first multiplying inputs with it.

We now introduce an additional property termed simulatable memory values. Here,
we require that for an input x ∈ I, the memory value of one of the two parties can be
generated ahead of time and without the knowledge of x using a simulation algorithm,
while the other memory value can be generated given the pre-computed first memory
value and the exact value of x. This simulation should not affect the correctness of
ExtEval.

Definition 18 (HSS with Simulatable Memory Values). Let HSS = (Setup,
Input,MemGen,Eval) be an HSS following the RMS template as per definition 17, with
input space I over the ring R. We say that HSS is simulatable with respect to its
memory values if there exist algorithms Sim0 and Sim1 such that

69

• Sim0(1
λ)→ M0: on input the security parameter λ outputs a memory value M0.

• Sim1(M0, z, (ek0, ek1)) → M1: on input a memory value M0, an element z ∈ I,
and two encoding keys (ek0, ek1) outputs a memory value M1.

We also require the two following properties:
Simulation Correctness. For any λ ∈ N and any z ∈ I, the above correctness
condition (eq. (5.1)) still holds when the memory value is simulated, i.e. when we first
sample M0 ← Sim0(1

λ) and then M1 ← Sim1(M0, z, (ek0, ek1)).
Simulation Security. It should be computationally hard to distinguish the two
memory values obtained via the simulation algorithms. That is, for any λ ∈ N and any
z ∈ I, we have (z,M0) ≈c (z,M1) for any (pk, (ek0, ek1))← Setup(1λ), M0 ← Sim0(1

λ),
and M1 ← Sim1(M, z, (ek0, ek1)).

5.2.4 Staged Homomorphic Secret Sharing

Finally, we define a new notion termed staged-HSS which is merely extending the idea
of HSS with simulatable memory values to the case where we require the possibility of
input values to be simulatable as well.

Definition 19 (staged-HSS). Let HSS = (Setup,MemGen, Input,Eval) be an HSS
scheme following the RMS template, with input space I over the ring R. We say
it is a staged-HSS if there exist additional algorithms (Input0, Input1), and (Eval0,Eval1)
such that:

• Input0(pk)→ (I0, aux): On input a public key pk, return a value I0 and an auxiliary
output aux.

• Input1(pk, x, aux, (ek0, ek1)) → I1: On input a public key pk, an input x ∈ I, an
auxiliary input aux, and two encoding keys (ek0, ek1), return a value I1.

• Eval0(ek0, (I
(1)

0 , . . . , I
(ρ)

0), P)→ M0: On input an evaluation key ek0, a vector of ρ
input values (I

(1)

0 , . . . , I
(ρ)

0), and a program P , return a memory value M0.

• Eval1(ek1, (I
(1)

1 , . . . , I
(ρ)

1), (x(1), . . . , x(ρ)), P)→ M1: On input an evaluation key ek1,
a vector of ρ input values (x(1), . . . , x(ρ)) as well as (I

(1)

1 , . . . , I
(ρ)

1), and a program
P , return a memory value M1.

We further require the two following properties:
Correctness. We would like the outputs of Eval0 and Eval1 to be usable within the
extended evaluation algorithm ExtEval (lemma 4). Formally, for any λ ∈ N and any
two RMS programs P,Q ∈ P, it should hold that

Pr[y0 − y1 = P (z(1), . . . , z(ℓ)) ·Q(x(1), . . . , x(ρ))] ≥ 1− negl(λ) ,

where

• (pk, (ek0, ek1))← Setup(1λ),

• (Ix
(i)

0 , Ix
(i)

1)← Input(pk, x(i)) for all i ∈ [ρ],

• (I
z(i)

0 , aux(i)) ← Input0(pk) and I
z(i)

1 ← Input1(pk, z
(i), aux(i), (ek0, ek1)) for all i ∈

[ℓ],

70

• M0 ← Eval0(ek0, (I
z(1)

0 , . . . , I
z(ℓ)

0), P),

• M1 ← Eval1(ek1, (I
z(1)

1 , . . . , I
z(ℓ)

1), (z(1), . . . , z(ℓ)), P),

• yσ ← ExtEval(σ, ekσ, (Mσ, I
x(1)

σ , . . . , Ix
(ρ)

σ), Q), for σ ∈ {0, 1}.

Security. The output of Input1 and Input should be computationally indistinguishable.
Formally, for any λ ∈ N, and any x ∈ I, the two following distributions should be
computationally indistinguishable:I1 :

(pk, (ek0, ek1))← Setup(1λ)
(I0, aux)← Input0(pk)
I1 ← Input1(pk, x, aux, (ek0, ek1))

 c
≈
{
I1 :

(pk, (ek0, ek1))← Setup(1λ),
(I0, I1)← Input(pk, x)

}
.

Theorem 7. Assuming the hardness of DCR, there exists HSS scheme following the
RMS template which generates simulatable memory values, as well as staged-HSS
scheme for the class of RMS programs.

The above theorem follows from the HSS scheme introduced by Orlandi, Scholl, and
Yakoubov in [OSY21] that supports the class of RMS programs and works under
the DCR assumption.

5.3 Staged HSS from DCR
In this section we provide instantiations for the three new variants of HSS introduced in
section 5.2 under the DCR assumption, therefore proving theorem 7 and theorem 7. In
fact, our goal is to show that the HSS scheme introduced by Orlandi, Scholl, and Yak-
oubov in [OSY21] that supports the class of RMS programs and works under the DCR
assumption satisfies the properties of all our three definitions. First, we recall the fol-
lowing lemma due to [OSY21], where they introduce a distributed discrete logarithm
algorithm for a subset of Z∗N2 , where N = pq for λ-bit primes p and q.

Lemma 5. There exists an algorithm DDLogN(g) for which the following holds: Let
g0, g1 ∈ Z∗N2, such that g0 = g1(1 + N)x(mod N2). If z0 = DDLogN(g0) and z1 =
DDLogN(g1), then z0 − z1 = x(mod N).

More precisely, DDLogN(g) works as follows:

• DDLogN(g)

- Write g = h+ h′N , where h, h′ < N , using the division algorithm.

- Output z = h′h−1 mod N .

We now recall the HSS construction of [OSY21] based on circular-secure Paillier en-
cryption (section 2.4.4). The input space of the scheme is ZN for a Blum integer
N = pq.

HSS from Paillier Encryption, [OSY21]

Let 2−κ be the correctness error. Let N = pq be a Blum integer. Let P be the set of
programs supported by the scheme, and Bmsg be the magnitude bound of programs
in P . We require that Bmsg = N/2κ. Let BG = (BG.KeyGen,BG.Enc,BG.Dec) be
the circular-secure Paillier encryption as in section 2.4.4.

71

• Setup(1λ):

- Run (BG.pk,BG.sk) ← BG.KeyGen(1λ), and parse them as BG.pk =
(N,g, ĝ), and BG.sk = d = (d(0), . . . , d(ℓ−1)).

- Sample share10 as a random element of [2κ], and set share11 := share10−
1 mod N .

- For each i ∈ [ℓ], set shared(i)0 to be a random element of [2κ], and set
shared(i)1 := shared(i)0 − d(i) mod N .

- For i ∈ [ℓ], compute D(i) ← BG.Enc(BG.pk, d(i)).
- Sample a PRF key kPRF for a PRF F that outputs values in ZN .
- Set and output pk = (BG.pk, D(0), . . . , D(ℓ−1)), and
ekσ = (kPRF, share1σ, shared

(0)
σ, . . . , shared

(ℓ−1)
σ) for each σ ∈ {0, 1}.

• Input(pk, x)

- Parse pk = (BG.pk, D(0), . . . , D(ℓ−1)), and BG.pk = (g, ĝ), and D(i) =
(c(i), ĉ(i)) for i ∈ [ℓ].

- Compute X ← BG.Enc(BG.pk, x).

- For i ∈ [ℓ], compute X(i) ← (gr′i · (c(i))x, ĝr′i · (ĉ(i))x), where r′i
$← ZN .

- Set I = (X,X(0), . . . , X(ℓ−1)), and output (I0 = I, I1 = I).

• Eval(σ, ekσ, (I
(0), . . . , I(n)), P)

This function is divided into the following sub-modules:

• ConvertInput(σ, ekσ, Ix = (X,X(0), . . . , X(ℓ−1)))

- Set M1
σ = (share1σ, shared

(0)
σ, . . . , shared

(ℓ−1)
σ) for σ ∈ {0, 1}.

- Compute Mx
σ ← Mult(σ, ekσ, I

x,M1
σ).

• Add(σ, ekσ,M
x
σ,M

y
σ)

- Parse Mx
σ = (sharexσ, sharexd

(0)
σ, . . . , sharexd

(ℓ−1)
σ), and

My
σ = (shareyσ, shareyd

(0)
σ, . . . , shareyd

(ℓ−1)
σ).

- Compute sharezσ = sharexσ + shareyσ, and sharezd(i)σ =
sharexd(i)σ + shareyd(i)σ for i ∈ [ℓ].

- Output Mz
σ = (sharezσ, sharezd

(0)
σ, . . . , sharezd

(ℓ−1)
σ).

• Mult(σ, ekσ, I
x,My

σ)

- Parse Ix = (X,X(0), . . . , X(ℓ−1)) and
My

σ = (shareyσ, shareyd
(0)

σ, . . . , shareyd
(ℓ−1)

σ).
- Parse X = (c0, . . . , cℓ−1, ĉ), and X(i) = (c

(i)
0 , . . . , c

(i)
ℓ−1, ĉ

(i)) for i ∈ [ℓ].
- Compute sharezσ = DDLogN (ct′σ) (mod N) + FkPRF(id), where

ct′σ = (ĉ)shareyσ ·

(
ℓ−1∏
i=0

c
−shareyd(i)σ
i

)
(mod N2)

- For j ∈ [ℓ] compute sharezd(j)σ = DDLogN
(
ct′σ,j

)
(mod N) +

FkPRF(id),
where

ct′σ,j = (ĉ(j))shareyσ ·

(
ℓ−1∏
i=0

(c
(j)
i)−shareyd

(i)
σ

)
(mod N2)

72

- Output Mz
σ = (sharezσ, sharezd

(0)
σ, . . . , sharezd

(ℓ−1)
σ).

• Output(σ, ekσ,M
z
σ, nout)

- Parse Mz
σ = (sharezσ, sharezd

(0)
σ, . . . , sharezd

(ℓ−1)
σ).

- Output sharezσ(mod nout).

Figure 5.1: Homomorphic Secret Sharing for Branching Programmes from the security
of Paillier’s Encryption Scheme

5.3.1 HSS Following the RMS Template from DCR.

We show that fig. 5.1 satisfies definition 17.

Proof. We show how the MemGen algorithm of the template work in this construction.
One can see that the other algorithms of the HSS construction exactly follow the
template. We define the memory generation algorithm as follows:

• MemGen(σ, ekσ, x)→ Mx
σ

• If x = 1, do:

- Parse ekσ = (kPRF, share1σ, shared
(0)

σ, . . . , shared
(ℓ−1)

σ).
- Output M1

σ = (share1σ, shared
(0)

σ, . . . , shared
(ℓ−1)

σ).

• Else, do:

- Run (Ix0 , I
x
1)← Input(pk, x).

- Run Mx
σ ← ConvertInput(σ, ekσ, I

x
σ).

- Output Mx
σ.

It is easy to see that the outputs of this algorithm are additively homomorphic.
This follows from the fact that for any x ̸= 1 ∈ I, this algorithm uses the Input
and Eval.ConvertInput algorithms to generate the memory values. Thus, if the HSS
scheme works correctly, the generated memory values are intrinsically homomor-
phic. More specifically, for an input z ∈ I, the memory value Mz

σ is of the form
Mz

σ = (sharezσ, sharezd
(0)

σ, . . . , sharezd
(ℓ−1)

σ). Furthermore, when x = 1, this algo-
rithm outputs a valid share for the vector (1, d(0), . . . , d(ℓ−1)).

5.3.2 HSS with Simulatable Memory Values from DCR.

We show that HSS-OSY21¸ satisfies definition 18.

Proof. Regarding definition 18, we need to show that there exist two algorithms Sim0

and Sim1 that simulate the output of MemGen. We define them as follows:

• Sim0(1
λ)→ M0

- Sample a random vector (t, t0, . . . , tℓ−1)
$← [2κ ·N]ℓ+1.

- Output M0 = (t, t0, . . . , tℓ−1).

• Sim1(M, z, (ek0, ek1))→ M1

- Parse ekσ = (share1σ, shared
(0)

σ, . . . , shared
(ℓ−1)

σ) for both σ ∈ {0, 1}.

73

- For i ∈ [ℓ] reconstruct d(i) = shared(i)0 − shared(i)1 mod N .

- Compute and output M1 = M0 − (z, zd(0), . . . , zd(ℓ−1)).

We prove the following two properties regarding the simulation algorithms:

Simulation Correctness. For any z ∈ ZN , it holds that

M0 −M1 = (z, zd(0), . . . , zd(ℓ−1)),

where M0 ← Sim0(1
λ), and M1 ← Sim1(M, z, (ek0, ek1)). Therefore, the simu-

lated memory values of z are correctly formed as subtractive shares of vector
(z, zd(0), . . . , zd(ℓ−1)). Thus, they are valid shares. This guarantees the correctness of
multiplication between this values and real input values, and finally the correctness of
ExtEval in lemma 4 when Mσ is simulated.

Simulation Security. We need to prove that for any x ∈ I, it holds that

(z,M0) ≈s (z,M1),

where M1 ← Sim1(M0, z, (ek0, ek1)), and M0 ← Sim0(1
λ).

Note that M1 = M0 − (z, zd(0), . . . , zd(ℓ−1)), where each element of M0 is chosen uni-
formly from Z2κN . Also, in a fixed vector (z, zd(0), . . . , zd(ℓ−1)), x and each zd(i) for
i ∈ [ℓ] are elements of ZN . Therefore, the distribution of each element of M1 is within
the statistical distance 2−κ of the uniform distribution over Z2κN which is the distri-
bution of M0.

5.3.3 Staged HSS from DCR.

We prove that assuming the hardness of DCR, fig. 5.1 satisfies definition 19.

Proof. We explicitly define four algorithms (Input0, Input1) and (Eval0,Eval1) according
to definition 19. We define the four algorithms as follows:

• Input0(pp)→ (I0, aux)

- Parse pp = (BG.pk, D(0), . . . , D(ℓ−1)), and BG.pk = (N,g, ĝ).

- Sample r
$← ZN and compute ctind = gr.

- For i ∈ [ℓ] do:

∗ Sample ri
$← ZN .

∗ Compute ct
(i)
ind = gri .

- Set I0 = (ctind, ct
(0)
ind, . . . , ct

(ℓ−1)
ind).

- Set aux = (gr, ĝr, {gri}i∈[ℓ], {ĝri}i∈[ℓ]).

- Output (I0, aux).

• Input1(pp, x, aux, (ek0, ek1))→ I1

74

- Parse pp = (BG.pk, D(0), . . . , D(ℓ−1)), BG.pk = (N,g, ĝ), aux =
(gr, ĝr, {gri}i∈[ℓ], {ĝri}i∈[ℓ]), and ekσ = (kPRF, shared

(0)
σ, . . . , shared

(ℓ−1)
σ) for

σ ∈ {0, 1}.
- Compute ct = (gr, ĝr · (1 +N)x).
- For i ∈ [ℓ] do

∗ Reconstruct d(i) = shared(i)0 − shared(i)1 mod N .
∗ Compute ct(i) = (gri , ĝri · (1 +N)xd

(i)
).

- Output I1 = (ct, ct(0), . . . , ct(ℓ−1)).

• Eval0(ek0, (I
(1)

0 , . . . , I
(ρ)

0), P)→ M0

• ConvertInput0(ek0, Ix) //same as in Eval

- Parse ek0 = (share10, shared
(0)

0, . . . , shared
(ℓ−1)

0).
- Set M1

0 = (share10, shared
(0)

0, . . . , shared
(ℓ−1)

0).
- Compute Mx

0 ← Mult0(ek0, I0,M
1
0).

• Add0(ek0,M
x
0 ,M

y
0) //same as in Eval

- Parse Mx
0 = (sharex0, sharexd

(0)
0, . . . , sharexd

(ℓ−1)
0), and

My
0 = (sharey0, shareyd

(0)
0, . . . , shareyd

(ℓ−1)
0).

- Compute sharez0 = sharex0 + sharey0, and sharezd(i)0 = sharexd(i)0 +
shareyd(i)0 for i ∈ [ℓ].

- Output Mz
0 = (sharez0, sharezd

(0)
0, . . . , sharezd

(ℓ−1)
0).

• Mult0(ek0, I
x

0 ,M
y
0)

- Parse I
x

0 = (ctind, ct
(0)
ind, . . . , ct

(ℓ−1)
ind), and

My
0 = (sharey0, shareyd

(0)
0, . . . , shareyd

(ℓ−1)
0).

- Parse ctind = (c0, . . . , cℓ−1), and ct
(i)
ind = (c

(i)
0 , . . . , c

(i)
ℓ−1) for i ∈ [ℓ].

- Compute sharez0 = DDLogN(ct
′)(mod N) + FkPRF(id), where

ct′ =
ℓ−1∏
i=0

(ci)
−shareyd(i)0(mod N2).

- For j ∈ [ℓ], compute sharezd(j)0 = DDLogN(ct
′
j)(mod N) + FkPRF(id),

where

ct′j =
ℓ−1∏
i=0

(c
(j)
i)−shareyd

(i)
0(mod N2).

- Output Mz
0 = (sharez0, sharezd

(0)
0, . . . , sharezd

(ℓ−1)
0).

• Eval1(ek1, (I
(1)

1 , . . . , I
(ρ)

1), (x(1), . . . , x(ρ)), P)→ M1

• ConvertInput1(ek1, Ix, x) //same as in Eval

- Parse ek1 = (share11, shared
(0)

1, . . . , shared
(ℓ−1)

1).
- Set M1

1 = (share11, shared
(0)

1, . . . , shared
(ℓ−1)

1).

75

- Compute Mx
1 ← Mult1(ek1, I1,M

1
1, x).

• Add1(ek1,M
x
1 ,M

y
1) //same as in Eval

- Parse Mx
1 = (sharex1, sharexd

(0)
1, . . . , sharexd

(ℓ−1)
1), and

My
1 = (sharey1, shareyd

(0)
1, . . . , shareyd

(ℓ−1)
1).

- Compute sharez1 = sharex1 + sharey1, and sharezd(i)1 = sharexd(i)1 +
shareyd(i)1 for i ∈ [ℓ].

- Output Mz
1 = (sharez1, sharezd

(0)
1, . . . , sharezd

(ℓ−1)
1).

• Mult1(ek0, I
x

0 ,M
y
0, y)

- Parse I
x

1 = (ct, ct(0), . . . , ct(ℓ−1)), and
My

1 = (sharey1, shareyd
(0)

1, . . . , shareyd
(ℓ−1)

1).
- Parse ct = (c0, . . . , cℓ−1, ĉ), and ct(i) = (c

(i)
0 , . . . , c

(i)
ℓ−1, ĉ

(i)) for i ∈ [ℓ].
- Compute sharez1 = DDLogN(ct

′)(mod N) + FkPRF(id), where

ct′ = (ĉ)y ·
ℓ−1∏
i=0

(ci)
−shareyd(i)1(mod N2).

- For j ∈ [ℓ], compute sharezd(j)1 = DDLogN(ct
′
j)(mod N) + FkPRF(id),

where

ct′j = (ĉ(j))y ·
ℓ−1∏
i=0

(c
(j)
i)−shareyd

(i)
1(mod N2).

- Output Mz
1 = (sharez1, sharezd

(0)
1, . . . , sharezd

(ℓ−1)
1).

Correctness. We show that a memory value My
σ outputted by Evalσ is in fact party

σ’s subtractive share of vector (y, yd(0), . . . , yd(ℓ−1)), thus it’s valid. This guarantees
the correctness of ExtEval algorithm when given as input a staged memory value and
a vector of original input values.

Since the new evaluation algorithms Eval0 and Eval1 work the same as the original
evaluation algorithm Eval except for the multiplication instruction, we briefly prove
the correctness of multiplication in the following. Let x, y ∈ I be any two arbitrary
input values. We show that

Pr [z0 − z1 = xy] ≥ 1− negl(λ),

and
Pr
[
(zd(i))0 − (zd(i))1 = xyd(i)

]
≥ 1− negl(λ),

for all i ∈ [ℓ], where
Mz

0 =
(
z0, (zd

(0))0, . . . , (zd
(ℓ−1))0

)
← Mult0(ek0, I

x

0 ,M
y
0),

Mz
1 =

(
z1, (zd

(0))1, . . . , (zd
(ℓ−1))1

)
← Mult1(ek1, I

x

1 ,M
y
1, y),

(I
b

0, aux
b)← Input0(pk) for b ∈ {x, y},

I
b

1 ← Input1(pk, b, aux
b), for b ∈ {x, y},

My
0 ← ConvertInput0(ek0, I0

y
),

My
1 ← ConvertInput1(ek1, I1

y
, y), and

(pk, (ek0, ek1))← Setup(1λ).

76

Regarding how Mult0 and Mult1 works, it holds that zb = DDLogN(ct
′
b), for b ∈ {0, 1}.

Thus, by lemma 5, it’s enough to prove that ct′0 · ct′1 = (1 +N)xy. We have

ct′0 · ct′1 =
ℓ−1∏
i=0

(ci)
−shareyd(i)0 · (ĉ)y ·

ℓ−1∏
i=0

(ci)
−shareyd(i)1

= (ĉ)y ·
ℓ∏

i=1

(ci)
−yd(i)

= (1 +N)xy ·
ℓ∏

i=1

(ci)
yd(i) ·

ℓ∏
i=1

(ci)
−yd(i)

= (1 +N)xy(mod N2).

The equation ct
′(j)
0 · ct

′(j)
1 = (1 +N)xyd

(j) for all j ∈ [ℓ] is proved similarly.

Security. Outputs of the Input1 algorithm are in fact in the same form as the
Input algorithm. More precisely, they are both Paillier encryptions of the vector
(x, xd(0), . . . , xd(ℓ−1)), where d is the secret key of the encryption scheme. Therefore,
they are computationally indistinguishable.

5.4 Sublinear-Communication Secure Two-Party
Computation with One-Sided Statistical Security
from Staged HSS

5.4.1 In the FHSS
update-Hybrid Model.

The main component (apart from the HSS scheme itself) in building sublinear secure
computation from HSS is the low-communication distributed share generation. When
using staged-HSS, the first party can simply sample its share locally, so the hard part
is updating the second party so they can receive their share too. We formalize this
task in Figure 5.2 as the ideal functionality FHSS

update. We prove in Lemma 6 that there
exists sublinear two-party secure computation, provided this step can be performed
with one-sided statistical security and with low-enough communication.

Functionality FHSS
update

The functionality is parameterised with a staged-HSS scheme stagedHSS =
(stagedHSS.Setup, stagedHSS.Input, stagedHSS.MemGen, stagedHSS.Eval).

Input: Wait to receive (share, stagedHSS.pk, I0, aux) from P0 and (input, x1) from
P1.
Output: Compute I1 ← stagedHSS.Input1(stagedHSS.pk, x1, aux); output
(stagedHSS.pk, I1) to P1.

Figure 5.2: Ideal functionality FHSS
update, parameterized by a staged-HSS scheme, for

generating the second input share given the first, precomputed, one.

77

Functionality FSFE(C)

The functionality is parameterised with an arithmetic circuit C : Rn0×Rn1 → Rm

over a finite ring R.

Input: Wait to receive (input, σ, xσ) from each party Pσ (σ ∈ {0, 1}), where
xσ ∈ Fnσ , and set x⃗← (x0, x1).

Output: Compute y⃗ ← C(x⃗); Sample y⃗0
$← Rm; Set y⃗1 ← y⃗ − y⃗0; Output y⃗0 to

P0 and y⃗1 to P1.

Figure 5.3: Ideal functionality FSFE(C) for the two-party secure evaluation of an arith-
metic circuit C.

Protocol ΠC

Parties: Alice and Bob
Parameters: The protocol is parameterized with:

• C : Fn0 × Fn1 → Fm is an arithmetic circuit over finite field F.

• HSS = (HSS.Setup,HSS.Input,HSS.MemGen,HSS.Eval) is a staged-HSS
scheme with pseudorandom shares supporting the class of RMS programs
over F (seen as a ring). We denote the staged input and evaluation algorithms
by (HSS.Input0,HSS.Input1) and (HSS.Eval0,HSS.Eval1). Let HSS.ExtEval be
defined as in Lemma 4.

• F (·, ·) is a PRF in NC1 with domain {0, 1}λ, key space {0, 1}λ, and range
Fn1 .

Hybrid Model: The protocol is defined in the FHSS
update-hybrid model.

Input: Alice holds x0 ∈ Fn0 and Bob holds x1 ∈ Fn1 .
The Protocol:

Alice’s precomputation phase. Alice does the following:

1. K
$← {0, 1}λ

2. (HSS.pk, ek0, ek1)← HSS.Setup(1λ)

3. (I0, aux)← HSS.Input0(HSS.pk)

4. (I0, I1)← HSS.Input(1λ, K)

5. α
$← {0, 1}λ, cin ← x0 + F (K,α), and rout

$← Fm

6. M0 ← HSS.Eval(ek0, I0, F (·, α))
7. y0 ← HSS.ExtEval(ek0, (M0, I0), fα,cin),

where fα,cin : (X,Y) 7→ C(cin − F (X,α), Y)

Online phase.

8. Alice sends (ek1, I1, cin, α, rout) to Bob, who waits to receive it.

78

9. Alice sends (share,HSS.pk, I0, aux) to FHSS
update;

Bob sends (input, x1) to FHSS
update, and waits to receive (HSS.pk, I1) from

FHSS
update.

Bob’s computation phase. Bob does the following:

1. M1 ← HSS.Eval(ek1, I1, F (·, α))
2. y1 ← HSS.ExtEval(ek1, (M1, I1), fα,cin),

where fα,cin : (X,Y) 7→ C(cin − F (X,α), Y)

Output phase. Alice outputs y′0 ← y0 + rout; Bob outputs y′1 ← y1 − rout.

Figure 5.4: (Sublinear) Secure Two-Party Computation with One-Sided Statistical
Security from staged-HSS Supporting the Class of RMS Programs.

Lemma 6 (Secure Computation with One-Sided Statistical Security in the
FHSS

update-hybrid model). Let C : Fn0 × Fn1 → Fm be an arithmetic circuit over a finite
field F. Let stagedHSS be a staged-HSS scheme with pseudorandom shares supporting
the class of RMS programs over F (seen as a ring).
The protocol ΠC provided in Figure 5.4 UC-securely implements the two-party func-
tionality FSFE(C) in the FHSS

update-hybrid model, against a passive adversary statically
corrupting at most one of the parties, with perfect security against Alice, and com-
putational security against Bob. The protocol uses λO(1) + (n1 + m) · log |F| bits of
communication.

Proof. First observe that if the PRF F (·, ·) and C have logarithmic depth then fα,cin
can indeed be expressed as an RMS program, and we cause the PRF from [NRR00].
The required amount of communication follows from inspection of the protocol, and
we are left to prove security. Let A be a semi-honest, static adversary that interacts
with parties Alice and Bob running protocol ΠC in the FHSS

update-hybrid model. We need
to construct a simulator Sim such that no environment Z can distinguish with non-
negligible probability whether it is interacting with A and parties running ΠC in the
FHSS

update-hybrid model, or with Sim and FSFE(C). Because the adversary is static, we
can assume that the set of corrupted parties is fixed before the start of the protocol,
and we can consider the cases of a corrupted Alice and a corrupted Bob separately.

• Perfect security against a corrupted Alice. Alice receives no messages (from
Bob or FHSS

update) in the real execution, therefore a simulator can trivially perfectly
simulate the joint view of Z and A in the execution of ΠC .

• Computational security against a corrupted Bob. Consider the simulator
Sim which is given as input the corrupted Bob’s input x1 ∈ Fn1 , runs an internal
copy of A, and acts as follows:

– Simulating the communication with Z: Every input value that Sim
receives from Z is written on A’s input tape (as if coming from A’s envi-
ronment), and every output value written by A on its output tape is copied
to Sim’s own output tape (to be read by Z).

– Simulating the protocol’s execution:

1. Sim sends (input, 1, x1) to FSFE(C) and waits to receive y′1.

79

2. Sim samples K
$← {0, 1}λ, (pk, ek0, ek1) ← HSS.Setup(1λ), (I0, aux) ←

HSS.Input0(pk), (I0, I1)← HSS.Input(1λ, K), α $← {0, 1}λ.

3. Sim sets cin ← F (K,α).

4. Sim computes I1 ← stagedHSS.Share(pk, x1, aux).

5. Sim computes M1 ← HSS.Eval(ek1, I1, F (·, α)).

6. Sim sets rout ← HSS.Eval′(ek1, (M1, I1), fα,cin)− y′1.

7. Sim writes (ek1, I1, cin, α, rout) on A’s input tape (as if Alice sent it to
Bob).

8. Sim proceeds with the execution of A until the latter writes (input, x1)
on its output tape (the message from Bob to FHSS

update), at which point it
writes (HSS.pk, I1) on A’s input tape (as if sent to Bob by FHSS

update).

Observe that the difference in the joint view of Z and A in the real and ideal
worlds boils down to how cin and rout are defined. However, because in the ideal
world y′1 is uniformly distributed and independent from the coins of Sim, rout is
uniformly distributed in the ideal world. Further, because there is no entropy in
the single outgoing message of Bob (the message (input, 1, x1) he sends to FOLE),
the internal coins of Bob are irrelevant in the joint view of Z andA. Let (x0, x1) ∈
Fn0×Fn1 . From what precedes, it suffices to show that the distributions of outputs
of the following probability experiments are computationally indistinguishable:

RealView(1λ, x0, x1) :

K
$← {0, 1}λ

α
$← {0, 1}λ

cin ← x0 + F (K,α)

(pk, ek0, ek1)← HSS.Setup(1λ)

(I0, aux)← HSS.Input0(pk)

(I0, I1)← HSS.Input(1λ, K)

I1 ← stagedHSS.Share(pk, x1, aux)

rout
$← Fm

Output (ek1, I1, cin, α, rout, x1, pk, I1)

IdealView(1λ, x1) :

K
$← {0, 1}λ

α
$← {0, 1}λ

cin ← F (K,α)

(pk, ek0, ek1)← HSS.Setup(1λ)

(I0, aux)← HSS.Input0(pk)

(I0, I1)← HSS.Input(1λ, K)

I1 ← stagedHSS.Share(pk, x1, aux)

rout
$← Fm

Output (ek1, I1, cin, α, rout, x1, pk, I1)

To that end, consider the following experiments (which differ with the above
only in the law of (I0, I1)):

80

HybridReal(1λ, x0, x1) :

K
$← {0, 1}λ

α
$← {0, 1}λ

cin ← x0 + F (K,α)

(pk, ek0, ek1)← HSS.Setup(1λ)

(I0, aux)← HSS.Input0(pk)

(I0, I1)← HSS.Input(1λ, 0λ)

I1 ← stagedHSS.Share(pk, x1, aux)

rout
$← Fm

Output (ek1, I1, cin, α, rout, x1, pk, I1)

HybridIdeal(1λ, x1) :

K
$← {0, 1}λ

α
$← {0, 1}λ

cin ← F (K,α)

(pk, ek0, ek1)← HSS.Setup(1λ)

(I0, aux)← HSS.Input0(pk)

(I0, I1)← HSS.Input(1λ, 0λ)

I1 ← stagedHSS.Share(pk, x1, aux)

rout
$← Fm

Output (ek1, I1, cin, α, rout, x1, pk, I1)

Let AReal
x0,x1

be a PPT adversary which distinguishes between the real view
{RealView(1λ, x0, x1)} and {HybridReal(1λ, x0, x1)} with probability ϵReal. By the
security of HSS, for every PPT adversaries A,A′, and any bit σ ∈ {0, 1}:∣∣∣∣∣∣∣∣∣∣

Pr

b′ = b :

(K0, K1, st)← A(1λ)
(pk, (ek0, ek1))← Setup(1λ)

b
$← {0, 1}

(I0, I1)← Input(Kb)
b′ ← A′ (st, pk, ekσ, Iσ)

− 1

2

∣∣∣∣∣∣∣∣∣∣
≤ negl(λ) .

Considering the following PPT algorithms Ax0 and A′x1
proves that ϵReal must

be negligible:

– Ax0(1
λ): K

$← {0, 1}λ; α
$← {0, 1}λ; st ← (x0 + F (K,α), α); Output

(K, 0λ, st).

– A′x1
(st, pk, ek1, I1): (I0, aux)← HSS.Input0(pk);

I1 ← stagedHSS.Share(pk, x1, aux); rout
$← {0, 1}λ;

Output AReal
x0,x1

(ek1, I1, st.first, st.second, rout, x1, pk, I1).

Therefore {RealView(1λ, x0, x1)}
c
≈ {HybridReal(1λ, x0, x1)}, and similarly

{IdealView(1λ, x1)}
c
≈ {HybridIdeal(1λ, x1)}. Finally, because all other random

variables than cin are independent of K (both in HybridReal(1λ, x0, x1) and in
HybridIdeal(1λ, x1)), we can conclude using a straightforward reduction to the se-
curity of the PRF F (·, ·) that the two distributions {HybridReal(1λ, x0, x1)} and
{HybridIdeal(1λ, x1)} are computationally indistinguishable. Wrapping up, this
implies that the joint view of Z and A is indistinguishable in the real and ideal
worlds.

5.4.2 Instantiating FHSS
update under DCR.

We now show how to instantiate FHSS
update for construction of staged-HSS from DCR

(fig. 5.1). This instantiation is non black-box in the HSS scheme, and uses a combina-
tion of the Paillier-ElGamal encryption scheme, which is provably semantically secure
under DCR, and oblivious linear evaluation (OLE) with one-sided statistical security,
which is known from DCR.

81

Functionality FOLE

The functionality FOLE for (batch) oblivious linear evaluation is parameterized by
a finite field F, and interacts with two parties P0 and P1.

Input: Wait to receive (input, 0,u = (u1, . . . , us)) (where u1, . . . , us ∈ F) from P0

and (input, 1,v = (v1, . . . , vt)) (where v1, . . . , vt ∈ F) from P1.
Output: Compute z← (ui ·vj)i∈[s],j∈[t], sample z0

$← Fs·t, set z1 ← z−z0; Output
zσ to Pσ for σ ∈ {0, 1}.

Figure 5.5: Ideal functionality FOLE for (batch) oblivious linear evaluation.

Protocol ΠHSS
update

Parties: Alice and Bob.
Parameters: F2λ is an exponential-size finite field; n1 is an input size. stagedHSS
is the staged-HSS scheme of fig. 5.1, instantiated from Paillier-ElGamal. The
Paillier-ElGamal cryptosystem itself is parameterized by GenPQ, an algorithm that
on input 1λ, generates (N = p · q, p, q), where p and q are ℓ(λ)-bit primes where
ℓ : N⋆ → N⋆ is a function such that ∀κ ∈ N⋆, ℓ(κ) ≥ 1.5κ. Bsk := 22ℓ(λ)−2 log |F| is
the base for the decomposition of the secret key into digits; s := 2ℓ(λ) + 2 log |F|
is the number of cyphertexts needed to encrypt the secret key; t := ⌈n1

log |F|
2ℓ(λ)
⌉.

Hybrid Model: The protocol is defined in the FOLE-hybrid model.
Input: Alice holds (HSS.pk, I0, aux) and Bob holds x1 = (x

(1)
1 , . . . , x

(t)
1) ∈ Rn1 ≈

[N]t.
The Protocol:

1. Alice does the following:

• Parse HSS.pk = (pkPaillierEG, D
(0), . . . , D(s−1))

// D(j) is a Paillier-ElGamal encryption under pk of the jth digit of the
secret key in base Bsk

• Parse I0 = (ctind, (ct
(i,j)
ind)(i,j)∈[t]×[s+1])

// ctind is of the form gr, and ct
(i,j)
ind is of the form gri,j

• Parse aux = (gr, pkrPaillierEG, (g
ri,j)(i,j)∈[t]×[s+1], (pk

ri,j
PaillierEG)(i,j)∈[t]×[s+1])

// pkPaillierEG = gskPaillierEG mod N2

2. Alice sends (N, pkPaillierEG, ctind) to Bob

3. Alice sends (input, 0, (1∥d)) to FOLE and waits to receive y(0) =

(y
(0)
i,j)(i,j)∈[t]×[s+1];

Bob sends (input, 1, x1) to FOLE and waits to receive y(1) = (y
(1)
i,j)(i,j)∈[t]×[s+1].

// Adding the digit 1 to the secret key d condenses the notations of the en-
cryption of the input alone, and those of the input times each digit of the
secret key, as x · (1, d0, . . . , ds−1) = (x, x · d0, . . . , x · ds−1).

4. Alice does the following:

For each (i, j) ∈ [t]× [s+ 1], ci,j ← (1 +N)y
(0)
i,j · hri,j

82

5. Alice sends c = (ci,j)(i,j)∈[t]×[s+1] to Bob, who waits to receive it.

6. Bob sets ctdep ← (ci,j · (1 +N)y
(1)
i,j)(i,j)∈[t]×[s+1] and outputs I1 ← (ctind, ctdep).

Figure 5.6: Protocol for securely realizing FHSS
update under the circular security of the

Paillier-ElGamal cryptosystem.

Lemma 7 (Instantiating Lemma 6 under DCR). Let HSS be the staged-HSS scheme of
fig. 5.1. Assuming the DCR assumption holds, the protocol ΠHSS

update provided in Figure 5.6
UC-securely implements the two-party functionality FHSS

update in the FOLE-hybrid model,
against a passive adversary statically corrupting at most one of the parties, with perfect
security against Alice and Bob. The protocol uses O(λ · n1) bits of communication.

