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Abstract—Suppose that a sequence of tokens is generated by
one of two sequential generative models (information sources) Go
or Gi, and the goal is to determine which one. When the models
themselves are inaccessible but past generations are available, a
common machine-learning approach is to construct a detector
based on the log-likelihood of the observed sequence under a
third, “open-source” language model P. We show that, under
mild regularity assumptions, the signal-to-noise ratio (SNR) of
such a detector is proportional to the difference in relative
entropies D(G1||P) — D(Go|| P). We then study the problem
of maximizing this difference over a class of probability models
subject to a relative-entropy ball constraint. This formulation
captures settings in which P is known a priori to be closer
to one of the sources, for instance due to shared architecture
or training methodology. We characterize the structure of the
optimal P, derive the resulting SNR, and analyze its sensitivity
to the constraint radius. Finally, we perform extensive numerical
experiments using real text and modern large language models.
The results support the theoretical predictions and reveal a
somewhat counterintuitive phenomenon: in scenarios where G,
is human and Gy is a language model, the choice P = G( can be
advantageous. We explain this effect by modeling the language
model as a mixture of human sources, and show that P = Gy is
optimal under a local minimax analysis.

I. INTRODUCTION
A. Problem Setup

Let Gg and G be two probability distributions over a finite
alphabet X'. We seek a probability distribution P so that the
statistic L(X;P) := log1/P(X) has optimal properties for
testing the binary hypotheses

H(] X ~ G() versus H1 X ~ Gl. (l)

Specifically, we wish to minimize the error in (1) under a
choice of P subject to a constraint on the relative entropy
(Kullback-Leibler divergence) from Hy:

P € P(Go) :={P' : D(Go|P') <€} (2)

This problem appears different from common binary hypothe-
sis testing setups arising frequently in information theory such
as [1, Ch. 11], [2], [3], [4]. It is motivated by the popularity
of the log-likelihood/perplexity test for identifying the source
of text generated by a language model, as we explain next.
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The test statistic L(X;P) takes different names depending
on the context: logarithmic loss [5], log perplexity [6], negative
log-likelihood, and cross-entropy of P under the empirical
distribution [7]. We will use the term logarithmic loss due to
its prevalence in information theory.

B. Motivation: Language Model Authorship Detection

Consider the problem of deciding whether a sequence of
tokens 1., = (f1,...,t,) such as a sentence or a document
was written (generated) by a prescribed language model Gy, or
not. In many cases, the statistician can only sample from G
without access to likelihood evaluations; consider OpenAl’s
family of language models as a typical example [8]. In [9],
[10], [11], [12], [13], [14], [15], [16], [17], [18], the test
statistic for this detection problem is chosen to be L(¢1.,;P),
where P is an open-source language model whose token
probabilities can be evaluated. Henceforth, we denote P as
the detector model. The problem (1) corresponds to the case
where the alternative author is another generative model Gj.
The constraint (2) arises when the detector model is known to
be relatively close to the generative model Gy, a situation that
can arise due to similarities in language model architectures
and training processes. For example, [18] used the detector
models P = GPT2 and P = Phi2 to decide whether a given
sentence was written by Go=GPT3.5 or by a human. These
detectors and other open-source models are more similar to
GPT3.5 than to human in many aspects.

The problem of minimizing the risk in (1) under the con-
straint (2) closely matches this situation.

C. Contributions

We analyze the test’s Type II error subject to a Type I
constraint. Specifically, given a significance level o € (0,1),
and with the understanding that our test rejects for large values
of L(X;P), we define the test’s power by

1-8(P,a) =Pr(L(X;P)>1q | X ~G1),
where 7, is determined by

To i =argmin {7 : Pr(L(X;P)>7| X ~Gp) <a}. (3)



In Section II below, we tighten the authorship detection mo-
tivation by proving that, under some assumptions on the finite-
sample distribution of L(t;.,;P), the power of discriminating
Hy from H; in (1) depends on

H(G1) — H(Go) + A(G1, Go; P), “4)
where H denotes entropy and
A(G1, Go; P) := D(G4[[P) = D(Gol[P). 5

Next, we consider P that maximizes A(Gy, Go; P) under the
ball constraint (2). This maximizer P* is obtained by moving
from G linearly in a direction opposite to G;. In particular, the
solution is not a geometric scaling that often arises in optimal
hypothesis testing situations [1, ch. 11]. We derive the behavior
of A(Gy,Gg;P*) in Gg and G; for small ¢, an analysis that
can help measure the optimality of a candidate P in practice.

