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Overview

• Existing methods for comparing the survival of two groups are
generally ineffective against differences in hazard occurring in a
few time instances when those instances are unknown to us in
advance

• We propose a method that is effective against such differences
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Survival Data and Analysis

Control (X) Treatment (Y)
t at risk events at risk events

0 1000 29 1000 17
1 971 25 983 24
2 946 21 959 26
3 925 15 933 15
4 910 15 918 26
5 894 17 891 16
6 877 24 875 34
7 853 24 841 17
8 829 23 823 16
...

...
...

...
...

48 365 11 338 8
49 354 6 330 7
50 348 323

The goal of the analysis:
Determine whether the treatment has a non-null effect.
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The Log-Rank Test

• Mantel-Cox log-rank test [Mantel 1966]
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The Log-Rank Test

Control (X) Treatment (Y)
at risk events at risk events

...
...

...
...

...
t nx(t− 1) ox(t) ny(t−1) oy(t)
...

...
...

...
...

⇒

total Group X Group Y

M nx(t − 1)

K︷ ︸︸ ︷
ny(t − 1)

k ox(t) oy(t)

⇓
H0,t : Oy(t) ∼ HyG(M, K, k)

µ(t) := E [Oy(t)|H0,t] , V(t) = Var [Oy(t)|H0,t]

LRT :=

∑T
t=1 (oy(t)− µ(t))√∑T

t=1 V(t)

LRT
D
≈ N (0, 1) under the global null

4



The Log-Rank Test

Control (X) Treatment (Y)
at risk events at risk events

...
...

...
...

...
t nx(t− 1) ox(t) ny(t−1) oy(t)
...

...
...

...
...

⇒

total Group X Group Y

M nx(t − 1)

K︷ ︸︸ ︷
ny(t − 1)

k ox(t) oy(t)

⇓
H0,t : Oy(t) ∼ HyG(M, K, k)

µ(t) := E [Oy(t)|H0,t] , V(t) = Var [Oy(t)|H0,t]

LRT :=

∑T
t=1 (oy(t)− µ(t))√∑T

t=1 V(t)

LRT
D
≈ N (0, 1) under the global null

4



The Log-Rank Test (cont’d)

• The log-rank test:

LRT :=

∑T
t=1 (oy(t)− µ(t))√∑T

t=1 V(t)

Can accommodate censorship
Asymptotically equivalent to the likelihood ratio test in a
proportional hazard model [Breslow 1977]
Not sensitive to excessive hazard localized in time

• Non-homogeneous Log-rank [Tarone & James 1977], [Lee 1996], [Liu et. al.
2022]

Can be sensitive to non-proportional hazards, but
Not useful when time instances of excessive hazard are apriori
unknown
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Survival Data with sparse and weak hazard departures

Our goal:
Attain sensitivity to excessive hazard localized in a few time
instances such that we do not know in advance where those
instances might be

Use cases:

• Identifying age-specific effects [Nuzhdin, Khazaeli, Curtsinger, 2005]
• Analyzing the effect of bursty “space weather” radiation on

radioactive decay [Castro-Palacio et. al. 2020]
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Proposed method: Higher criticism of hypergeometric P-values
(HCHG)

HCHG has two steps:

1. Many exact hypergeometric (HG) tests:

pt := Pr [HyG(M, K, k) ≥ oy(t)] , t = 1, . . . , T,

M = nx(t − 1) + ny(t − 1), K = ny(t − 1), k = ox(t) + oy(t)

2. Global testing with Higher Criticism (HC):

HC := HC(p1, . . . ,pT) := max
i≤Tγ

√
T

i/T − p(i)√
(i/T) (1− i/T)

Notable properties of HCHG:

• Can accommodate censorship
• More sensitive than log-rank when instances of excessive risk

are sparse and weak (later)
• Has a built-in mechanism to identify instances of excessive risk...
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Identifying instances of excessive risk

• Identifying instances of excessive risk via HC thresholding
[Donoho & Jin 2008, 2009]:

∆∗ =
{
t, pt ≤ p(i?)

}
, i? = arg max

i≤i0

√
N

i/T − p(i)√
(i/T) (1− i/T)
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Analysis under Sparse and Weak Effect Model

• Piece-wise exponential decay model [Feigl & Zelen 1965], [Friedman 1982]:

Nx(0) = x0, Ny(0) = y0

for t = 1, . . . , T{
Ox(t) ∼ Pois(Nx(t − 1)λ̄x(t))
Nx(t) = Nx(t − 1)− Ox(t)

{
Oy(t) ∼ Pois(Ny(t − 1)λ̄y(t))
Ny(t) = Ny(t − 1)− Oy(t)

• Non-homogeneous hazard alternative:

H0 : λ̄x(t) = λ̄y(t), ∀t

H1 : λ̄y(t) =

λ̄x(t) w.p. 1− ε(√
λ̄x(t) +

√
δ(t)

)2

w.p. ε

• Sparse and weak calibration:
- Individual effects are sparse: ε = T−β , β ∈ (0, 1)

- Individual effects are weak: δ(t) is small...
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Analysis under Sparse and Weak Effect Model (cont’d)