Proof. Set ℓ(λ) = Θ(λ) (and therefore s = O(1)) such that ℓ(λ) ≥ 3
2
λ. Sending N

requires 2ℓ(λ) bits of communication, h requires 4ℓ(λ), ctind and c⃗ require O(ℓ(λ) · n1).
We now analyse security. Let A be a semi-honest, static adversary that interacts with
parties Alice and Bob running protocol ΠC in the FHSS

update-hybrid model. We need
to construct a simulator Sim such that no environment Z can distinguish with non-
negligible probability whether it is interacting with A and ΠC in the FHSS

update-hybrid
model, or with Sim and FSFE(C). Because the adversary is static, we can assume that
the set of corrupted parties is fixed before the start of the protocol, and we can consider
the cases of a corrupted Alice and a corrupted Bob separately.

• Perfect security against a corrupted Alice. Alice receives no messages from
Bob in the real execution and the single message Alice receives from FOLE is a
uniformly random value in (F2λ)

t·(s+1), so it is easy to see that joint view of Z
and A in the execution of ΠHSS

update can be simulated perfectly.

• Perfect security against a corrupted Bob. Consider the simulator Sim which
is given as input the corrupted Bob’s input x1 ∈ (F2λ)

n1 , internally runs a copy
of A, and acts as follows:

– Simulating the communication with Z: Every input value that Sim
receives from Z is written on A’s input tape (as if coming from A’s envi-
ronment), and every output value written by A on its output tape is copied
to Sim’s own output tape (to be read by Z).

– Simulating the protocol’s execution:
1. Sim sends (input, x1) to FSFE(C) and waits to receive (HSS.pk, I1 =

(ctind, ctdep)).
2. Parse HSS.pk = (pkPaillierEG, D

(0), . . . , D(s−1)) and recover N from
pkPaillierEG.

3. Parse ctdep = (ct
(i,j)
dep)(i,j)∈[t]×[s+1]

4. Sim writes (N, pkPaillierEG, ctind) on A’s input tape (as if sent by Alice to
Bob).

5. Sample y⃗(1) = (y
(1)
(i,j))(i,j)∈[t]×[s+1]

$← (F2λ)
[t]×[s+1]

6. For (i, j) ∈ [t]× [s+ 1], set c(i,j) ← ct
(i,j)
dep · (1 +N)−y

(1)
i,j .

7. Sim proceeds with the execution of A until the latter writes
(input, 1, x1) on its output tape (the message from Bob to FOLE), at
which point it writes y⃗(1) on A’s input tape (as if sent to Bob by FOLE).

83

8. Sim writes c⃗ on A’s input tape (as if sent by Alice to Bob).

If follows from inspection that this simulation is perfect.

We then obtain our final claim.

Theorem 8 (Computation for NC1 with Circuit-Independent-Communication and
One-Sided Statistical Security from Circular Security of Paillier-ElGamal). Let C be
an RMS program with n = n0+n1 inputs and m outputs over F2λ. Assuming DCR and
the circular security of the Paillier-ElGamal encryption scheme, there exists a protocol
that UC-securely implements the two-party functionality FSFE(C), against a passive ad-
versary that statically corrupts at most one of the parties, with perfect security against
a corrupted Alice, and computational security against a corrupted Bob. The protocol
uses λO(1) +O((n+m) · log |F|) bits of communication.

Proof. The proof of Theorem 8 follows from a combination of Lemmas 6 and 7, as well
as a linear-communication protocol for F2λ-OLE (which we batch “naively” in order to
instantiate FOLE, which in fact corresponds to t · (s+ 1)-batch OLE). Such a protocol
is folklore, and can be achieved e.g. by using Gilboa’s [Gil99] information-theoretic
reduction of OLE to string-OT and OT-extension [IKNP03,ALSZ17].

84

Chapter 6

Towards a Complete Primitive for
Sublinear-Communication Two-Party
Computation

This chapter describes results which have been communicated
previously in [BCM22].

Based on Joint works with Elette Boyle and Geoffroy Couteau.

We present a new approach toward secure two-party computation protocols for general
layered circuits, with communication complexity that scales sublinearly in the circuit
size. As opposed to building FHE or HSS, our approach begins with protocols for
“batch Oblivious Transfer” with low communication.
Oblivious Transfer (OT) is an atomic functionality in which sender and receiver parties
begin with inputs m0,m1 ∈ {0, 1} and b ∈ {0, 1}, respectively; at the conclusion the
receiver learns the selected message mb; and neither party learns further information
about one another’s inputs. OT was shown to be a complete functionality for gen-
eral secure computation [Kil00], where OT protocol execution(s) take place for each
nonlinear gate of the corresponding circuit.
OT protocols are known from a number of standard assumptions, in just two rounds of
communication (i.e., one message from receiver to sender, and one message in return);
but, the communication complexity for all such solutions is (inherently) significantly
larger than the input size. Very recently, it was shown by Brakerski et al. [BBDP22] how
to achieve a batched version of OT, still in two rounds, and with rate-1 communication.
That is, for a collection of message pairs ({m(i)

0 ,m
(i)
1 })i∈[ℓ] and selection bits (b(i))i∈[ℓ], a

sender and receiver could perform ℓ parallel batched executions of OT in communication
roughly ℓ.
We prove that any such protocol which satisfies an additional decomposability property
suffices to imply secure computation protocols for general layered circuits with sublinear
communication complexity. To define decomposability, consider the communication
structure of any 2-round rate-1 batch OT protocol. In the first round, the receiver
sends ℓ+ o(ℓ) bits to the sender,1 somehow encoding its selection bits b(i). In response,
the sender performs some computation as a function of its message pairs {m(i)

0 ,m
(i)
1 },

and returns ℓ+ o(ℓ) bits in response, somehow encoding the k selected messages, m(i)

b(i)
.

For the constructions of [BBDP22], the sender’s message size is just ℓ+ polylog(ℓ).

1Our construction can actually handle arbitrary constant client-to-server upload rate, as long as
the sender-to-receiver download rate is 1.

85

We say that the (2-round, rate-1) batch OT protocol is decomposable if for any agreed
subset S ⊂ [ℓ] of indices, the sender can choose a corresponding subset of |S|+polylog(ℓ)
of its return message bits, such that sending this partial sender response reveals exactly
the corresponding subset of selected messages (m(i)

b(i)
)i∈S to the receiver. Namely, given

the partial response, these |S|messages can be recovered, and no information is revealed
about m

(i)

b(i)
for i /∈ S.

Theorem 9 (Sublinear 2PC from Decomposable Batch OT - informal). Assume exis-
tence of 2-round rate-1 batch OT with the above “decomposability” property. Then for
any k, we can securely compute layered (synchronous) circuits of depth d and size s
using poly(22

k
, s) computation and O(22

k · d · poly(λ) + s/k) communication.
In particular, for k = O(log log s), we obtain communication O(s/ log log s + d1/3 ·
s2(1+ε)/3 · poly(λ)), for an arbitrary small constant ε. The latter is sublinear in s when-
ever d = o(s1−ε/poly(λ)), i.e. , the circuit is not too “tall and skinny”.

This decomposability property is not simply hypothetical, but rather was inspired
by the batch-OT protocols of Brakerski et al. [BBDP22], which we show to satisfy
the requirement. At a high level, the sender’s message in their protocols consists of
an encryption of the selected message bits (computed homomorphically as a func-
tion of receiver-sent ciphertexts of its selection bits, together with the message pairs
{m(i)

0 ,m
(i)
1 }), compressed à la [DGI+19] to rate 1. The resulting rate-1 ciphertexts have

the structure of a polylog(ℓ)-size “header” string, independent of the messages, together
with a single bit of information for each encrypted message bit. Decomposability thus
follows (almost) directly, by simply omitting those information bits corresponding to
encrypted messages the sender wishes to drop (i.e., [ℓ] \ S).2
In turn, we obtain the following corollary.

Corollary 3 (Sublinear 2PC from QR+LPN - informal). The conclusion of Theorem 9
holds based on Quadratic Residuosity (QR) and Learning Parity with Noise (LPN) for
any inverse-polynomial noise rate.

We finally mention that this result is also not implied by the constructions of pseudo-
random correlation functions (PCF) [BCG+20] from QR+LPN of [OSY21] (or in fact
any of the line of work on pseudorandom correlation generators (PCG) [BCG+19b]).
While PCG/PCFs enable the generation of large quantities of random instances of OT
with sublinear communication, the best known approaches for utilizing these random
correlations within an actual secure computation protocol require communication that
scales linearly with the circuit size.

6.1 Overview of this Chapter’s Results
We consider Boolean circuits over any base of gates with fan-in two. Toward our
sublinear 2PC result for layered circuits, we begin by focusing on circuits of low depth
k (e.g., think of k = log log log s), and devise a secure protocol with communication n+
m+(22

k ·poly(λ)), for input size n, output size m, circuit size s, and security parameter
λ. Given such a tool, we can appropriately divide a larger layered circuit into depth-k
blocks where the sum of all block input and output sizes is s/k, and then iteratively
compute (secret shares of) each layer output via the sub-protocol. Combined, this
yields a secure computation for the layered circuit with overall communication O(s/k+
22

k · d · poly(λ)), as desired.
2We are of course sweeping details under the rug here, and refer the reader to the main body for

a more complete treatment.

86

6.1.1 Starting point: An SPIR viewpoint.

Consider a circuit with input size n, output size m, and low depth k. Given fan-in 2,
each output bit is computed as a function of at most 2k input bits. We may thus view
the circuit output as dictated by m separate truth tables, each of size 22

k , indexed by
the values of the corresponding relevant 2k input bits. More concretely, think of one
party as holding the (partially collapsed) truth tables incorporating its known inputs,
and the second party as holding its own input string, dictating the relevant position of
each truth table. We will refer to the first party as “sender” and second as “receiver.”
Given this perspective, protocols for (Symmetric) Private Information Retrieval (SPIR)
immediately come to mind. An SPIR protocol is a strengthened version of PIR, where
the client additionally learns nothing beyond its queried value of the database. Secure
computation of our circuit precisely amounts to m instances of SPIR, where the receiver
party learns exactly the desired indexed values of the m truth tables.
However, the situation is not so simple: Even the best known (S)PIR protocols have
communication polylogarithmic in the database size. Applying m instances of SPIR
for the m outputs would thus yield communication polylog(2k) · m ∈ Ω(km), killing
sublinearity.
In order to obtain sublinear communication, we must somehow leverage that the m
SPIR instances are not completely independent, but rather are made with correlated
queries. That is, although there are m instances each with (2k)-bit index values, the
m · 2k selection bits have several repeats, collectively coming from different subsets of
only n < m · 2k input bits.

6.1.2 Toward batch SPIR with correlated queries.

Our task becomes precisely to construct such an object: m-instance batch SPIR, with
significantly lower communication complexity given correlated queries.
For purposes of discussion, suppose there existed a 2-round rate-1 protocol for oblivious
transfer, where each sender and receiver (magically) sends only a single bit. Given
access to such a tool, then by leveraging ideas from the literature (e.g., achieving PIR
from linearly homomorphic encryption [KO97]), we would be set. Indeed, the receiver
would simply send 1 bit for each input bit, corresponding to the first OT message using
this value as a selector bit. These first messages could then be reused by the sender in
multiple, recursive executions.
More concretely, suppose the server holds a database of N bits and that the receiver
wants to retrieve the element stored at index x = (x1, . . . , xlogN). If the receiver sends a
message otr1 generated as its first-round OT-receiver message for the first bit x1 of the
desired index, the server can take the database, pair up elements whose indices differ
only on the first bit, then apply the OT-server computation with respect to otr1 on
each pair in order to retrieve a single-bit response for each, creating a new “database”
of half the number of elements, each corresponding to a 1-bit sender answer message.
If instead the receiver sends messages (otr1, . . . , otrlogN), one for each bit of the desired
index, the server can now iteratively compress the database down to a single bit by
building a “Merkle tree” where in each recursive iteration corresponding to input index
bit xi, the new “database” is split into pairs of messages whose indices differ only in this
index, and performing the OT-server computation on each pair produces a new list of 1-
bit sender answer messages of again half the length. At the conclusion, the server will be
left with a single message value remaining, which by construction precisely enables the
receiver to recover the target value stored at index x. This approach extends directly
for m distinct databases with the same total receiver message (otr1, . . . , otrlogN), since

87

the corresponding OT-receiver messages can be used independently in any mix and
match format across databases. In turn, the sender would need to send only m total
bits response, one bit for each database query.
Of course, unfortunately, we do not have such a strong rate-1 OT. We thus turn to
the next closest alternative which does exist: 2-round rate-1 batch OT, as recently
achieved by Brakerski et al. [BBDP22]. Batch OT considers a collection of ℓ message
pairs ({m(i)

0 ,m
(i)
1 })i∈[ℓ] and selection bits (b(i))i∈[ℓ], and enables a sender and receiver to

perform ℓ parallel batched executions of OT with communication roughly ℓ.
Attempting to apply the above strategy with rate-1 batch OT, however, poses signifi-
cant challenges.

• The batching structure restricts the “mix and match” abilities of the sender when
using the receiver’s OT message. The sender must respond to the entire batched
vector of receiver’s selection bits at any stage, without freely accessing subsets of
selection bits. Instead, the above approach involves using each selection bit b(i)

within a different number (N/2i) of message pairs.

• Even worse, the sender’s (batch) response in general is only defined given all ℓ
pairs of messages to be selected by the bits b(1), . . . , b(ℓ).

In contrast, the above approach crucially relies on the ability to choose the mes-
sage pairs for selection bit b(i) dynamically as a function of the server’s responses
given the previous selection bits b(1), . . . , b(i−1).

• Finally, it is no longer the case that for each selected message the sender has
a single corresponding response bit. In fact, rate 1 here does not even mean
that for ℓ instances that exactly ℓ bits are sent in each direction, but rather just
asymptotically ℓ + o(ℓ). This means that in each recursive OT execution, the
sender’s messages (and thus “database entry” size) may grow, leading to large
growth and ultimately large communication upon further recursions.

6.1.3 Decomposable batch OT.

With this motivation, we introduce the notion of decomposable (2-round, rate-1) batch
oblivious transfer, which can be seen as a strengthening of two-round batch OT with
constant upload-rate (i.e. the size of the receiver message is linear in the batch size ℓ)
and download-rate asymptotically one (i.e. the size of the sender message is ℓ+ o(ℓ)).
The differences boil down to a notion of decomposability which we impose on the sender
message.
At a high level, what we want to capture is the fact that the receiver should be able to
retrieve the ith selected message in the batch if and only it also has access to the ith bit
of the sender message (using its own internal state saved from generating the receiver
message). More generally, given only a subset of the bits of the sender message, the
receiver should able to retrieve the corresponding subset of selected messages in the
batch.
Slightly more formally, we say that the (2-round, rate-1) batch OT protocol is decom-
posable if for any agreed subset S ⊂ [ℓ] of indices, the sender can choose a corresponding
subset of |S|+polylog(ℓ) of its return message bits, such that sending this partial sender
response reveals exactly the corresponding subset of selected messages (m(i)

b(i)
)i∈S to the

receiver. Namely, given the partial response, these |S| messages can be recovered, and
no information is revealed about m

(i)

b(i)
for i /∈ S.

88

For our purposes, it will suffice to consider a relaxation of the notion we just described,
and allow the sender message to have some small overhead rather than having a one-to-
one correspondence between the bits on the sender message and the ℓ selected messages.
In this relaxed form, we require that the sender message be comprised of two parts: a
“reusable” part (of size o(ℓ)), and a “decomposable” part (of size ℓ). On its own, the
reusable part should reveal nothing about the messages, but can be used to “decode”
each bit of the decomposable part so as to retrieve (exactly) the corresponding selected
message in the batch. Among other benefits of this relaxation, it allows us to consider
constructions whose download-rate is only asymptotically one.
This decomposability property is not only enough for our needs, but perhaps more
importantly, is achievable, in fact achieved by the batch OT constructions of [BBDP22].
Roughly speaking, the sender message in their construction is composed of a rate-1
encryption of the vector of requested message bits, with structure consisting of a short
“header” independent of the message bits, together with a single ciphertext bit encoding
each message bit separately. Decomposability can then be achieved by sending only
those ciphertext bits encoding the desired subset of messages.
Slightly more accurately, this describes the situation for all but an inverse-polynomial
fraction of message bits (corresponding to noisy coordinates of an LPN ciphertext sent
by the receiver), which actually encode the incorrect messages. In order to separately
address these values, they employ a “co-PIR” (or “punctured OT” [BGI17]) to efficiently
mask out the undesired values from the receiver, and a separate PIR to learn the correct
values for these positions. The separate PIR query responses appear as part of the short
“header” information of the server’s response, which may sound like an issue, as this
portion should not reveal information directly about any message bits. However, this
problem does not occur, because the extra PIR queries are set up to actually reveal the
difference between the masked-out incorrect message (ri⊕m1−b) and the target message
mb. Because of the mask, this difference value (revealed in the header) provides no
information about any message in the absence of the corresponding value (ri ⊕m1−b)
from the payload portion of the ciphertext, as required by decomposability.

6.1.4 Sublinear 2PC from decomposable batch OT.

This decomposability property directly allows us to address one of the above challenges
of batch OT: we will not have issues with exponential growth of the database entry size
in the recursive OT executions. Instead, the result of one iteration of the batch OT on
n inputs will result in a short o(n)-size header together with n bits that each provide
information about a distinct queried message. The header string we will put to the
side (ultimately we will send the collection of all the headers, which is still sufficiently
short). The remaining n bits induce the recursive sender-message database that, as
desired, consists of exactly 1 bit per message.
In fact, if we temporarily suppose that the assignment graph structure of n input bits
to m = n output bits can be decomposed as the disjoint union of 2k matchings, then we
have a solution. Each disjoint matching will correspond directly to a different instance
of n-input batch OT, where each of the n inputs is simultaneously used to index a
different database. Applying the recursive solution as above, the sender will ultimately
compute a single bit for each output, as well as a collection of header strings from each
of the batch OT executions.
The remaining challenge is that general circuits do not have such nice regular struc-
ture, instead with inputs appearing in different numbers of output computations, with
inconvenient correlations, demanding a stronger form of “mix and match” of batched

89

OT queries beyond a direct approach.
To address this issue, we modify the structure of batch OT receiver queries, effectively
extending the batch size (say from n to 2n), and employing a careful choice of how
to pack extra copies of more highly influential input bits into the queried vector, so
that the overall total number of batch OT instances remains sufficiently small that the
overhead of extra header strings does not negatively impact the final communication
complexity. We refer the reader to the remainder of this chapter for a formal and
detailed treatment of this procedure.

6.2 Correlated Symmetric PIR

6.2.1 Correlated Symmetric PIR with “Mix and Match”
Queries

Definition 20 (“Mix and Match” Functions). A “mix and match” function
MixAndMatch : {0, 1}w → [N]k is one parameterised by k ordered subsets of n := logN
elements of [w], Sj = (sj,1, . . . , sj,n) ∈ [w]n for j ∈ [k] such that:

∀α⃗ = (α1, . . . , αw) ∈ {0, 1}w,MixAndMatch(α1, . . . , αw) := (x1, . . . , xk),

with xj := αsj,1 · · ·αsj,n ∈ [N].

Such a function is associated with an occurrence function, which counts the occurrences
of each input position in the outputs:

t· : [w] → [k]

i 7→ ti =
k∑

j=1

1i∈Sj

Each ti (i ∈ [w]) can be decomposed as ti = ti,1 + · · · + ti,n, where ti,j′ is equal to the
number of values of j ∈ [k] such that sj,j′ = i.

• MixAndMatch is said to be T -balanced if ∀i ∈ [w],∀j′ ∈ [n], ti,j′ ≤ T .

• MixAndMatch is said to be T -balanceable if it can be expressed as the function
MixAndMatch = (MixAndMatch′ ◦ replicate), where MixAndMatch : {0, 1}w′ →
[N]k is a T -balanced mix-and-match function and replicate is defined as:

replicate : {0, 1}w → {0, 1}w′

(b1, . . . , bw) 7→ (b
∥⌈t1/T ⌉
1 ∥ . . . ∥b∥⌈tw/T ⌉

w)

where w′ :=
∑
i∈[w]

⌈ti/T ⌉.

Lemma 8. Let w, n ∈ N be a sufficiently large integers. For any family of unordered
subsets S1, . . . , Sk ∈

(
[w]
n

)
there exists an ordering of each subset Sj such that the mix-

and-match function induced by the resulting (S̃j)j∈[k] is polylog(w)-balanceable.
Furthermore, such orderings can be found in expected constant time.

Proof. Let us prove, via a Chernoff bound, that reordering (after replication) each
subset independently and uniformly at random, yields a polylog(w)-balanced mix-
and-match function with high probability. It follows that any family of subsets
characterises a T balanceable mix-and-match function.

90

Preliminary Notations. Let S1 = {s1,1, . . . , s1,n}, . . . , Sk = {sk,1, . . . , sk,n} ∈
(
[w]
n

)
be a

family of unordered sets, and consider the associated occurrence function, which counts
the occurrences of each input position in each subset:

t· : [w] → [k]

i 7→ ti =
k∑

j=1

1i∈Sj

Define w′ :=
∑

i∈[w]⌈ti/T ⌉.

Analysis of Randomized Construction. Consider the i.i.d. random variables
π1, . . . , πk ←↩ U(Sw′) (where U(S[w′]) is the uniform distribution on all permutations
of [w′]). Define the random variables S̃1, . . . S̃k as the following deterministic functions
of the random variables π1, . . . , πk: for each j ∈ [k], S̃j := (sj,πj(1), . . . , sj,πj(w′)).
Finally, define the indicator random variables (ti,j,d)i∈[w′],j∈[k],d∈[n] as the following
deterministic functions of the (πj)j∈[k]: for each i ∈ [w′], j ∈ [k], d ∈ [n], ti,j,d := 1i==sj,d .

Observe that the event “S̃1, . . . S̃k characterizes a T -balanced mix-and-match function”
(for any T) is equivalent to the event “∀d ∈ [n],∀i ∈ [w′],

∑
j∈k ti,j,d ≤ T ”. Since the

(πj)j∈[k] are independent, so are the (ti,j,d)j∈[k],i∈[w′] for any fixed d ∈ [k]. Further note
that ∀d ∈ [k], µd := E(

∑
j∈k,i∈[w′] ti,j,d) =

∑
j∈k,i∈[w′] E(ti,j,d) = k ·

∑
i∈[w] ti

d
. Therefore, by

a Chernoff bound3, for every d ∈ [n], Pr(
∑

j∈k ti,j,d > T) < 1/λω(1). By union-bound,
Pr[∀d ∈ [n],∀i ∈ [w′],

∑
j∈k ti,j,d ≤ T] ≤ n · w′/λω(1) = 1/λω(1).

Definition 21 (Two-Round Batch Computational Batch SPIR with Correlated “Mix
and Match” Queries). A semi-honest two-round batch SPIR protocol with correlated
“mix and match” queries between a sender and a receiver can be defined as a triple of
PPT algorithms corrSPIR = (corrSPIRR, corrSPIRS, corrSPIRD) parameterised by a pub-
lic T -balanceable “mix and match” function (definition 28) MixAndMatch : {0, 1}w →
[N]k with the following syntax and properties:

• Syntax.

corrSPIRR : On input the security parameter 1λ and a vector of selection bits
b⃗ = (b1, . . . , bw) ∈ {0, 1}w, corrSPIRR outputs a receiver message
spirR ∈ {0, 1}O(w) and an internal state st; without loss of generality,
we assume st contains all the coins used by corrSPIRR as well as b⃗.

corrSPIRS : On input the security parameter 1λ, a receiver message spirR, and k
N-bit databases m⃗1, . . . , m⃗k ∈ {0, 1}N , corrSPIRS outputs a sender
message spirS ∈ {0, 1}O(k).

corrSPIRD : On input a sender message spirS and an internal state st, corrSPIRD

outputs a vector of messages (m̃1, . . . , m̃k) ∈ {0, 1}k.

• Correctness.

3Specifically, we are using the Chernoff bound in the form which is standardly denoted “Pr[X >
(1 + δ)µ] < exp(−δ2µ(2 + δ))”.

91

∀⃗b = (b1, . . . , bw) ∈ {0, 1}w,∀M⃗ = (m⃗1, . . . , m⃗k) ∈ {0, 1}N ·k,

Pr

(m̃1, . . . , m̃k) = (m⃗1[x1], . . . , m⃗k[xk]) :

(spirR, st)
$← corrSPIRR(1

λ, b⃗)

spirS
$← corrSPIRS(1

λ, spirR, M⃗)

(m̃1, . . . , m̃k)
$← corrSPIRD(spirS, st)

 = 1

where (x1, . . . , xk) := MixAndMatch(⃗b).

• Security.

The following protocol, ΠcorrSPIR (fig. 6.1), securely realises FcorrSPIR (fig. 7.7) in
the presence of a semi-honest adversary. The receiver computes (spirR, st)

$←
corrSPIRR(1

λ, b⃗) and sends spirR to the sender, who in turn computes spirS
$←

corrSPIRS(1
λ, spirR, M⃗) and returns spirS; finally, the receiver computes and out-

puts (m̃1, . . . , m̃k)
$← corrSPIRD(spirS, st).

Receiver Sender
Input: b⃗ ∈ {0, 1}w Input: M⃗ ∈ {0, 1}N ·k

(spirR, st)
$← corrSPIRR(1

λ, b⃗)
spirR

spirS
$← corrSPIRS(1

λ, spirR, M⃗)
spirS

(m̃1, . . . , m̃k)
$← corrSPIRD(spirS, st)

Output: (m̃1, . . . , m̃k)

Figure 6.1: Two-Round corrSPIR Protocol ΠcorrSPIR.

Functionality FcorrSPIR

The functionality FcorrSPIR is parameterised by the number k of SPIRs in the batch,
the size N of each database, and the number w of selection bits. Furthermore, it is
parameterised by a public T -balanceable “mix and match” function (definition 28)
MixAndMatch : {0, 1}w → [N]k. FcorrSPIR interacts with an ideal sender S and an
ideal receiver R via the following queries.

1. On input (sender, M⃗ = (m⃗i)i∈[k]) from S, with m⃗i = (mi,j)j∈[N] ∈ {0, 1}N

store M⃗ .

2. On input (receiver, (bj)j∈[w]) from R, check if a tuple of in-
puts M⃗ has already been recorded; if so, compute (x1, . . . , xk) :=
MixAndMatch(b1, . . . , bw) ∈ [N]k, send (mi,xi

)i∈[k] to R, and halt.

If the functionality receives an incorrectly formatted input, it aborts.

Figure 6.2: Ideal Functionality FcorrSPIR for Batch SPIR with Correlated “Mix and
Match” Queries

92

6.3 Sublinear-Communication Secure Computation
from Correlated SPIR

6.3.1 Sublinear Computation of log log-Depth Circuits from
corrSPIR

In this section theorem 10 shows how to build sublinear secure computation for shallow
(roughly log log-depth) circuits from corrSPIR, with an explicit protocol provided in
fig. 6.3. Main theorem 3 combines all of the previous theorems and shows that sublinear
secure computation for shallow circuits can be based on QR+ LPN.

Protocol Π2PC

Functionality:

• Parameters: C : {0, 1}n → {0, 1}m is a boolean circuit of depth k. For
j ∈ [m], Sj = {sj,1, . . . , sj,2k} is the subseta of the inputs on which depends
the jth output of f , and for i ∈ [n] we denote ti the number of outputs of
C on which the ith variable depends. (πj)j∈[m] ∈ (S2k)

m is a family of m
permutations on [2k], such that the following is a (T = polylog(n))-balanced
“mix and match” function:

MixAndMatchC : {0, 1}w → [2k]m

(x1, . . . , xw) 7→ (xsj,πj(1)
∥ . . . ∥xs

j,πj(2
k)
)j∈[m]

• Inputs: Parties P0 and P1 hold additive shares (x⃗0, x⃗1) of an input x⃗ ∈
{0, 1}n.

• Outputs: The parties output C(x⃗).

• Requires: corrSPIR = (corrSPIRR, corrSPIRS, corrSPIRD) is a two-round
batch SPIR protocol with correlated “mix and match” queries.

Protocol:

1. P0 samples y⃗0
$← {0, 1}m and for j ∈ [m] sets DBj ∈ {0, 1}2

2k to be the truth
table of the following function:

gj : {0, 1}2k → {0, 1}
(X1, . . . , X2k) 7→ Cj((Xπj(1) ⊕ x⃗0[πj(1)]∥ . . . ∥Xπj(2k) ⊕ x⃗0[πj(2

k)]))⊕ y⃗0[j]

where Cj is the jth output of C.

2. P1 sets x⃗′1 ← (x⃗1[1])
∥⌈t′1/T ⌉∥ . . . ∥b∥⌈t

′
w/T ⌉

w .
// b⃗′ is the vector whose first ⌈t′1/T ⌉ coordinates are equal to b1, followed by
⌈t′2/T ⌉ coordinates equal to b2, and so on. Note that the total size of this
“selection vector with redundancies” is

∑w
i=1⌈t′i/T ⌉.

3. P1 samples (spirR, st)
$← corrSPIRR(1

λ, x⃗1) and sends spirR to P0.

4. P0 samples spirS
$← corrSPIRS(1

λ, spirR, (DBj)j∈[m]) and sends (spirS, y⃗0) to
P1.

93

5. P1 recovers y⃗1 ← corrSPIRD(spirS, st).

6. P1 sets y⃗ ← y⃗0 ⊕ y⃗1, and sends y⃗ to P0.

7. Each party Pσ outputs y⃗.
aBecause C has depth k and each of its gate has fan-in at most 2, each output value only

depends on at most 2k inputs. Without loss of generality we can assume each output depends
on exactly 2k (by allowing for trivial “dependencies”).

Figure 6.3: Secure Computation of Low-Depth Circuits from corrSPIR

Theorem 10. If corrSPIR is a two-round batch SPIR protocol with correlated “mix and
match” queries, then Π2PC from fig. 6.3 securely computes the randomized functionality
(x⃗0, x⃗1) 7→ {(r⃗, C(x⃗0⊕x⃗1)⊕r⃗) : r⃗ $← {0, 1}m} in the presence of a semi-honest adversary
corrupting (at most) one of the two parties.
Proof. First note that by lemma 8, there indeed exists a family of permutations (πj)j∈[k]
such as the one required by Π2PC (and that such a family can be found in expected con-
stant time by simply sampling random permutations and testing for the “T -balanced”
property). Therefore the protocol is well-defined. Correctness follows from correctness
of corrSPIR, with the observation that if (α1, . . . , αk) := MixAndMatchC(x⃗1) then by
construction DBj[αj] = Cj(x⃗1⊕ x⃗0)⊕ y⃗0[j]. It follows that (DB1[α1], . . . , DBm[αm])⊕ y⃗0 =
C(x⃗1 ⊕ x⃗0). Π2PC essentially consists in a single call to ΠcorrSPIR, and security follows
from the security of corrSPIR via a standard hybrid argument.

Our first main theorem follows from the combination of corollary 7 (which instantiates
dec-OT from QR + LPN), lemma 9 (which provides a construction of rep-OT from
dec-OT), theorem 11 (which provides a construction of corrSPIR from rep-OT), and
theorem 10 (which provides a secure computation protocol from corrSPIR).
Main Theorem 3 (Sublinear Secure Computation from QR+ LPN). Assume the QR
assumption and the binary LPN assumption LPN(dim, num, ρ) with dimension dim =
poly(λ), number of samples num = (n+m)1/3 · poly(λ), and noise rate ρ = numε−1 (for
some constant ε < 1). Then for any n-input m-output boolean circuit C of size s and
depth k, there is a two-party protocol for securely computing C using only O(n+m+
2k+2k · polylog(n) · poly(λ) · ((n+m)2/3 + (n+m)(1+2ε)/3)) bits of communication, and
computation poly(λ, 22

k
).

The numbers are obtained by setting dim = poly(λ), ℓ = (n+m)1/3, and num = ℓ2 ·dim
in the statement of corollary 7. The polylog(n) term stems from the bounded query
repetition property and the 22

k+k stems from the fact that the batch computational
SPIR does, in essence, apply ≈ 22

k instances of the sender OT function in each in-
terative compression step, and there are 2k such steps. For example, absorbing the
polylog(n) term in the poly(λ) term and setting ε = 1/2, and k = (log log s)/4 (imply-
ing 2k+2k ≪

√
s), we get corollary 4:

Corollary 4 (Sublinear Secure Computation of log log-Depth Circuits). Assume the
QR assumption and the binary LPN assumption LPN(dim, num, ρ) with dimension
dim = poly(λ), number of samples num = (n + m)1/3 · poly(λ), and noise rate
ρ = num−1/2. Then for any n-input m-output boolean circuit C of polynomial size
s and depth log log s/4, there is a two-party protocol for securely computing C using
only O(n+m+

√
s · poly(λ) · (n+m)2/3) bits of communication, and polynomial com-

putation.

94

6.3.2 Extension to Layered Circuits

Layered circuits are boolean circuits whose gates can be arranged into layers such that
any wire connects adjacent layers. It is well-known from previous works [BGI16a,
Cou19, CM21] that sublinear protocols for low-depth circuits translate to sublinear
protocols for general layered circuits: the parties simply cut the layered circuit into low-
depth “chunks”, and securely evaluate it chunk-by-chunk. For each chunk, a sublinear
secure protocol is invoked to compute the low-depth function which maps shares of the
values on the first layer to shares of the values on the first layer of the next chunk. In
particular, we get as a corollary from Theorem 3:

Corollary 5 (Sublinear Secure Computation of Layered Circuits). Assume the QR
or DDH assumption. Then for any n-input m-output layered boolean circuit C
of polynomial size s and depth d, and any k, assuming the binary LPN assump-
tion LPN(dim, num, ρ) with dimension dim = poly(λ), number of samples num =
((s/d)2/22

k
)1/3 · poly(λ), and noise rate ρ = num−1/2, there is a two-party protocol

for securely computing C using communication

O
(
n+m+

d

k
·
(
22

k · s
d

)2/3
· poly(λ) + s

k

)
,

and computation poly(λ, 22
k
).

In the above corollary, “layered” refers to layered circuits whose inputs are on the first
layer; this type of layered circuit is sometimes called synchronous in the literature.
Furthermore, the corollary also uses a slightly optimized choice of parameters (com-
pared to a naive application of Theorem 3): we set ℓ such that ℓ2 = 22

k+k · num and
num = ((s/d)2/22

k
)1/3 · poly(λ) in the statement of corollary 7. The above leads to a

sublinear secure computation protocol for layered circuit whenever the circuit is not
too “tall and skinny”, i.e. , d is not too close to s. For example:

Corollary 6 (s/ log log s-Secure Computation of Layered Circuits). Assume the QR
or DDH assumption. Then for any n-input m-output layered boolean circuit C of
polynomial size s and depth d, for any constant ε ∈ (0, 1), assuming the binary LPN
assumption LPN(dim, num, ρ) with dimension dim = poly(λ), number of samples num =
((s/d)2/sε)1/3 · poly(λ), and noise rate ρ = num−1/2, there is a two-party protocol for
securely computing C using communication

O
(
n+m+ d1/3 · s2(1+ε)/3 · poly(λ) + s

log log s

)
,

and computation poly(λ).

The above is sublinear in s as soon as d = o(s1−ε/poly(λ)).

6.4 A “Generic” Construction from Decomposable
Batch OT

6.4.1 Decomposable Two-Round Batch Oblivious Transfer

In this section, definition 22 defines the notion of decomposable two-round batch obliv-
ious transfer (dec-OT).

95

We introduce the notion of decomposable two-round batch oblivious transfer, which can
be seen as a strengthening of two-round batch OT with constant upload-rate (i.e. the
size of the receiver message is linear in the batch size k) and download-rate asymptot-
ically one (i.e. the size of the sender message is k+ o(k)). The differences boil down to
a notion of decomposability which we impose on the sender message. At a high level,
what we want to capture is the fact that the receiver should be able to retrieve the
ith selected message in the batch if and only it also has access to the ith bit of the
sender message (using its own internal state saved from generating the receiver mes-
sage). More generally, given only a subset of the bits of the sender message, the receiver
should able to retrieve the corresponding subset of selected messages in the batch. For
our purposes, it will suffice to consider a relaxation of the notion we just described, and
allow the sender message to have some small overhead rather than having a one-to-one
correspondence between the bits on the sender message and the k selected messages.
In this relaxed form, we require that the sender message be comprised of two parts:
a “reusable” one (of size o(k)), and a “decomposable” one (of size k). On its own, the
reusable part should reveal nothing about the messages, but can be used to “decode”
each bit of the decomposable part so as to retrieve (exactly) the corresponding selected
message in the batch. Among other benefits of this relaxation, it allows us to consider
constructions whose download-rate is only asymptotically, and not necessarily exactly,
optimal. We now formalize this notion in definition 22.

Definition 22 (Decomposable Two-Round Batch Oblivious Transfer). Let k ∈ N⋆

and let α(·) be a sublinear function (i.e. α(n) = o(n)). A semi-honest two-round
decomposable batch OT protocol with α(·)-overhead between a sender and a receiver is
defined as a triple of PPT algorithms dec-OT = (dec-OTR, dec-OTS, dec-OTD) with the
following syntax and properties:

• Syntax.

dec-OTR : On input the security parameter 1λ and a vector of selection bits
b⃗ = (b1, . . . , bk) ∈ {0, 1}k, dec-OTR outputs a receiver message
otr ∈ {0, 1}O(k) and an internal state st; without loss of generality
we assume that st contains all the random coins used by dec-OTR as
well as b⃗.

dec-OTS : On input the security parameter 1λ, a receiver message otr, and a
database of k pairs of bits ((m

(i)
0 ,m

(i)
1))i∈[k] ∈ {0, 1}2k, dec-OTS out-

puts a sender message ots = (ots⋆, otsdec), which is comprised of
a reusable part ots⋆ ∈ {0, 1}α(k) and a decomposable part otsdec ∈
{0, 1}k.

dec-OTD : On input a batch subset K ⊆ [k], a partial sender message ots′ ∈
{0, 1}α(k)+|K|, and an internal state st, dec-OTD outputs a vector of
messages (m̃i)i∈K ∈ {0, 1}|K|.