Our results show in particular that the choice P = G that is
motivated by empirical evaluations, is in general not optimal.
We show that optimality of P = G, however, arises in a local
minimax analysis when Gy is an isotropic convex combination
of several models from the alternative.

Finally, we conduct extensive empirical evaluation using
several language models and real and generated text data.
These evaluations validate our theoretical assumptions for the
finite-sample distribution of L(t1.,;P) used in deriving our
main results.

D. Unconstrained Optimal Detector

As background to the problem, we comment briefly on
optimal detection when the constraint (2) is removed.
Any strictly monotone function of the log-likelihood ratio

II. ASYMPTOTIC AND FINITE-SAMPLE DISTRIBUTIONS
A. Asymptotic Negative Log-Likelihood

Let P, be a language model. Sampling a sentence ti., =
(t1,...,t,) from P, is achieved by conditioning the current
token probability on previous tokens and an initial context.
Namely,

ti ~ Po(- | to, t1:i—1)Palto), (6)

for some initial state ¢y that can represent the initial context.
Suppose that we evaluate L(t1.,;Pp) for a second language
model P;. Under some conditions on the laws (P,,P}), the
limit of L(¢1.,; P)/n as n — oo exists almost surely and obeys

L(t1.n; P
lim 7( L b)

n—oo n

1=1,...,n,

= H(Py; Po) = H(Pa) + D(Pa|[Py), (7)

where D(P,||Py) is the relative entropy rate of Py to P, [21,
Ch. 7]. The term H(Py;P,) is denoted as the cross-entropy
rate of P, under the law P,.

B. Finite-Sample Distribution

Relation (7) suggests the following finite-sample distribution
assumption for X () :=¢1,, ~ G:

L(X":P)/nZ H(G) + D(G[Co) +0Z.  (8)
Here 2 represents equality in distribution, Z is a zero-mean
unit-variance random variable, and o > 0 vanishes as n — oo.
The following assumptions posit that the distribution of Z is
unimodal and is unaffected by P.

Let F denote some scale-location family of unimodal con-
tinuous distributions and let X := ¢, be a random
sequence. Consider the following assumptions.

statistic A(z) := log(G1(2)/Go(x)) is known to provide a test (A1) Under Hy : X(™ ~ Gg, L(X™;P) is a member of F

of minimal risk for (1) [19]. Therefore, when P is not subject

to (2) and provided G is absolutely continuous with respect (A2) Under H,

to G, we may take P to be a scaled version of Gg(x)/G1(z),
which leads to

L(z;P) =log A(z) — ¢,

where c is the normalizing constant. Therefore, this choice of
P is optimal and yields a test of minimal risk across all tests for
(1). The same conclusion holds when there exists a monotone
function of 1/A(x) whose scaled and normalized version
diverges by € or less from Gy in relative entropy. Therefore,
the results in this paper are of interest when this situation does
not hold, as is the typical case in high-dimensional distributions
like language modeling applications motivating this study.

E. Paper Structure

The rest of this paper is organized as follows. In Section II
we connect the power of a test based on L(:;P) to A(P).
In Section III, we derive our main theoretical results. In
Section IV we report empirical results. Concluding remarks
are in Section V. The proofs are provided in a longer version
of this paper, available at [20].

with mean 7(P; Go) and scale o").
: X" ~ Gy, L(X™);P)/n is a member of
F with mean H(P;G1) and scale 0%").

(A3) The asymptotic scales oy and o are independent of P.

We have the following result.

Theorem 1. Let Gy and G be two stationary ergodic sources.
Suppose that P is a set of stationary ergodic sources such
that for any P € P, the relative entropy rates D(G1||P) and
D(Gol||P) exist and are finite. Assume Al-A3. Suppose that

P* € argmax A(Gy, Go; P),
and X ~ Gy. For any prescribed level o and P € P,
BP*, a) < B(P,a).