• Individual effects are weak:
conditioned on nx(t − 1), ny(t − 1), nx(t) + oy(t), hypergeometric
P-values of non-null instances are asymptotically
log-chisquared with a moderate location shift:

−2 log(pt)
D
≈

(
N (

√
r log(T), 1)

)2

, r > 0

[Kipnis 2023], [Donoho & Kipnis 2023]
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Analysis under Sparse and Weak Effect Model (cont’d)

Theorem
HCHG is asymptotically powerful if

r > ρ(β) =

{
2(β − 1/2) 1

2 < β < 3
4 ,

2
(
1−

√
1− β

)2 3
4 ≤ β < 1,

and asymptotically powerless if r < ρ(β)

• ρ(β) is the two-sample sparse normal means phase transition
curve [Donoho & Kipnis 2023]. ρ(β)/2 is the sparse normal means
phase transition curve [Ingster 1997], [Jin 2003], [Donoho & Jin 2004],
[Mukherjee et. al 2015], [Arias-Castro & Wu 2015, 2018], [Jin & Ke 2016]...

Also, when β > 1/2,

• Log-rank is asymptotically powerless
• Fisher’s combination statistic of HG P-values is asymptotically

powerless
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Asymptotic Power and Phase Transition
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Phase transition

Phase transition of HCHG (ρ(β))
Phase transition of log-rank (β = 1/2)

HCHG is

asymptotically

powerless

log-rank is

asymptotically

powerless
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Empirical Phase Transition
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Empirical Power Comparison
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Demonstration for Real Gene-Expression Data

• SCAN dataset [Saal et. al. 2015]:
• 3, 069 breast cancer patients
• Expression level of 8, 702 genes

• We partitioned each gene by its median expression level; yields
2× 8, 702 Control/Treatment assignments

• We consolidated events into ≈ 21 day intervals (originally,
t ∈ [56, 2474] days)

• Example:
Gene name: ADSS

Below median (X) Above median (Y)
t at risk events at risk events

0 1534 0 1535 1
1 1534 1 1534 1
2 1533 0 1533 0
3 1533 2 1533 1
...

...
...

...
...

97 703 0 665 1
98 693 0 653 0
99 686 0 645 0 15



Demonstration for Real Gene-Expression Data – Results

HCHG log-rank

43
6

287
4

1690

8702 genes

Figure 1: Number of genes with expression levels significantly2 associated
with survival according to HCHG( ) and log-rank ( )

1at level α = 0.05
2at level α = 0.05
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Demonstration for Real Gene-Expression Data – Results (cont’d)

Gene Name HC (P-value) Log-rank (P-value) Increased Mortality

DCK 0.00010 0.35505 > med
ADSS 0.00005 0.0633 > med
KCTD9 0.01284 0.33369 > med
VAMP4 0.01271 0.20006 > med
TMEM38B 0.02857 0.41772 < med
HIST1H3G 0.02725 0.39828 < med
SIGMAR1 0.01180 0.16812 < med
POLDIP3 0.04683 0.33744 < med
SMG9 0.03775 0.22874 < med
FBXL12 0.01266 0.05641 > med
BTNL8 0.03934 0.05110 < med

Table 1: Some genes in which HCHG identified a significantly lower survival
rate in one group than the other while log-rank failed to do so.
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Demonstration for Real Gene-Expression Data – Results (cont’d)

t nx(t − 1) ny(t − 1) ox(t) oy(t) pt

56.00 1203.00 1187.00 0.00 8.00 0.00

62.00 1120.00 1101.00 0.00 7.00 0.01
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Demonstration for Real Gene-Expression Data – Results (cont’d)

t nx(t − 1) ny(t − 1) ox(t) oy(t) pt

9.00 1524.00 1528.00 0.00 5.00 0.03

38.00 1412.00 1404.00 0.00 5.00 0.03

49.00 1281.00 1275.00 0.00 5.00 0.03

50.00 1271.00 1261.00 0.00 5.00 0.03

66.00 1069.00 1041.00 0.00 5.00 0.03
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Demonstration for Real Gene-Expression Data – Results (cont’d)

t nx(t − 1) ny(t − 1) ox(t) oy(t) pt

29.00 1500.00 1475.00 0.00 6.00 0.01

35.00 1454.00 1439.00 0.00 6.00 0.02

62.00 1111.00 1116.00 0.00 7.00 0.01
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Summary

• HCHG is based on:
1. Many exact hypergeometric tests
2. Global testing with Higher Criticism

• HCHG is sensitive to sparse and weak deviations of
non-proportional hazard

• Theoretically: more powerful than existing methods in exponential
decay sparse and weak hazard departures setting

• Empirically: finds many discoveries not reported by the log-rank
test

21



References

- B. Galili, A. Kipnis and Z. Yakhini. (2023). Detecting rare and weak
deviations of non-proportional hazard in survival analysis. (on
arxiv)

The end.

t nx(t − 1) ny(t − 1) ox(t) oy(t) pt

56.00 1203.00 1187.00 0.00 8.00 0.00

62.00 1120.00 1101.00 0.00 7.00 0.01 22