• Decomposable Correctness. For every λ ∈ N⋆, K ⊆ [k], every b⃗ =

(b1, . . . , bk) ∈ {0, 1}k, and every m⃗ = ((m
(i)
0 ,m

(i)
1))i∈[k] ∈ {0, 1}2k,

Pr

(m̃1, . . . , m̃|K|) = (m
(i)
bi
)i∈K :

(otr, st)
$← dec-OTR(1λ, b⃗)

(ots⋆, otsDB)
$← dec-OTS(1λ, otr, m⃗)

(m̃1, . . . , m̃|K|)
$← dec-OTD(K, (ots⋆, [otsdec]K), st)

 = 1 .

• Receiver Security (against Semi-Honest Sender). There exists an ex-
pected polynomial time simulator SimS such that for every λ ∈ N⋆ and every

96

b⃗ = (b1, . . . , bk) ∈ {0, 1}k,{
otr : (otr, st)

$← dec-OTR(1λ, b⃗)
}

c
≈
{
SimS(1

λ)
}

.

• Decomposable Sender Security (against Semi-Honest Receiver). There
exists an expected polynomial time simulator SimR such that for every λ ∈ N⋆,
every K ⊆ [k], every b⃗ = (b1, . . . , bk) ∈ {0, 1}k, and every m⃗ = ((m

(i)
0 ,m

(i)
1))i∈[k] ∈

{0, 1}2k,{
(ots⋆, [otsdec]K , otr, st) :

(otr, st)
$← dec-OTR(1λ, b⃗)

(ots⋆, otsBD)
$← dec-OTS(1λ, otr, m⃗)

}
c
≈{

(sim⋆, simdec, otr, st) :
(otr, st)

$← dec-OTR(1λ, b⃗)

(sim⋆, simdec)
$← SimR(1

λ, K, (m
(i)
bi
)i∈K , b⃗, otr, st)

}
.

Note that in definition 22 the rate is baked into the syntax: dec-OTR outputs a receiver
message of size O(k) and dec-OTS outputs a sender message of size α(k) + k.

6.4.2 Bounded Query Repetitions

At a high level the goal of this section is to show how a receiver message of dec-OT
can be re-used, possibly with imbalances in how many times each selection bit in the
batch is re-used, while asymptotically preserving upload- and download-rate. defi-
nition 23 defines the notion of decomposable two-round batch oblivious transfer with
bounded query repetitions (rep-OT), and lemma 9 establishes a generic reduction from
dec-OT to rep-OT, with an explicit transformation in fig. 6.6.
A central property of two-round OT protocols is that the receiver message can be re-
used multiple times by the sender on different (and even adaptively crafted) databases.
If the receiver were to prepare messages for different selection bits, the sender could
use each one a different number of times and still only have to send an answer whose
size is proportional to the number of “useful” messages. When using two-round batch
OT, the sender cannot freely re-use some of the selection bits more than the others: if
the receiver sends a message corresponding to the selection vector (b1, . . . , bk), and the
sender wishes to use each selection bit bi a number ti of times then it has little choice
but to pad their database up to size (maxi∈[k] ti)× k using dummy messages then send
(maxi∈[k] ti) different sender messages. However, if the two-round batch OT is decom-
posable, then the sender can drop the bits corresponding to the dummy messages before
sending them to the receiver. More specifically, if the two-round decomposable batch
OT has α-overhead, then the size of the sender message is (maxi∈[k] ti) · α +

∑k
i=1 ti .

Since the amount of “useful” bits is
∑k

i=1 ti, the download rate is still asymptotically
one provided α is sufficiently small. This informal discussion is illustrated in fig. 6.4.
We introduce a stronger notion of two-round decomposable batch OT in definition 23,
one which allows each selection bit to be used a different but bounded number of times
while preserving the asymptotic rate. We provide in fig. 6.6 a black-box transformation
which allows any two-round decomposable batch OT to gain this property. Before we
proceed, let us observe that this transformation has an inherent limitation: because
the size of the sender message grows with (maxi∈[k] ti) × α the number of repetitions
must be bounded by ∥t∥∞ = o(k/α). In particular, none of the ti’s can be linear
in k (and skipping ahead, our application to sublinear computation will require us
to bypass this restriction). In other words, while we can tolerate ∥ · ∥∞-bounded

97

ots⋆ otsdec

(a) The reusable part ots⋆ is monolithic,
while the decomposable part otsdec can be
decomposed.

ots⋆

ots⋆1
. . .

ots⋆T

otsdec

T

(b) Having invoked T parallel instances of
dec-OT, the reusable part is now T times
larger, but each selection bit can be used
up to T times without the size of the de-
composable part blowing up by a factor of
T .

Figure 6.4: Using decomposability to achieve ∥ · ∥∞-bounded query repetitions.

repetitions, we cannot tolerate ∥ · ∥1-bounded repetitions; the difference boils down to
the fact that we require the repetitions to be somewhat “balanced” in that no selection
bit is solicited too much (e.g. a linear number of times). This can be addressed
by having the receiver replicate the selection bits proportionally to the number of
times the sender will want to use it. This way, we are reduced to the case where the
repetitions are balanced: if each selection bit bi is replicated across ⌈ti/T ⌉ copies, then
each copy of each selection bits is only used ≤ T times, which means the repetition
vector is ∥ · ∥1-bounded by T . In the parameter range of our application, T can be
chosen so that T × α is sublinear but the total number of copies sent by the receiver,
which is

∑w
i=1⌈ti/T ⌉ ≤

1
T
∥t∥1 + w, is less than 2w. What this achieves is keeping

the sender message small by making the receiver message only slightly larger. This
transformation is illustrated in fig. 6.5 and implicitly used in the construction of fig. 6.8.

x1 x2 x3xw x1 x1 x1 x2 x2xwxw

⌈t1/T ⌉ ⌈t2/T ⌉ ⌈tw/T ⌉

(a) The overall size of the receiver message with duplicated queries Σw
i=1⌈ti/T ⌉ ≤ 2w.

x1 x1 x1 x2 x2xwxw

⌈t1/T ⌉ ⌈t2/T ⌉ ⌈tw/T ⌉

T

ots⋆ otsdec

otr

(b) If ∥t∥1 = w we now have |otr| = O(w) and |ots| = w · (1 + o(1)).

Figure 6.5: Going from ∥ · ∥∞-bounded repetitions to ∥ · ∥1-bounded repetitions by
doubling the size of the receiver message.

Definition 23 (Decomposable Two-Round Batch Oblivious Transfer with Bounded
Query Repetitions). Let k ∈ N⋆ and α = o(n). A semi-honest two-round decompos-
able batch OT protocol with α(·)-overhead and T -bounded query repetitions between

98

a sender and a receiver can be defined as a triple of PPT algorithms rep-OT =
(rep-OTR, rep-OTS, rep-OTD) with the following syntax and properties:

• Syntax.

rep-OTR : On input the security parameter 1λ and a vector of selection bits
b⃗ = (b1, . . . , bk) ∈ {0, 1}k, rep-OTR outputs a receiver message otr ∈
{0, 1}O(k) and an internal state st; without loss of generality we
assume that st contains all the random coins used by rep-OTR as
well as b⃗.

rep-OTS : On input the security parameter 1λ, a query otr, a database
((m

(i)
0 ,m

(i)
1))i∈[k′] ∈ {0, 1}2k

′ (where k ≤ k′ ≤ k ·T), and a vector of
repetitions rep = (rep1, . . . , repk) ∈ [0, T]k such that

∑k
i=1 repi = k′,

rep-OTS outputs a sender message ots = (ots⋆, otsdec), which is
comprised of a reusable part ots⋆ ∈ {0, 1}α(k) and a decomposable
part otsdec ∈ {0, 1}k′, as well as rep.

rep-OTD : On input a batch subset K ⊆ [k′], a partial sender message ots′ ∈
{0, 1}α(k)+|K|, a vector of repetitions rep = (rep1, . . . , repk) ∈ [0, T]k

such that
∑k

i=1 repi = k′, and an internal state st, rep-OTD outputs
a vector of messages (m̃i)i∈K ∈ {0, 1}|K|.

• Decomposable Correctness. For every λ ∈ N⋆, K ⊆ [k′], every b⃗ =

(b1, . . . , bk) ∈ {0, 1}k, and every m⃗ = ((m
(i)
0 ,m

(i)
1))i∈[k′] ∈ {0, 1}2k

′,

Pr

(m̃1, . . . , m̃|K|) = (m
(i)
σi)i∈K :

(otr, st)
$← rep-OTR(1λ, b⃗)

((ots⋆, otsdec), rep)
$← rep-OTS(1λ, otr, m⃗, rep)

(m̃1, . . . , m̃|K|)
$← rep-OTD(K, (ots⋆, [otsdec]K), rep, st)

 = 1 ,

where σi := bmax{j : (
∑

j′<j repj′)≤i} .

• Receiver Security (against Semi-Honest Sender). There exists an ex-
pected polynomial time simulator SimS such that for every λ ∈ N⋆ and every
b⃗ = (b1, . . . , bk) ∈ {0, 1}k,{

otr : (otr, st)
$← rep-OTR(1λ, b⃗)

}
c
≈
{
SimS(1

λ)
}

.

• Decomposable Sender Security (against Semi-Honest Receiver). There
exists an expected polynomial time simulator SimR such that for every λ ∈ N⋆,
every rep = (rep1, . . . , repk) ∈ [0, T]k such that ∥rep∥1 = k′, every K ⊆ [k′], every
b⃗ = (b1, . . . , bk) ∈ {0, 1}k, and every m⃗ = ((m

(i)
0 ,m

(i)
1))i∈[k′] ∈ {0, 1}2k

′,{
(ots⋆, [otsdec]K , otr, st) :

(otr, st)
$← rep-OTR(1λ, b⃗)

(ots⋆, otsdec)
$← rep-OTS(1λ, otr, m⃗, rep)

}
c
≈{

(sim⋆, simdec, otr, st) :
(otr, st)

$← rep-OTR(1λ, b⃗)

(sim⋆, simdec)
$← SimR(1

λ, K, (m
(i)
σi)i∈K , b⃗, rep, otr, st)

}
where σi := bmax{j : (

∑
j′<j repj′)≤i} .

99

Decomposable Two-Round Batch Oblivious Transfer with Bounded Query
Repetition

Parameters: Batch number k, Repetition bound T .
Requires: A two-round decomposable batch dec-OT protocol dec-OT =
(dec-OTR, dec-OTS, dec-OTD) with α-overhead such that α(k) = o(k/T).

rep-OTR: On input the security parameter 1λ and a vector of selection bits b⃗ =
(b1, . . . , bk) ∈ {0, 1}k:

1. Compute (otr, st)
$← dec-OTR(1λ, b⃗).

2. Output (otr, st).

rep-OTS: On input the security parameter 1λ, a receiver message otr, a database
m⃗ ∈ {0, 1}2k′ , and a vector of repetitions rep = (rep1, . . . , repk) ∈ [0, T]k such that
||rep||1 = k′:

1. Parse m⃗ as ((m
(j,i)
0 ,m

(j,i)
1))j∈[k],i∈[repj] .

// The first rep1 pairs are indexed by j = 1, the next rep2 by j = 2, and so
on.

2. For j ∈ [k] and i ∈ [repj + 1, T], set (m
(j,i)
0 ,m

(j,i)
1)← (0, 0).

// The database is padded with “dummy” elements so there are exactly T
pairs associated with each j ∈ [k].

3. For i ∈ [T] set m⃗i := ((m
(j,i)
0 ,m

(j,i)
1))j∈[k].

// Each “sub-database” m⃗i contains the ith pair associated with each j ∈ [k].

4. For j = 1 . . . T :

Compute (ot⋆S,j, ot
dec
S,j)

$← dec-OTS(1λ, otr, m⃗j).

5. Set ots⋆ ← ot⋆S,1∥ . . . ∥ot⋆S,T and otdecS ←
([otdecS,1]1∥ . . . ∥[otdecS,rep1

]1)∥ . . . ∥([otdecS,1]k∥ . . . ∥[otdecS,repk
]k).

// Filter out the bits of the decomposable parts associated with dummy
elements, and reorder the remaining bits according to the original database.

6. Output (ot⋆S, ot
dec
S).

rep-OTD: On input a sender message ots, a vector of repetitions rep =
(rep1, . . . , repk) ∈ [0, T]k such that ||rep||1 = k′, and an internal state st:

1. Parse ots as (ot⋆S, ot
dec
S).

2. Parse ot⋆S as ot⋆S,1∥ . . . ∥ot⋆S,T .

3. Parse otdecS as ([otdecS,1]1∥ . . . ∥[otdecS,rep1
]1)∥ . . . ∥([otdecS,1]k∥ . . . ∥[otdecS,repk

]k).

4. For i = 1 . . . T :

(a) Set Ki := {j : j ∈ [k], repj ≤ i}, ordered according to the natural order
on N.

100

(b) Set v⃗i ←
∥∥
j∈Ki

[otdecS,i]j.

(c) Compute (m̃i,j)j∈Ki

$← dec-OTD(Ki, (ot
⋆
S,i, vi), st).

//Note that the size-|Kj| vector output by dec-OTD is indexed here by
elements of Ki, not by 1, . . . , |Ki|.

5. Output (m̃1,1, . . . , m̃rep1,1, m̃1,2, . . . , m̃rep2,2, . . . , m̃repk,k).

Figure 6.6: From dec-OT with α overhead to rep-OT with α · T overhead.

Lemma 9 (From dec-OT to rep-OT). If dec-OT is a semi-honest two-round decom-
posable batch OT protocol with α overhead, then the construction rep-OT from fig. 6.6
is a semi-honest two-round decomposable batch OT protocol with α · T overhead and
T -bounded repetitions.

Proof.

• Syntax, Size, and Correctness: The fact that rep-OT fulfills the syntactic require-
ments as well as correctness follows from inspection. In particular, note that the
receiver message output by rep-OTR has indeed size O(k) and that the sender
message output by rep-OTS is indeed comprised of a reusable part of size T ·α(k)
and a decomposable part of size k′.

• Receiver Security: By receiver security of dec-OT there exists an expected polyno-
mial time simulator SimS such that for every λ ∈ N⋆ and every b⃗ = (b1, . . . , bk) ∈
{0, 1}k, {

otr : (otr, st)
$← dec-OTR(1λ, b⃗)

}
c
≈ SimS(1

λ) .

By construction rep-OTR = dec-OTR, so we also have that{
otr : (otr, st)

$← rep-OTR(1λ, b⃗)
}

c
≈ SimS(1

λ) ,

which concludes this part of the proof.

• Sender Security: By sender security of dec-OT there exists an expected poly-
nomial time simulator Simdec

R such that for every λ ∈ N⋆, every K ⊆ [k], every
b⃗ = (b1, . . . , bk) ∈ {0, 1}k, and every m⃗ = ((m

(i)
0 ,m

(i)
1))i∈[k] ∈ {0, 1}2k,

{
(ots⋆, [otsdec]K , otr, st) :

(otr, st)
$← dec-OTR(1λ, b⃗)

(ots⋆, otsBD)
$← dec-OTS(1λ, otr, m⃗)

}
c
≈{

(sim⋆, simdec, otr, st) :
(otr, st)

$← dec-OTR(1λ, b⃗)

(sim⋆, simdec)
$← Simdec

R (1λ, K, (m
(i)
bi
)i∈K , b⃗, otr, st)

}
.

(6.1)

The construction of rep-OTS makes T parallel calls to dec-OTS. Sender security
follows from a straightforward hybrid argument, replacing these calls one by one

101

with Simdec
R ; indistinguishability of these hybrids follows by invoking eq. (6.1)

once at each step (and therefore a polynomial number overall).

In a bit more detail, let rep = (rep1, . . . , repk) ∈ [0, T]k such that
∑k

i=1 repi = k′,
and consider the following family of simulators (Simrep

R,t)t∈[0,T] (fig. 6.7).

Simulator Simrep
R,t

Parameters: For j ∈ [k], ind(j) :=
∑

j′<j repj′ . We define
Firstt :=

⋃k
j=1[ind(j), ind(j) + min(repj, t − 1)]. For i ∈ [k′],

σi := bmax{j : (
∑

j′<j repj′)≤i} .

On input (1λ, K ⊆ [k′], (m
(i)
σi)i∈K∩Firstt , (m

(i)
0 ,m

(i)
1)i∈[k′]\Firstt , otr, st) where :

// The datase is comprised of repj pairs “to be selected according to bj”, for
each j ∈ [k]. For each j, the simulator is only given the selected message
from the first min(repj, t) pairs, but is given both messages (a “complete
pair”) from the other min(repj, t)− t pairs.

1. Parse the family (m
(i)
σi)i∈K∩Firstt as (m(j,i)

σj,i)(j,i)∈K′ where K ′ is the subset
of {(j, i) : j ∈ [k], i ∈ [repj]} defined by (j, i) ∈ K ′ ⇔ ((

∑
j′<j repj) +

i) ∈ K ∩ Firstt.
// Each i ∈ [k′] can uniquely be associated with a pair (j, i) where
j ∈ [k] and i ∈ [repj]. The simulator computes this re-indexing for the
database elements for which it does not have a complete pair. . .

2. Parse the family (m
(i)
0 ,m

(i)
1)i∈[k′]\Firstt as ((m

(j,i)
0 ,m

(j,i)
1))j∈[k],i∈[t+1,repj]

where m
(j,i)
b := m

(ind(j)+i)
b .

// . . . and for those where he is given a complete pair.

3. Complete the family (m
(j,i)
σj,i)(j,i)∈K′ as ((m

(j,i)
0 ,m

(j,i)
1))j∈[k],i∈[1,t], where

m
(j,i)
1−σj,i

:= 0 for (j, i) ∈ K ′ and (m
(i)
0 ,m

(i)
1) := (0, 0) for (j, i) /∈ K ′.

4. For j ∈ [k] and i ∈ [repj + 1, T], set (m
(j,i)
0 ,m

(j,i)
1)← (0, 0).

// This “padding” of the database is also performed in the real execution
and is not due to the simulator not being given the entire database.

5. For i ∈ [T] set m⃗i := ((m
(j,i)
0 ,m

(j,i)
1))j∈[k].

6. For i = 1 . . . t:

Compute (sim⋆
i , sim

dec
i)

$← Simdec
R (1λ, [T], m⃗i, b⃗, otr, st)

7. For i = (t+ 1) . . . T :

Compute (ot⋆S,i, ot
dec
S,i)

$← dec-OTS(1λ, otr, m⃗i).

8. Set ots⋆ ← sim⋆
1∥ . . . ∥sim⋆

t∥ot⋆S,t+1∥ . . . ∥ot⋆S,T .

9. Set otdecS ←
∥∥k
j=1

(
[simdec

1]j∥ . . . ∥[simdec
min(t,repj)

]j∥[otdecS,min(t,repj)+1]j∥ . . . ∥[otdecS,repj
]j

)
.

10. Output (ot⋆S, [ot
dec
S]K).

102

Figure 6.7: Simulator Simrep
R,t replacing the first t calls to dec-OTS by calls to Simdec

S .

Consider the following distributions:

∆real :=

{
(ots⋆, [otsdec]K , otr, st) :

(otr, st)
$← rep-OTR(1λ, b⃗)

(ots⋆, otsdec)
$← rep-OTS(1λ, otr, m⃗, rep)

}

∀t ∈ [T], ∆Sim
t :=

(sim⋆, simdec, otr, st) :

(otr, st)
$← rep-OTR(1λ, b⃗)

(sim⋆, simdec)
$← Simrep

R,t(1λ, K, (m
(i)
σi)i∈K∩Firstt ,

(m
(i)
0 ,m

(i)
1)i∈[k′]\Firstt , b⃗, rep, otr, st)

where σi := bmax{j : (

∑
j′<j repj′)≤i} .

For all t ∈ [T], it holds that ∆Sim
t−1

c
≈ ∆Sim

t by decomposable sender security of dec-OT.
Indeed, if a PPT D could distinguish ∆Sim

t−1
c
≈ ∆Sim

t with probability ϵ then it could
distinguish the following distributions with the same probability:{

(ots⋆, [otsdec]K , otr, st) :
(otr, st)

$← dec-OTR(1λ, b⃗)

(ots⋆, otsBD)
$← dec-OTS(1λ, otr, m⃗t)

}
where m⃗t is defined in line 6. of Simrep

R,t

and

{
(sim⋆, simdec, otr, st) :

(otr, st)
$← dec-OTR(1λ, b⃗)

(sim⋆, simdec)
$← Simdec

R (1λ, K, (m
(i)
σi)i∈K∩[ind(j),ind(j)+min(t−1,repj)], b⃗, otr, st)

}
.

But by eq. (6.1), they are computationally indistinguishable and therefore ϵ must be
negligible.

Observe that ∆real = ∆Sim
0

c
≈ . . .

c
≈ ∆Sim

T . Since [k′] \ FirstT = ∅, Simrep
R,T only takes as

input (1λ, K, (m
(i)
σi)i∈K , b⃗, rep, otr, st) and therefore we have shown our construction has

decomposable sender security.

6.4.3 Two-Round Batch SPIR with Correlated Queries from
Two-Round Decomposable Batch OT (with Bounded
Query Repetitions)

In this section, definition 28 defines “mix-and-match functions” and lemma 8 shows
how they can be built. Definition 21 introduces the notion of two-round batch SPIR
protocol with correlated “mix and match” queries (corrSPIR), and theorem 11 provides
a reduction from rep-OT to corrSPIR, with an explicit transformation in fig. 6.8.

We next introduce and achieve a notion of batch symmetric PIR with correlated
queries. This corresponds to batch SPIR where the queries are not independent; rather,
the total entropy w used to describe the queries is small, and the queried indices can

103

be reconstructed via a public function that “mixes and matches” the individual bits of
entropy in a public manner. In more detail, if the w bits of entropy are α1, . . . , αw,
“mixing and matching” means that each of the (n = logN)-bit queries to a single
database can be obtained by concatenating n of the bits αi, possibly permuted. In
the notation below, the jth query is given by vector (αsj,1 , . . . , αsj,n) (in other words,
the jth query is associated with the ordered subset Sj = {sj,1, . . . , sj,n} of the bits of
entropy). This notion is tailor-made for our application to sublinear computation, but
may be of independent interest. Let us now sketch the construction, and highlight
both the need for decomposability and why we need the queries to be correlated.

Our starting point is the observation originally present in [KO97] (and later re-used
explicitly in [IP07,DGI+19]) using the following Merkle tree abstraction that a rate-1
two-round 1-out-of-2 string OT can be seen as a hash function with a compression
factor of two, and can be used to build (block) symmetric PIR. Let us sketch
the construction under the (idealised) assumption that we have access to a rate-1
two-round 1-out-of-2 bit OT primitive, which is better suited to our purposes than its
string variant. Suppose the server holds a database of N = 2n bits and that the client
wants to retrieve the element stored at index x = (x1, . . . , xn). If the client sends
a receiver message otr1 ← OTR(x1) for the first bit of the desired index, the server
can take the database, pair up elements whose indices differ only on the first bit,
then apply the “hash function” OTS(otr1, ·) in order to retrieve a single-bit “hashed
value” for each pair. If the server were to send all N/2 “hashes”, the client could
retrieve exactly the elements of the database whose indices start with x1 by applying
OTD(st1, ·) (st1 was generated alongside otr1). If instead the client sends receiver
messages (otr1, . . . , otrn), one for each bit of the desired index, the server can now
iteratively compress the database down to a single bit by building a “Merkle tree”
using OTS(otrd, ·) at every node of depth n− d. If the server sends this single-bit root
of the tree, the client can retrieve the element at index x1 . . . xn by iteratively applying
OTD(std, ·) for d = n, . . . , 1. In fact, this is the only element of the database which
the client can recover from the root of the Merkle tree (intuitively, when the server
applied OTS(otrd, ·) they removed the client’s ability to retrieve any information about
elements whose indices have 1− xd in position d).

The above construction achieves SPIR with optimal communication, from the
idealised primitive of rate-1 two-round 1-out-of-2 bit OT. We may ask whether we
can replace this primitive with a more realistic batched version, and have the client
send BatchOTR(x1, . . . , xn) for instance in the hopes the client can batch the OT
sender messages it has to compute. Unfortunately, while the server has to compute
N OT sender messages with a first selection bit, then N/2 OT sender messages with
a second, and so on, the messages at each layer are crafted adaptively and therefore
cannot be batched.

Now consider the setting where the server holds a batch of k databases. If the sender
is to compress each database down to a single bit using the “Merkle tree” approach,
it has to compute N/2d OT sender messages for each layer of d = 1, . . . , n of each of
the k Merkle trees. While messages across layers cannot be batched, OTs from the
same layer of different trees can! The main challenge is that we can only afford (in
order to keep communication low) to use a single batched receiver message in order to
compute all of the sender messages. This requires a special assumption on the queries,
which need to be highly correlated for this approach to work. We will be interested in

104

how many times a given αi appears within the k queries (counted by the occurrence
function ti below), as well as how many times it appears in specific position j′ ∈ [n]
within the k queries (denoted below by ti,j′). If all ti,j′ are bounded by T , then for
each level j′ ∈ [n] in the “Merkle forest” we can achieve the desired length-halving
compression by using at most T batch OT sender computations on the original batch
OT selection vector α⃗.

Batch SPIR with Correlated “Mix and Match” Queries

Parameters: k, N , n := logN , w, T , a T -balanceable MixAndMatch : {0, 1}w →
[N]k (parameterised by subsets Sj = (sj,1, . . . , sj,n) ∈ [w]n for j ∈ [k]) and an
associated list of number of occurrences (t1, . . . , tw) with ti = ti,1 + · · · + ti,n, a
two-round batch rep-OT protocol rep-OT = (rep-OTR, rep-OTS, rep-OTD).

corrSPIRR: On input the security parameter 1λ and a vector of selection bits
b⃗ = (b1, . . . , bw) ∈ {0, 1}w :

1. Set b⃗′ ← b
∥⌈t1/T ⌉
1 ∥ . . . ∥b∥⌈tw/T ⌉

w .
// b⃗′ is the vector whose first ⌈t1/T ⌉ coordinates are equal to b1, followed by
⌈t2/T ⌉ coordinates equal to b2, and so on. Note that the total size of this
“selection vector with redundancies” is

∑w
i=1⌈ti/T ⌉.

2. Compute (spirR, st)
$← OTR(1λ, b⃗′), and output (spirR, st∥⃗b).

corrSPIRS: On input the security parameter 1λ, a receiver message spirR, and k
databases m⃗1, . . . , m⃗k ∈ [N]:

1. Set (DB1,1, . . . , DB1,k) := (m⃗1, . . . , m⃗k).
// Throughout, DBd,k will correspond to the values of the dth layer of the kth

Merkle tree.

2. For d = 1, . . . , n:

(a) For i = 1, . . . , w:

Set repd,i ←

{
T ∥⌈ti,d/T ⌉∥0∥⌈ti/T ⌉−⌈ti,d/T ⌉ if T |ti,d
T ∥⌊ti,d/T ⌋∥ti,d%T∥0∥⌈ti/T ⌉−⌈ti,d/T ⌉ if T ̸ |ti,d

(b) Set repd ← repd,1∥ . . . ∥repd,w .
// Note that repd is a vector of size

∑w
i=1⌈ti/T ⌉ with elements in [0, T],

and such that ||repd||1 =
∑w

i=1 ti,d .

(c) Initialise Xd ← ∅ .

(d) For j = 1, . . . , k:

For x = 0, . . . , N/2d − 1:
Xd.append(((DBd,j[2x], DBd,j[2x+ 1]), sj,d, x, j)) .
// Note that Xd now contains k · N/2d elements. For each
i ∈ [w], exactly ti,d · N/2d of the form ((·, ·), ·, i, ·). Indeed, by
definition, ti,d = |{j ∈ [k] : sj,d = i}|.

(e) Sort Xd according to the lexicographic order which first sorts by in-
creasing fourth element (the “j ∈ [k]”) and then, in case of equality, by
increasing third element (the “x ∈ [0, N/2d − 1]”).

105

(f) Greedily partition Xd as Xd = Xd,1 ⊔ · · · ⊔Xd,(N/2d) such that for each
ℓ ∈ [N/2d] and each i ∈ [w], Xd,ℓ contains (up to) ti,d elements of the
form ((·, ·), i, ·, ·); “greedily” is here taken to mean that the first ti,d
elements of the form ((·, ·), i, ·, ·) are placed in Xd,1, the next ti,d in Xd,2,
and so on.
// Note that each Xd,ℓ can contain up to ti,d elements of the form
((·, ·), i, ·, ·), of which there are a total of (N/2d) · ti,d. Therefore Xd can
indeed be decomposed into (N/2d) such partitions.
// Further note that each Xd,ℓ (ℓ ∈ [N/2d]) is a set of size

∑w
i=1 t

′
i .

(g) For ℓ = 1, . . . , N/2d:

• Sort Xd,ℓ according to the second element in increasing order, break-
ing ties with the fourth, and then if necessary the third element of
the 4-tuples.
// After this re-ordering, the first t1 tuples are of the form
((·, ·), 1, ·, ·), followed by t2 tuples of the form ((·, ·), 2, ·, ·), and so
on.

• Set DB′d,ℓ ← (Sd,ℓ[0].first, . . . , Sd,ℓ[(
∑w

i=1 ti,d)− 1].first) ∈ {0, 1}2|Sd,ℓ|.
// DB′d,ℓ is obtained by only considering the first of the four entries
(which is a pair of bits from some DBd,j) of every element of Xd,ℓ.

• Set (ots⋆d,ℓ, ots
dec
d,ℓ)

$← rep-OTS(1λ, spirR, DB
′
d,ℓ, repd) .

(h) If d < n:

• For j = 1, . . . , k:
Initialise DBd+1,j ← 0∥N/2d .

• For ℓ = 1, . . . , N/2d:
For ℓ′ = 0, . . . , (

∑w
i=1 ti,d)− 1:

Parse Xd,ℓ[ℓ
′] as ((·, ·), ·, x, j), with x ∈ [N/2d] and j ∈ [k].

Set DBd+1,j[x]← otsdecd,ℓ [ℓ
′] .

(i) Set ots⋆d ← (ots⋆d,1, . . . , ots
⋆
d,N/2d

) .

3. Set spirS := ((ots⋆1, . . . , ots
⋆
n), ots

dec
n), and output spirS.

corrSPIRD: On input a sender message spirS and an internal state st:

1. Parse spirS as spirS = ((ots⋆1, . . . , ots
⋆
n), ots

dec
n), and parse st as st′∥⃗b .

2. Set (y1, . . . , yk)← MixAndMatch(⃗b) (i.e. yj ← bsj,1 . . . bsj,n for j ∈ [n]).

3. Initialise (m̃1, . . . , m̃k)← otsdecn .

4. For d = 1, . . . , n :
// The goal of this step is to identify which intermediary nodes of the Merkle
tree can be recovered.

(a) Initialise Xd ← ((⊥, sj,d, x, j))j∈[k],x∈[0,N/2d−1]

(b) Sort Xd according to the lexicographic order which first sorts by in-
creasing fourth element (the “j ∈ [k]”) and then, in case of equality, by
increasing third element (the “x ∈ [0, N/2d − 1]”).

106

(c) Greedily partition Xd as Xd = Xd,1 ⊔ · · · ⊔ Xd,N/2d such that for each
ℓ ∈ [N/2d] and each i ∈ [w], Xd,ℓ contains exactly ti,d elements of the
form (·, i, ·, ·); “greedily” is here taken to mean that the first ti,d elements
of the form (·, i, ·, ·) are placed in Xd,1, the next ti,d in Xd,2, and so on.

(d) For ℓ = 1, . . . , N/2d:

Sort Xd,ℓ according to the second element in increasing order, break-
ing ties with the fourth, and then if necessary the third element of
the 4-tuples.

(e) Parse ots⋆d as ots⋆d = (ots⋆d,1, . . . , ots
⋆
d,N/2d

)

(f) For j = 1, . . . , k:

• Set ℓj,d to be the unique ℓ ∈ [N/2d] such that
(⊥, sj,d, (bsj,n . . . bsj,d), j) ∈ Xd,ℓ .

• Set indj,d to be the index of (⊥, sj,d, (bsj,n . . . bsj,d), j) in Xd,ℓ .
• Update m̃j ← rep-OTD({indj,d}, (ots⋆d,ℓj,d , m̃j), rep, st)

5. Output (m̃1, . . . , m̃k) .

Figure 6.8: corrSPIR from rep-OT.

Theorem 11. Assume that rep-OT is a semi-honest two-round decomposable batch
OT protocol with α(·)-overhead and T -bounded query repetitions. Then construction
(corrSPIRR, corrSPIRS, corrSPIRD) from fig. 6.8 is a two-round batch SPIR protocol with
correlated “mix and match” queries. Furthermore the size of the receiver message is
linear in w+k ·n/T and the size of the sender message is upper bounded by k+(logN) ·
(N − 1) · α(w + k · n/T) (where k is the batch number and N is the size of each of the
k databases).

Proof.

• Size: The receiver message is a rep-OT receiver message with
∑w

i=1⌈ti/T ⌉ ≤∑w
i=1(1 + ti/T) ≤ w + (

∑w
i=1 ti)/T = w + k · n/T selection bits Since rep-OT

has upload rate asymptotically one by definition, the receiver message is indeed
linear in w+ k ·n/T . The sender message is comprised a single bit per database,
as well as

∑n
d=1 N/2d = N − 1 different “reusable parts” of size α(w + k · n/T).

The sender message is therefore of size k + (logN) · (N − 1) · α(w + k · n/T).

• Correctness: Correctness mostly follows from inspection, keeping in mind the
following description of the instructions (alongside the comments in the pseu-
docode). Let d ∈ [n]. The pair (DBd,j[x′0], DBd,j[x

′
1]) corresponds to a pair of

elements of DBd,j whose indices only differ in bit sj,d, wish we wish to “hash”
down to a single bit using rate-1 OT. Because we only have access to a batched
version the OT primitive, the pair will need to be batched with others (in fact,
taken from different databases) in such a way that it corresponds to the sth

j,d selec-
tion bit. We therefore tag the pair with sj,d. Furthermore, we will need to place
the “hashed value” (which can be extracted by sender-message decomposability
of the batched OT) thus obtained at the correct place in the Merkle tree, i.e. in
the next level database. For this reason, we additionally tag the pair with (x, j),

107

so as to remember whence it came, and be able to deduce where it should be
placed.

• Security (Standalone Simulation): We need to show that ΠcorrSPIR from fig. 6.1,
when instantiated with corrSPIR = (corrSPIRR, corrSPIRS, corrSPIRD) as defined
in fig. 6.8 securely computes the functionality f((m⃗i)i∈[k], b⃗) = (⊥, (m⃗i[xi])i∈[k])

where (x1, . . . , xk) := MixAndMatch(⃗b) in the presence of static semi-honest ad-
versaries.

– Corrupted Sender and Honest Receiver. Because the functionality is deter-
ministic, it suffices to show that there exist a PPT simulator SimcorrSPIR

S such
that:

{viewΠcorrSPIR
S (1λ, (m⃗i)i∈[k], b⃗)}

c
≈ {SimcorrSPIR

S (1λ, (m⃗i)i∈[k],⊥)} .

The sender’s view in ΠcorrSPIR consists of its input, internal random tape, and
the messages it receives from the receiver. Note that the sender receives
a single message, before it sends anything, and therefore its view can be
split into two independent parts: the input and coins on one side, and the
incoming transcript on the other. Therefore it suffices to show that we
can simulate the incoming message given the security parameter and the
sender’s input. Since rep-OT is secure against a semi-honest sender, by
definition there exists an expected polynomial time simulator Simrep

S such
that for every λ ∈ N⋆ and every b⃗ = (b1, . . . , bk) ∈ {0, 1}k, and if further we
define b⃗′ ← b

∥⌈t1/T ⌉
1 ∥ . . . ∥b∥⌈tw/T ⌉

w ,{
otr : (otr, st)

$← rep-OTR(1λ, b⃗′)
}

c
≈
{
Simrep

S (1λ)
}

.

Since the left hand side is exactly the distribution of the unique message
received by the sender, it follows that the view of a semi-honest sender can
be simulated.

– Corrupted Receiver and Honest Sender. Because the functionality is deter-
ministic, it suffices to show that there exists a PPT simulator SimcorrSPIR

R

such that:

{viewΠcorrSPIR
R (1λ, (m⃗j)j∈[k], b⃗)}

c
≈ {SimcorrSPIR

R (1λ, b⃗, (m⃗j[xj])j∈[k])},
where (x1, . . . , xk) := MixAndMatch(⃗b) .

Note that the view of the corrupted receiver in ΠcorrSPIR consists of its input
(the vector of selection bits b⃗), its internal coins, and the single message
spirS it receives from the sender. Consider the simulator SimcorrSPIR

R which
acts as follows:
1. SimcorrSPIR

R starts by running the protocol as the receiver would, sampling
random coins r⃗R and crafting spirR ← corrSPIRR(1

λ, b⃗; r⃗R);
2. SimcorrSPIR

R builds k databases m⃗′1, . . . , m⃗
′
k of size N each, containing 0

everywhere except for one position each: the jth database has m⃗[xj] in
position xj (recall that with the knowledge of b⃗, SimcorrSPIR

R is able to
compute (x1, . . . , xk) = MixAndMatch(⃗b));

108

3. SimcorrSPIR
R runs spirS

$← corrSPIRR(1
λ, spirR, (m⃗

′
j)j∈[k]).