Namely, the smallest asymptotic Type II error, and thus the
maximal power, is obtained when P maximizes A(Gq, Go; P).

III. OPTIMAL DETECTOR

Following Theorem 1, we are now interested in maximizing
A(G1, Go; P) over a set of available discriminating models P
satisfying the relative entropy ball constraint (2).
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Fig. 1. Two probability distributions over 5 symbols and the detector
distributions P* maximizing the test’s power.

A. Optimal Detector against a Simple Alternative

Theorem 2. Let Gy and G be two probability models over
an alphabet X such that G, < Gg. For € > 0, let

P* € arg max A(Gq,Go; P).

There exist v > 0 such that

P*(2) = Go(z) — 7[G1(z) — Go(2)], ©)
where v is determined by
D(Go|P*) =e. (10)
Additionally,
1

Remark 1. The condition D(Gy||P) < € also implies Go(z) >
v[Gi1(x) — Go(z)], thus P*(x) is well-defined. Indeed, if
Go(x) — v[G1(z) — Go(z)] — 0 on the support of Go, then

Theorem 2 shows that the optimal detector effectively sub-
tracts mass from tokens in which G; is dominant, so as to
increase the score —logP(z) for such tokens. Interestingly,
this subtraction is linear, rather than geometric as often arises in
optimization (c.f. [1, Ch. 11]). Figure 1 illustrates an example
of P* for two distributions over 5 elements.

B. Local Optimal Detector

The following results provides the small-e¢ expansion of
the optimal A(Gq, Go;P) under the constraint (2). This ex-
pansion is provided in terms of the chi-squared divergence
D,2(G1]|Go) [22].

Theorem 3. Let Gg and Gy be probability distributions on a
countable alphabet X such that G, < Gg and set
. 2
(G1(2) = Go())? _
Go(z)

Dy2(G1|Go) = >

reX

As € — 0,

A(G1,Go; P*) = D(G1]|Go) + 1/2€D,2(G1]|Go) + O(e),

and

2¢(1 1 o(1))
D\ 2(G1]|Go)

P* = Go(z) |1+

(-5o)
Go(x)

Theorem 3 shows that for small ¢, the optimal detector P* is
driven by the likelihood ratio (LR) of the two hypotheses, dis-
counting tokens with large LR values. Additionally, it follows
that allowing P to deviate from Go by D(Gg||P) < € increases
A(G1,Go; P) by = /2€D,2(G1]|Go). This quantifies the sub-
optimality of using P = Go.

C. Locally Minimax Optimal Detector

We now explore the optimal solution under a composite
alternative, because in many cases we can think about the
alternative as a mixture of sources such as humans with
different writing style.

Let G; be a family of alternative distributions with G < G
for all G € G;. We define the maximin power at a prescribed
test level a > 0 as

sup inf Pr(L(X;P)>7,| X ~G),

pPcp, GEGt
where « is determined as in (3). It is immediate to deduce
from the arguments of Theorem 1 that the maximin power is
controlled by the analogous maximin objective A(G, Go;P).
Therefore, if Gg is a fixed null distribution we seek

A*(G1,Gop) = sup inf A(G,Gg;P).

12
pPecp. GEG: 12)

The following theorem provides A*(Gi,Gg) and a least-
favorable prior 7* on G; for small values of e.

Theorem 4. Consider the minimization (12). There exists a
distribution ™™ on Gy such that, as € — 0,

A*(G1,Go) = Egar- [D(G||Go)]+1/2€Dy2 (Gr+||Go)+o(1),

where
G (z) = Egen [G(2)], (13)
and T* is the minimizer of
inf | Eger [D(G|Go)] + Zera(G,rHGO)} . (14)

Theorem 4 says that, locally as ¢ — 0, the maximin
A is determined by a least-favorable convex combination
w*. The situation described in Theorem 4, is analogous to
the well-known equivalence between minimax inference and
Bayesian inference [23]. If G; is convex, then convexity
of the relative entropy implies that 7* is a point mass at
arg mingeg, D(G||Go). The more interesting case arises when
Gy is non-convex, in which case 7* is supported on elements
of G; closest to Gg. In what follows, we argue that for a non-
convex G that isotropically surrounds Gy, the choice P = G
is optimal.