4. SimcorrSPIR
R outputs (r⃗R, b⃗, spirS).

In other words, SimcorrSPIR
R runs in its head an instance of the protocol

of fig. 6.1, but replacing all of the unknown values (i.e. all except the
(m⃗j[xj])j∈[k]) in the databases (m⃗j)j∈[k] with zeroes.
We will now prove that the view of the corrupted receiver in ΠcorrSPIR is
indistinguishable from the output of the above simulator SimcorrSPIR

R via a
hybrid argument.

For j ∈ [k] and d ∈ [n], let Yj,d := {x = x1 . . . xn
(2) ∈ [N] : (∀d′ < d, xd′ =

bsj,d′) ∧ (xd ̸= bsj,d)} (in other words, Yj,d is the set of all elements of [N]

whose first d−1 digits in base two, but not the dth, are the same as those of
bsj,1 . . . bsj,d

(2)). Observe that for each j ∈ [k], the (Yj,d)d∈[n] form a partition

of [N] \ {bsj,1 . . . bsj,d
(2)}. Now, for d ∈ [n] consider the simulator SimcorrSPIR

R,d

which acts as follows:
1. SimcorrSPIR

R,d starts by running the protocol as the receiver would, sampling
random coins r⃗R and crafting spirR ← corrSPIRR(1

λ, b⃗; r⃗R);
2. SimcorrSPIR

R,d builds k databases m⃗′1, . . . , m⃗
′
k of size N each, as follows:

∀j ∈ [k],∀x ∈ [N], m⃗′j[x] :=

{
m⃗j[x] if x ∈ Yj,d

0 otherwise

(recall that with the knowledge of b⃗, SimcorrSPIR
R,d is able to compute

(x1, . . . , xk) = MixAndMatch(⃗b), and therefore also Yj,d);
3. SimcorrSPIR

R,d runs spirS
$← corrSPIRR(1

λ, spirR, (m⃗
′
j)j∈[k]).

4. SimcorrSPIR
R,d outputs (r⃗R, b⃗, spirS).

In other words, SimcorrSPIR
R,d runs in its head an instance of the protocol

of fig. 6.1, but replacing all of the unknown values (i.e. all except the
(m⃗j[xj])j∈Yj,d

) in the databases (m⃗j)j∈[k] with zeroes.
Observe that for all j ∈ [k] we have that Yj,1 = [N] and Yj,n = {xj}, and that
SimcorrSPIR

R,1 perfectly simulates the real world, while SimcorrSPIR
R,n = SimcorrSPIR

R

lives in the ideal world. For j ∈ [1, n − 1], indistinguishability of the
distributions of outputs of SimcorrSPIR

R,j and SimcorrSPIR
R,j+1 holds by invoking

sender security of rep-OT k times. By construction, the process of running
corrSPIRS(1

λ, corrSPIRR(1
λ, b⃗), ·) compresses k size-N databases down to a

single element each using a “Merkle-like forest”.

Observe that Ij,d (resp. Jj,d) corresponds to the 2n−d (resp. 2n−d−1) indices
of database m⃗j whose lowest common ancestor with index xj in the Merkle
tree computed on m⃗j is in the layer4 at most (resp. exactly) d. We will prove
security via a sequence of hybrids, each giving the simulator access to the
database elements ([m⃗j]Xj,d

)j∈[k] for some d ∈ [n]. Proving indistinguishabil-
ity of consecutive hybrids boils down to a reduction to the sender security
of rep-OT.

4We use the convention to count the layers of a Merkle tree from 1 to logN , where layer 1 consists
in the hashes computed directly on the original database elements and layer N is the final hash value
(i.e. the root of the tree).

109

6.5 Instantiation from Standard Assumptions
For completeness, we provide a full description of the 2-round rate-1 batch OT construc-
tion from [BBDP22, Section 7], which we cast as decomposable. Their construction is
centered around packed linearly homomorphic encryption, whose definition we recall
in definition 24. Our contribution is to observe that if this packed LHE satisfies an
additional property of “shrunken ciphertext decomposability”, which we define in defi-
nition 25 and show in lemma 11 to be a property held by many concrete instantiations,
then this two-round batch oblivious transfer is in fact decomposable.

6.5.1 Decomposable Packed Linearly Homomorphic Encryp-
tion

We recall in definition 24 the definition of packed linearly homomorphic encryption,
and introduce in definition 25 the notion of decomposability for such an encryption
scheme.

Definition 24 ((Packed) Linearly Homomorphic Encryption, [BBDP22]). A packed
linearly homomorphic encryption (LHE) scheme LHE over a finite group G is a tuple
of p.p.t. algorithms LHE = (LHE .KeyGen,LHE .Enc,LHE .Shrink,LHE .DecShrink) with
the following syntax and properties:

• KeyGen(1λ, k): On input a security parameter 1λ and a plaintext length k ∈ N⋆,
KeyGen outputs a public key pk and a secret key sk. The size of the public key
output by KeyGen(1λ, k) is bounded by k · poly(λ).

• Enc(pk, m⃗ = (m1, . . . ,mk)): On input a public key pk and a message m⃗ =
(m1, . . . ,mk) ∈ Gk, Enc outputs a ciphertext ct.

• Eval(pk, f, (ct1, . . . , ctℓ)): On input a public key pk, a linear function f : (Gk)ℓ →
Gk, and a batch of ℓ ciphertexts (ct1, . . . , ctℓ), Eval outputs a ciphertext c̃t.

• Shrink(pk, ct): On input a public key pk and a ciphertext ct, Shrink outputs a
shrunken ciphertext ct′.

• DecShrink(sk, ct): On input a secret key sk and a shrunken ciphertext ct,
DecShrink outputs a message m⃗.

• Correctness. For any ℓ ∈ N, any messages m⃗1, . . . , m⃗ℓ ∈ Gk, and any linear
function f : (Gk)ℓ → Gk,

Pr

f(m⃗1, . . . , m⃗ℓ) = m̃ :

(pk, sk)
$← KeyGen(1λ, k)

cti
$← Enc(pk, m⃗i) for i ∈ [ℓ]

c̃t
$← Eval&Shrink(pk, f, (ct1, . . . , ctℓ))

m̃
$← DecShrink(sk, c̃t)

 = 1

where Eval&Shrink is an additional algorithm defined for convenience: On input
a public key pk, a linear function f , and a batch of ℓ ciphertexts (ct1, . . . , ctℓ),
Eval&Shrink runs c̃t

$← Shrink(pk,Eval(pk, f, (ct1, . . . , ctℓ))) and outputs the ci-
phertext c̃t.

110

• Semantic Security. For all λ ∈ N, k = poly(λ), and p.p.t. adversaries A =
(A0,A1),

Pr

b′ = b :

(pk, sk)
$← KeyGen(1λ, k)

(m⃗0, m⃗1, st)
$← A0(pk)

b
$← {0, 1}

ct
$← Enc(pk, m⃗b)

b′
$← A1(st, ct)

 ≤ negl(λ) .

• Compactness.

– For sufficiently large k ∈ N, any (pk, sk) ∈ Supp(KeyGen(1λ, k)), the size of
the public key, i.e. |pk|, is upper bounded by k · poly(n).

– Rate-1. For sufficiently large k ∈ N, any linear function f : (Gk)ℓ → Gk,
and any (m⃗1, . . . , m⃗ℓ) ∈ (Gk)ℓ, for all (pk, sk) ∈ Supp(KeyGen(1λ, k)) and
cti ∈ Supp(Enc(pk, m⃗i)), i ∈ [ℓ]:

|Eval&Shrink(pk, f, (ct1, . . . , ctℓ))| = |f(m⃗1, . . . , m⃗ℓ)| · (1 + o(1)) = (k · log |G|) · (1 + o(1)) .

When convenient, we will parse a rate-1 shrunken ciphertext as ct =
(ct0, ct1), where |ct0| = o(k) and |ct1| = k.

• Function Privacy. There exists a simulator Simfn-priv
LHE such that for all messages

(m⃗1, . . . , m⃗ℓ) ∈ (Gk)ℓ and all linear functions f : (Gk)ℓ → Gk, for all adversaries
A,
∣∣∣∣∣∣∣∣∣Pr
b = 1 :

(pk, sk)
$← KeyGen(1λ, k)

cti
$← Enc(pk, m⃗i) for i ∈ [ℓ]

c̃t
$← Eval&Shrink(pk, f, (cti)i∈[ℓ])

b
$← A(pk, sk, c̃t)

− Pr

b = 1 :

(pk, sk)
$← KeyGen(1λ, k)

c̃t
$← Simfn-priv

LHE (pk, f((m⃗i)i∈[ℓ]))

b
$← A(pk, sk, c̃t)

∣∣∣∣∣∣∣∣∣ ≤ negl(λ) .

In other words, since Simfn-priv
LHE does not use the function f to compute c̃t, no

non-trivial information about it is leaked from c̃t.

Informally, a packed LHE scheme is decomposable if, given the secret key and a shrunken
ciphertext (which has size k + o(k)) missing some or all of the last k bits (note that
the set of erased positions is assumed to be known), there is a way to recover the
corresponding subset of the (homomorphically evaluated) plaintext vector but no in-
formation about the rest of the plaintext. Note that if any bit of the shrunken ciphertext
is dropped other than the last k, then there is no correctness guarantee on recovering
any information about the plaintext. We formalise this notion in definition 25.

Definition 25 (Decomposable Linearly Homomorphic Encryption, LHE). A
packed linearly homomorphic encryption (LHE) scheme (definition 24) LHE =
(LHE .KeyGen,LHE .Enc,LHE .Shrink,LHE .DecShrink) over a finite group G is said to be
decomposable if there exists a probabilistic polynomial time partial decryption algo-
rithm LHE .pDecShrink with the following syntax and properties:

• Decomposability – Syntax. On input a batch subset S ⊆ [k], a secret key sk,
a partial shrunken ciphertext c̃ = (c̃0, c̃1) where |c̃0| = o(k · log |G|) and |c̃1| =
|S| · log |G|, LHE .pDecShrink outputs a partial message m̃ ∈ G|S|.

111

• Decomposability – Correctness. For any ℓ ∈ N, any batch size k ∈ N⋆, any
messages m⃗1, . . . , m⃗ℓ ∈ Gk, any linear function f : (Gk)ℓ → Gk, and any batch
subset S ⊆ [k],

Pr

(f(m⃗1, . . . , m⃗ℓ))[S] = m̃ :

(pk, sk)
$← KeyGen(1λ, k)

cti
$← Enc(pk, m⃗i) for i ∈ [ℓ]

c̃t = (c̃t0, c̃t1)
$← Eval&Shrink(pk, f, (ct1, . . . , ctℓ))

m̃
$← pDecShrink(S, sk, (c̃t0, c̃t1[IS]))

 = 1 ,

where IS :=
⋃
i∈S

[(i− 1)|G|, i|G|] .

• Decomposability – Security. There exists an expected polynomial time simulator
Simdec

LHE such that for every λ ∈ N⋆, any ℓ ∈ N, any batch size k ∈ N⋆, any
messages m⃗1, . . . , m⃗ℓ ∈ Gk, any linear function f : (Gk)ℓ → Gk, and any batch
subset S ⊆ [k],(pk, sk, c̃t0, c̃t1[IS]) :

(pk, sk)
$← KeyGen(1λ, k)

cti
$← Enc(pk, m⃗i) for i ∈ [ℓ]

c̃t = (c̃t0, c̃t1)
$← Eval&Shrink(pk, f, (ct1, . . . , ctℓ))

 c
≈

{
(pk, sk, sim0, sim1) :

(pk, sk)
$← KeyGen(1λ, k)

(sim0, sim1)
$← Simdec

LHE(1
λ, pk, k, S, f, (f(m⃗1, . . . , m⃗ℓ))[S])

}
,

where IS :=
⋃
i∈S

[(i− 1)|G|, i|G|] .

At a high level, function-privacy guarantees that, even given the secret key, a post-
homomorphism shrunken ciphertext does not leak the function while decomposability
guarantees that dropping selected parts of this ciphertext conceals information about
the corresponding (post-homomorphism) plaintext. It makes intuitive sense that these
properties should be achievable simultaneously, however this may not be clear a priori
from the formalism since the simulator Simdec

LHE in definition 25 is given as input the
function. We nevertheless establish this fact in lemma 10.

Lemma 10 (Function-Private Decomposability). If LHE =
(KeyGen,Enc, Shrink,DecShrink) is a decomposable packed linearly homomorphic
encryption scheme over G, then there exists an expected polynomial time simulator
Simpriv-dec

LHE such that for every λ ∈ N⋆, any ℓ ∈ N, any batch size k ∈ N⋆, any messages
m⃗1, . . . , m⃗ℓ ∈ Gk, any linear function f : (Gk)ℓ → Gk, and any batch subset S ⊆ [k],(pk, sk, c̃t0, c̃t1[IS]) :

(pk, sk)
$← KeyGen(1λ, k)

cti
$← Enc(pk, m⃗i) for i ∈ [ℓ]

c̃t = (c̃t0, c̃t1)
$← Eval&Shrink(pk, f, (ct1, . . . , ctℓ))

 c
≈

{
(pk, sk, sim0, sim1) :

(pk, sk)
$← KeyGen(1λ, k)

(sim0, sim1)
$← Simpriv-dec

LHE (1λ, pk, k, S, (f(m⃗1, . . . , m⃗ℓ))[S])

}
,

where IS :=
⋃
i∈S

[(i− 1)|G|, i|G|] . (6.2)

In particular, note that f is not given as input to the simulator.

112

Proof. Let Simdec
LHE be defined as in definition 25 and consider the following algorithm

Simpriv-dec
LHE : On input (1λ, pk, k, S, y), parse pk so as to retrieve ℓ, define y′ ∈ Gk as

y′[x] := (y[x] if x ∈ S, and 0 otherwise), run (ct0, ct1)
$← Simdec

LHE(1
λ, pk, k, S, csty′ , y)

where csty′ is the constant function on (Gk)ℓ equal to y′, and output (ct0, ct1[IS]) where
IS :=

⋃
i∈S[(i− 1)|G|, i|G|]. Let us now show that it satisfies the required property for

lemma 10.

Let Simfn-priv
LHE be defined as in definition 24. Before we proceed, note that:

∀f : (Gk)ℓ → Gk linear,∀m⃗1, . . . , m⃗ℓ ∈ Gk,∀S ⊆ [k],(pk, sk, c̃t0, c̃t1[IS]) :

(pk, sk)
$← KeyGen(1λ, k)

cti
$← Enc(pk, m⃗i) for i ∈ [ℓ]

c̃t = (c̃t0, c̃t1)
$← Eval&Shrink(pk, f, (ct1, . . . , ctℓ))

c
≈

{
(pk, sk, c̃t0, c̃t1[IS]) :

(pk, sk)
$← KeyGen(1λ, k)

c̃t = (c̃t0, c̃t1)
$← Simfn-priv

LHE (pk, f(m⃗1, . . . , m⃗ℓ))

}
,

where IS :=
⋃
i∈S

[(i− 1)|G|, i|G|] . (6.3)

Indeed, should there exist f, m⃗1, . . . , m⃗ℓ, S such that there existed a p.p.t. adversary A
with non-negligeable advantage in distinguishing the two above distributions, then A′
defined as A′(x1, x2, x3, x4)

$← A(x1, x2, x3, x4[IS]) (where IS :=
⋃

i∈S[(i − 1)|G|, i|G|])
would distinguish the following two distributions with non-negligeable probability,
thereby contradicting function-privacy:

(pk, sk, c̃t0, c̃t1) :

(pk, sk)
$← KeyGen(1λ, k)

cti
$← Enc(pk, m⃗i) for i ∈ [ℓ]

c̃t = (c̃t0, c̃t1)
$← Eval&Shrink(pk, f, (ct1, . . . , ctℓ))

and

{
(pk, sk, c̃t0, c̃t1) :

(pk, sk)
$← KeyGen(1λ, k)

c̃t = (c̃t0, c̃t1)
$← Simfn-priv

LHE (pk, f(m⃗1, . . . , m⃗ℓ))

}
.

We are now ready to prove that our candidate Simpriv-dec
LHE indeed satisfies the require-

ments of eq. (6.2). Let λ ∈ N⋆, ℓ ∈ N, k ∈ N⋆, m⃗1, . . . , m⃗ℓ ∈ Gk, and S ⊆ [k]. Let
f : (Gk)ℓ → Gk be a linear function. Define y := (f(m⃗1, . . . , m⃗ℓ))[S], and y′ ∈ Gk

as y′[x] := (y[x] if x ∈ S, and 0 otherwise). Let csty′ denote the constant function on
(Gk)ℓ equal to y′.

113

Observe that, if we define IS :=
⋃

i∈S[(i− 1)|G|, i|G|]:(pk, sk, c̃t0, c̃t1[IS]) :

(pk, sk)
$← KeyGen(1λ, k)

cti
$← Enc(pk, m⃗i) for i ∈ [ℓ]

c̃t = (c̃t0, c̃t1)
$← Eval&Shrink(pk, f, (ct1, . . . , ctℓ))

c
≈

{
(pk, sk, c̃t0, c̃t1[IS]) :

(pk, sk)
$← KeyGen(1λ, k)

c̃t = (c̃t0, c̃t1)
$← Simfn-priv

LHE (pk, f(m⃗1, . . . , m⃗ℓ))

}
c
≈

(pk, sk, c̃t0, c̃t1[IS]) :

(pk, sk)
$← KeyGen(1λ, k)

cti
$← Enc(pk, f(m⃗i)) for i ∈ [ℓ]

c̃t = (c̃t0, c̃t1)
$← Eval&Shrink(pk, g, (ct1, . . . , ctℓ))

c
≈

{
(pk, sk, sim0, sim1) :

(pk, sk)
$← KeyGen(1λ, k)

(sim0, sim1)
$← Simdec

LHE(1
λ, pk, k, S, g, (f(m⃗1, . . . , m⃗ℓ))[S])

}

≡

{
(pk, sk, sim0, sim1) :

(pk, sk)
$← KeyGen(1λ, k)

(sim0, sim1)
$← Simpriv-dec

LHE (1λ, pk, k, S, (f(m⃗1, . . . , m⃗ℓ))[S])

}
.

The first two steps follow from eq. (6.3), the third from the definition of Simdec
LHE , and

the fourth by how we defined Simpriv-dec
LHE .

We recall in fig. 6.9 the construction of packed LHE under QR from [DGI+19,BBDP22]
and note that it is decomposable.

dec-LHE, Adapted from [DGI+19,BBDP22]

KeyGen: On input the security parameter 1λ and a batch size k:

1. Choose two safe primes p = 2p′ + 1 and q = 2q′ + 1 where p′, q′ are primes
and compute N = pq. Choose a generator g of QRN .

2. Sample s
$← Zk

ϕ(N)/2 and compute h⃗← gs.

3. Output pk← (N, g, h⃗) and sk← s.

Enc: On input the public key pk and a batch of k messages m⃗ = (m1, . . . ,mk):

1. Parse pk as pk = (N, g, h⃗ = (h1, . . . , hk))

2. Sample r
$← Z(N−1)/2. Compute c1 ← gr and c2,i ← (−1)mihr

i for i ∈ [k].

3. Output ct = (ct1, ct2 = (c2,1, . . . , c2,k)).

Eval: On input a public key pk, an ℓ-input linear function f , and ℓ ciphertexts
(ct1, . . . , ctℓ):

1. Parse pk as pk = (N, g, h⃗ = (h1, . . . , hk)), f as f(X1, . . . , Xℓ) =
∑ℓ

j=1 aj ·
Xj + b⃗ where a1, . . . , aℓ ∈ {0, 1} and b⃗ ∈ {0, 1}k; For j ∈ [ℓ], parse ctj as
(c1,j, c⃗2,j = (c2,1,j, . . . , c2,k,j)).

2. Sample t
$← Z(N−1)/2 and compute c̃1 ← gt ·

∏ℓ
j=1 c

aj
1,j and c̃2,i ← ht

i · (−1)bi ·∏ℓ
j=1 c

aj
2,i,j, then set c̃t = (c̃1, c̃2 = (c̃2,1, . . . , c̃2,k)).

3. Output c̃t.

Shrink: On input a public key pk and a packed ciphertext ct:

114

1. Parse pk as pk = (N, g, h⃗ = (h1, . . . , hk)) and ct as ct = (c1, c2 =
(c2,1, . . . , c2,k)).

2. For i ∈ [k], set ei ← 0 if c2,i <JN −c2,i and ei ← 1 otherwise.

3. Output (c1, (e1, . . . , ek)).

DecShrink: On input a secret key sk and a shrunken ciphertext ct:

1. Parse ct as ct = (c1, (e1, . . . , ek)) where ∀i ∈ [k], ei ∈ G.

2. Parse sk as sk = (sk1, . . . , skk).

3. For i ∈ [k], set m̃i ← LEq(cski1 , (−1) · cski1).

4. Output (m̃1, . . . , m̃k).

pDecShrink: On input a batch subset S ⊆ [k], a secret key sk, a partial shrunken
ciphertext c̃:

1. Parse c̃ as c̃ = (c̃0, (ei)i∈S) where ∀i ∈ S, ei ∈ G.

2. Parse sk as sk = (sk1, . . . , skk).

3. For i ∈ S, set m̃i ← LEq(cski1 , (−1) · cski1).

4. Output (m̃1, . . . , m̃k).

Figure 6.9: Decomposable Packed Linearly Homomorphic Encryption from QR.

Lemma 11. Assuming the Quadratic Residuosity assumption, the construction of
fig. 6.9 is a decomposable packed linearly homomorphic encryption scheme.

Proof. The above scheme was shown to be a circuit-private LHE by [DGI+19,BBDP22],
so it only remains to show it is decomposable. Decomposable security follows from the
fact that (with the notations of fig. 6.9) a partial ciphertext for batch subset S is of
the form ct = (c1, (ei)i∈S), which can be observed to information-theoretically contain
no information about (mi)i∈[N]\S. Decomposable correctness follows from inspection of
the “locality” of DecShrink.

6.5.2 Two-Round co-PIR

We now recall the notion of co-PIR from [BBDP22, Section 6.1] (or punctured OT
[BGI17]), which allows a receiver holding as input a set of indices S to interact with an
input-free server in such a way that the sender obtains a pseudorandom string y⃗ ∈ Zm

q

while the receiver gets y⃗[[N] \ S] (all entries of y⃗ which are not in S).

Definition 26 (Two-Round co-PIR, [BBDP22]). A two-round co-PIR scheme over
Zq (with poly-logarithmic communication complexity) is parameterised by an inte-
ger m where m = poly(λ), and is composed by a tuple of algorithms copir =
(copir.Query, copir.Send, copir.Receive) with the following syntax and properties:

• Query(1λ, S) : On input the security parameter 1λ and a set of indices S ⊆ [m],
Query outputs a receiver message copirR and a private state st.

115

• Send(copirR) : On input a receiver message copirR, Send outputs a sender message
copirS and a string y ∈ Zm

q .

• Dec(copirS, st) : On input a sender message copirS and a state st, Dec outputs a
string ỹ ∈ Zm

q .

• Correctness. A co-pir scheme copir is said to be correct if for any m = poly(λ)
and S ⊆ [m],

Pr

y[S] = ỹ[S] :

(copirR, st)
$← Query(1λ, S)

(copirS,y)
$← Send(copirR)

ỹ
$← Receive(copirS, st)

 = 1 ,

where S = [m] \ S .

• Receiver Security. For all m = poly(λ), any subsets S1, S2 ⊆ [m], any p.p.t. ad-
versary A,∣∣∣∣Pr [A(k, copirR) = 1: (copirR, st)

$← Query(1λ, S1)
]

− Pr
[
A(k, copirR) = 1: (copirR, st)

$← Query(1λ, S2)
] ∣∣∣∣ ≤ negl(λ) .

• Sender Security. For all m = poly(λ), any subset S ⊆ [m], any p.p.t. adversary
A,

∣∣∣∣Pr
[
A(k, st, copirS,yS) = 1:

(copirR, st)
$← Query(1λ, S)

(copirS,y)
$← Send(copirR,x)

]

− Pr

A(k, st, copirS,y′S) = 1:

(copirR, st)
$← Query(1λ, S)

(copirS,y)
$← Send(copirR,x)

y′S
$← Z|S|q

 ∣∣∣∣ ≤ negl(λ) .

• Compactness (“Polylogarithmic Communication”). For all m = poly(λ), any
subset S ⊆ [m], any (copirR, st) ∈ Supp(Query(1λ, S)), and any (copirS,y) ∈
Supp(Send(copirR)), it holds that |copirR|, |copirS| = |S| · polylog(m) · poly(λ).

Lemma 12 (Instantiation of co-PIR [BBDP22]). Assuming the Quadratic Residuosity
assumption, there exists two-round polylogarithmic co-PIR over {0, 1}.

6.5.3 Decomposable OT from Decomposable LHE

For the sake of more unified notations with the construction of rate-1 OT from
[BBDP22, Section 7], we depart in this section from definition 29, and take two-round
single-server private information retrieval with (polylogarithmic communication) to be
a tuple of algorithms PIR = (PIR.Query,PIR.Send,PIR.Receive).

116

dec-OT

Parameters: Batch number k = ℓ · t; Exact LPN error τ ; A constant ϵ ∈ (0, 1)
tied to the hardness of one of the underlying LPN assumptions.
Requires:

• LHE = (LHE .KeyGen,LHE .Enc,LHE .Eval,LHE .Shrink,LHE .DecShrink) is a de-
composable packed linearly homomorphic encryption scheme (with partial
decryption algorithm pDecShrink) with plaintext space {0, 1}ℓ and equipped
with a post-homomorphism shrinking procedure LHE .Shrink which converts
ciphertexts into a rate 1 representation.

• copir = (copir.Query, copir.Send, copir.Receive) is a two-round polylogarithmic
co-PIR scheme over {0, 1} and parameterised by a database size of t.

• PIR = (PIR.Query,PIR.Send,PIR.Receive) is a two-round polylogarithmic PIR
scheme over {0, 1}.

dec-OTR: On input the security parameter 1λ and a vector of selection bits b⃗ =
(b1, . . . , bk) ∈ {0, 1}k:

1. Parse b⃗ as b⃗ = (⃗b1, . . . , b⃗ℓ) where each b⃗i ∈ {0, 1}t is a block of size t .

2. Choose A
$← {0, 1}n×t uniformly at random, and sample (pk, sk)

$←
LHE .KeyGen(1λ, ℓ) .

3. For i = 1, . . . , ℓ:

(a) Sample s⃗i
$← {0, 1}n, and e⃗i

$← HWτ ({0, 1}t) (Uniformly random τ -
sparse length-t vector)

(b) Compute c⃗i ← s⃗i ·A+ e⃗i + b⃗i

(c) Set Si ← SingleRowMatrix(ℓ, n, i, s⃗i)

(d) Compute a matrix-ciphertext cti
$← LHE .Enc(pk,Si)

(e) Set Ji = supp(e⃗i)

(f) Compute (copirR,i, sti)← coPIR.Query(Ji)

4. Set otr← (pk,A, {cti, c⃗i, copirR,i}i∈[ℓ], {qi,j}i∈[ℓ],j∈[t])

5. Set st← (sk, {sti, Ji}i∈[ℓ], {ŝti,j}i∈[ℓ],j∈[t])

6. Output (otr, st)

dec-OTS: On input the security parameter 1λ, a receiver message otr, a database
m⃗ ∈ {0, 1}2k:

1. Parse otr as otr = (pk,A, {cti, c⃗i, copirR,i}i∈[ℓ], {qi,j}i∈[ℓ],j∈[t])

2. Parse m⃗ as m⃗ = ((m0,i,j,m1,i,j))i∈[ℓ],j∈[t] and set m⃗b,i ← (mb,i,1, . . . ,mb,i,t) ∈
{0, 1}t.

3. For i = 1, . . . , ℓ:

(a) (y⃗i, copirS)
$← coPIR.Send(copirR,i) where y⃗i ← (yi,1, . . . , yi,t)

117

(b) Set z⃗i ← m⃗0,i + y⃗i

4. Set Z ← RowMatrix(ℓ, t, z⃗1, . . . , z⃗ℓ)

5. For i = 1, . . . , ℓ:

(a) Set Ci ← SingleRowMatrix(ℓ, t, i, c⃗i)

(b) Set Di ← Diag(t, m⃗1,i − m⃗0,i)

6. Define the Z2-linear function

f : ({0, 1}ℓ×n)ℓ → {0, 1}ℓ×t

(X1, . . . ,Xℓ) 7→
(

ℓ∑
i=1

(−XiA+Ci) ·Di

)
+Z

7. Compute ĉt
$← LHE .Eval&Shrink(pk, f, ct1, . . . , ctℓ).

8. For i = 1, . . . , ℓ:

(a) Set DBi ← (yi,1 + (m1,i,1 −m0,i,1), . . . , yi,t + (m1,i,t −m0,i,t))

(b) For j = 1, . . . , t:

Compute r⃗i,j ← PIR.Send(DBi, q⃗i,j)

9. Set ots⋆ ← ({copirS,i}i∈[ℓ], {ri,j}i∈[ℓ],j∈[t])

10. Set otsdec ← ĉt

11. Output (ots⋆, otsdec)

dec-OTD: On input a batch subset K ⊆ [k], a partial sender message ots′ and an
state st:

1. Parse ots as ots = (ots⋆, ots′dec) = (({copirS,i}i∈[ℓ], {ri,j}i∈[ℓ],j∈[t]), ĉt
′
)

2. Parse st as st = (sk, {sti, Ji}i∈[ℓ], {ŝti,j}i∈[ℓ],j∈[t])

3. For i = 1, . . . , ℓ :

(a) Compute yi ← (yi,1, . . . , yi,t)← coPIR.Retrieve(copirS,i, sti)

(b) For j = 1, . . . , t:

Compute zi,j ← PIR.Retrieve(copirS,i, ŝti,j)

(c) Set z⃗i ← (zi,1, . . . , zi,t) where

zi,l =

{
zi,j if l = Ji[j]

yi,ℓ otherwise
.

4. Set Z ← RowMatrix(ℓ, t, z⃗1, . . . , z⃗ℓ)

5. Set SK := {(j mod ℓ, j quo ℓ) : j ∈ K} ⊆ [ℓ]× [t]

118

6. Compute Ŵ ′ ← LHE .pDecShrink(K, sk, ĉt
′
), Ŵ as

Ŵ [i, j] :=

{
Ŵ ′[i, j] if (i, j) ∈ SK

0 if (i, j) ∈ [ℓ]× [t]∖ SK

and W ← Ŵ −Z .

7. Let w⃗1, . . . , w⃗ℓ be the rows of W .

8. Output (w⃗i[j])(i,j)∈SK
∈ {0, 1}|K| .

Figure 6.10: Decomposable Batch OT from Decomposable LHE, PIR, and co-PIR

Theorem 12 (Decomposable Batch OT from Decomposable LHE, PIR, and co-PIR).
Under the binary LPN assumption LPN(dim, num, ρ) with dimension dim = poly(λ),
number of samples num = dimc (for any constant c > 1), and noise rate ρ = numε−1

(for some constant ε < 1), if the following conditions are met:

• The batch size is of the form k = ℓ · t, where ℓ, t ∈ N.

• LHE is a rate-1 decomposable packed linearly homomorphic encryption scheme
(definition 25) with plaintext space {0, 1}ℓ, whose post-homomorphism shrunken
ciphertexts have size k + α(k), where α = o(1) is some sublinear function;

• coPIR is a two-round co-PIR scheme over {0, 1} with poly-logarithmic communi-
cation complexity and parameterised by database size t,

• PIR is a two-round PIR scheme with poly-logarithmic communication complexity
and sender privacy for database size t,

then construction dec-OT = (dec-OTR, dec-OTS, dec-OTD) from fig. 6.10 is a two-
round decomposable batch OT with α + polylog overhead.

Proof.

• Decomposable Correctness: Observe that dec-OTR and dec-OTS are defined
exactly as OTR and OTS in [BBDP22, Section 7], and furthermore that
dec-OTD([k], ·, ·) is in fact the same algorithm (with the observation that,
by decomposable correctness of LHE , DecShrink(·, ·) ≡ pDecShrink([k], ·, ·)) as
OTD(·, ·). Correctness therefore follows from [BBDP22, Theorem 1].

• Receiver Security (Against Semi-Honest Sender): Observe that dec-OTR is the
same as the OTR from [BBDP22, Section 7], and therefore sender security follows
from [BBDP22, Theorem 2].

• Decomposable Sender Security (Against Semi-Honest Receiver): Observe that
dec-OTS is the same as the OTS from [BBDP22, Section 7], and that dec-OTD
is only slightly modified from OTD. As such, the proof will closely follow that of

119

[BBDP22, Theorem 3]. Let Simdec
LHE be a simulator as defined in the decomposable

security of LHE , and consider the following simulator Simdec-OT which, on input
(1λ, K, (mi)i∈K , b⃗, otr, st), acts as follows:

1. Parse otr as otr = (pk,A, {cti, c⃗i, copirR,i}i∈[ℓ], {qi,j}i∈[ℓ],j∈[t])
2. Parse st as st = (sk, {sti, Ji}i∈[ℓ], {ŝti,j}i∈[ℓ],j∈[t])
3. For i = 0, . . . , ℓt:

– If i ∈ K: Set mbi,i ← mi and m1−bi,i ← 0

– If i /∈ K: Set m0,i ← 0 and m1i,i ← 0

4. Set m⃗0 ← (m0,1, . . . ,m0,ℓt) and m⃗1 ← (m1,1, . . . ,m1,ℓt).

5. Compute (copirS,i, y⃗i = (yi,1, . . . , yi,m))
$← coPIR.Send(copirR,i).

6. For i ∈ [ℓ] and j ∈ [t]: Set y′i,Ji[j] ← yi,Ji[j] + (m1,i,Ji[j] − m0,i,Ji[j]), set
DBi,j = (0, . . . , 0, y′i,Ji[j], 0, . . . , 0), and compute r⃗i,j

$← PIR.Send(DBi,j, qi,j).

7. Compute c̃t
$← LHE .Simpriv-dec

LHE (1λ, pk, k,K, (ms + z′s)s∈K), where

z′j′ :=

{
y′i·ℓ+j if j′ = Ji[j] (where (i, j) ∈ [ℓ]× [t])
yi·ℓ+j′ otherwise

.

8. Output ots = (c̃t, {copirS,i}i∈[ℓ], {r⃗i,j}i∈[ℓ],j∈[t]) .

The sequence of hybrids used to show indistinguishability between the real and
the ideal worlds is the same as in the proof of [BBDP22, Theorem 3]:

1. Start with the real experiment.
2. For each (i, j) ∈ [ℓ] × [t], by sender security of PIR we can set DBi,j to 0

everywhere except for Ji[j].
3. For each i = 1, . . . , ℓ, by sender security of coPIR we can replace

y′i,Ji[j] ← yi,Ji[j] + (m1,i,Ji[j] − m0,i,Ji[j]) (in such a way that DBi,j =

(0, . . . , 0, y′i,Ji[j], 0, . . . , 0)).

4. We can replace ĉt with c̃t
$← Simpriv-dec

LHE (1λ, pk, k,K, (mi)i∈K) by applying
lemma 10.

By combining lemmas 11 and 12 and theorem 12 we obtain corollary 7.

Corollary 7. Assume the QR assumption and the binary LPN assumption
LPN(dim, num, ρ) with dimension dim = poly(λ), number of samples num = dimc (for
any constant c > 1), and noise rate ρ = numε−1 (for some constant ε < 1). Then for
any ℓ = ℓ(λ), there exists a decomposable two-round batch oblivious transfer for batch
size k = ℓ · num where

• The receiver message otr has size (ℓ2 · dim+ ℓ · numε) · poly(λ) + k

• The sender message ots = (ots⋆, otsdec) has size |ots⋆| = (num+ ℓ · numε) · poly(λ)
and |otsdec| = k.

In particular, for appropriate parameters (sufficiently large ℓ, and num sufficiently
larger than ℓ), |otr| = k + o(k), and |ots⋆| = o(k).

120

Chapter 7

Breaking the Multi-Party Barrier for
Sublinear-Secure Computation,
without FHE

This chapter describes results which have been communicated
previously in [BCM23].

Based on joint work with Elette Boyle and Geoffroy Couteau.

In this chapter we show how our two approaches from chapters 4 and 6 for breaking
the circuit-size barrier, each one seemingly stuck at the two-barrier, can be combined
to yield sublinear-communication multiparty computation.

Our high-level approach centers around Function Secret Sharing (FSS) [BGI15], a form
of secret sharing where the secret object and shares comprise succinct representations
of functions. More concretely, FSS for function class F allows a client to split a secret
function f ∈ F into function shares f1, . . . , fN such that any strict subset of fi’s hide f ,
and for every input x in the domain of f it holds that

∑N
i=1 fi(x) = f(x). (This can be

seen as the syntactic dual of HSS, where the role of input and function are reversed; we
refer the reader to e.g. [BGI+18] for discussion.1) N -party FSS/HSS for sufficiently rich
function classes is known to support low-communication N -party secure computation,
but lack of multi-party FSS constructions effectively leaves us stuck at N = 2.
The core conceptual contribution of this work is the following simple framework, which
enables us to achieve (N + 1)-party secure computation by using a form of FSS for
only N parties.

Proposition 1 ((N + 1)-PC from N -FSS framework, informal). For any ensemble
of polynomial-size circuits C = {Cλ}, consider an N-party FSS scheme for the class
of “partial evaluation” functions {Cλ(·, x1, . . . , xN)}λ,x1,...,xN

, and define the following
sub-computation functionalities:

• FFSS
SD : N-party secure FSS share distribution, where each party Pi holds input xi

(and λ), and learns the ith FSS key fi for the function Cλ(·, x1, . . . , xN).

• FFSS
OE : Two-party oblivious FSS evaluation, where party Pi holds an FSS key fi,

party P0 holds input x0, and P0 learns the ith output fi(x0).

Then there exists a (N +1)-party protocol for securely computing C making one call to
FFSS

SD and N calls to FFSS
OE .

1Indeed, we will refer to both notions, using each when more conceptually convenient.

121

Once expressed in this form, the resulting (N + 1)-party protocol becomes an ex-
ercise: Roughly, it begins by having parties 1, . . . , N jointly execute FFSS

SD on their
inputs x1, . . . , xN to each receive a function share fi of the secret function f(x0) :=
Cλ(x0, x1, . . . , xN), and then each run a pairwise execution of FFSS

OE together with the
remaining party P0 in order to obliviously communicate the ith output share fi(x).
Given these shares, P0 can compute the final output as

∑N
i=1 fi(x0). (See the Technical

Overview for more detailed discussion.)
The communication of the resulting protocol will be dominated by the executions of
FFSS

SD ,FFSS
OE . Of course, the technical challenge thus becomes if and how one can con-

struct corresponding FSS schemes which admit secure share distribution and oblivious
evaluation with low communication.

Instantiating the framework. We demonstrate how to instantiate the above frame-
work building from known constructions of Homomorphic Secret Sharing (HSS) com-
bined with a version of low-communication PIR.
We first identify a structural property of an FSS scheme which, if satisfied, then yields
a low-communication procedure for oblivious share evaluation, through use of a cer-
tain notion of “correlated” (batch) Symmetric Private Information Retrieval (SPIR).
Loosely, correlated SPIR corresponds to a primitive where a client wishes to make cor-
related queries into m distinct size-S databases held by a single server. Without corre-
lation between queries, the best-known PIR constructions would require m · polylog(S)
communication. However, it was shown in [BCM22] that if the m index queries (each
logS bits) are given by various subsets of a fixed bit string of length n ≪ m logS
held by the client, then (using the rate-1 batch OT constructions from [BBDP22]) this
batch SPIR can be performed with significantly lower communication.
We then demonstrate that FSS schemes with the necessary structural property can
be realized from existing constructions of HSS. Loosely speaking, the FSS evaluation
procedure will be expressible as a polynomial (which depends on x1, . . . , xN) evaluated
on the final input x0, and the HSS will enable the N parties to compute additive secret
shares of the coefficients of this corresponding polynomial.
We further extend the approach to support an underlying HSS scheme satisfying
only a weaker notion of correctness, with inverse-polynomial (Las Vegas) error. In
such scheme, homomorphic evaluation may fail with noticeable probability (over
the randomness of share generation), in a manner identifiable to one or more par-
ties. This is the notion satisfied by the 2-party HSS constructions from Decisional
Diffie-Hellman [BGI16a], or Learning With Errors with only a polynomial-size mod-
ulus [DHRW16, BKS19]. This error must be removed in our construction while in-
curring minimal additional interaction. We demonstrate how to do so, using (stan-
dard) Private Information Retrieval [CGKS95] and punctured pseudorandom func-
tions [BW13, KPTZ13, BGI14]. Note that the former is implied by correlated SPIR,
and the latter implied by any one-way function, so that these tools do not impose
additional assumptions in the statement below.

Theorem 13 (Sublinear MPC, informal). For any ensemble of polynomial-size circuits
C = {Cλ} of size s, depth log log s, and with n inputs and m outputs, if there exists the
following:

• Correlated Symmetric Batch PIR, for m size-s databases where queries come from
n bits, with communication O(n+m+poly(λ)+comm(s)) for some function comm.

• (Las Vegas) N-party Homomorphic Secret Sharing with compact shares (size O(n)
for input size n), for the class of log log-depth boolean circuits.

122

Then there exists a secure (N+1)-party computation protocol for C with communication
O(n + m + poly(λ) + N · comm(s)). In particular, sublinearity is achieved when N ·
comm(s) ∈ o(s).

Remark 4 (Compiling Sublinear MPC from Passive to Active Security). In this work,
we focus on security against semi-honest adversaries. However, all our results extend
immediately to the malicious setting, using known techniques. Indeed, to get malicious
security while preserving sublinearity, one can just use the seminal GMW compiler
[GMW87a] with zero-knowledge arguments, instantiating the ZKA with (interactive)
succinct arguments [NN01]. Using Kilian’s PCP-based 4-move argument [Kil92], which
has polylogarithmic communication, this can be done using any collision-resistant hash
function. The latter are implied by all assumptions under which we base sublinear MPC,
hence our results generalise directly to the malicious setting. This observation was
made in previous works on sublinear-communication secure computation (e.g. [BGI16a,
CM21,BCM22]).

Remark 5 (Beyond Boolean circuits). The above approach can be extended to arith-
metic circuits over general fields F, by replacing the correlated SPIR with an analogous
form of (low-communication) correlated oblivious polynomial evaluation (OPE). We
discuss and prove this more general result in the main body, but focus here on the
Boolean setting, as required instantiations of such correlated-OPE beyond constant-size
fields are not yet currently known.

Resulting constructions. Finally, we turn to the literature to identify constructions
of the required sub-tools, yielding resulting sublinear secure computation results from
various mathematical structures and computational assumptions.

Corollary 8 (Instantiating the framework, informal). There exists secure 3-party com-
putation for evaluating Boolean circuits of size s and depth log log s with n inputs and
m outputs, with communication complexity O(n+m+

√
s · poly(λ) · (n+m)2/3) based

on the Learning Parity with Noise (LPN) assumption for any inverse-polynomial error
rate, together with any of the following additional computational assumptions:

• Decisional Diffie-Hellman (DDH)

• Learning with Errors with polynomial-size modulus (poly-modulus LWE)

• Quadratic Residuosity (QR) + superpolynomial LPN2

This can be extended under the same assumptions to secure 3-party computation of
general “layered” (in fact, only locally synchronous3) circuits of depth d and size s with
communication O(s/ log log s+ d1/3 · s2(1+ϵ)/3 · poly(λ)), for arbitrary small constant ϵ.
The latter is sublinear in s whenever d = o(s1−ϵ/poly(λ)), i.e., the circuit is not too
“tall and skinny.”
If we further assume the existence of a constant-locality PRG with some polynomial
stretch and the super-polynomial security of the Decisional Composite Residuosity
(DCR) assumption, then the above extends to the 5-party setting, both for loglog-depth
boolean circuits and for layered boolean circuits.

2Superpolynomial hardness of LPN with a small inverse-superpolynomial error rate, but few sam-
ples, as assumed in [CM21].

3Recall from chapter 1 that a circuit is layered [GJ11] if all gates and inputs are arranged into
layers, such that any wire only connects one layer to the next, but each input may occur multiple
times at different layers. A layered circuit is locally synchronous [Bel84] if each input occurs exactly
once (but at an arbitrary layer). A locally synchronous circuit is synchronous [Har77] if all inputs are
in the first layer.

123

More concretely, the required notion of correlated SPIR was achieved in [BCM22],
building on [BBDP22], from a selection of different assumptions. The required HSS
follows for N = 2 from DDH from [BGI16a], LWE with polynomial-size modulus
from [DHRW16, BKS19], DCR from [OSY21, RS21], and from superpolynomial LPN
from [CM21]. It holds for N = 4 from DCR from [?] (with some extra work, complexity
leveraging, and restrictions; see technical section). Note that combining the works
of [BBDP22, OSY21] seems to implicitly yield rate-1 batch OT from DCR, and in
turn correlated SPIR [BCM22]: if true, the assumptions for sublinear-communication
five-party MPC can be simplifed to constant-locality PRG, LPN, and superpolynomial
DCR (without the need for DDH, LWE, or QR). Since this claim was never made
formally, we do not use it.
A beneficial consequence of our framework is that future developments within these
areas can directly be plugged in to yield corresponding new constructions and feasibil-
ities.

7.1 Overview of this Chapter’s Results
General framework. Recall the secure computation framework via homomorphic
secret sharing (HSS). Given access to an N -party HSS scheme supporting homomorphic
evaluation of the desired circuit C, the parties begin by jointly HSS-sharing their inputs
via a small secure computation. Each party can then homomorphically evaluate the
circuit C on its respective HSS share without interaction, resulting in a short output
share that it exchanges with all other parties. The parties can then each reconstruct the
desired output by combining the evaluated shares (for standard HSS, this operation
is simply addition). The resulting MPC communication cost scales only with the
complexity of HSS share generation plus exchange of (short) output shares, but remains
otherwise independent of the complexity of C.
In theory, this approach provides sublinear secure computation protocols for any num-
ber of parties N . In practice, however, we simply do not have HSS constructions for
rich function classes beyond N = 2 with security against collusion of two or more cor-
rupted parties, crucial for providing the corresponding MPC security. This remains a
standing open question that has received notable attention, and unfortunately seems
to be a challenging task.
A natural question is whether the above framework can somehow be modified to extend
beyond the number of parties N supported by the HSS, for example to N ′ = N + 1.
The issue with the above approach is that parties cannot afford to secret share their
input to any N -subset in which they do not participate, as all parties within this subset
may be corrupt, in which case combining all HSS shares reveals the shared secrets.
Instead, suppose that only the N parties share their inputs amongst each other. In
this case, there is no problem with all N shareholding parties being corrupt, as this
reveals only their own set of inputs. But, we now have a challenge: how to involve the
final party’s input into the computation?
In the HSS framework, parties each homomorphically evaluated the public C on shares.
Suppose, on the other hand, the HSS supports homomorphic evaluation of the class of
functions Cx0 := C(x0, ·, . . . , ·). Or, more naturally, consider a dual view: Where the
N parties collectively generate shares of a secret function C(·, x1, . . . , xN) with their
inputs hardcoded, which accepts a single input x0 and outputs C(x0, . . . , xN). That is,
using function secret sharing (FSS).
Of course, normally in FSS we think of the input on which the function is to be
evaluated (in this case, x0) as a public value, which each shareholder will know. Here,

124

this clearly cannot be the case. Instead, we consider a modified approach, where each
of the N FSS shareholders will perform a pairwise oblivious evaluation procedure, with
the final (N + 1)st party P0. That is, the ith shareholder holds the ith function key
FSS ki, which defines a share evaluation function “fi”= FSS.Eval(i, ki, ·). As a result
of the oblivious evaluation, party P0 will learn the evaluation yi = FSS.Eval(i, ki, x0)
of this function on its secret input x0, and neither party will learn anything beyond
this; in particular, P0 does not learn ki, and Pi does not learn x0. At the conclusion
of this phase, party P0 learns exactly the set of N output shares, and can reconstruct
the final output C(x0, · · · , xN) = y1 + · · ·+ yN and send to all parties.
The corresponding high-level protocol template is depicted in Figure 7.1. Here, FFSS

SD

represents an ideal N -party functionality for N -FSS share generation (defined formally
in Figure 7.2 of Section 7.2), where each party provides its input xi and receives its
FSS share ki. FFSS

OE represents an ideal two-party functionality for oblivious FSS share
evaluation (defined formally in Figure 7.3 of Section 7.2), where Pi and P0 respectively
provide inputs ki and x0, and P0 learns the evaluation FSS.Eval(i, ki, x0).

FFSS
SD

Generate FSS keys (k1, . . . , kN) for
C(·, x1, . . . , xN)

P1 P2
. . . PN

x1 k1 x2 k2 xN kN

FFSS
OE

k1

FFSS
OE

k2

FFSS
OE

kN

P0

x0 y1 x0 y2 x0 yN

Broadcast

y1 + · · ·+ yN

First Phase: N -Party
FSS share distribution
for the “partially eval-
uated circuit”.

Second Phase: Obliv-
ious evaluation by
P0 of each function
share.

yi ← FSS.Eval(i, ki, x)

Third Phase: Output
reconstruction.

Figure 7.1: Template for (N + 1)-party sublinear secure computation of C from N -
party additive FSS.

Consider the (passive) security of the proposed scheme against up to N corruptions.
If the corrupted parties are (any subset of) those holding FSS shares, then since the
parties execute a secure computation for share generation, their view is restricted to
a subset of FSS key shares (ki)i∈T , which hides any honest parties’ inputs (xi)i∈[N]\T
by the security of the FSS. (Note if all N shareholding parties are corrupt, then this
statement holds vacuously, as no honest parties’ inputs were involved.) If the corrupted
parties include P0 together with a (necessarily strict) subset of FSS shareholders, then
their collective view consists of a strict subset of FSS keys (ki)i∈T together with eval-
uated output shares (yi)i∈[N]. However, the security of the FSS combined with the
additive reconstruction of output shares implies this reveals nothing beyond the func-

125

tion output.4
Now, in order for this framework to provide low communication, it must be the case that
we have an FSS scheme for the relevant partial-evaluation function class {fα1,...,αN

=
C(·, α1, . . . , αN)}, for which the following two steps can be performed succinctly:

• Secure N -party FSS share generation, and

• Oblivious evaluation by P0 of each function share.

We next address approaches for how each of these pieces can be achieved.

Oblivious evaluation for “Loglog-depth” FSS via PIR. Consider first the pair-
wise oblivious FSS evaluation procedure, where P0 holds x0, party Pi holds FSS key
ki, and P0 should learn FSS.Eval(i, ki, x0).
Since this is reduced to a 2-party functionality, a natural first place to look would be for
FSS schemes where FSS.Eval(i, ki, ·) is within a function class already admitting low-
communication 2-party secure computation. Unfortunately, this is more challenging
than it sounds. While sublinear-communication 2PC exists for general layered circuits
from a variety assumptions, recall that the sublinearity will be here in the complexity
not of C, but of FSS.Eval, almost certainly a more complex computation.
Indeed, the idea of increasing the number of parties by homomorphically evaluating an
HSS.Eval has previously been considered in the related setting of HSS, and hit similar
limitations. For example, relatively strong HSS schemes based on DDH or DCR support
homomorphic evaluation (and thus secure computation with very low communication)
of NC1; but, the corresponding operations required to actually compute HSS.Eval itself
lies outside of NC1. In [BGI17], this was addressed by instead securely computing
a (low-depth) randomized encoding of the evaluation operation, effectively squashing
the depth of the computation to be securely performed. This enabled them to achieve
low round complexity, but resulted in large communication (scaling with the size of
the entire HSS.Eval circuit). Recently, it was shown by Chillotti et al. [?] that for the
specific DCR-based HSS construction of [OSY21,RS21], HSS.Eval for homomorphically
evaluating a constant-degree computation can be computed within NC1. However, this
only gives low-communication secure computation for constant-degree functions, which
will not suffice for overall sublinearity.
Instead, we take a different approach, going beyond black-box use of existing sublinear
2PC results. While the full FSS.Eval(i, ki, x0) computation itself may be complex,
suppose it is the case that it can be decomposed into two parts: (1) some form of
precomputation, depending only on i and ki, followed by (2) computation on x0, which
is of low complexity. More concretely, consider the output of part (1) to be a new
circuit CEval whose input is x0 and output is FSS.Eval(i, ki, x0), and suppose it is the
case that CEval has low log log(s) depth (where s is the size of the original circuit C the
parties wish to compute in the MPC). Note that while CEval has low depth, its identity
depends on the secret ki (of Pi), so that black-box secure computation of CEval does
not apply.
On the other hand, opening the box of one such recent secure computation protocol, we
identify that an intermediate tool developed actually has stronger implications. The
tool is correlated batch symmetric PIR, for short correlated SPIR [BCM22], which as

4Note that in fact we do not need FSS with additive reconstruction, but rather any form of recon-
struction will suffice, as long as the output shares provide this property of revealing nothing beyond
the function output. We formalize this property, and prove it holds for additive reconstruction, in
lemma 13.

126

discussed above, enables low-communication of several batched instances of (single-
server) SPIR whose queries are correlated. In this case, the m “databases” will be
defined implicitly by the m output bits of the circuit CEval. Because CEval is log log s
depth as a function of its input x0 (and circuits are taken to be fan-in 2), each computed
output bit depends on at most log s bits of x0, and as such can be represented as a
size-s database indexed by the corresponding log s input bits. Oblivious evaluation of
CEval on x0 can then be achieved by P0 making m batch queries into these databases,
where the collective query bits are all derived from various bits of the single string x0.
As a brief aside: Extending to larger arithmetic spaces, the role of correlated SPIR here
can be replaced by an analogous version of correlated Oblivious Polynomial Evaluation
(OPE). Here, a log log s depth arithmetic circuit CEval can be expressed as a secret
multivariate polynomial in x0 of size poly(s), where each monomial depends on at most
log s elements of the arithmetic vector x0. Unfortunately, we are not presently aware
of tools for achieving low-communication correlated OPE beyond constant-size fields.
However, we include this in the technical exposition, in case such techniques are later
developed. We note that the final steps in our instantiation (described in the following)
do hold over larger arithmetic spaces under certain computational assumptions.

“Loglog-depth” FSS from HSS. Consider an ensemble C = {Cλ} of Boolean cir-
cuits of size s and depth log log s. The remaining goal is to obtain FSS for the cor-
responding class of partial-evaluation functions {Cλ(·, x1, . . . , xN)} for which the FSS
evaluation CEval is (log log s)-depth, as discussed above.
From the structure of Cλ, the evaluation of Cλ(x0, . . . , xN) on all inputs can be ex-
pressed as a poly(s)-size multivariate polynomial in the bits xi[j] of the xi, where each
monomial is of degree at most log s. When viewed as a function of just x0, we thus
have poly(s)-many monomials in the bits of x0 whose coefficients pj are each formed by
the product of at most log s bits from the inputs x1, . . . , xN . That is,

∑
j pj
∏

ℓ∈Sj
x0[ℓ],

where each |Sj| ≤ log s is a publicly known set.
If the N parties can somehow produce additive secret shares {p(i)j }i∈[N] of each one
of these coefficients pj, then this would constitute the desired FSS evaluation: In-
deed, the ith share evaluation FSS.Eval(i, ki, x0) would be computable as y(i) =∑

j p
(i)
j

∏
ℓ∈Sj

x0[ℓ], satisfying
∑N

i=1 y
(i) =

∑
j pj
∏

ℓ∈Sj
x0[ℓ] = Cλ(x0, . . . , xN). Further,

each FSS.Eval(i, ki, ·) is expressible as a (log log s)-depth circuit in x0—as required from
the previous discussion.
The question is how to succinctly reach a state where the N parties hold these coefficient
secret shares. Of course, direct secure computation is not an option, as even the output
size is large, poly(s). However, this is not a general computation. Suppose we have
access to an HSS scheme supporting homomorphic evaluation of log log s depth opera-
tions. Such constructions are known to exist from a variety of assumptions (as discussed
after Corollary 8). Then, if the parties HSS share their respective inputs x1, . . . , xN ,
they can locally evaluate additive shares of the corresponding (log s)-products pj.
The corresponding FFSS

SD operation will thus correspond to the HSS.Share procedure of
the HSS scheme on the parties’ collective inputs. If the HSS scheme has a compact
sharing procedure, then this will be computable with sufficiently low communication.
Note that vanilla usage of some HSS schemes will not provide the required compact-
ness (e.g., including structured ciphertexts of the input bits); however, using standard
hybrid encryption tricks this can be facilitated.

127

“Loglog-depth” FSS from Las Vegas HSS. An additional challenge arises, how-
ever, when the underlying HSS scheme we attempt to use provides correctness only
up to inverse-polynomial error. This is the case, for example, in known 2-party
HSS schemes for NC1 from DDH [BGI16a] or from LWE with polynomial-size mod-
ulus [DHRW16, BKS19]. In these schemes, the inverse-polynomial error rate δ can
be chosen as small as desired, but shows up detrimentally as 1/δ in other scheme
parameters (runtime for the DDH scheme; modulus size for LWE).
This means with noticeable probability, the shares of at least one of the coefficients
pj from above will be computed incorrectly. Even worse, as typical in these settings,
the parties cannot learn or reveal where errors truly occurred, as this information is
dependent on the values of the secret inputs. This remains a problem even if the HSS
scheme is “Las Vegas,” in the sense that for every error at least one of the parties will
identity that a potential-error event has occurred (i.e., will evaluate output share as
⊥). Even then, the flagging party must not learn whether an error truly took place,
and the other party must not learn that a potential error was flagged.
We present a method for modifying the HSS-based FSS sharing procedure from above,
to remove the error in the required homomorphic evaluations, while hiding from the
necessary parties where these patches took place. We focus on the 2-party case, and
further assume the HSS has a succinct protocol (communication linear in the input
size, up to an additive poly(λ) term) for distributing the shares of the HSS, where
homomorphic evaluation can take place across different sets of shared values. This is
the case for known Las Vegas HSS schemes.
This procedure can be viewed as a modification to either the Share or Eval portion of
the FSS. By viewing it as part of FSS.Share, we automatically fit into the framework
of the previous sections. Namely, this can be viewed as a new FSS.Share (or FFSS

SD)
procedure with relatively large computational complexity (comparable to the truth
table of the shared function), but which we show admits a low-communication secure
computation procedure. We describe the sharing procedure directly via the achieving
protocol; the corresponding FSS.Share procedure can be inferred.
First, note that by taking the inverse-polynomial error rate δ to be sufficiently small,
we can guarantee with high probability that the total number of potential-error flags
⊥ obtained by any party is at most the security parameter, λ. The sharing protocol
begins by HSS sharing the inputs (s0, s1) ← HSS.Share(x1, x2) as usual. Then, each
party homomorphically evaluates all required values corresponding to shares of each of
the coefficients pj. For each party Pi (i ∈ {1, 2}), denote these values in an array Ti,
which contains at most λ positions in which Ti[j] = ⊥. For each such position j∗, FFSS

SD

sets Ti[j
∗] = 0, and must now “patch” the missing value. Consider this procedure for

party P1 (P2 will be reversed).
In order to compute the correct output (i.e., coefficient pj) in this position, the par-
ties run a small-scale secure protocol that HSS shares the index position j∗ of each ⊥
symbol of P1. This enables them to homomorphically re-evaluate shares of the cor-
responding coefficient term pj∗ , in a way that hides the index j∗ from P2 (note that
this computation, with index selection, remains within NC1). In fact, by re-evaluating
this computation λ-many times, then with overwhelming probability, at least one is
error-free. By running a small-scale secure computation on these shares, we can assume
that the parties hold additive shares of the correct value pj∗ .
It would seem the remaining step is for P1 to somehow learn the correct value pj∗
offset by P2’s share T2[j

∗], while keeping j∗ hidden from P2. However, the situation is
somewhat more sticky. The problem is that in the original HSS evaluation, P1 learns
not only ⊥, but also a candidate output share. By receiving the correct output share

128

(pj∗ − T2[j
∗]), party P1 would learn whether or not an error actually occurred, leaking

sensitive information. This means that inherently, P2 must also modify its share in
position j∗ as part of the correction procedure. But, this must be done in a way that
both hides the identity of j∗, and also does not affect the secret sharing across the two
parties in other positions.
This will be done in two pieces: (1) P1 will learn (T2[j

∗] − r), for some secret mask r
chosen by P2; and (2) they will both perform some operation on their local Ti array
that offsets the value shared in position j∗ by exactly (pj∗ − T2[j

∗]) while preserving
the values shared in all other j′ ̸= j∗.
The first of these tasks can be performed by executing a standard single-server polylog-
arithmic symmetric PIR protocol, where P1 acts as client with query index j∗, and P2

acts as server with the r-shifted database T ′2[j] = T2[j]− r, for random r of its choice.
The second task will be performed by a low-communication private increment procedure
using distributed point functions (DPF): namely, FSS for the class of point functions
(equivalently, compressed secret shares of a secret unit vector). Actually, since party
P1 knows the identity of j∗, a weaker tool of punctured PRFs suffice; however, we
continue with DPF terminology for notational convenience (both are implied by one-
way functions). More concretely, the parties will run a small-scale secure computation
protocol on inputs j∗, (T2[j

∗]− r) (held by P1), the additive shares of pj∗ , and r (held
by P2), which outputs short DPF key shares k1, k2 to the respective parties, with
the property that DPF.Eval(1, k1, j) + DPF.Eval(2, k2, j) = 0 for every j ̸= j∗, and
= (pj∗ − T2[j

∗]) for j = j∗. Each party thus modifies its Ti array by offsetting each
position j with the jth DPF evaluation, yielding precisely the required effect.
This procedure is performed for every flag position j∗, and for each party P1, P2. (Note
that the parties should always perform the above steps λ times, sometimes on dummy
values, in order to hide the true number of flagged positions.) The final resulting scheme
provides standard FSS correctness guarantees, removing the inverse-polynomial error,
and thus can be plugged into the approach from above. As mentioned, the new resulting
FFSS

SD functionality is now a complex procedure, with runtime scaling as the entire truth
table size of the shared function. But, the above-described protocol provides a means
for securely emulating FFSS

SD with low communication: scaling just as λ-many small-scale
secure computations and PIR executions.

7.2 General Template for (N +1)-Party Sublinear Se-
cure Computation from N-Party FSS

In this section we present a generic template for building (N+1)-party sublinear secure
computation from an N -party additive function secret sharing scheme (for a well-chosen
function class) with two specific properties. We require of the FSS scheme that there
exist low-communication protocols to realise the following tasks:

• N-Party Share Distribution: N servers generate FSS shares of some function of
their inputs; the ideal functionality FFSS

SD is provided in fig. 7.2.

• Two-Party Oblivious Share Evaluation: A client obliviously evaluates an FSS
share held by a server; the ideal functionality FFSS

OE is provided in fig. 7.3.

Theorem 14 proves that the protocol provided in fig. 7.5 is an (N + 1)-party secure
computation scheme in the (FFSS

SD ,FFSS
OE)-hybrid model. This template achieves sub-

linear secure computation provided FFSS
SD and FFSS

OE can be realised with low enough
communication. A high level overview of the protocol is provided in fig. 7.1.

129

7.2.1 Requirements of the FSS Scheme

We start by isolating in lemma 13 the properties we require of the FSS scheme to fit
our template for sublinear secure computation, and show that they are satisfied by any
additive FSS scheme. At a high level, we require that given a strict subset of the FSS
keys, together with the evaluated output shares of all keys on some known input x,
it should be computationally hard to recover any information about the secret shared
function f beyond its evaluation f(x). For the formalisation of this property, as well
as the proof that additivity suffices, we refer to lemma 13.

Lemma 13. Let FSS = (FSS.Gen,FSS.Eval) be an N-party additive function secret
sharing scheme for some function family F , and let SimFSS be a simulator defined as
in definition 3. Then, the following holds:

Reconstruction-Only (given some keys, all shares, the input, and aux-
iliary information): Let info : {0, 1}⋆ → {0, 1}⋆ be any function which, on
input the description f̃ of some function f ∈ F , outputs some partial infor-
mation info(f̃) about f . For every set of corrupted parties D ⊊ [N], there ex-
ists a probabilistic polynomial-time algorithm SimFSS

rec,info (a simulator), such that
for every sequence f̃1, f̃2, . . . of polynomial-size function description of functions
f1, f2, · · · ∈ F , for every sequence of inputs (xλ)λ∈N⋆ ∈ Df1 ×Df2 × . . . , the out-
puts of the following experiments Realrec,info and Idealrec,info are computationally
indistinguishable:

• Realrec,info(1
λ) :

– (k1, . . . , kN)
$← Gen(1λ, f̃λ);

– yi ← Eval(i, ki, xλ) for i /∈ D;
– Output (xλ, (ki)i∈D, (yi)i/∈D, info(f̃λ)).

• Idealrec,info(1
λ) : Output Simrec,info(1

λ, 1n, 1m, xλ, fλ(xλ), info(f̃λ)).

Proof. We first consider the intermediary step of “Function Secrecy (given some keys,
and auxiliary information)”.

1. Function Secrecy (given some keys, and auxiliary information): Let
info : {0, 1}⋆ → {0, 1}⋆ be any function which, on input the description f̃ of some
function f ∈ F , outputs some partial information info(f̃) about f . For every set
of corrupted parties D ⊊ [N], there exists a probabilistic polynomial-time algo-
rithm SimFSS

info (a simulator), such that for every sequence f̃1, f̃2, . . . of polynomial-
size function description of functions f1, f2, · · · ∈ F (we denote n(λ) and m(λ)
respectively the input and output length of fλ for λ ∈ N⋆), the outputs of the
following experiments Realinfo and Idealinfo are computationally indistinguishable:

• Realinfo(1
λ) : (k1, . . . , kN)

$← Gen(1λ, f̃λ); Output ((ki)i∈D, info(f̃λ)).
• Idealinfo(1

λ) : Output SimFSS
info (1

λ, 1N , 1n(λ), 1m(λ), info(f̃λ)).

And furthermore, such a simulator can be built as:

SimFSS
info (1

λ, 1N , 1n(λ), 1m(λ), info(f̃λ)) : Output (SimFSS(1λ, 1N , 1n(λ), 1m(λ)), info(f̃λ)).

The above is true because the notion of FSS security is hereditary in that any
FSS scheme for some function class F is also an FSS scheme for any subclass
F ′ ⊆ F , and furthermore the same simulator can be used. In particular this is
true for F ′ obtained by quotienting F by the auxiliary information given to an
adversary.

130

2. Reconstruction-Only (given some keys, all shares, and the input): We
now prove the lemma. Let info : {0, 1}⋆ → {0, 1}⋆ be any function which, on
input the description f̃ of some function f ∈ F , outputs some partial information
info(f̃) about f . Let info′ be the function which, on input f̃λ, outputs info′(f̃λ) :=
(xλ, fλ(xλ)). Let D ⊊ [N], and let D⋆ be any size-(N − 1) superset of D in [N]
(i.e. D ⊆ D⋆ ⊊ [N], |D⋆| = N − 1). Denote u the unique element of [N] \ D⋆.
Let (fλ)λ∈N⋆ ∈ FN⋆ and (xλ)λ∈N⋆ ∈ (Df1 ×Df2 × . . .). By function secrecy (given
some keys, and auxiliary information), there exists a simulator SimFSS

(info′,info) such
that the following distributions ∆1 and ∆2 are computationally indistinguishable:

∆1 :=
{
((ki)i∈D⋆ , info′(f̃λ), info(f̃λ)) : (k1, . . . , kN)

$← Gen(1λ, f̃λ)
}

∆2 :=
{
SimFSS

(info′,info)(1
λ, 1N , 1n(λ), 1m(λ), info′(f̃λ), info(f̃λ))

}
.

Now consider the distributions ∆3, ∆′3, ∆4, and ∆′4 defined as:

∆3 :=

{
(xλ, (ki)i∈D, (yi)i∈D⋆\D, info(f̃λ)) :

(k1, . . . , kN)
$← Gen(1λ, f̃λ)

yi ← Eval(i, ki, xλ), i ∈ D⋆ \ D

}
∆′3 :=

{
(xλ, (ki)i∈D, (yi)i/∈D, info(f̃λ)) :

(k1, . . . , kN)
$← Gen(1λ, f̃λ)

yi ← Eval(i, ki, xλ), for i /∈ D

}

∆4 :=

{
(α, (ki)i∈D, (yi)i∈D⋆\D, γ) :

((ki)i∈D⋆ , (α, β), γ)
$← SimFSS

(info′,info)

yi ← Eval(i, ki, α), for i ∈ D⋆ \ D

}
∆′4 :=

(α, (ki)i∈D, (yi)i/∈D, γ) :
((ki)i∈D⋆ , (α, β), γ)

$← SimFSS
(info′,info)

yi ← Eval(i, ki, α), for i ∈ D⋆

yu ← β −
∑

i∈D⋆ yi

 .

Note that the only difference between ∆3 and ∆′3 (resp. ∆4 and ∆′4) is whether or
not yu is part of the output of the distribution (where {u} = [N] \ D⋆). Because
∆1

c
≈ ∆2, the following algorithm cannot distinguish between ∆1 and ∆2: On

input ((ki)i∈D⋆ , info(f̃λ) = (α, β)), set yi ← Eval(i, ki, α) for i ∈ D⋆ \ D, then
output (α, (ki)i∈D, (yi)i∈D⋆\D). This implies, by perfect correctness of the additive
FSS scheme, that ∆3

c
≈ ∆4, which in turn implies that the following algorithm

cannot distinguish between ∆3 and ∆4: On input(α, (ki)i∈D, (yi)i∈D⋆\D), set yu ←
β −

∑
i∈D⋆ yi, and output (α, (ki)i∈D, (yi)i/∈D). Therefore, ∆′3

c
≈ ∆′4.

7.2.2 The Secure Computation Protocol

We define the ideal functionalities FFSS
SD (fig. 7.2) for N -party FSS share distribution,

and FFSS
OE (fig. 7.3) for 2-party oblivious evaluation of FSS shares. We then intro-

duce in fig. 7.5 the generic template for secure computation from additive FSS in the
(FFSS

SD ,FFSS
OE)-hybrid model.

Functionality FSS Share Distribution FFSS
SD

Parameters: The ideal functionality FFSS
SD is parameterised by a number of

parties N , a function class C = {fα1,...,αN
}(α1,...,αN)∈Fℓ1×···×FℓN , and an additive FSS

scheme FSS = (FSS.Gen,FSS.Eval) for C.

131

FFSS
SD interacts with the N parties P1, . . . , PN in the following manner.

Input: Wait to receive (input, i, xi) where xi ∈ {0, 1}ℓi from each party Pi (for
1 ≤ i ≤ N).

Output: Run (k1, . . . , kN)
$← FSS.Gen(1λ, f̃x1,...,xN

), where f̃x1,...,xN
is a description

of fx1,...,xN
; Output ki to each party Pi (for 1 ≤ i ≤ N).

Figure 7.2: Ideal functionality FFSS
SD for the generation of FSS keys of a distributed

function.

Functionality Oblivious Evaluation of FSS Shares FFSS
OE

Parameters: The ideal functionality FFSS
SD is parameterised by a number of

parties N , and an additive FSS scheme FSS = (FSS.Gen,FSS.Eval) for some
function class C.

FFSS
OE interacts with two parties, Alice (“the client”) and Bob (“the server”), in the

following manner.

Input: Wait to receive (Client, x) from Alice and (Server, i, ki) from Bob, and
record (i, ki, x).

Output: Run yi ← FSS.Eval(i, ki, x); Output yi to Alice.

Figure 7.3: Ideal functionality FFSS
OE for the two-party oblivious evaluation of FSS

shares.

Functionality FSFE(C)

The functionality is parameterised with a number N and an arithmetic circuit C
with n = ℓ0 + ℓ1 + · · ·+ ℓN inputs and m outputs over a finite field F.

Input: Wait to receive (input, i, xi) from each party Pi (0 ≤ i ≤ N), where
xi ∈ Fℓi , and set x⃗← x0∥x1∥ . . . ∥xN .

Output: Compute y⃗ ← C(x⃗); Output y⃗ to all parties P0, P1, . . . , PN .

Figure 7.4: Ideal functionality FSFE(C) for securely evaluating an arithmetic circuit C
among N + 1 parties.

132

Protocol ΠC

Parties: P0, P1, . . . , PN

Parameters: The protocol is parameterised with a number of parties (N + 1),
an arithmetic circuit C : Fn → Fm with n = ℓ0 + ℓ1 + · · · + ℓN , and an additive
FSS scheme FSS = (FSS.Gen,FSS.Eval) for the following function family of “partial
evaluations of C”:{

gα1,...,αN
: Fℓ0 → Fm

x 7→ C(x, α1, . . . , αN)
: (α1, . . . , αN) ∈ Fℓ1 × · · · × FℓN

}
.

(sid1, . . . , sidN) are N distinct session ids.

Hybrid Model: The protocol is defined in the (FFSS
SD ,FFSS

OE)-hybrid model.

Input: Each party Pi holds input xi ∈ Fℓi .

The Protocol:

1. Each party Pi for i ̸= 0 sends (input, i, xi) to FFSS
SD (C), and waits to receive

ki.

2. For each i = 1, . . . , N :

(a) Party P0 sends (sidi, Client, x0) to FFSS
OE (C) and Pi sends

(sidi, Server, i, ki) to FFSS
OE (C)

(b) Party P0 waits to receive (sidi, yi) from FFSS
OE (C).

3. Party P0 sets y⃗ ← y1 + · · · yN , and sends y⃗ to all parties.

4. Every party outputs y⃗.

Figure 7.5: (Sublinear) secure computation protocol in the (FFSS
SD ,FFSS

OE)-hybrid.

Theorem 14 (Template for (N +1)-Party Sublinear MPC from N -Party FSS). Let
N ≥ 2. Let C : Fn → Fm be an arithmetic circuit with n = ℓ0 + ℓ1 + · · · + ℓN inputs
over a finite field F, and let FSS = (FSS.Gen,FSS.Eval) be an (additive) FSS scheme
for the following function family of “partial evaluations of C”:{

gα1,...,αN
: Fℓ0 → Fm

x 7→ C(x, α1, . . . , αN)
: (α1, . . . , αN) ∈ Fℓ1 × · · · × FℓN

}
.

The protocol ΠC provided in fig. 7.5 UC-securely implements the (N + 1)-party func-
tionality FSFE(C) in the (FFSS

SD (C),FFSS
OE (C))-hybrid model, against a static passive ad-

versary corrupting at most N out of (N+1) parties. The protocol uses N ·m·log |F| bits
of communication, and additionally makes one call to FFSS

SD (C) and N calls to FFSS
OE (C).

133

Proof. Let A be a semi-honest, static adversary that interacts with parties
P0, P1, . . . , PN running protocol ΠC in the (FFSS

SD ,FFSS
OE)-hybrid model. We construct in

fig. 7.6 a simulator Sim such that no environment Z can distinguish with non-negligible
probability whether it is interacting with A and ΠC in the (FFSS

SD ,FFSS
OE)-hybrid model,

or with Sim and FSFE(C).