D. Optimality of P = G under isotropic alternative set

Let II; be the set of priors 7 on G;. For a given prior 7 € I3,
define

Dﬂ- = EGNﬂ- [D(GHG()H 5
7 :=sup G € supp(m)|D(G||Go) — Dx|.

We think about r, as a geometric anisotropy index of the prior
m around Gg. Indeed, r, = 0 if and only if all elements of
supp(w) are equidistant from G in relative entropy.

The following result establishes that if G lies in the convex
hull of G, (represented by a mixture 7#), then the sub-
optimality of the choice P = Gy can be bounded uniformly
using the anisotropy index 7, of the least-favorable prior 77
on Gj.

Theorem 5. Let n# € Iy such that Gy = G,#. For any
alternative Gy € G we have

A(Gl, Go; Go) = D(G1||G0) > A*(Ql, Go) — Tr# + 0(1).
We conclude:

Corollary 5.1. If there exists ¥ such that Go = G+ with
r.# = 0, then

nf A(G,GoiGo) = inf D(G]Go) = A"(G1, Ga) + (1),

as € — 0. Namely, the detector P = Gy is maximin optimal.

IV. EMPIRICAL RESULTS

We evaluate the theoretical predictions on sentence-level
authorship detection. The dataset consists of text from three
domains (Wikipedia articles, news articles, and scientific ab-
stracts) written by five authors: four LLMs (Llama-3.1-8B,
Falcon-7B, GPT-3.5, DeepSeek-R1) and humans. All authors
wrote about the same topics within each domain, ensuring that
detection reflects authorship rather than content differences. In
total, we analyze approximately 4,500 documents comprising
over 270,000 sentences (across all authors) after restricting to
lengths of 10—40 words to ensure sufficient tokens for reliable
negative log-likelihood estimation while maintaining adequate
sample sizes.

For each sentence X, we compute L(X;P)/n without
preceding context, as P varies across several open-source de-
tector models, some of which coincide with the LLM authors,
enabling self-detection analysis (P = Gg). The cross-entropy
difference (4) is estimated as fi;(P) — fio(P), where [i;(P)
denotes the sample mean of L(X;P) over sentences from
author G;. For each pairwise author comparison, detection per-
formance is measured by the area under the receiver operating
characteristic curve (AUC).

A. Variance Insensitivity

Assumption A3 posits that the variance o2 of L(X;P) is
not affected by the detector model P. Figure 2 displays the
empirical standard deviation o(L(X;P)) for each detector,
stratified by sentence length. The max-to-min o ratio across
detectors ranges from 1.2x to 1.5x depending on the dataset,
supporting the validity of A3.

Standard Deviation of Log-Perplexity o(L(X; P)) by Detector

wiki News

Abstracts
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Fig. 2. Weak dependence of the variance of the log-likelihood statistic
L(X;P) in P. Standard deviation o(L(X;P)) of sentence-level negative
log-likelihood across three detector models (Llama-3.1-8B, Falcon-7B, Phi-2),
stratified by sentence length (10-20, 20-30, 30-40 words). The max-to-min
o ratio across detectors is 1.2-1.5X per dataset, indicating that variance does
not strongly depend on the choice of P, supporting Assumption A3.
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Fig. 3. Empirical AUC matches Gaussian prediction after nor-
malization. AUC versus the normalized cross-entropy difference estimator
|21(P) — fo(P)|/0pootea for pairwise author comparisons across three
domains (sentences with 10-40 words). After normalization by the pooled
standard deviation, points from all length bins collapse onto the theoretical
Gaussian prediction AUC = <I>(m/\/§) (dashed line, o = 1), achieving
Pearson r = 0.99. This supports the modeling assumption that the log-
likelihood statistic L(X;P) is unimodal and variance-stable, as posited in
Assumptions A1-A2 of Theorem 1.

B. AUC versus A

Theorem 1 predicts that the power of a test based on the
statistic L(X;P) is governed by A(G;,Gop;P). Under the
Gaussian model (8), AUC relates to the normalized sepa-
ration as AUC = ®(|]A|/(c+/2)). Figure 3 plots empirical
AUC against \A| /Gpoolea for all pairwise comparisons, where
Opooled 1 the pooled standard deviation of each pair. The tight
fit to the theoretical curve confirms that the Gaussian approx-
imation in Theorem 1 accurately describes the separation.

C. Human versus LLM Detection

Corollary 5.1 suggests that when the alternative G; isotrop-
ically surrounds Gy, the choice P = G is maximin optimal.
This situation may arise in human versus LLM detection
under the following model: human text is a mixture of diverse
sources centered around the LLM. Figure 4 reports AUC for
distinguishing human text from each LLM author using each
detector. The results show that the matched detector (P = G,
where G is the LLM) consistently achieves the best or second-
best AUC, providing empirical support for the relevance of
Corollary 5.1 in this setting. Table I further quantifies this
advantage: detecting human text against an LLM using P = G
yields mean AUC of 0.83, compared to 0.63 for LLM-versus-
LLM detection—a gap of +0.21.
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Fig. 4. AUC for detecting human versus LLM-generated text. Each cell
shows the AUC for distinguishing human text from a specific LLM author
(rows) using detector P (columns), for sentences of 10-40 words. Bold values
indicate the best detector for each row. Self-detection (P = Gg) achieves best
AUC in 4/9 cases and second-best in the remaining 5/9 (excluding GPT row,
which has no corresponding detector).

TABLE 1
AUC when detector matches source (P = Gg). EACH ROW SHOWS MEAN
AUC =4 SAMPLE STD FOR TWO SCENARIOS: (1) DETECTING HUMAN TEXT
AGAINST AN LLM USING THE LLM’S OWN MODEL AS DETECTOR, AND
(2) DISTINGUISHING TWO LLMS USING ONE OF THEM AS DETECTOR. A IS
THE DIFFERENCE BETWEEN COLUMNS. BASED ON THREE MATCHED
DETECTOR—AUTHOR PAIRS (LLAMA-3.1-8B, FALCON-7B, DEEPSEEK-R1)
WITH n=3 AND n=6 COMPARISONS, RESPECTIVELY. SENTENCES: 10-40

WORDS.
Dataset Human vs. Go Go vs. Gy A

Wiki 0.853 £0.006 0.659 +0.065 +0.194
News 0.854 +£0.047 0.626 £0.094 +0.229
Abstracts  0.787 £ 0.018 0.592 +£0.013  +0.195
Mean 0.831 0.626 +0.206

V. CONCLUSIONS

We considered a binary hypothesis test, and analyzed the
structure of a test based on the negative log-likelihood (aka.
log perplexity) with respect to a third probability model P.
After assuming that the test statistic belongs to a scale-location
family with variance independent of P, we derived the power-
maximizing P under a relative entropy ball constraint, both
under a simple and a minimax composite setup. We empirically
validated the relevance of the theoretical results to authorship
detection of language models.

Our evaluations propose the following model for large
language models in the context of authorship discrimination:
such models are isotropic convex combinations of various
human text sources.

REFERENCES

[1]
[2]

T. Cover and J. A. Thomas, “Elements of information theory,” 2006.
Y. Li and V. Y. Tan, “Second-order asymptotics of sequential hypothesis
testing,” IEEE Transactions on Information Theory, vol. 66, no. 11, pp.
7222-7230, 2020.

M. Bell and Y. Kochman, “On universality and training in binary
hypothesis testing,” IEEE Transactions on Information Theory, vol. 67,
no. 6, pp. 3824-3846, 2021.

R. AHLSWEDE and I. CSISZAR, “Hypothesis testing with communi-
cation constraints,” IEEE transactions on information theory, vol. 32,
no. 4, pp. 533-542, 1986.

N. Merhav and M. Feder, “Universal prediction,” IEEE Transactions on
Information Theory, vol. 44, no. 6, pp. 2124-2147, 1998.