Simulator Sim

Let D ⊊ [0, N] be the subset of statically corrupted parties, and let H := [0, N]\D
be the (non-empty) set of honest parties. Let (xi)i∈D be the set of inputs of the
semi-honestly corrupt parties.

Requires: Simulator SimFSS is defined as in definition 3. If P0 is corrupted (i.e. 0 ∈
D), then let function info be defined on C as info(gα1,...,αN

) := (αi)i∈D\{0}, and let
simulator SimFSS

rec,info be defined as in lemma 13, so that:{
(xλ, (ki)i∈D, (yi)i/∈D, info(f̃λ)) :

(k1, . . . , kN)
$← Gen(1λ, f̃λ)

yi ← Eval(i, ki, xλ), for i /∈ D

}
c
≈
{
Simrec,info(1

λ, 1n, 1m, xλ, fλ(xλ), info(f̃λ))
}

.

Simulation:

• Simulating the communication with Z: Every input value that Sim
receives from Z is written on A’s input tape (as if coming from A’s environ-
ment), and every output value written by A on its output tape is copied to
Sim’s own output tape (to be read by Z).

• Simulating the protocol’s execution:

1. Sim activates A and receives the messages (input, i, xi)i∈D\{0} that A
would send to FFSS

SD (C) (on behalf of the corrupted parties) in a real
execution.

2. If P0 is honest, Sim sets

(ki)i∈D
$←

{
SimFSS(1λ, 1N , 1ℓ0 , 1m) if D ≠ [1, N]

FSS.Gen(1λ, gx1,...,xN
) if D = [1, N] .

If P0 is corrupted, Sim instead sets

(−, (ki)i∈D\{0}, (yi)i∈[1,N]\D,−) $← SimFSS
rec,info(1

λ, 1N , 1ℓ0 , 1m, x0, y, (xi)i∈D\{0}) .

In either case, Sim then writes (ki)i∈D\{0} on A’s input tape (as if
FFSS

SD (C) sent ki to Pi for each i ∈ D \ {0}).
3. If P0 is corrupted:

Sim waits to receive the messages (sidi, Client, x0)i∈D\{0} that A
would send to FFSS

OE (C) (on behalf of the P0).

4. Sim sends (input, i, xi)i∈D to FSFE(C) and waits to receive y (on behalf
of the corrupted parties).

5. If P0 is corrupted:

134

For i /∈ D, Sim writes (sidi, yi) (recall that yi was defined in step
2. above) on A’s input tape (as if Pi sent it to P0).

6. If P0 is not corrupted then, for i ∈ D, Sim writes y on A’s input tape
(as if P0 sent it to Pi).

Figure 7.6: Simulator Sim for an execution of protocol ΠC .

In order to prove that no environment Z can distinguish between the real and ideal
worlds, we proceed by a case analysis over the set of corrupted parties D.

• If only P0 is honest (i.e. D = [1, N]): In this case the simulation is perfect.
Indeed, the simulator knows the corrupt parties’ inputs x1, . . . , xN , which allows
it to perfectly emulate the ideal functionality FFSS

SD (C). The only other incoming
messages received by the corrupted parties is the broadcast output, which is
identical both in the real and ideal worlds by (perfect) correctness of the FSS
scheme.

• If P0 and at least one other Pi are honest (i.e. D ⊊ [1, N]): The only
difference between the real and the ideal worlds is whether the corrupted parties
receive real FSS keys or simulated ones. Indeed, by (perfect) correctness of
the FSS the broadcast message received is identical in the real and the ideal
world. By the first part of lemma 13 (function secrecy given some keys, and
auxiliary information), the joint views of Z and A are indistinguishable in the
real and the ideal worlds: even given the auxiliary information (y, (xi)i∈D) about
the function, it cannot distinguish the real corrupted keys (ki)i∈D from (ki)i∈D

$←
SimFSS(1λ, 1N , 1ℓ0 , 1m).

• If P0 is corrupt (i.e. D ̸⊆ [1, N]): Note that since the adversary is only allowed
to corrupt up to all but one parties, if P0 is corrupt then at least one Pi (i ∈ [1, N])
is honest. The only difference between the real and the ideal world is whether the
corrupted keys (ki)i∈D\{0} and the honest shares (yi)i∈[1,N]\D are real or simulated
by SimFSS

rec,info. It follows from the second part of lemma 13 (reconstruction-only
given some keys, all shares, and auxiliary information) that the joint views of Z
and A are indistinguishable in the real and the ideal worlds.

7.3 Oblivious Evaluation of LogLog-Depth FSS from
PIR

In the previous section we provided a generic template for (N + 1)-party sublinear
secure computation from N -party additive function secret sharing for which FFSS

SD and
FFSS

OE can be securely realised with low communication. In this section we introduce the
notion of loglog-depth for (additive) FSS schemes, and show that this property allows
FFSS

OE to be securely realised with low communication using correlated symmetric PIR
(corrSPIR), a primitive introduced in [BCM22] (and which can be instantiated from
standard assumptions using the rate-1 batch OT from [BBDP22]).

135

7.3.1 LogLog-Depth FSS

A depth-d, n-input, m-output arithmetic circuit with gates of fan-in at most two
over a finite field F can be associated with the degree-(≤ 2d) n-variate m-output5

polynomial with coefficients in F that it computes. In all generality, a degree-2d

n-variate polynomial can have up to nbn,2d =
∑2d

k=0

(
k+n−1
n−1

)
different monomials

(which can be verified using a stars-and-bars counting argument). In this section we
will only be interested in circuits whose representation as a polynomial is the sum of
poly(λ) monomials (where λ is the security parameter). A sufficient condition is for it
to have n = poly(λ) inputs and depth d ≤ log log(n); we refer to this property as a
circuit being “of loglog-depth”. Indeed, because we only consider circuits whose gates
have fan-in at most two, if a circuit has depth d then it is 2d-local (i.e. each of its
m outputs is a function of only at most 2d inputs). Therefore each of its outputs is
computed by a polynomial with at most nb2d,2d ≤ 22

d+2d monomials, which is poly(λ)
if d = log log n = log log λ+O(1).

We extend in definition 27 the above notion of “loglog-depth” circuits to “loglog-depth”
FSS schemes.

Definition 27 (LogLog-Depth FSS). Let F be a class of functions with n in-
puts and m outputs over a finite field F. We say that an N-party FSS scheme
FSS = (FSS.Gen,FSS.Eval) for F whose evaluation algorithm FSS.Eval is explicitly
described as an arithmetic circuit, has loglog-depth (alternatively, FSS is a loglog-
depth function secret sharing scheme) if for every party index i ∈ [N] and every key
ki ∈ Supp([FSS.Gen]i) the circuit FSS.Eval(i, ki, ·) (which has hardcoded i and ki) has
depth log log(n).

Throughout this section we will be using “loglog-depth” circuits and FSS schemes,
but it should be noted that all of our results go through if this is replaced everywhere
with the more obtuse notion of “circuits (resp. FSS evaluation) whose polynomial
representation has a polynomial number of coefficients”.

When considering “loglog-depth”, which in particular are “log-local” circuits, we will be
interested in the log-sized subsets of the inputs on which each output depends. We say
that an FSS scheme is (S1, . . . , Sm)-local if the jth output of FSS.Eval, which takes as
input a party index i, a key ki, and an input x, only depends on (i, ki, x[Sj]). In other
words, an FSS scheme is (S1, . . . , Sm)-local if its evaluation algorithm is (S1, . . . , Sm)-
local in its last input. We emphasize that a loglog-depth circuit or FSS scheme is
always log-local, but that the converse is not necessarily true if F ̸= F2.

7.3.2 Oblivious Evaluation of LogLog-Depth FSS from PIR

We first discuss the notion of PIR we need, then show how it can be leveraged to build
oblivious evaluation of any loglog-depth FSS scheme.

7.3.2.1 Correlated PIR.

We recall the ideal functionality for batch SPIR with correlated “mix and match”
queries (FcorrSPIR, fig. 7.7) from [BCM22], which we extend from the boolean to
the arithmetic setting as batch Oblivious (Multivariate) Polynomial Evaluation with

5An m-output (multivariate) polynomial can be seen as a tuple of m (multivariate) polynomials.

136

correlated “mix and match” queries (FcorrOPE, fig. 7.8).

In the boolean world, this corresponds to a batched form of SPIR, querying into k
size-N databases, where the queries are not independent. Rather, the queried indices
can be reconstructed via a public function that “mixes and matches” individual bits
of a single bitstring α⃗ = (α1, . . . , αw) of length w < k logN , in a public manner.
What this means is that each of the (n = logN)-bit queries to a single database can
be obtained by concatenating n of the bits αi, possibly permuted. In the arithmetic
world, this corresponds to batch multivariate OPE, where each database corresponds
to a polynomial, and the evaluation inputs are various subvectors of some joint input
vector, comprised of w field elements. More specifically, the input to a single d-variate
polynomial (in the batch to be obliviously evaluated) is a size-d ordered subset of the
joint inputs.
We will be interested in how many times a given bit of entropy (resp. input) αi appears
within the k queries (resp. input)–counted by the occurrence function ti below–, as
well as how many times it appears in specific index position j′ ∈ [n] within the k
queries (resp. input)–denoted below by ti,j′–. To the best of our knowledge, there
are no protocols realising corrOPE over superpolynomial-size fields without FHE, and
the only protocol realising corrSPIR without FHE requires introducing this notion of
“balance between the queried bits”.

Definition 28 (“Mix and Match” Functions, adapted from [BCM22]). A “mix and
match” function MixAndMatch : Fw → (FNvar)k is one parameterised by k ordered subsets
of Nvar elements of [w], Sj = (sj,1, . . . , sj,n) ∈ [w]Nvar for j ∈ [k] such that:

∀α⃗ = (α1, . . . , αw) ∈ Fw,MixAndMatch(α1, . . . , αw) := (x1, . . . , xk),

with xj := αsj,1 · · ·αsj,n ∈ (FNvar).

Such a function is associated with an occurrence function, which counts the occurrences
of each input position in the outputs:

t· : [w] → [k]

i 7→ ti =
k∑

j=1

1i∈Sj

Each ti (i ∈ [w]) can be decomposed as ti = ti,1 + · · ·+ ti,Nvar, where ti,j′ is equal to the
number of values of j ∈ [k] such that sj,j′ = i.

• MixAndMatch is said to be T -balanced if ∀i ∈ [w],∀j′ ∈ [Nvar], ti,j′ ≤ T .

• MixAndMatch is said to be T -balanceable if it can be expressed as the function
MixAndMatch = (MixAndMatch′ ◦ replicate), where MixAndMatch : Fw′ → (FNvar)k

is a T -balanced mix-and-match function and replicate is defined as:

replicate : Fw → Fw′

(b1, . . . , bw) 7→ (b
∥⌈t1/T ⌉
1 ∥ . . . ∥b∥⌈tw/T ⌉

w)

where w′ :=
∑
i∈[w]

⌈ti/T ⌉.

The ideal functionality for batch SPIR with correlated “Mix and Match” queries from
[BCM22] is recalled in fig. 7.7. It can be seen as the special case of batch OLE with
correlated “Mix and Match” inputs over F2.

137

Functionality FcorrSPIR

The functionality FcorrSPIR is parameterised by the number k of SPIRs in the batch,
the size N of each database, and the number w of selection bits. Furthermore, it is
parameterised by a public T -balanceable “mix and match” function (definition 28)
MixAndMatch : {0, 1}w → [N]k. FcorrSPIR interacts with an ideal sender S and an
ideal receiver R via the following queries.

1. On input (sender, M⃗ = (m⃗i)i∈[k]) from S (where m⃗i = (mi,j)j∈[N] ∈ {0, 1}N),
store M⃗ .

2. On input (receiver, (αj)j∈[w]) from R (where (αj)j∈[w] ∈ {0, 1}w), check if a
tuple of inputs M⃗ has already been recorded; if so, compute (x1, . . . , xk) :=
MixAndMatch(α1, . . . , αw) ∈ [N]k, send (mi,xi

)i∈[k] to R, and halt.

If the functionality receives an incorrectly formatted input, it aborts.

Figure 7.7: Ideal Functionality FcorrSPIR for Batch SPIR with Correlated “Mix and
Match” Queries

Functionality FcorrOPE

The functionality FcorrOPE is parameterised by a finite field F, the number k of
oblivious (multivariate) polynomial evaluations (OPE) in the batch, the number
Nvar of variables of each polynomial, the degree d of each polynomial, and the size
w of the joint inputs vector. Let nbNvar,d :

∑d
d′=0

(
Nvar+d′

Nvar

)
denote the maximum

number of monomials of a degree-d Nvar-variate polynomial. Furthermore, it is pa-
rameterised by a public polylog-balanced “mix and match” function (definition 28)
MixAndMatch := Fw → Fk. FcorrOPE interacts with an ideal sender S and an ideal
receiver R via the following queries.

1. On input (sender, c⃗i) from S (where (c⃗i)i∈[k] ∈ Fk·nbNvar,d), store (c⃗i)i∈[k].
// c⃗i is the vector of coefficients of the ith polynomial (with zeroes).

2. On input (receiver, (αj)j∈[w]) from R (where (αj)j∈[w] ∈ Fw), check if a tuple
of inputs (c⃗i)i∈[k] has already been recorded; if so, compute (x1, . . . , xk) :=
MixAndMatch(α1, . . . , αw) ∈ (FNvar)k, compute yi ← c⃗i · (x⊗di ∥ . . . ∥x⊗1i ∥1) ∈ F
for i ∈ [k], send (yi)i∈[k] to R, and halt.
// ⊗ denotes the tensor product. Each xi is the vector of the Nvar inputs to
the ith polynomial in the batch, whose coefficients are given by c⃗i. Therefore,
yi is the evaluation of the ith polynomial on input xi.

If the functionality receives an incorrectly formatted input, it aborts.

Figure 7.8: Ideal Functionality FcorrOPE for Batch Oblivious Polynomial Evaluation
with Correlated “Mix and Match” Inputs

138

7.3.2.2 Oblivious Evaluation of LogLog-Depth FSS from PIR.

Let FSS = (FSS.Gen,FSS.Eval) be a loglog-depth, (S1, . . . , Sm)-local FSS scheme (def-
inition 27). Because FSS has loglog-depth, the polynomial representation of FSS.Eval
has m · poly(n) coefficients. Furthermore, each of its local evaluation algorithms
FSS.Evalj depends only on the inputs indexed by Sj. Therefore obliviously evaluating
FSS.Eval can be done by using batch OPE with correlated “mix and match” inputs:
the m polynomials in the batch are the FSS.Evalj(i, ki, ·), where ki is known only to
the server Pi. This protocol is formalised in fig. 7.9.
Note that this notion of corrOPE, as defined in fig. 7.8, requires the polynomials in the
batch be represented as a vector of coefficients. For this reason we impose that FSS be
loglog-depth, so this vector be polynomial-size.

Protocol Oblivious Evaluation of Partial Function Shares ΠOE

Parties: P0 (the client) and Pi (the server).

Parameters:

• Let N be a number, and let C = C1∥ . . . ∥Cm be a loglog-depth circuit
(definition 27) with n = ℓ0 + ℓ1 + · · ·+ ℓN inputs and m outputs over F such
that the following function family C is (S1, . . . , Sm)-local, where S1, . . . , Sm

is some family of (log / log log)-sized subsets of [n]:

C =
{

gα1,...,αN
: Fℓ0 → Fm

x 7→ C(x, α1, . . . , αN)
: (α1, . . . , αN) ∈ Fℓ1 × · · · × FℓN

}
.

We assume that each of the Si is ordered in such a way that the func-
tion MixAndMatch associated with (S1, . . . , Sm) is polylog-balanceda (defini-
tion 28).

• FSS = (FSS.Gen,FSS.Eval) is an (S1, . . . , Sm)-local (additive) FSS scheme for
C, whose local evaluation algorithms are (FSS.Evalj)j∈[m].

Hybrid Model: The protocol is defined in the FcorrOPE-hybrid model (the subsets
characterising MixAndMatch, and in turn corrOPE, are (S1, . . . , Sm)).

Input: P0 holds input x0 ∈ {0, 1}ℓ0 , and Pi holds ki.

The Protocol:

• First Round:

1. P0 sends (receiver, x0) to FcorrOPE

2. Pi sends (sender, (c⃗j)j∈[m]) to FcorrOPE where c⃗j is the vector of coeffi-
cients of FSS.Evalj(i, ki, ·)
// For the case F = F2 (i.e. when using FcorrSPIR), the databases can be
more simply described as the truth tables of the FSS.Evalj(i, ki, ·) for
j ∈ [m], i.e. (FSS.Evalj(i, ki, x′))x′∈{0,1}|Sj | .

• Second Round:

3. P0 waits to receive (yi,1, . . . , yi,m) from FcorrOPE

139

4. P0 outputs (yi,1, . . . , yi,m)

aBy [?, Lemma 9], such orderings exist and furthermore can be found in expected constant
time by random shuffling. Alternatively, since a random ordering of (S1, . . . , Sm) works with high
probability, the protocol could be modified so that P0 samples a PRG key and sends it to P1,
and both use the resulting pseudorandomness to order (S1, . . . , Sm). This additional step incurs
only a small additive overhead in communication, and the resulting protocol is still sublinear.

Figure 7.9: Two-party protocol for obliviously evaluating shares of an additive loglog-
depth FSS scheme.

Lemma 14 (Oblivious Share Evaluation for LogLog-Depth FSS Schemes). Let N ≥ 2.
Let C : Fn → Fm be a loglog-depth arithmetic circuit with n = ℓ0 + ℓ1 + · · ·+ ℓN inputs
over a finite field F, and let C be the family of “partial evaluations of C”:{

gα1,...,αN
: Fℓ0 → Fm

x 7→ C(x, α1, . . . , αN)
: (α1, . . . , αN) ∈ Fℓ1 × · · · × FℓN

}
.

If FSS is an additive loglog-depth, (S1, . . . , Sm)-local FSS scheme (definition 27) for C
and corrSPIR is a two-round batch SPIR protocol (characterised by (S1, . . . , Sm)), then
the protocol ΠOE provided in fig. 7.9 UC-securely implements the two-party functionality
FFSS

OE against a static, passive adversary in the FcorrOPE-hybrid model.

Proof. The protocol of fig. 7.9 essentially boils down to a single call with no interac-
tion between the players. In the real execution, the server Pi receives no incoming
communication (neither from the client P0 nor from the ideal functionality FcorrOPE),
therefore simulation against a corrupted server is trivial. The only message received by
the client P0 is from the ideal functionality FcorrOPE, but since this message is also the
output of P0, the joint view of an adversary corrupting P0 and of the environment can
be perfectly simulated by obtaining said message from the ideal functionality FFSS

OE .

7.4 LogLog-Depth FSS from Compact and Additive
HSS

In this section we show how to use compact and additive HSS to build a loglog-depth
FSS scheme whose share distribution FFSS

SD can be realised in low communication. When
combined with sections 7.2 and 7.3, this yields sublinear secure computation from
compact and additive HSS. In section 7.4.3 of the supplementary material, we show
how to extend this construction to use the weaker primitive of Las-Vegas HSS.

7.4.1 From Compact and Additive HSS

7.4.1.1 An Overview of the Construction

Let C : Fn → Fm be a log log-depth arithmetic circuit with n = ℓ0+ℓ1+ · · ·+ℓN inputs
over a finite field F, and let C be the family of “partial evaluations of C”:{

gα1,...,αN
: Fℓ0 → Fm

x 7→ C(x, α1, . . . , αN)
: (α1, . . . , αN) ∈ Fℓ1 × · · · × FℓN

}
.

140

Our goal in this section is to provide a construction of a loglog-depth FSS scheme
for C such that FFSS

SD can be realised with low communication, and we do so by
using compact and additive single-function HSS (c.f. remark 1) for any function in
a well-chosen function class (that of {coefsc1,...,cN : (c1, . . . , cN) ∈ Fℓ1 × · · · × FℓN}, as
defined below).

We provide in fig. 7.10 a construction of loglog-depth additive FSS for C from single-
function additive HSS for the following function coefs:

coefs : Fℓ1 × · · · × FℓN → F⋆

(α1, . . . , αN) 7→ (p0, p1, . . .)

where (p0, p1, . . .) are the coefficients of the polynomial representation of all the
Cj(X,α1, . . . , αN), for j ∈ [m] (which are polynomials in X, whose coefficients are
themselves polynomials in α1, . . . , αN). Because C has loglog-depth (definition 27),
there are at most m · n · (1 + o(1)) such coefficients. Furthermore, the key generation
algorithm of the FSS scheme for C essentially boils down to a single call to the
share generation algorithm of the HSS scheme for coefs. Therefore, we also need to
provide an HSS scheme for coefs whose share generation can be distributed using low
communication. We use a transformation akin to hybrid encryption in order to ensure
this last property: we mask the inputs using pseudorandom generators, and reduce
the problem of generating HSS shares of the inputs to that of distributing HSS shares
of the keys, which can be done generically using oblivious transfer.

More precisely, for i ∈ [N] let Gi : {0, 1}λ → Fℓi be a PRG and consider the function
family {coefsc1,...,cN : (c1, . . . , cN) ∈ Fℓ1 × · · · × FℓN}, where:

coefsc1,...,cN : Fλ × · · · × Fλ → F⋆

(K1, . . . , KN) 7→ (p0, p1, . . .)

where (p0, p1, . . .) are the coefficients of the polynomial representation of all the
Cj(X, c1 − G1(K1), . . . , cN − GN(KN)), j ∈ [m] (which are polynomials in X, whose
coefficents are polynomials in the bits of K1, . . . , KN).
Assuming the existence of compact and additive single-function HSS for any function
in {coefsc1,...,cN}, the construction of fig. 7.11 is an HSS scheme for coefs whose share
generation can be distributed using low communication (with the protocol being
provided in fig. 7.12).

While this assumption relating to the existence of HSS for {coefsc1,...,cN} may not seem
standard, it is weaker than each of the following assumptions:

1. HSS for NC1 and polynomial-stretch PRGs in NC1;

2. Single-function HSS for any log log-depth circuit and constant-depth PRGs with
some fixed polynomial-stretch.

7.4.2 Defining the LogLog-Depth FSS Scheme.

Observation 1 (Parsing Additive Shares). Let x⃗ ∈ {0, 1}n and let I ⊆ [n]. If
(x⃗(1), . . . , x⃗(m)) are additive shares of x⃗, then ([x⃗(1)]I , . . . , [x⃗

(m)]I) are additive shares
of [x⃗]I , where [·]I denotes the subvector induced by the set of coordinates I.

141

LogLog-Depth FSS Scheme from Additive HSS

Parameters: Let N ≥ 2 be a number of parties, and let C = C1∥ . . . ∥Cm be a
loglog-depth circuit with n = ℓ0 + ℓ1 + · · ·+ ℓN inputs and m outputs over F such
that the following function family is (S1, . . . , Sm)-local, where S1, . . . , Sm is some
family of (log n/ log log n)-sized subsets of [n]:

C =
{

gα1,...,αN
: Fℓ0 → Fm

x 7→ C(x, α1, . . . , αN)
: (α1, . . . , αN) ∈ Fℓ1 × · · · × FℓN

}
.

Let HSS = (HSS.Share,HSS.Eval) be an N -party additive (single-function) HSS
scheme for the function:

coefs : Fℓ1 × · · · × FℓN → F⋆

(α1, . . . , αN) 7→ (p0, p1, . . .)

where (p0, p1, . . .) are the coeffi-
cients of the polynomial represen-
tation of all the Cj(X,α1, . . . , αN),
j ∈ [m] (which are polynomials
in X, whose coefficients are them-
selves polynomials in α1, . . . , αN).

// Note that since C has loglog-depth and C is (S1, . . . , Sm)-local, each of the m
polynomials has degree |Sj| and |Sj| variables, and there are therefore at most∑m

j=1

(|Sj |+|Sj |
|Sj |

)
= m · n · (1 + o(1)) coefficients, regardless of (α1, . . . , αN).

FSS.Gen(1λ, g̃α1,...,αN
):

1. Parse g̃α1,...,αN
to retrieve (α1, . . . , αN)

2. (k1, . . . , kN)
$← HSS.Share(1λ, i, (α1, . . . , αN))

3. Output (k1, . . . , kN)

FSS.Evalj(i, ki, x
′): // x′ ∈ F|Sj | should be seen as an Sj-subset of some larger

x ∈ Fℓ0 (i.e. x′ = x[Sj]), input of FSS.Eval.

1. (p0,i, p1,i, . . .)
$← HSS.Eval(i, ki)

2. Parse (p0,i, p1,i, . . .) to retrieve shares (q0,i, q1,i, . . .) of the coefficients of
Cj(·, α1, . . . , αN) (c.f. observation 1).

3. yi,j ← (x′)⊗|Sj | · (q0,i, q1,i, . . .)⊺

4. Output yi,j

FSS.Eval(i, ki, x):

1. For j ∈ [m], set yi,j ← FSS.Evalj(i, ki, x[Sj])

2. Output (yi,j)j∈[m]

Figure 7.10: LogLog-Depth FSS Scheme from “Single-Function” Additive HSS for every
LogLog-Depth Circuit.

142

Lemma 15 (LogLog-Depth FSS Scheme from “Single-Function” Additive HSS). Let
N ≥ 2 be a number of parties, and let C = C1∥ . . . ∥Cm be a loglog-depth circuit with
n = ℓ0 + ℓ1 + · · · + ℓN inputs and m outputs over F such that the following function
family is (S1, . . . , Sm)-local, where S1, . . . , Sm is some family of (log n/ log log n)-sized
subsets of [n]:

C =
{

gα1,...,αN
: Fℓ0 → Fm

x 7→ C(x, α1, . . . , αN)
: (α1, . . . , αN) ∈ Fℓ1 × · · · × FℓN

}
.

Let HSS = (HSS.Share,HSS.Eval) be an N-party (single-function) additive HSS scheme
for the function:

coefs : Fℓ1 × · · · × FℓN → F⋆

(α1, . . . , αN) 7→ (p0, p1, . . .)

where (p0, p1, . . .) are the
coefficients of the polyno-
mial representation of all the
Cj(·, α1, . . . , αN), j ∈ [m].

Then the construction of fig. 7.10 is an N-party additive loglog-depth and (S1, . . . , Sm)-
local FSS scheme for C.

Proof. Consider the construction FSS = (FSS.Gen,FSS.Eval) provided in fig. 7.10. The
fact that FSS.Eval has loglog-depth and is (S1, . . . , Sm)-local follows immediately from
inspection, and so does FSS correctness (which follows from correctness of HSS). There-
fore we only need to show that FSS is a secure function secret sharing scheme. Let
D ⊆ [N]. By security of HSS, for any PPT adversaries A and A′,∣∣∣∣∣∣∣∣Pr

b′ = b :

(x0, x1, state)← A(1λ),
b

$← {0, 1}
(x(1), . . . , x(N))← HSS.Share(xb)
b′ ← A′

(
state, (x(i))i∈D

)
− 1

2

∣∣∣∣∣∣∣∣ ≤ negl(λ).

In particular, for every (αi)i∈[N] ∈ Fℓ1 × · · · × FℓN , {(x(i))i∈D : (x
(i))i∈[N]

$←
HSS.Share(α1∥ . . . ∥αN)}

c
≈ {(x(i))i∈D : (x(i))i∈[N]

$← HSS.Share(0F
ℓ1∥ . . . ∥0FℓN)}.

If we define the algorithm SimHSS as “SimHSS(1λ, 1N , 1n, 1m) := ((x(i))i∈[N]
$←

HSS.Share(0F
ℓ1∥ . . . ∥0FℓN); Output (x(i))i∈D)” then, because the FSS.Gen essen-

tially boils down to a single invocation of HSS.Share, for every sequence of
functions (g̃α1,λ,...,αN,λ

)λ∈N⋆ , {(ki)i∈D : (k1, . . . , kN) $← FSS.Gen(1λ, g̃α1,λ,...,αN,λ
)}

c
≈

{SimHSS(1λ, 1N , 1n, 1m)}, and therefore FSS is a secure function secret sharing
scheme.

7.4.2.1 Securely Realising FFSS
SD in Low Communication.

The FSS scheme FSS = (FSS.Gen,FSS.Eval) of fig. 7.10 is parameterised by an additive
single-function HSS scheme for the function coefs. We provide in fig. 7.11 the full
version of the paper such an HSS scheme with the additional property that it yields
FSS for which FFSS

SD can be securely realised in low communication (the protocol is
described in fig. 7.13).

143

HSS Single-Function HSS for coefs

Parameters:

• For i ∈ [N], Gi : {0, 1}λ → Fℓi is a PRG.

• HSS′ = (HSS′.Share,HSS′.Eval) is an N -party compact and ad-
ditive single-function (remark 1) HSS scheme for any function in
{coefsc1,...,cN : (c1, . . . , cN) ∈ Fℓ1 × · · · × FℓN}, where:

coefsc1,...,cN : Fλ × · · · × Fλ → F⋆

(K1, . . . , KN) 7→ (p0, p1, . . .)

where (p0, p1, . . .) are the coefficients of the polynomial representation of all
the Cj(X, c1 − G1(K1), . . . , cN − GN(KN)), j ∈ [m] (which are polynomials
in X, whose coefficents are polynomials in the bits of K1, . . . , KN).

HSS.Share(1λ, (α1, . . . , αN)):

1. For i = 1, . . . , N :

(a) Sample a PRG seed Ki
$← {0, 1}λ (for Gi : {0, 1}λ → Fℓi)

(b) Set ci ← αi +Gi(Ki)

2. (kHSS′

1 , . . . , kHSS′

N)
$← HSS′.Share(1λ, (K1∥ . . . ∥KN))

3. For i ∈ [N], set ki ← (Ki, k
HSS′

i , (c1, . . . , cN))

4. Output (k1, . . . , kN)

HSS.Eval(i, ki, coefs):

1. Parse ki as ki = (Ki, k
HSS′

i , (c1, . . . , cN))

2. (p0,i, p1,i, . . .)
$← HSS.Eval(i, kHSS

i , coefsc1,...,cN)

3. Output (p0,i, p1,i, . . .)

Figure 7.11: HSS Scheme for coefs.

Lemma 16. With the notations of fig. 7.11, if G1, . . . , GN are PRGs and
HSS′ is a compact and additive single-function HSS scheme for any function in
{coefsc1,...,cN : (c1, . . . , cN) ∈ Fℓ1 × · · · × FℓN}, then HSS is an additive single-function
HSS for {coefs}.

Proof. Let D ⊊ [N], and let A,A′ be p.p.t. adversaries. For all (α1, . . . , αN) ∈
Fℓ1 × · · · × FℓN consider the random variables (x0 = (K1,0∥ . . . ∥KN,0), x1 =

(K1,1∥ . . . ∥KN,1), state)
$← A(1λ), b

$← {0, 1}, (c1, . . . , cN) := (α1 +

G(K1), . . . , αN + G(KN)), (kHSS′

1,b , . . . , kHSS′

N,b)
$← HSS′.Share(xb), (x

(i)
b)i∈[N] :=

(Ki,b, k
HSS′

i,b , (c1, . . . , cN))i∈[N], and b′
$← A′(state, (x(i)

b)i∈D). Observe that security
of HSS is equivalent to |Pr[b = b′] − 1/2| ≤ negl(λ). By security of the PRGs

144

(Gi)i∈[N]\D, Pr[b = b′] is only changed by at most an negligible additive factor if
the law of (ci)i∈D is changed to uniformly random. Thence, the problem of show-
ing |Pr[b = b′] − 1/2| ≤ negl(λ) in this modified experiment for HSS reduces to the
security of HSS′ via a standard hybrid argument.

We now complete the construction by providing the low-communication protocol to
distribute the keys of the FSS scheme of fig. 7.10. The protocol itself is relatively
straightforward. The parties each sample a PRG seed and use it to mask their inputs,
then broadcast these masked values (using communication O(N ·n)). The parties then
use generic MPC to distribute HSS shares of the concatenation of the N PRG seeds
(the ideal functionality is provided in fig. 7.12). Because the HSS scheme is compact
and the input size is N · λ, this step uses only (N · λ)O(1) bits of communication.

Functionality Distributed-Input HSS Share Distribution FHSS
SD

Parameters: The ideal functionality FHSS
SD is parameterised by a number of

parties N and an N -party HSS scheme HSS = (HSS.Share,HSS.Eval).

FHSS
SD interacts with the N parties P1, . . . , PN in the following manner.

Input: Wait to receive (input, i, xi) from each party Pi.

Output: Run (x(1), . . . , x(N))
$← HSS.Share(1λ, (x1∥ . . . ∥xN)); Output x(i) to each

party Pi (1 ≤ i ≤ N).

Figure 7.12: Ideal functionality FHSS
SD for the generation of HSS shares of the concate-

nation of the parties inputs.

Protocol FSS Share Distribution ΠSD

Parties: P1, . . . , PN .

Parameters:

• FSS = (FSS.Gen,FSS.Eval) is the N -party loglog-depth FSS scheme defined
in fig. 7.10; (FSS.Evalj)j∈[m] are defined as in fig. 7.10. Implicitly, ΠSD inherits
the parameters C : Fℓ0×Fℓ1×· · ·×FℓN → Fm, C, (Sj)j∈[m],HSS, coefs of FSS.

• For i ∈ [N], Gi : {0, 1}λ → Fℓi is a constant-depth PRG.

Hybrid Model: The protocol is defined in the FHSS
SD -hybrid model.

Input: Each party Pi (i ∈ [N]) holds input xi ∈ Fℓi .

The Protocol: Each party Pi (for i ∈ [N]) does the following:

1. Sample Ki
$← {0, 1}λ and set ci ← xi +Gi(Ki)

2. For j ∈ [N] \ {i} (in parallel), send ci to Pj and wait to receive cj from Pj

3. Send (input, i,Ki) to FHSS
SD and wait to receive kHSS

i from FHSS-SD

145

4. Set kFSS
i ← (Ki, k

HSS
i , (c1, . . . , cN))

5. Output kFSS
i

Figure 7.13: N -party protocol for the share distribution of the loglog-depth FSS scheme
from additive HSS of fig. 7.10.

Lemma 17 (FFSS
SD for the LogLog-Depth FSS scheme of fig. 7.10 can be realised with

low communication). Let N ≥ 2 be a number of parties, and let C = C1∥ . . . ∥Cm be a
loglog-depth circuit with n = ℓ0 + ℓ1 + · · ·+ ℓN inputs and m outputs over F such that
the following function family is (S1, . . . , Sm)-local, where S1, . . . , Sm is some family of
(log / log log)-sized subsets of [n]:

C =
{

gα1,...,αN
: Fℓ0 → Fm

x 7→ C(x, α1, . . . , αN)
: (α1, . . . , αN) ∈ Fℓ1 × · · · × FℓN

}
.

For i ∈ [N], let Gi : {0, 1}λ → Fℓi be a constant-depth PRG.

Let HSS = (HSS.Share,HSS.Eval) be an N-party compact and additive HSS scheme for
any function in {coefsc1,...,cN : (c1, . . . , cN) ∈ Fℓ1 × · · · × FℓN}, where:

coefsc1,...,cN : Fλ × · · · × Fλ → F⋆

(K1, . . . , KN) 7→ (p0, p1, . . .)

where (p0, p1, . . .) are the coefficients of
the polynomial representation of all the
Cj(X, c1 − G1(K1), . . . , cN − GN(KN)),
j ∈ [m] (which are polynomials in X).

Then the protocol ΠSD provided in fig. 7.13 UC-securely implements the N-party func-
tionality FFSS

SD in the FHSS
SD -hybrid model against a static, passive adversary. Further-

more, assuming oblivious transfer, there exists a protocol (in the real world) using
(N ·λ)O(1)+N(N − 1) ·n · log |F| bits of communication which UC-securely implements
the N-party functionality FFSS

SD against a static, passive adversary.

Due to space considerations, we refer to [BCM23] for the proof of lemma 17.

7.4.3 From Compact and Additive HSS with Errors

In this section, we give a new construction of loglog-depth additive FSS scheme from
additive HSS. In contrast to the construction of the previous section, this construction
starts from a Las Vegas HSS scheme, i.e. , an HSS scheme where each output has a
non-negligible correctness error, which can be reduced to an arbitrarily small inverse
polynomial function (see Definition 2). A core ingredient of our construction, beyond
a Las Vegas HSS scheme, is a distributed point function (DPF, [GI14]): a 2-party
FSS scheme for the class of point functions fα,β : {0, 1}ℓ → G such that fα,β(α) =
β, and fα,β(x) = 0 otherwise. A sequence of works [GI14, BGI15, BGI16b] has led
to highly efficient constructions of DPF schemes from any pseudorandom generator
(PRG). (In fact, as one of the two parties will know the identity of the secret nonzero
evaluation input, the weaker tool of a punctured pseudorandom function will suffice
for the construction as given.)

146

Theorem 15 (PRG-based DPF [BGI16b]). Given a length-doubling PRG PRG, and
assuming |F| ≤ 2O(ℓ), there exists a DPF for point functions fα,β : {0, 1}ℓ → F with
key size O(ℓ · λ) bits. The key generation algorithm Gen and the evaluation algorithm
Eval invoke PRG at most O(ℓ) times.

7.4.3.1 Additive FSS Scheme from Las Vegas Additive HSS.

In this section, we focus our attention to the (N +1)-party setting with N = 2, in line
with the fact that all known instantiations of Las Vegas HSS are for 2 parties. As in
Section 7.4.2, we consider a circuit C with m outputs (denoting Ci the circuit computing
the i-th) output and n = ℓ0 + ℓ1 + ℓ2 inputs, such that the functions x→ C(α0, α1, x)
are all (log / log log)-local and (log / log log)-degree (for any possible choice of (α0, α1);
note that this holds in particular when C is itself a (log log− log log log)-depth circuit).
For j = 1 to m, we let Sj denote the (log n/ log log n)-sized subset of entries of x that
influences C(α0, α1, x).
Let HSS = (HSS.Share,HSS.Eval) be a 2-party Las Vegas additive HSS scheme for
a class F such that coefs ∈ F , where coefs(α0, α1) computes the coefficients of the
representation of Cj(α0, α1, ·) as multivariate polynomials for j = 1 to m (there are at
most

(
2n
n

)
= n(1 + o(1)) such coefficients for each Cj(α0, α1, ·)).