D. Jurafsky and J. H. Martin, Speech and Language Processing, 2023,
third edition draft.

[3]

[4]

[5]
[6]

[7]
[8]
[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]
[22]
[23]
[24]

[25]

C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine
learning. Springer, 2006, vol. 4, no. 4.

OpenAl, “GPT-4 technical report,” 2023.

S. Gehrmann, H. Strobelt, and A. M. Rush, “GLTR: Statistical detection
and visualization of generated text,” arXiv preprint arXiv:1906.04043,
2019.

C. Vasilatos, M. Alam, T. Rahwan, Y. Zaki, and M. Maniatakos,
“Howkgpt: Investigating the detection of chatgpt-generated university
student homework through context-aware perplexity analysis,” arXiv
preprint arXiv:2305.18226, 2023.

Y. Tian, H. Chen, X. Wang, Z. Bai, Q. ZHANG, R. Li, C. Xu, and
Y. Wang, “Multiscale positive-unlabeled detection of ai-generated texts,”
in The Twelfth International Conference on Learning Representations,
2023.

A. Hans, A. Schwarzschild, V. Cherepanova, H. Kazemi, A. Saha,
M. Goldblum, J. Geiping, and T. Goldstein, “Spotting 1lms with binoc-
ulars: Zero-shot detection of machine-generated text,” in International
Conference on Machine Learning. PMLR, 2024, pp. 17519-17 537.
Y. Xu, Y. Wang, Y. Bi, H. Cao, Z. Lin, Y. Zhao, and F. Wu, “Training-free
LLM-generated text detection by mining token probability sequences,”
in The Thirteenth International Conference on Learning Representations,
2025. [Online]. Available: https://openreview.net/forum?id=vo4AHjowKi
W. Huang, A. Murakami, and J. Grieve, “Attributing authorship via the
perplexity of authorial language models,” PloS one, vol. 20, no. 7, p.
e0327081, 2025.

K. Taguchi, Y. Gu, and K. Sakurai, “The impact of prompts on zero-
shot detection of ai-generated text,” in CEUR Workshop Proceedings,
vol. 3856. CEUR-WS, 2024.

J. Xu, H. Zhang, Y. Yang, L. Yang, Z. Cheng, J. Lyu, B. Liu, X. Zhou,
A. Bacchelli, Y. K. Chiam et al., “One size does not fit all: Investigating
efficacy of perplexity in detecting 1lm-generated code,” ACM Transac-
tions on Software Engineering and Methodology, 2024.

S. Chakraborty, A. Bedi, S. Zhu, B. An, D. Manocha, and F. Huang,
“Position: On the possibilities of Al-generated text detection,” in
Proceedings of the 41st International Conference on Machine Learning,
ser. Proceedings of Machine Learning Research, R. Salakhutdinov,
Z. Kolter, K. Heller, A. Weller, N. Oliver, J. Scarlett, and F. Berkenkamp,
Eds., vol. 235. PMLR, 21-27 Jul 2024, pp. 6093-6115. [Online].
Available: https://proceedings.mlr.press/v235/chakraborty24a.html

I. Kashtan and A. Kipnis, “An information-theoretic approach for detect-
ing edits in ai-generated text,” Harvard Data Science Review, no. Special
Issue 5, 2024.

E. L. Lehmann and J. P. Romano, Testing statistical hypotheses. Springer
Science & Business Media, 2006.

A. Vinestock and A. Kipnis, “Optimal log-likelihood tests for
distinguishing generative models under relative entropy constraints,”
2026, includes proofs. [Online]. Available: https://cs.idc.ac.il/~kipnis/
R. M. Gray, Entropy and information theory.  Springer Science &
Business Media, 2011.

Y. Polyanskiy and Y. Wu, Information theory: From coding to learning.
Cambridge university press, 2025.

J. O. Berger, Statistical decision theory and Bayesian analysis. Springer
Science & Business Media, 2013.

Y. Ingster and I. A. Suslina, Nonparametric goodness-of-fit testing under
Gaussian models. Springer Science & Business Media, 2012, vol. 169.
K. Fan, “Minimax theorems,” Proceedings of the National Academy of
Sciences, vol. 39, no. 1, pp. 42-47, 1953.


https://openreview.net/forum?id=vo4AHjowKi
https://proceedings.mlr.press/v235/chakraborty24a.html
https://cs.idc.ac.il/~kipnis/

APPENDIX
This Appendix contains the proofs of Theorems 1, 2, 3, 4, 5, and Corollary 5.1.