Note that the definition of Las Vegas HSS (Definition 2) guarantees that the evaluation
is (verifiably) correct with probability 1 − δ, for some inverse polynomial bound δ.
Without loss of generality, when we homomorphically evaluate functions with multiple
outputs, we can actually assume that each output fails with independent probability δ:
it suffices for this to evaluate individually the function restricted to each of its output,
and to use a nonce in Eval to guarantee (pseudo)-independent failure probabilities
(see [BGI16a] for discussions about this). Furthermore, denoting B a bound on the
total number of outputs of the target function, setting the individual failure bounds
δ of each output to 1/B guarantees an expected constant number of failures overall.
Then, by a straightforward Chernoff bound, one can assume that the total number of
⊥ flags obtained by any party is at most λ, except with probability negl(λ). Therefore,
to simplify the description, we slightly change the template definition of HSS.Eval:

• We assume that HSS.Eval returns a list T of outputs, together with a list flags of
all the positions of the lists for which a ⊥ flag was raised;

• we write HSS.Eval(coefs, s, λ) to indicate that coefs is homomorphically evaluated
on a share s such that the total number of ⊥ flags output by HSS.Eval (i.e. the
size of flags) is bounded by λ with overwhelming probability.

LogLog-Depth FSS Scheme from Las Vegas HSS

Parameters: A 2-party Las Vegas additive HSS scheme HSS =
(HSS.Share,HSS.Eval) for a class F such that coefs ∈ F , where coefs(α0, α1)
computes the (polynomially many) coefficients of the representation of Cj(·, α0, α1)
as multivariate polynomials for j = 1 to m. Let B be the number of outputs of
coefs. In the description below, we consider two virtual parties, P0 and P1. We
use the expression “sample X for Pi” to indicate that X is sampled using the
random tape of Pi.

FSS.Gen(1λ, C(α0, α1, ·)):

1. Let (s0, s1) ← HSS.Share(α0, α1). For i ∈ {0, 1}, sample seedi
$← {0, 1}λ.

147

Define Ri ← PRG(seedi) to be the random tape of the (virtual) party Pi.

2. For i ∈ {0, 1}, compute (Ti, flagsi)
$← HSS.Eval(coefs, si, λ) for Pi. We assume

that |flagsi| = λ (if |flagsi| > λ, we restart from scratch; else, we pad flagsi
with arbitrary indices until |flagsi| = λ).

3. ∀i ∈ {0, 1}, let flagsi = {ji,1, · · · , ji,λ}. For k = 1 to λ, set Ti[ji,k] to 0.

4. ∀i ∈ {0, 1}, for k = 1 to λ, define fi,k to be the point function which evaluates
to coefsji,k(α0, α1) − T1−i[ji,k] on ji,k (and to 0 everywhere else), and run
(ti0,k, t

i
1,k)

$← DPF.Gen(fi,k) using fresh random coins.

5. Set ki ← (si, seedi, flagsi, (t
0
i,k, t

1
i,k)k≤λ) for i = 0, 1, and output (k0, k1).

FSS.Evalj(i, ki, x
′): we view x′ as x[Sj], i.e. , the size-(log n/ log log n) subset of

entries of some vector x, indexed by Sj. Parse ki as (si, seedi, flagsi, (tii,k, ti1−i,k)k≤λ).
In the following, use Ri = PRG(seedi) as random tape, matching the coins used in
FSS.Gen.

1. Compute (Ti, flagsi)
$← HSS.Eval(coefs, si, λ). For each j ∈ flagsi, set Ti[j] to

0.

2. For k = 1 to λ, for j = 1 to B, compute cji,k ← DPF.Gen(t0i,k, j) +

DPF.Gen(t1i,k, j). Set Ti[j]← Ti[j] +
∑λ

k=1 c
j
i,k.

3. Parse Ti to retrieve shares (q0,i, q1,i, . . .) of the coefficients of Cj(α0, α1, ·)
(such parsing is possible because the shares are additive, c.f. observation 1).

4. Set yi,j ← (x′)⊗|Sj | · (q0,i, q1,i, . . .)⊺.

5. Output yi,j

FSS.Eval(i, ki, x):

1. For j ∈ [m], set yi,j
$← FSS.Evalj(i, ki, x[Sj])

2. Output (yi,j)j∈[m]

Figure 7.14: LogLog-Depth FSS Scheme from Las Vegas Additive HSS for every
LogLog-Depth Circuit.

Lemma 18 (LogLog-Depth FSS Scheme from Las Vegas HSS). Let C = C1∥ . . . ∥Cm

be a circuit with n = ℓ0 + ℓ1 + ℓ2 satisfying the loglog-depth constraint described above.
Let HSS = (HSS.Share,HSS.Eval) be a 2-party Las Vegas additive HSS scheme for a
function class containing the coefs function. Then the construction of fig. 7.14 is a
2-party additive loglog-depth FSS scheme for C.

Proof. Consider the construction FSS = (FSS.Gen,FSS.Eval) provided in fig. 7.14.
loglog-depth is identical to that of the previous construction (from Figure fig. 7.10).

148

Correctness follows from the correctness of the HSS scheme, and from that of the DPF
scheme. Concretely:

1. With probability 1, after computing (T0, flags0)
$← HSS.Eval(coefs, s0, λ) and

(T1, flags1)
$← HSS.Eval(coefs, s1, λ), for every j /∈ flags0 ∪ flags1, T0[j] + T1[j] =

coefsj(α0, α1).

2. After updating Ti[j] to Ti[j] +
∑λ

k=1 ci,k (in step 2), we have

T0[j] + T1[j] = coefsj(α0, α1) +
λ∑

k=1

(cj0,k + cj1,k),

and it holds that cj0,k + cj1,k = f0,k(j) + f1,k(j) = 0, by correctness of the DPF
scheme, and since f0,k and f1,k are point functions which (in particular) evaluate
to 0 on all j /∈ flags0 ∪ flags1.

3. For every j ∈ flags0 \ flags1, we have T0[j] = 0 after step 1, and T1[j] equal to
some value v. Then after step 2, we have

T0[j] + T1[j] = v +
λ∑

k=1

(cj0,k + cj1,k),

where cj0,k + cj1,k = f0,k(j) + f1,k(j). Now, since j /∈ flags1, f1,k(j) = 0 for all k,
and since j ∈ flags0, there is exactly one k such that f0,k(j) ̸= 0. For this k,
f0,k = coefsj(α0, α1)− v. Therefore, T0[j] + T1[j] = v + coefsj(α0, α1)− v.

4. The cases j ∈ flags1 \ flags0 and j ∈ flags0 ∩ flags1 are similar (in the latter, there
will be exactly one k where f0,k(j) is non-zero, and one k′, possibly equal to k,
where f0,k′(j) is non-zero).

Therefore, the (T0[j], T1[j])j are indeed additive shares of the outputs of coefs on input
(α0, α1), hence (x′)⊗|Sj | ·(q0,i, q1,i, · · ·)⊺ = Q(x′), where Q is the |Sj|-variate polynomials
computing Cj(α0, α1, x) for any x such that x′ = x[Sj].
We clarify a minor technicality regarding the analysis above: since Las Vegas HSS has
probability 1 of yielding correct shares of the output whenever the flags are equal to
⊤, this remains true when the randomness of Eval is sampled as Ri ← PRG(seedi) for
party Pi. However, to guarantee correctness, we must also show that with overwhelming
probability, |flagsi| ≤ λ. When using true random coins, this holds with overwhelming
probability by a straightforward Chernoff bound. When using pseudorandom coins, as
we do here, this statistical property holds under the assumption that the PRG is secure
(it is a standard fact that the output of a secure PRG must pass all polynomial-time
verifiable statistical tests); hence, correctness holds under the existence of a secure
PRG. This concludes the proof of correctness.
It remains to show that FSS is a secure function secret sharing scheme. As before, it
follows from the fact that HSS is a secure homomorphic secret sharing scheme for which
we have a simulator SimHSS. We additionally mask each output with 2λ outputs of (2λ
independent instances of) a DPF, which can also be simulated using the simulator
SimDPF.

7.4.3.2 Securely Realising Gen in Low Communication.

We describe a low-communication two-party protocol for securely distributing
(k0, k1)

$← FSS.Gen(1λ, C(α0, α1, ·)) between two parties, P0 and P1, holding α0 and
α1 as respective inputs, in the honest-but-curious model.

149

Private information retrieval. A private information retrieval is a two party pro-
tocol between a server S holding a vector z (the database) and a client C holding an
integer i, where only the client receives an output. The security parameter λ and the
length n(λ) = poly(λ) = |z| of the server database are a common (public) input. We let
ViewS(λ, z, i) denote the view of S during its interaction with C on respective inputs
(z, i) with common input (λ, n = |z|), and by OutC(λ, z, i) the output of C after the
interaction.

Definition 29 (Private Information Retrieval). A private information retrieval for
database size n = n(λ) (n-PIR) is an interactive protocol between a PPT server S
holding a vector z ∈ Fn and a PPT client C holding an index i ≤ n which satisfies the
following properties:

• Correctness: there exists a negligible function µ such that for every λ ∈ N,
z ∈ {0, 1}n, i ∈ [n]:

Pr[OutC(λ, z, i) = zi] ≥ 1− µ(λ).

• Security: there exists a negligible function µ such that for every PPT adversary
A, large enough λ ∈ N, (i, j) ∈ [n]2, and z ∈ {0, 1}n:

|Pr[A(1λ+n,ViewS(λ, z, i)) = 1]− Pr[A(1λ+n,ViewS(λ, z, j)) = 1]| ≤ µ(λ, n).

• Efficiency: A PIR is polylogarithmic if its communication complexity c(λ, n),
measured as the worst-case number of bits exchanged between S and C (over their
inputs (z, i) and their random coins), satisfies c(λ, n) = poly(λ, log n).

We define a private shared information retrieval (PSIR) analogeously to a private in-
formation retrieval, except that the client C with input i and the server S with input
z get as output random shares of zi.

The protocol. As in the previous constructions, we assume that there is a succinct
protocol (with communication linear in the input size, up to an additive poly(λ) term)
for distributing the shares of HSS. Such succinct protocols are known for all known
Las Vegas HSS. Furthermore, we assume that HSS.Eval can be run on tuples of in-
put shares (generated separately), rather than individual input shares; that is, given
(x(0), x(1)) ← HSS.Share(1λ, x) and (y(0), y(1)) ← HSS.Share(1λ, y), Eval(i, f, (x(i), y(i)))
for i = 0, 1 produces shares of f(x, y). We note that known constructions of Las Ve-
gas HSS [BGI16a,BKS19] have a setup phase that generates public parameters, such
that HSS.Eval can be run on any tuple of HSS shares generated from the same public
parameters.
The protocol operates in a hybrid model, with access to the following functionalities:

• A share distribution functionality FHSS-SD (as given on Figure fig. 7.12).

• A private shared information retrieval functionality FPSIR which receives i from
a client, and (z, r) ∈ Fn × F from a server. It outputs zi − r to the client, and
nothing to the server. (Note that given a PIR, our reduction from PIR to PSIR
securely instantiates this functionality).

• An ideal ‘selection’ functionality Fsel which, given (vb1, · · · , vbλ) ∈ Fλ and
(flagb1, · · · , flagbλ) ∈ {⊤,⊥}λ from each party Pb, returns uniformly random shares
of v0i + v1i , where i is the first index such that flag0i = flag1i = ⊤.

150

• An ideal functionality FDPF which distributes DPF keys given shares of (the
description of) a point function:

– FDPF takes as input (wb, j) from one party Pb, and (w1−b,⊥) from P1−b;
– it defines f the point function which evaluates to w = w0 + w1 on input j

(and to 0 elsewhere);

– it outputs (t0, t1)
$← DPF.Gen(f) to P0 and P1.

Succinct Protocol for the LogLog-Depth FSS Scheme from Las Vegas HSS

1. P0 and P1 call FHSS-SD on respective inputs α0, α1, and receive (s0, s1)
$←

HSS.Share(α0, α1). Each party Pi picks seedi
$← {0, 1}λ and stretches Ri ←

PRG(seedi).

2. For i ∈ {0, 1}, Pi samples (Ti, flagsi)
$← HSS.Eval(coefs, si, λ) using Ri as

random tape. We assume that |flagsi| = λ (if |flagi| > λ, Pi aborts the
protocol; else, Pi pads |flagi| with dummy items until |flagsi| = λ).

3. For i = 0, 1, and for k = 1 to λ, denoting {ji,1, · · · , ji,λ} = flagsi, Pi sets
Ti[ji,k] to 0.

4. For i = 0, 1, and for k = 1 to λ,

(a) Pi and P1−i call FPSIR, where Pi plays the role of the client with input
ji,k, and P1−i samples u1−i

i,k
$← F and plays the role of the server with

inputs (T1−i, u
1−i
i,k). Let ui

i,k denote Pi’s output. Note that by correctness
of the PSIR scheme, u0

i,k + u1
i,k = Ti[ji,k].

(b) Pi and P1−i call FHSS-SD on input ji,k from Pi, and get respective outputs
(s0i,k, s

1
i,k)

$← HSS.Share(ji,k).

(c) Let coef(α0, α1, j) denote the function computing coefsj(α0, α1). Each
party Pb locally run λ independent instances (vbi,k,ℓ, flag

b
i,k,ℓ)

$←
HSS.Eval(coef, (sb, s

b
i,k), 1/2) for b = 0, 1 and ℓ = 1 to λ.

(d) P0 and P1 call Fsel, where Pb’s inputs are all candidate shares (vbi,k,ℓ)ℓ≤λ
and corresponding flags (flagbi,k,ℓ)ℓ≤λ. Recall that Fsel identifies the first
ℓ such that flag0i,k,ℓ = flag1i,k,ℓ = ⊤ (which exists with overwhelm-
ing probability), reconstructs vi,k = v0i,k,ℓ + v1i,k,ℓ (which is equal to
coef(α0, α1, ji,k) = coefsji,k(α0, α1), by correctness of the HSS scheme),
and outputs fresh random shares (v0i,k, v

1
i,k) of vi,k to P0 and P1.

(e) P0 and P1 call FDPF, where each party Pb has an wb
i,k ← vbi,k − ub

i,k;
Pi has additional input ji,k, and P1−i has additional input ⊥. FDPF

outputs (t0i,k, t1i,k)
$← DPF.Gen(fi,k) to P0 and P1, which are DPF shares

of fi,k, the point function evaluating to wi,k = w0
i,k + w1

i,k on ji,k, and 0
elsewhere.

(f) Each party Pb outputs kb ← (sb, seedb, flagsb, (t
0
b,k, t

1
b,k)k≤λ).

Figure 7.15: A succinct protocol for distributing shares of the loglog-depth FSS scheme
of Figure fig. 7.14

151

Theorem 16. Assume that (HSS.Share,HSS.Eval) is a secure Las Vegas additive HSS
scheme where HSS.Eval can run on tuples of HSS shares. Then the protocol from Fig-
ure fig. 7.15 securely computes the procedure FSS.Gen(1λ, C(α0, α1, ·)) of Figure fig. 7.14
in the (FHSS

SD ,FPSIR,Fsel,FDPF)-hybrid model. Furthermore, instantiating FHSS
SD with a

succinct HSS share distribution protocol (with communication ℓ0 + ℓ1 + poly(λ)), FPSIR

with a PSIR with polylogarithmic efficiency, and Fsel,FDPF with generic secure compu-
tation protocols, yield a protocol with total communication n+ poly(λ) · polylog(n).

Proof. Correctness follows by inspection: steps (1) to (3) directly emulate the step
(1) to (3) of FSS.Gen. In step (4.a), by correctness of the PSIR, the parties obtain
additive shares (u0

i,k, u
1
i,k) of Ti[ji,k]. Step (4.b) to (4.d) let the parties generate additive

shares of the value coefsji,k(α0, α1) – that is, the value that should have been shared
in (T0[ji,k], T1[ji,k]) if there was no error. This is done by first secure sharing ji,k with
HSS.Share, then running λ times the HSS.Eval algorithm with error probability 1/2.
Except with probability 1/2λ, it necessarily holds that on one of the λ executions,
both parties got a ⊤ flag (indicating no error). Step (4.d) runs a generic protocol
which, given the λ outputs of each party and their flags, identifies such an execution,
reconstructs the output (which is equal to coefsji,k(α0, α1) by Las Vegas correctness
of HSS), and re-shares it (this is necessary to avoid leaking the position of the first
correct share). The generic protocol in (4.e) outputs keys for a point function fi,k
which evaluates to wi,k on ji,k. We have

wi,k = w0
i,k + w1

i,k = −u0
i,k − u1

i,k + v0i,k + v1i,k = −Ti[ji,k] + coefsji,k(α0, α1),

hence fi,k matches its definition in FSS.Gen. This concludes the proof of correct-
ness. We turn our attention to security. Assume that P1 is corrupted; the other
case follows symmetrically. The simulator Sim, given the target output k1 ←
(s1, seed1, flags1, (t

0
1,k, t

1
1,k)k≤λ) of P1, emulates P0 as follows (note that steps 2, 3, and

4.c only require local computation):

• (Step 1) It emulates FHSS-SD and sets P1’s output to s1.

• (Step 4.a) It emulates the λ invocations of FPSIR where P1 plays the role of the
client (i.e. when i = 1), sampling P1’s output u1

1,k uniformly over F.

• (Step 4.b) For i = 0, 1 and k = 1 to λ, it uses SimHSS to simulate P1’s HSS share
of ji,k. Then, it emulates FHSS

SD and sets P1’s outputs to be the simulated shares
of ji,k.

• (Step 4.d) It emulates the 2λ invocations of Fsel, and set P1’s outputs from the
functionality to independent uniformly random values.

• (Step 4.e) It emulates the 2λ invocations of FDPF, and set P1’s outputs from the
functionality to (t01,k, t

1
1,k)k≤λ.

Security follows from a sequence of straightforward hybrids: H0 is the initial game.
H i,k

1 replaced the HSS share of ji,k by a simulated HSS share using SimHSS, for i =
0 to 1 and k = 1 to λ. Indistinguishability follows by 2λ invocations of the HSS
security. H2 replaces the λ invocations of FPSIR where P1 plays the role of the client
by emulations of the functionality with a uniformly random output u1

1,k; this game is
perfectly indistinguishable from H1,λ

1 , since the outputs are distributed exactly as in the

152

honest game. H3 replaces the 2λ invocations of Fsel by emulations of the functionality
with uniformly random outputs, which is perfectly indistinguishable from H2, since
the outputs of Fsel are distributed exactly as in H2. Eventually, H3 replaces the 2λ
invocations of FDPF by emulations of the functionality with outputs ti1,k for i = 0, 1
and k = 1 to λ. Since the outputs are the same as in H3, this game is perfectly
indistinguishable from the previous game. This concludes the proof.

7.5 Instantiations
In section 7.5.1, we combine the results of sections 7.2 to 7.4 and achieve sublinear
secure computation from generic assumptions (HSS and forms of PIR/OLE). In sec-
tion 7.5.2, we build four-party compact and additive HSS for loglog-depth correlations
from standard assumptions (DCR and constant-locality PRGs). In section 7.5.3, we
show how to combine all the above (as well as existing constructions of 2-party HSS) in
order to build sublinear secure 3- and 5-party computation from standard assumptions
not previously known to imply it (in particular, they are not known to imply FHE).

7.5.1 Sublinear-Communication Secure Multiparty Computa-
tion from PIR and Additive HSS

Section 7.3 established that FFSS
OE for local FSS schemes can be based on batch OPE

(with correlated inputs) and section 7.4 builds local FSS schemes (such that FFSS
SD

can be realised with low communication) from additive HSS (with or without errors).
Plugging these two constructions into the template of section 7.2 yields sublinear secure
multiparty computation from batch OPE and additive HSS.

Theorem 17 (Sublinear-Communication Secure (N+1)-Party Computation of Shal-
low Circuits). Let N ≥ 2 be a number of parties, and let C : Fn → Fm be a depth-d
(d ≤ log log n− log log log n) arithmetic circuit with n = ℓ0 + ℓ1 + · · ·+ ℓN inputs over
F. Assuming the existence of:

• A family of PRGs Gi : {0, 1}λ → Fℓi for i ∈ [N],

• An N-party compact and additive single-function HSS scheme for any function in
the class {coefsα1,...,αN

: (α1, . . . , αN) ∈ Fℓ1 × · · · × FℓN}, where coefsx1,...,xN
is the

function which, on input (K1, . . . , KN) ∈ ({0, 1}λ)N , computes the (polynomially
many) coefficients of the representation of Cj(·, α1−G1(K1), . . . , αN −GN(KN))
as ℓ0-variate polynomials for j = 1 to m,

• A protocol for UC-securely realising FcorrOPE using communication
CommcorrOPE(k,Nvar, deg, w), where k is the number of OPEs in the batch,
Nvar is the number of variables of each polynomial, deg is the degree of each
polynomial, and w is the size of the joint input vector,

There exists a protocol using (N + λ)O(1) + N · [(N − 1) · n + m] · log |F| + N ·
CommcorrOPE(m, 2d, 2d, n) bits of communication to securely compute C amongst (N+1)
parties (that is, to UC-securely realise FSFE(C)) in the presence of a semi-honest ad-
versary statically corrupting any number of parties.

Proof. The proof of theorem 17 is obtained by combining the results of sections 7.2
to 7.4. Our starting point is the generic template of theorem 14 in the (FFSS

SD ,FFSS
OE)-

hybrid model, which uses N · m · log |F| bits of communication and makes a single

153

call to FFSS
SD , and N to FFSS

OE . We use the FSS scheme of lemmas 15 and 17, for
which, by lemma 14, each call to FFSS

OE can be implemented using communication
CommcorrOPE(m, 2d, 2d, n) and the single call to FFSS

SD can be implemented using com-
munication (N · λ)O(1) +N(N − 1) · n · log |F|.

7.5.2 Four-Party Additive HSS from DCR

In this section, we build a 4-party compact homomorphic secret sharing scheme for the
class of loglog-depth circuits. Our starting point is the (non compact) 4-party HSS
for constant degree polynomials recently described in [COS+22]. At a high level, the
scheme works by nesting a 2-party HSS scheme inside another 2-party HSS scheme.
Concretely, let HSSin and HSSout be two 2-party HSS schemes. Then, the following is
a 4-party HSS:

• HSS.Share(x) : run (x(0), x(1))← HSS.Sharein(x). For b = 0, 1, run (x(b,0), x(b,1))←
HSS.Shareout(x

(b)). Output (x(0,0), x(0,1), x(1,0), x(1,1)).

• HSS.Eval(i, f, x(i)) : parse i as (b, c) ∈ {0, 1}2. Define Gin(f) : x(b,c) →
HSSin.Eval(b, f, x

(b,c)) and run y(i) ← HSSout.Eval(c,Gin(f), x
(b,c)).

Therefore, to get 4-party HSS for a function class F , we need (1) a 2-party HSSin for
F , and (2) a 2-party HSS.out for the class F ′ = Gin(F). We now state the resulting
theorem in theorem 18.

Theorem 18 (Four-Party Additive HSS for Constant-Depth Circuits from DCR). As-
suming the superpolynomial hardness of DCR and the existence of PRGs with constant
locality, there exists a four-party HSS scheme for the class of loglog-depth circuits with
nin inputs; the HSS scheme has share size nin(1 + o(1)). Furthermore, there exists a
protocol with communication complexity nin · (4 + o(1)) (for large enough nin) for se-
curely realising the four-party functionality FHSS

SD of fig. 7.12 for the generation of HSS
shares of the concatenation of the parties inputs.

7.5.2.1 4-party HSS from DCR.

The work of [COS+22] shows how to instantiate the above template, using the re-
cent DCR-based HSS scheme of [OSY21] to instantiate both HSSin and HSSout, when
the class F is restricted to constant-degree multivariate polynomials. Consider for
simplicity the evaluation of a single degree-c monomial

∏c
i=1 xi (handling arbitrary

polynomials is done by computing shares of the deg-c monomials separately, and sum-
ming the shares). Fix a modulus N for the Paillier encryption scheme, and let d
be the Paillier secret key, i.e. , an integer such that given any Paillier encryption
C = (1 +N)xRn mod N2 of an input x, we have Cd = (1 +N)m mod N2.
In the scheme of [OSY21], an HSS share of xi contains (1) additive shares (over Z) of
the secret key d and (2) Paillier encryption Ci, (Ci,j)j≤|d| of xi, (xi ·dj)j≤|d|, where the dj
are the bits of d. A core observation is that the ciphertexts Ci, Ci,j can remain public
(in the sense that they will be directly included in all 4-party shares, and not reshared),
since they are included in all shares: only the shares of d must be re-shared (bitwise)
with the outer scheme. Now, the homomorphic evaluation of f(x1, · · · , xc) =

∏c
i=1 xi

consists in c − 1 sequential homomorphic multiplication, where each homomorphic
multiplication boils down to parallel calls to the function

MulC,v,N : d→ DDLog(Cd mod N2) + v mod N,

154

where v is a value known to both partie (concretely, v = Fk(id) where id is public and
k is a PRF key known to both parties, which can be included “in the clear” in the four
4-party shares), DDLog is the function DDLog : X → ⌊X/N⌋ · (X mod N)−1 mod N ,
and C is one of the Paillier ciphertexts. Now, since the ciphertexts C are known during
the homomorphic evaluation of MulC,v,N by the outer scheme, we can rewrite

Cd =

|d|∏
j=1

(C2j−1

)dj mod N2, (Cd mod N)−1 =

|d|∏
j=1

(C−2
j−1

)dj mod N2.

Since iterated products, modular reductions, rounding, and integer division are all in
NC1, the entire computation of Mul is therefore an NC1 function (and so are parallel
calls to Mul). From here, [COS+22] concludes that for every constant c, the homo-
morphic computation of

∏c
i=1 xi inside the inner HSS remains an NC1 function overall.

Therefore, it suffices for the outer HSS to use another DCR-based HSS (with a different
Paillier modulus N ′ = O(N)), since the latter handles all NC1 computations.

7.5.2.2 Handling loglog-depth circuits.

The above nesting approach is limited to constant degree polynomials. At a high level,
this stems from the fact that computing c sequential homomorphic Mul requires a run-
time of the form poly(λ)c, where poly(λ) denotes the runtime of computing a single
Mul operation. This overhead stems from the fact that the outer HSS natively han-
dles only functions represented as restricted multiplication straight-line (RMS) pro-
grams, and converting an arbitrary circuit to an RMS program incurs a cost which
is exponential in the circuit depth. The inputs to (the parallel calls to) Mul have
size poly(logN) = poly(λ), the depth of the Mul circuit (which is in NC1) is therefore
O(log λ), hence the overall depth of the homomorphic computation is O(c· log λ), hence
the poly(λ)c = 2O(c·log λ) overhead.
To circumvent this limitation, we rely on complexity leveraging, and make logN slightly
subpolynomial in λ. Looking ahead, this will translate to assuming the superpolynomial
hardness of the DCR assumption. Writing logN = κ and by the above analysis,
the overall runtime of evaluating a degree-c monomial is κcst·c, for an appropriate
constant cst. Setting κ ← λ1/c, the above becomes polynomial in λ, at the cost of
assuming that DCR is secure against poly(λ) = κO(c) adversaries. For example, setting
c = log(λ) = O(log κ) means that we need the DCR assumption to hold against
adversaries running in time κO(log κ), i.e. , assuming the superpolynomial hardness of
DCR. Now, over F2, any c-local function (hence, for example, every log c-depth boolean
circuit) can be written as a sum of monomials of degree at most c.

7.5.2.3 Compactness and succinct share distribution.

The above scheme is not compact: a 4-party HSS share of a length-m vector x⃗
has size poly(κ) · m. We show here how to transform it into a compact scheme,
with share size m + o(m) · poly(κ), assuming the existence of local pseudoran-
dom generators. Local PRGs have been introduced in a seminal work of Gol-
dreich [Gol00]. Since their introduction, they have been investigated in numerous
works [MST03,AHI04,CEMT09,CEMT14,OW14,AL16,CDM+18], and are regularly
used to achieve advanced cryptographic primitives, such as secure computation with
constant computational overhead [IKOS08, ADI+17] or more recently indistinguisha-
bility obfuscation [JLS21,JLS22]. A local PRG G with stretch s stretches a seed seed

155

of size t into a length-t1+s pseudorandom string, such that every bit of G(seed) is a
function of a constant number of bits of seed.
To achieve compactness, we use a standard hybrid encapsulation technique with a local
PRG. Concretely, let HSS be the non-compact 4-party HSS scheme constructed above.
We construct a new scheme HSS′ as follows:

• HSS′.Share(x) : given a length-m vector x of inputs, sample four seeds (seedi)i≤4
for a local PRG G with stretch s and seed size m1/(1+s). Compute (x(i))i≤4 ←
HSS.Share(seed1||seed2||seed3||seed4), and y ← x ⊕ G(seed1) ⊕ G(seed2) ⊕
G(seed3)⊕G(seed4). Output (x(i), z) to each party i.

• HSS′.Eval(i, f, (x(i), z)) : define the function

f ′z : (seedi)i≤4 → f

(
z ⊕

4⊕
i=1

G(seedi)

)
.

Output y(i) ← HSS.Eval(i, f ′z, x
(i)).

Correctness is clear by inspection. The security analysis of HSS′ proceeds in two
simple games: in the first game, using the security of HSS, simulate the shares of
(seed1, · · · , seed4). In the second game, since the seeds seedi are not used anymore,
invoke the pseudorandomness of G to replace z by a uniformly random string. For
efficiency, observe that since G has constant locality (and constant depth), whenever
f is a loglog-depth function, so is f ′.
It remain to discuss compactness. The size of a share is |x(i)| + |z| = poly(κ) ·
m1/(1+s) + m = m + o(m) · poly(κ). Furthermore, the scheme admits a straightfor-
ward succinct protocol for securely distributing shares of an input vector x. Assume
that the parties Pi have shares xi of the input vector x (the case where x is the
concatenation of their joint input is directly implied by this case). Each party Pi

locally samples seedi, and the party jointly run a generic secure computation pro-
tocol (e.g. using DCR-based oblivious transfer, with security parameter κ) for se-
curely computing HSS.Share(seed1||seed2||seed3||seed4). Then, each party Pi broadcasts
zi ← xi ⊕G(seedi), and all parties reconstruct z =

⊕4
i=1 zi. The total communication

of the protocol is 4m+ poly(κ, o(m)), which is m · (4 + o(1)) for a large enough m.

7.5.3 Sublinear-Communication Secure Multiparty Computa-
tion from New Assumptions

Combining section 7.5.1 with instantiations of corrSPIR and additive HSS from the
literature (and section 7.5.2) yields sublinear-communication secure 3- and 5-party
computation of shallow boolean circuits from a variety of assumptions. Layered boolean
circuits are boolean circuits whose gates can be arranged into layers such that any
wire connects adjacent layers. It is well-known from previous works [BGI16a,Cou19,
CM21] that sublinear protocols for low-depth circuits translate to sublinear protocols
for general layered circuits: the parties simply cut the layered circuit into low-depth
“chunks”, and securely evaluate it chunk-by-chunk. For each chunk, a sublinear secure
protocol is invoked to compute the low-depth function which maps shares of the values
on the first layer to shares of the values on the first layer of the next chunk.

Theorem 19 (Sublinear-Communication (N+1)-PC from New Assumptions).

156

• 3-PC of Shallow Circuits: Let C : {0, 1}n → {0, 1}m be a size-s, depth-d
(d ≤ log log s−log log log s) boolean circuit. Let ϵ ∈ (0, 1). Assuming the Learning
Parity with Noise (LPN) assumption with dimension dim = poly(λ), number
of samples num = (n + m)1/3 · λO(1), and noise rate ρ = numϵ−1 (for some
constant 0 < ϵ < 1) together with any of the following additional computational
assumptions:

– Decisional Diffie-Hellman

– Learning with Errors with polynomial-size modulus

– Quadratic Residuosity and Superpolynomial F2-LPN (i.e. assuming the secu-
rity against time-λ2 log λ adversaries of F2-LPN with dimension λlog λ, 2λlog λ

samples, and rate λ/(2λlog λ)).

There exists a 3-party protocol with communication complexity λO(1)+O(n+m+
2d+2d ·poly(λ)·polylog(n)·((n+m)2/3+(n+m)(1+2ϵ)/3)) to securely compute C (that
is, to UC-securely realise FSFE(C)) in the presence of a semi-honest adversary
statically corrupting any number of parties. In particular, if d ≤ (log log s)/4 the
communication complexity is λO(1) +O(n +m +

√
s · poly(λ) · polylog(n) · ((n +

m)2/3+(n+m)(1+2ϵ)/3)) (for some arbitrarily small constant 0 < δ < 1/2), which
is sublinear in the circuit-size, as detailed in remark 6.

• 3-PC of Layered Boolean Circuits: Let C : {0, 1}n → {0, 1}m be a size-s,
depth-d layered boolean circuit. Let ϵ ∈ (0, 1). Assuming the Learning Parity
with Noise (LPN) assumption with dimension dim = poly(λ), number of samples
num = ((s/d)2/sϵ)1/3 · poly(λ), and noise rate ρ = num−1/2 together with any of
the following additional computational assumptions:

– Decisional Diffie-Hellman

– Learning with Errors with polynomial-size modulus

– Quadratic Residuosity and Superpolynomial F2-LPN (i.e. assuming the secu-
rity against time-λ2 log λ adversaries of F2-LPN with dimension λlog λ, 2λlog λ

samples, and rate λ/(2λlog λ)).

There exists a 3-party protocol with communication complexity O(n+m+ d1/3 ·
s2(1+ϵ)/3 · poly(λ) + s/(log log s)) to securely compute C (that is, to UC-securely
realise FSFE(C)) in the presence of a semi-honest adversary statically corrupting
any number of parties. In particular, if d = o(s1−ϵ/poly(λ)) (i.e. the circuit is
not too “tall and skinny”) the communication complexity is O(n + m + s

log log s
),

which is sublinear in the circuit-size.

• 5-PC of Shallow Circuits: Let ϵ ∈ (0, 1). Assuming the existence of a
constant-locality PRG with polynomial stretch, there exists a constant c ≥ 3 such
that for any boolean circuit C : {0, 1}n → {0, 1}m of size s and depth d (d ≤
(log log s − log log log s)/2c), assuming the superpolynomial Decision Composite
Residuosity (DCR) assumption, the Learning Parity with Noise (LPN) assump-
tion with dimension dim = poly(λ), number of samples num = (n+m)1/3 · λO(1),
and noise rate ρ = numϵ−1 (for some constant 0 < ϵ < 1), as well as any of the
following computational assumptions:

157

– Decisional Diffie-Hellman (DDH)

– Learning with Errors with polynomial-size modulus (poly-modulus LWE)

– Quadratic Residuosity (QR) and Superpolynomial F2-LPN (i.e. assuming
the security against time-λ2 log λ adversaries of F2-LPN with dimension λlog λ,
2λlog λ samples, and rate λ/(2λlog λ)).

There exists a 5-party protocol with communication complexity λO(1) + O(n +

m + 2d/2
c+2d/2

c

· poly(λ) · polylog(n) · ((n + m)2/3 + (n + m)(1+2ϵ)/3)) to securely
compute C (that is, to UC-securely realise FSFE(C)) in the presence of a semi-
honest adversary statically corrupting any number of parties. In particular, if
d ≤ (log log s)/2c+2 the communication complexity is λO(1) + O(n + m +

√
s ·

poly(λ) · polylog(n) · ((n + m)2/3 + (n + m)(1+2ϵ)/3)) (for some arbitrarily small
constant 0 < ϵ < 1/2), which is sublinear in the circuit-size, as detailed in
remark 6.

• 5-PC of Layered Boolean Circuits: Let ϵ ∈ (0, 1). Assuming the existence
of a constant-locality PRG with polynomial stretch, there exists a constant c ≥ 3
such that for any layered boolean circuit C : {0, 1}n → {0, 1}m of size s and depth
d, assuming the superpolynomial Decision Composite Residuosity (DCR) assump-
tion, assuming the Learning Parity with Noise (LPN) assumption with dimension
dim = poly(λ), number of samples num = ((s2c/d)2/sϵ)1/3 ·poly(λ), and noise rate
ρ = num−1/2 together with any of the following additional computational assump-
tions:

– Decisional Diffie-Hellman

– Learning with Errors with polynomial-size modulus

– Quadratic Residuosity and Superpolynomial F2-LPN (i.e. assuming the secu-
rity against time-λ2 log λ adversaries of F2-LPN with dimension λlog λ, 2λlog λ

samples, and rate λ/(2λlog λ)).

There exists a 5-party protocol with communication complexity O(n+m+ d1/3 ·
s2(1+ϵ)/3 · poly(λ) + s/(log log s)) to securely compute C (that is, to UC-securely
realise FSFE(C)) in the presence of a semi-honest adversary statically corrupting
any number of parties. In particular, if d = o(s1−ϵ/poly(λ)) (i.e. the circuit is
not too “tall and skinny”) the communication complexity is O(n + m + s

log log s
),

which is sublinear in the circuit-size.

We refer to [BCM23] for the proof of theorem 19.
Note that combining the works of [BBDP22,OSY21] seems to implicitly yield rate-1
batch OT from DCR, and in turn correlated SPIR [BCM22]: if true, the assumptions for
sublinear-communication five-party MPC can be simplifed to constant-locality PRG,
LPN, and superpolynomial DCR (without the need for DDH, LWE, or QR). Since this
claim was never made formally, we do not use it.
We conclude by remarking that while this may not be immediately apparent due to
the complicated expressions, the above communication complexities do indeed qualify
as “sublinear in the circuit-size”.

Remark 6 (The Expressions of Theorem 19 are Sublinear in the Circuit Size). Recall
that a protocol for securely computing a size-s circuit with n inputs and m outputs

158

is sublinear in the circuit-size if its communication complexity is of the form λO(1) +
poly(n + m) + o(s), where poly is some fixed polynomial. The communication of our
protocols for loglog-depth circuits, both in the 3- and the 5-party case, are sublinear
in the circuit-size. For 3PC and 5PC of loglog-depth circuits, the expression is the
following:

λO(1) +O(n+m+
√
s · poly(λ) · polylog(n) · ((n+m)2/3 + (n+m)(1+2ϵ)/3)).

where ϵ ∈ (0, 1) is some constant tied to the strength of the LPN assumption. Because
we view s as an arbitrarily large polynomial in the security parameter (in other words
we are interested in an asymptotic notion of sublinearity), there exists an arbitrarily
small constant δ ∈ (0, 1

2
) such that poly(λ) ≤ sδ. Therefore the complexity can be

simplified as:

λO(1) +O(n+m+ s
1
2
+δ · polylog(n) · ((n+m)2/3 + (n+m)(1+2ϵ)/3)).

Whenever sδ ≥ polylog(n) · ((n + m)2/3 + (n + m)(1+2ϵ)/3), the above expression is
λO(1) + O(n +m + s1+2δ). Whenever sδ < polylog(n) · ((n +m)2/3 + (n +m)(1+2ϵ)/3),
the entire expression is already some fixed polynomial in n + m. Therefore, our final
complexity is of the form λO(1) + polyδ(n+m) + s

1
2
+2δ.

159

160

Chapter 8

Open Questions

In this thesis, we presented new ways to break the circuit-size barrier for secure
computation. Specifically, we put forward two new ways of breaking the circuit-size
barrier for secure two-party computation, by introducing the notions of “single-circuit
HSS” and “correlated symmetric PIR”. This extends the set of assumptions known
to imply sublinear-communication two-party computation to quasipolynomial LPN
and {LPN+QR}. Finally, by combining our two novel approaches we present the
first sublinear-communication for secure multiparty computation without FHE.
Furthermore, in the two-party setting, we show how to upgrade previous HSS-based
approaches to one-sided statistical security, which is the strongest possible security
guarantee.

We now list a few technical questions left open by our work.

Is decomposability inherent to rate-1 batch OT? Our idea of achieving
sublinear-communication secure two-party computation from correlated SPIR, and bas-
ing the latter on decomposable batch OT, was conceived indendepently of Brakerski,
Branco, Döttling, and Pu’s [BBDP22] instantiation. This raises the question of whether
it is merely a fortunate coincidence that their construction happens to be decompos-
able, or whether decomposability is an inherent property of two-round rate-1 batch
OT.
We cannot hope to prove a statement of the form “any rate-1 batch OT is de-
composable”, without ruling out the existence of rate-1 batch OT altogether. In-
deed, it is possible to turn a decomposable rate-1 batch OT into a rate-1 batch
OT which is not decomposable (e.g. by applying the permutation (x1, . . . , xk) 7→
(x1 ⊕ x2, x2 ⊕ x3, . . . , xn−1 ⊕ xn, xn ⊕ x1) to the decomposable part, which preserves
correctness, security, and rate, but breaks decomposability). Therefore a positive an-
swer to this question would be a statement of the form “without loss of generality, a
rate-1 batch OT can be assumed to be decomposable”.

Open Question 1. Does the existence of two-round rate-1 batch OT imply the exis-
tence of decomposable batch OT?

A positive answer to this question would be surprising, but would constitute a sig-
nificant step towards understanding the minimal assumptions for low-communication
secure computations (depending on which assumptions are made, if any, to equip a
rate-1 batch OT scheme with decomposablity.).

Beyond Boolean Circuits. All of our schemes which use correlated SPIR (i.e. those
of chapters 6 and 7 and [BCM22, BCM23]) are restricted to computing circuits over

161

constant-size rings. Extending our techniques to arithmetic circuits over more general
rings can be done, given the primitive of correlated Oblivious Polynomial Evaluation
(correlated OPE) [BCM23], which is an arithmetic analog of correlated SPIR.

Open Question 2. Can correlated OPE (for “Mix-and-Match” queries) [BCM23] over
rings of super-constant size be built from assumptions not known to imply FHE?

Beyond Layered Circuits. The only polynomial-computation sublinear-
communication protocols supporting the class P/poly are based on FHE. All
other protocols achieve low-communication secure computation for “low-yet-super-
constant-depth” circuits, which in turn yields secure computation of arbitrary depth
layered circuits using a slightly sublinear amount of computation. The reason other
approaches are stuck at low-depth computations is either because computation scales
doubly exponentially in the circuit depth, or because they rely on Barrington’s
theorem [Bar89].

Open Question 3. Can the circuit-size barrier be broken for all polynomial-size cir-
cuits in the correlated randomness model, but using polynomial computation, or with
computational security, but “without FHE”.

162

Bibliography

[ADI+17] Benny Applebaum, Ivan Damgård, Yuval Ishai, Michael Nielsen, and Lior
Zichron. Secure arithmetic computation with constant computational
overhead. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017,
Part I, volume 10401 of LNCS, pages 223–254. Springer, Heidelberg, Au-
gust 2017.

[ADOS22] Damiano Abram, Ivan Damgård, Claudio Orlandi, and Peter Scholl. An
algebraic framework for silent preprocessing with trustless setup and
active security. In Yevgeniy Dodis and Thomas Shrimpton, editors,
CRYPTO 2022, Part IV, volume 13510 of LNCS, pages 421–452. Springer,
Heidelberg, August 2022.

[AHI04] Michael Alekhnovich, Edward A. Hirsch, and Dmitry Itsykson. Exponen-
tial lower bounds for the running time of DPLL algorithms on satisfiable
formulas. In Josep Díaz, Juhani Karhumäki, Arto Lepistö, and Don-
ald Sannella, editors, ICALP 2004, volume 3142 of LNCS, pages 84–96.
Springer, Heidelberg, July 2004.

[AHI+17] Benny Applebaum, Naama Haramaty, Yuval Ishai, Eyal Kushilevitz, and
Vinod Vaikuntanathan. Low-complexity cryptographic hash functions. In
Christos H. Papadimitriou, editor, ITCS 2017, volume 4266, pages 7:1–
7:31, 67, January 2017. LIPIcs.

[AIK07] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography with
constant input locality. In Alfred Menezes, editor, CRYPTO 2007, volume
4622 of LNCS, pages 92–110. Springer, Heidelberg, August 2007.

[AIK09] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography with
constant input locality. Journal of Cryptology, 22(4):429–469, October
2009.

[AJL+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod
Vaikuntanathan, and Daniel Wichs. Multiparty computation with low
communication, computation and interaction via threshold FHE. In David
Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume
7237 of LNCS, pages 483–501. Springer, Heidelberg, April 2012.

[AL16] Benny Applebaum and Shachar Lovett. Algebraic attacks against random
local functions and their countermeasures. In Daniel Wichs and Yishay
Mansour, editors, 48th ACM STOC, pages 1087–1100. ACM Press, June
2016.

163

[ALSZ17] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner.
More efficient oblivious transfer extensions. Journal of Cryptology,
30(3):805–858, July 2017.

[Bar89] David A. Barrington. Bounded-width polynomial-size branching programs
recognize exactly those languages in nc1. Journal of Computer and System
Sciences, 38(1):150–164, 1989.

[BBC+20] Marshall Ball, Elette Boyle, Ran Cohen, Lisa Kohl, Tal Malkin, Pierre
Meyer, and Tal Moran. Topology-hiding communication from minimal
assumptions. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020,
Part II, volume 12551 of LNCS, pages 473–501. Springer, Heidelberg,
November 2020.

[BBC+23] Marshall Ball, Elette Boyle, Ran Cohen, Lisa Kohl, Tal Malkin, Pierre
Meyer, and Tal Moran. Topology-hiding communication from minimal
assumptions. to appear in Journal of Cryptology, 2023.

[BBDP22] Zvika Brakerski, Pedro Branco, Nico Döttling, and Sihang Pu. Batch-
OT with optimal rate. In Orr Dunkelman and Stefan Dziembowski, edi-
tors, EUROCRYPT 2022, Part II, volume 13276 of LNCS, pages 157–186.
Springer, Heidelberg, May / June 2022.

[BBKM23] Marshall Ball, Alexander Bienstock, Lisa Kohl, and Pierre Meyer. Towards
topology-hiding computation from oblivious transfer. Preprint on webpage
at https://eprint.iacr.org/2023/849.pdf, 2023.

[BCG+17] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, and Michele
Orrù. Homomorphic secret sharing: Optimizations and applications. In
Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu,
editors, ACM CCS 2017, pages 2105–2122. ACM Press, October / Novem-
ber 2017.

[BCG+19a] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter
Rindal, and Peter Scholl. Efficient two-round OT extension and silent non-
interactive secure computation. In Lorenzo Cavallaro, Johannes Kinder,
XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 291–
308. ACM Press, November 2019.

[BCG+19b] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and
Peter Scholl. Efficient pseudorandom correlation generators: Silent OT
extension and more. In Alexandra Boldyreva and Daniele Micciancio,
editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 489–518.
Springer, Heidelberg, August 2019.

[BCG+20] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and
Peter Scholl. Correlated pseudorandom functions from variable-density
LPN. In 61st FOCS, pages 1069–1080. IEEE Computer Society Press,
November 2020.

[BCGI18] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing
vector OLE. In David Lie, Mohammad Mannan, Michael Backes, and
XiaoFeng Wang, editors, ACM CCS 2018, pages 896–912. ACM Press,
October 2018.

164

https://eprint.iacr.org/2023/849.pdf

[BCM22] Elette Boyle, Geoffroy Couteau, and Pierre Meyer. Sublinear secure
computation from new assumptions. In Eike Kiltz and Vinod Vaikun-
tanathan, editors, TCC 2022, Part II, volume 13748 of LNCS, pages 121–
150. Springer, Heidelberg, November 2022.

[BCM23] Elette Boyle, Geoffroy Couteau, and Pierre Meyer. Sublinear-
communication secure multiparty computation does not require fhe. In
Carmit Hazay and Martijn Stam, editors, Advances in Cryptology – EU-
ROCRYPT 2023, pages 159–189, Cham, 2023. Springer Nature Switzer-
land.

[BCP03] Emmanuel Bresson, Dario Catalano, and David Pointcheval. A simple
public-key cryptosystem with a double trapdoor decryption mechanism
and its applications. In Chi-Sung Laih, editor, ASIACRYPT 2003, volume
2894 of LNCS, pages 37–54. Springer, Heidelberg, November / December
2003.

[BDOZ11] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. Semi-
homomorphic encryption and multiparty computation. In Kenneth G.
Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 169–
188. Springer, Heidelberg, May 2011.

[Bea92] Donald Beaver. Efficient multiparty protocols using circuit randomization.
In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages
420–432. Springer, Heidelberg, August 1992.

[BEC+23] Chris Brzuska, Christoph Egger, Geoffroy Couteau, Pihla Karanko, and
Pierre Meyer. New random oracle instantiations from extremely lossy
functions. Private Communication, 2023.

[Bel84] Edward G. Belaga. Locally synchronous complexity in the light of the
trans-box method. In M. Fontet and K. Mehlhorn, editors, STACS 84,
pages 129–139, Berlin, Heidelberg, 1984. Springer Berlin Heidelberg.

[BFKL94] Avrim Blum, Merrick L. Furst, Michael J. Kearns, and Richard J. Lip-
ton. Cryptographic primitives based on hard learning problems. In Dou-
glas R. Stinson, editor, CRYPTO’93, volume 773 of LNCS, pages 278–291.
Springer, Heidelberg, August 1994.

[BFKR91] Donald Beaver, Joan Feigenbaum, Joe Kilian, and Phillip Rogaway. Se-
curity with low communication overhead. In Alfred J. Menezes and
Scott A. Vanstone, editors, CRYPTO’90, volume 537 of LNCS, pages
62–76. Springer, Heidelberg, August 1991.

[BG10] Zvika Brakerski and Shafi Goldwasser. Circular and leakage re-
silient public-key encryption under subgroup indistinguishability - (or:
Quadratic residuosity strikes back). In Tal Rabin, editor, CRYPTO 2010,
volume 6223 of LNCS, pages 1–20. Springer, Heidelberg, August 2010.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and
pseudorandom functions. In Hugo Krawczyk, editor, PKC 2014, volume
8383 of LNCS, pages 501–519. Springer, Heidelberg, March 2014.

165

[BGI15] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In Elis-
abeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II,
volume 9057 of LNCS, pages 337–367. Springer, Heidelberg, April 2015.

[BGI16a] Elette Boyle, Niv Gilboa, and Yuval Ishai. Breaking the circuit size barrier
for secure computation under DDH. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages 509–
539. Springer, Heidelberg, August 2016.

[BGI16b] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Im-
provements and extensions. In Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM
CCS 2016, pages 1292–1303. ACM Press, October 2016.

[BGI17] Elette Boyle, Niv Gilboa, and Yuval Ishai. Group-based secure compu-
tation: Optimizing rounds, communication, and computation. In Jean-
Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017,
Part II, volume 10211 of LNCS, pages 163–193. Springer, Heidelberg,
April / May 2017.

[BGI+18] Elette Boyle, Niv Gilboa, Yuval Ishai, Huijia Lin, and Stefano Tessaro.
Foundations of homomorphic secret sharing. In Anna R. Karlin, editor,
ITCS 2018, volume 94, pages 21:1–21:21. LIPIcs, January 2018.

[BGI19] Elette Boyle, Niv Gilboa, and Yuval Ishai. Secure computation with
preprocessing via function secret sharing. In Dennis Hofheinz and Alon
Rosen, editors, TCC 2019, Part I, volume 11891 of LNCS, pages 341–371.
Springer, Heidelberg, December 2019.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness the-
orems for non-cryptographic fault-tolerant distributed computation (ex-
tended abstract). In 20th ACM STOC, pages 1–10. ACM Press, May
1988.

[BIKK14] Amos Beimel, Yuval Ishai, Ranjit Kumaresan, and Eyal Kushilevitz. On
the cryptographic complexity of the worst functions. In Yehuda Lindell,
editor, TCC 2014, volume 8349 of LNCS, pages 317–342. Springer, Hei-
delberg, February 2014.

[BIM+23] Elette Boyle, Yuval Ishai, Pierre Meyer, Robert Robere, and Gal Yehuda.
On low-end obfuscation and learning. In Yael Tauman Kalai, editor, 14th
Innovations in Theoretical Computer Science Conference (ITCS 2023),
volume 251 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 23:1–23:28, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik.

[BKS19] Elette Boyle, Lisa Kohl, and Peter Scholl. Homomorphic secret shar-
ing from lattices without FHE. In Yuval Ishai and Vincent Rijmen, ed-
itors, EUROCRYPT 2019, Part II, volume 11477 of LNCS, pages 3–33.
Springer, Heidelberg, May 2019.

[BKW00] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning,
the parity problem, and the statistical query model. In 32nd ACM STOC,
pages 435–440. ACM Press, May 2000.

166

[BKW03] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learn-
ing, the parity problem, and the statistical query model. J. ACM,
50(4):506–519, jul 2003.

[BLVW19] Zvika Brakerski, Vadim Lyubashevsky, Vinod Vaikuntanathan, and
Daniel Wichs. Worst-case hardness for LPN and cryptographic hashing
via code smoothing. In Yuval Ishai and Vincent Rijmen, editors, EURO-
CRYPT 2019, Part III, volume 11478 of LNCS, pages 619–635. Springer,
Heidelberg, May 2019.

[Bon98] Dan Boneh. The decision Diffie-Hellman problem. In Third Algorithmic
Number Theory Symposium (ANTS), volume 1423 of LNCS. Springer,
Heidelberg, 1998. Invited paper.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions
and their applications. In Kazue Sako and Palash Sarkar, editors, ASI-
ACRYPT 2013, Part II, volume 8270 of LNCS, pages 280–300. Springer,
Heidelberg, December 2013.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. In 42nd FOCS, pages 136–145. IEEE Computer So-
ciety Press, October 2001.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty uncondi-
tionally secure protocols (extended abstract). In 20th ACM STOC, pages
11–19. ACM Press, May 1988.

[CDM+18] Geoffroy Couteau, Aurélien Dupin, Pierrick Méaux, Mélissa Rossi, and
Yann Rotella. On the concrete security of Goldreich’s pseudorandom
generator. In Thomas Peyrin and Steven Galbraith, editors, ASI-
ACRYPT 2018, Part II, volume 11273 of LNCS, pages 96–124. Springer,
Heidelberg, December 2018.

[CEMT09] James Cook, Omid Etesami, Rachel Miller, and Luca Trevisan. Goldre-
ich’s one-way function candidate and myopic backtracking algorithms. In
Omer Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 521–538.
Springer, Heidelberg, March 2009.

[CEMT14] James Cook, Omid Etesami, Rachel Miller, and Luca Trevisan. On the
one-way function candidate proposed by goldreich. ACM Transactions on
Computation Theory (TOCT), 6(3):14, 2014.

[CGKS95] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Pri-
vate information retrieval. In 36th FOCS, pages 41–50. IEEE Computer
Society Press, October 1995.

[Cha90] David Chaum. The spymasters double-agent problem: Multiparty compu-
tations secure unconditionally from minorities and cryptographically from
majorities. In Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS,
pages 591–602. Springer, Heidelberg, August 1990.

[CK89] Benny Chor and Eyal Kushilevitz. A zero-one law for Boolean privacy
(extended abstract). In 21st ACM STOC, pages 62–72. ACM Press, May
1989.

167

[CK93] Benny Chor and Eyal Kushilevitz. A communication-privacy tradeoff for
modular addition. Information Processing Letters, 45(4):205–210, 1993.

[CLT22] Guilhem Castagnos, Fabien Laguillaumie, and Ida Tucker. Threshold lin-
early homomorphic encryption on Z/2kZ. In Shweta Agrawal and Dongdai
Lin, editors, ASIACRYPT 2022, Part II, volume 13792 of LNCS, pages
99–129. Springer, Heidelberg, December 2022.

[CM21] Geoffroy Couteau and Pierre Meyer. Breaking the circuit size barrier for
secure computation under quasi-polynomial LPN. In Anne Canteaut and
François-Xavier Standaert, editors, EUROCRYPT 2021, Part II, volume
12697 of LNCS, pages 842–870. Springer, Heidelberg, October 2021.

[CMPR23] Geoffroy Couteau, Pierre Meyer, Alain Passelègue, and Mahshid Riahinia.
Constrained pseudorandom functions from homomorphic secret sharing.
In Carmit Hazay and Martijn Stam, editors, Advances in Cryptology – EU-
ROCRYPT 2023, pages 194–224, Cham, 2023. Springer Nature Switzer-
land.

[COS+22] Ilaria Chillotti, Emmanuela Orsini, Peter Scholl, Nigel Paul Smart, and
Barry Van Leeuwen. Scooby: Improved multi-party homomorphic se-
cret sharing based on fhe. In Clemente Galdi and Stanislaw Jarecki, edi-
tors, Security and Cryptography for Networks, pages 540–563, Cham, 2022.
Springer International Publishing.

[Cou19] Geoffroy Couteau. A note on the communication complexity of multiparty
computation in the correlated randomness model. In Yuval Ishai and
Vincent Rijmen, editors, EUROCRYPT 2019, Part II, volume 11477 of
LNCS, pages 473–503. Springer, Heidelberg, May 2019.

[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm
for adaptive chosen ciphertext secure public-key encryption. In Lars R.
Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 45–64.
Springer, Heidelberg, April / May 2002.

[DFH12] Ivan Damgård, Sebastian Faust, and Carmit Hazay. Secure two-party com-
putation with low communication. In Ronald Cramer, editor, TCC 2012,
volume 7194 of LNCS, pages 54–74. Springer, Heidelberg, March 2012.

[DGH+20] Nico Döttling, Sanjam Garg, Mohammad Hajiabadi, Daniel Masny, and
Daniel Wichs. Two-round oblivious transfer from CDH or LPN. In Anne
Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part II, volume
12106 of LNCS, pages 768–797. Springer, Heidelberg, May 2020.

[DGI+19] Nico Döttling, Sanjam Garg, Yuval Ishai, Giulio Malavolta, Tamer Mour,
and Rafail Ostrovsky. Trapdoor hash functions and their applications.
In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,
Part III, volume 11694 of LNCS, pages 3–32. Springer, Heidelberg, August
2019.

[DGS03] Ivan Damgård, Jens Groth, and Gorm Salomonsen. The Theory and Im-
plementation of an Electronic Voting System, pages 77–99. Springer US,
Boston, MA, 2003.

168

[DHRW16] Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel Wichs.
Spooky encryption and its applications. In Matthew Robshaw and
Jonathan Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS,
pages 93–122. Springer, Heidelberg, August 2016.

[DLN19] Ivan Damgård, Kasper Green Larsen, and Jesper Buus Nielsen. Com-
munication lower bounds for statistically secure MPC, with or without
preprocessing. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part II, volume 11693 of LNCS, pages 61–84. Springer,
Heidelberg, August 2019.

[DLS21] Ivan Bjerre Damgård, Boyang Li, and Nikolaj Ignatieff Schwartzbach.
More Communication Lower Bounds for Information-Theoretic MPC. In
Stefano Tessaro, editor, 2nd Conference on Information-Theoretic Cryp-
tography (ITC 2021), volume 199 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 2:1–2:18, Dagstuhl, Germany, 2021. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik.

[DNNR17] Ivan Damgård, Jesper Buus Nielsen, Michael Nielsen, and Samuel Ranel-
lucci. The TinyTable protocol for 2-party secure computation, or: Gate-
scrambling revisited. In Jonathan Katz and Hovav Shacham, editors,
CRYPTO 2017, Part I, volume 10401 of LNCS, pages 167–187. Springer,
Heidelberg, August 2017.

[DNOR16] Ivan Damgård, Jesper Buus Nielsen, Rafail Ostrovsky, and Adi Rosén.
Unconditionally secure computation with reduced interaction. In Marc
Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II,
volume 9666 of LNCS, pages 420–447. Springer, Heidelberg, May 2016.

[DNPR16] Ivan Damgård, Jesper Buus Nielsen, Antigoni Polychroniadou, and
Michael Raskin. On the communication required for unconditionally se-
cure multiplication. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part II, volume 9815 of LNCS, pages 459–488. Springer,
Heidelberg, August 2016.

[DPP14] Deepesh Data, Manoj Prabhakaran, and Vinod M. Prabhakaran. On the
communication complexity of secure computation. In Juan A. Garay and
Rosario Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of LNCS,
pages 199–216. Springer, Heidelberg, August 2014.

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multi-
party computation from somewhat homomorphic encryption. In Reihaneh
Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of
LNCS, pages 643–662. Springer, Heidelberg, August 2012.

[DZ13] Ivan Damgård and Sarah Zakarias. Constant-overhead secure computation
of Boolean circuits using preprocessing. In Amit Sahai, editor, TCC 2013,
volume 7785 of LNCS, pages 621–641. Springer, Heidelberg, March 2013.

[FGJS17] Nelly Fazio, Rosario Gennaro, Tahereh Jafarikhah, and William E. Skeith
III. Homomorphic secret sharing from paillier encryption. In Tatsuaki
Okamoto, Yong Yu, Man Ho Au, and Yannan Li, editors, ProvSec 2017,
volume 10592 of LNCS, pages 381–399. Springer, Heidelberg, October
2017.

169

[FKN94] Uriel Feige, Joe Kilian, and Moni Naor. A minimal model for secure
computation (extended abstract). In 26th ACM STOC, pages 554–563.
ACM Press, May 1994.

[FY92] Matthew K. Franklin and Moti Yung. Communication complexity of se-
cure computation (extended abstract). In 24th ACM STOC, pages 699–
710. ACM Press, May 1992.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In
Michael Mitzenmacher, editor, 41st ACM STOC, pages 169–178. ACM
Press, May / June 2009.

[GHAHJ22] Aarushi Goel, Mathias Hall-Andersen, Aditya Hegde, and Abhishek Jain.
Secure multiparty computation with free branching. In Orr Dunkelman
and Stefan Dziembowski, editors, EUROCRYPT 2022, Part I, volume
13275 of LNCS, pages 397–426. Springer, Heidelberg, May / June 2022.

[GI14] Niv Gilboa and Yuval Ishai. Distributed point functions and their ap-
plications. In Phong Q. Nguyen and Elisabeth Oswald, editors, EURO-
CRYPT 2014, volume 8441 of LNCS, pages 640–658. Springer, Heidelberg,
May 2014.

[Gil99] Niv Gilboa. Two party RSA key generation. In Michael J. Wiener, editor,
CRYPTO’99, volume 1666 of LNCS, pages 116–129. Springer, Heidelberg,
August 1999.

[GJ11] Anna Gál and Jing-Tang Jang. The size and depth of layered boolean
circuits. Information Processing Letters, 111(5):213–217, 2011.

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to
play mental poker keeping secret all partial information. In 14th ACM
STOC, pages 365–377. ACM Press, May 1982.

[GMW87a] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In
Alfred Aho, editor, 19th ACM STOC, pages 218–229. ACM Press, May
1987.

[GMW87b] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to prove all
NP-statements in zero-knowledge, and a methodology of cryptographic
protocol design. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263
of LNCS, pages 171–185. Springer, Heidelberg, August 1987.

[Gol00] Oded Goldreich. Candidate one-way functions based on expander graphs.
Cryptology ePrint Archive, Report 2000/063, 2000. https://eprint.
iacr.org/2000/063.

[Har77] Lawrence H. Harper. An log lower bound on synchronous combinational
complexity. 1977.

[HK20] David Heath and Vladimir Kolesnikov. Stacked garbling - garbled circuit
proportional to longest execution path. In Daniele Micciancio and Thomas
Ristenpart, editors, CRYPTO 2020, Part II, volume 12171 of LNCS, pages
763–792. Springer, Heidelberg, August 2020.

170

https://eprint.iacr.org/2000/063
https://eprint.iacr.org/2000/063

[HK21] David Heath and Vladimir Kolesnikov. LogStack: Stacked garbling with
O(b log b) computation. In Anne Canteaut and François-Xavier Standaert,
editors, EUROCRYPT 2021, Part III, volume 12698 of LNCS, pages 3–32.
Springer, Heidelberg, October 2021.

[HKP20] David Heath, Vladimir Kolesnikov, and Stanislav Peceny. MOTIF: (al-
most) free branching in GMW - via vector-scalar multiplication. In Shiho
Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part III, volume
12493 of LNCS, pages 3–30. Springer, Heidelberg, December 2020.

[IK04] Yuval Ishai and Eyal Kushilevitz. On the hardness of information-theoretic
multiparty computation. In Christian Cachin and Jan Camenisch, editors,
EUROCRYPT 2004, volume 3027 of LNCS, pages 439–455. Springer, Hei-
delberg, May 2004.

[IKM+13] Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard, Claudio Orlandi, and
Anat Paskin-Cherniavsky. On the power of correlated randomness in
secure computation. In Amit Sahai, editor, TCC 2013, volume 7785 of
LNCS, pages 600–620. Springer, Heidelberg, March 2013.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending obliv-
ious transfers efficiently. In Dan Boneh, editor, CRYPTO 2003, volume
2729 of LNCS, pages 145–161. Springer, Heidelberg, August 2003.

[IKOS08] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptog-
raphy with constant computational overhead. In Richard E. Ladner and
Cynthia Dwork, editors, 40th ACM STOC, pages 433–442. ACM Press,
May 2008.

[IP07] Yuval Ishai and Anat Paskin. Evaluating branching programs on en-
crypted data. In Salil P. Vadhan, editor, TCC 2007, volume 4392 of
LNCS, pages 575–594. Springer, Heidelberg, February 2007.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography
on oblivious transfer - efficiently. In David Wagner, editor, CRYPTO 2008,
volume 5157 of LNCS, pages 572–591. Springer, Heidelberg, August 2008.

[JKPT12] Abhishek Jain, Stephan Krenn, Krzysztof Pietrzak, and Aris Tentes. Com-
mitments and efficient zero-knowledge proofs from learning parity with
noise. In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012,
volume 7658 of LNCS, pages 663–680. Springer, Heidelberg, December
2012.

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation
from well-founded assumptions. In Proceedings of the 53rd Annual ACM
SIGACT Symposium on Theory of Computing, pages 60–73, 2021.

[JLS22] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation
from LPN over Fp, DLIN, and PRGs in NC0. In Orr Dunkelman and
Stefan Dziembowski, editors, EUROCRYPT 2022, Part I, volume 13275
of LNCS, pages 670–699. Springer, Heidelberg, May / June 2022.

[Kil91] Joe Kilian. A general completeness theorem for two-party games. In 23rd
ACM STOC, pages 553–560. ACM Press, May 1991.

171

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (ex-
tended abstract). In 24th ACM STOC, pages 723–732. ACM Press, May
1992.

[Kil00] Joe Kilian. More general completeness theorems for secure two-party
computation. In 32nd ACM STOC, pages 316–324. ACM Press, May
2000.

[KO97] Eyal Kushilevitz and Rafail Ostrovsky. Replication is NOT needed: SIN-
GLE database, computationally-private information retrieval. In 38th
FOCS, pages 364–373. IEEE Computer Society Press, October 1997.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and
Thomas Zacharias. Delegatable pseudorandom functions and applications.
In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM
CCS 2013, pages 669–684. ACM Press, November 2013.

[Kus89] Eyal Kushilevitz. Privacy and communication complexity. In 30th FOCS,
pages 416–421. IEEE Computer Society Press, October / November 1989.

[Lin16] Yehuda Lindell. How to simulate it - A tutorial on the simulation proof
technique. Cryptology ePrint Archive, Report 2016/046, 2016. https:
//eprint.iacr.org/2016/046.

[Lyu05] Vadim Lyubashevsky. The parity problem in the presence of noise, de-
coding random linear codes, and the subset sum problem. In Chandra
Chekuri, Klaus Jansen, José D. P. Rolim, and Luca Trevisan, editors, Ap-
proximation, Randomization and Combinatorial Optimization. Algorithms
and Techniques, pages 378–389, Berlin, Heidelberg, 2005. Springer Berlin
Heidelberg.

[MST03] Elchanan Mossel, Amir Shpilka, and Luca Trevisan. On e-biased gener-
ators in NC0. In 44th FOCS, pages 136–145. IEEE Computer Society
Press, October 2003.

[NN01] Moni Naor and Kobbi Nissim. Communication preserving protocols for
secure function evaluation. In 33rd ACM STOC, pages 590–599. ACM
Press, July 2001.

[NP01] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In
S. Rao Kosaraju, editor, 12th SODA, pages 448–457. ACM-SIAM, January
2001.

[NRR00] Moni Naor, Omer Reingold, and Alon Rosen. Pseudo-random functions
and factoring (extended abstract). In 32nd ACM STOC, pages 11–20.
ACM Press, May 2000.

[OSY21] Claudio Orlandi, Peter Scholl, and Sophia Yakoubov. The rise of paillier:
Homomorphic secret sharing and public-key silent OT. In Anne Canteaut
and François-Xavier Standaert, editors, EUROCRYPT 2021, Part I, vol-
ume 12696 of LNCS, pages 678–708. Springer, Heidelberg, October 2021.

[OW14] Ryan ODonnell and David Witmer. Goldreich’s prg: evidence for near-
optimal polynomial stretch. In Computational Complexity (CCC), 2014
IEEE 29th Conference on, pages 1–12. IEEE, 2014.

172

https://eprint.iacr.org/2016/046
https://eprint.iacr.org/2016/046

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree resid-
uosity classes. In Jacques Stern, editor, EUROCRYPT’99, volume 1592
of LNCS, pages 223–238. Springer, Heidelberg, May 1999.

[Pra62] Eugene Prange. The use of information sets in decoding cyclic codes. IRE
Transactions on Information Theory, 8(5):5–9, 1962.

[RAD78] Ronald L Rivest, Len Adleman, and Michael L Dertouzos. On data banks
and privacy homomorphisms. volume 4, pages 169–180. Citeseer, 1978.

[RB89] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty
protocols with honest majority (extended abstract). In 21st ACM STOC,
pages 73–85. ACM Press, May 1989.

[RBO89] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty pro-
tocols with honest majority. In Proceedings of the Twenty-First Annual
ACM Symposium on Theory of Computing, STOC ’89, page 73–85, New
York, NY, USA, 1989. Association for Computing Machinery.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In Harold N. Gabow and Ronald Fagin, editors, 37th ACM
STOC, pages 84–93. ACM Press, May 2005.

[RS21] Lawrence Roy and Jaspal Singh. Large message homomorphic secret shar-
ing from DCR and applications. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part III, volume 12827 of LNCS, pages 687–717, Virtual
Event, August 2021. Springer, Heidelberg.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended ab-
stract). In 23rd FOCS, pages 160–164. IEEE Computer Society Press,
November 1982.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended
abstract). In 27th FOCS, pages 162–167. IEEE Computer Society Press,
October 1986.

[YZW+19] Yu Yu, Jiang Zhang, Jian Weng, Chun Guo, and Xiangxue Li. Colli-
sion resistant hashing from sub-exponential learning parity with noise.
In Steven D. Galbraith and Shiho Moriai, editors, ASIACRYPT 2019,
Part II, volume 11922 of LNCS, pages 3–24. Springer, Heidelberg, De-
cember 2019.

173

	Introduction
	Cryptography
	Secure Multiparty Computation
	Our Results on Sublinear-Communication Secure Multiparty Computation
	The Power of Retrospection: A Romanticised Story
	The Historical Perspective: The ``Raw Data''

	Other Selected Contributions

	Preliminaries
	Notations
	Universal Composability
	Cryptographic Primitives
	Homomorphic Secret Sharing (HSS)
	Function Secret Sharing (FSS)
	Pseudorandom Correlation Generator (PCG)

	Computational Assumptions
	Learning Parity with Noise (LPN)
	Quadratic Residuosity Assumption (QR)
	Decisional Diffie-Hellman (DDH)
	Decision Composite Residuosity (DCR)

	Prior (and Concurrent) Works on Sublinear-Communication Secure Computation
	Information-Theoretic MPC (in the plain model)
	Linear Communication
	Sublinear Communication

	MPC in the Correlated Randomness Model
	Sublinear Online Communication
	Lower Bounds?
	(Sub)linear-Communication Secure Computation in the Correlated Randomness Model, via Circuit Randomisation

	Computational MPC
	Linear Communication
	Sublinear Communication

	Offline-Online Sublinear-Communication Two-Party Computation
	An Overview of Our Protocol
	Block Decomposition of Layered Circuits
	Securely Computing C in the Correlated Randomness Model

	Generating the Correlated Randomness from Quasi-Polynomial LPN
	Substrings Tensor Powers Correlations (stp)
	Good Cover
	PCG for Subsets Tensor Powers (PCGstp)
	Instantiating the MPFSS
	Securely Distributing MPFSS.Gen and stp

	Bridging the Gap between HSS and FHE
	An Overview of this Chapter's Results
	An overview of staged HSS
	An overview of sublinear-communication from staged HSS

	Staged HSS
	Homomorphic Secret Sharing
	HSS following the RMS Template
	Extended Evaluation and Simulatable Memory Values
	Staged Homomorphic Secret Sharing

	Staged HSS from DCR
	HSS Following the RMS Template from DCR.
	HSS with Simulatable Memory Values from DCR.
	Staged HSS from DCR.

	Sublinear-Communication Secure Two-Party Computation with One-Sided Statistical Security from Staged HSS
	In the FupdateHSS-Hybrid Model.
	Instantiating FupdateHSS under DCR.

	Towards a Complete Primitive for Sublinear-Communication Two-Party Computation
	Overview of this Chapter's Results
	Starting point: An SPIR viewpoint.
	Toward batch SPIR with correlated queries.
	Decomposable batch OT.
	Sublinear 2PC from decomposable batch OT.

	Correlated Symmetric PIR
	Correlated Symmetric PIR with ``Mix and Match'' Queries

	Sublinear-Communication Secure Computation from Correlated SPIR
	Sublinear Computation of loglog-Depth Circuits from corrSPIR
	Extension to Layered Circuits

	A ``Generic'' Construction from Decomposable Batch OT
	Decomposable Two-Round Batch Oblivious Transfer
	Bounded Query Repetitions
	Two-Round Batch SPIR with Correlated Queries from Two-Round Decomposable Batch OT (with Bounded Query Repetitions)

	Instantiation from Standard Assumptions
	Decomposable Packed Linearly Homomorphic Encryption
	Two-Round co-PIR
	Decomposable OT from Decomposable LHE

	Breaking the Multi-Party Barrier for Sublinear-Secure Computation, without FHE
	Overview of this Chapter's Results
	General Template for (N+1)-Party Sublinear Secure Computation from N-Party FSS
	Requirements of the FSS Scheme
	The Secure Computation Protocol

	Oblivious Evaluation of LogLog-Depth FSS from PIR
	LogLog-Depth FSS
	Oblivious Evaluation of LogLog-Depth FSS from PIR

	LogLog-Depth FSS from Compact and Additive HSS
	From Compact and Additive HSS
	Defining the LogLog-Depth FSS Scheme.
	From Compact and Additive HSS with Errors

	Instantiations
	Sublinear-Communication Secure Multiparty Computation from PIR and Additive HSS
	Four-Party Additive HSS from DCR
	Sublinear-Communication Secure Multiparty Computation from New Assumptions

	Open Questions