Proof of Theorem 1

Let Fy € F have zero mean and unit variance. Denote by Z the random variable with distribution Pr(Z < ) = Fy(z).
Denote by Fy(z) = 1 — Fy(x) the corresponding survival function. By Al, we have

p(x) = XI:E;O [L(X;P) > 7]

0o 0o

For a prescribed significance level a € (0, 1), the test rejects if p(X) < a. By A2, we have under X ~ G; the equality in
distribution: O
L(X;P)=H(P;G1) + 012,

Therefore, the test’s power is given by

1-8= Pr [p(X)<q]

—Pr <F0 (H(P;Gl) —H(PiGo) ‘”Z) < a) .

00 00

By the unimodality assumption, the last expression is a monotonic non-decreasing function of
H(P; G1) = H(P; Go) = H(G1) — H(Go) + A(G1, Go; P).
The claim follows because only the last term depends on P. [

Proof of Theorem 2

We need to maximize A(P; Gy, Go) over P with constraints D(Go|[P) < e and ), P(x) = 1. The Lagrangian is

L(P, A, ) = D(G1[[P) = D(Gol|P) + A (€ — D(Go[P)) + (1 - P(z)) .

reX
Differentiating with respect to P gives

oL Gy
—=——4+(1+A
gp = P TTN
For any x with P(x) > 0, the stationary point P* satisfies
1+ NG -G
L
Because P is a probability distribution, we must have (1 4+ A)Go(z) > Gi(z) and ), P(z) = 1. Both conditions are
satisfied with p = A\ provided
G1($)
1+ X >sup

zeX GO(I) ’

which in turn can be satisfied since X is finite and G; < Gg implies that the likelihood ratio G; /Gy is bounded.
In the next lemma we show that the constraint D(Gg||P) < € is binding, thus condition (10) must hold. The proof of this
lemma is provided at the end of the proof of Theorem 2.

Go _
5 —H

Lemma 5.1. Assume Gi # Gq and € > 0. Consider

sup A(P) := D(G1||P) — D(Go||[P) st D(Go||P) <e.

Then any maximizer P* satisfies D(Gg||P*) = e.

As an intuition for the statement in Lemma 5.1, notice A(P) strictly increases when moving P away from Gg in the
directions that separate G; from Gg.



It is left to evaluate A*(Gy,Gyp). Substituting P* to A(P) := A(G1,Go;P) and using that Go(z) — Gi(z) =
L (P*(z) — Golx)), we get
P*(z)

Go(z

)
; (P (x) ~ Gol) log g5

[D(P*|[Go) + D(Go|[P™)]

A(P*) = A(Go) = Y (Go(x) — Gi(x)) log

=~

[D(P*[|Go) + ] -

Q\l—‘Q\'—‘

Proof of Lemma 5.1: Suppose by contradiction that there exists an optimal P* with D(Gg||P*) < e. Since G; # Gy, there
exists a measurable set A such that G1(A) > Go(A). For 0 < § < 1 define
Ps :=(1—-0)P* + 4R, R :=Go(- | A).

Then Pj is a valid distribution and, by continuity of P — D(Gg||P), we have D(Gg||Ps) < e for all sufficiently small § > 0.
Since R puts zero mass on A, we have Ps(x) = (1—0)P*(z) for z € A, hence log Ps(z) = log P*(x)+log(1—9) < log P*(x)
on A. Therefore,

A(Gy, Go; P) = const — Z (G1(z) — Go(x)) logP(x)

reX
> const — Z (G1(z) — Go(x)) log P*(x)
recX
= A(G1, Go; P*)
contradicting optimality of P*. O

A. Proof of Theorem 3
Set V := D,2(G1||Go). For A > 0 large enough so that P(x) > 0 for all z, define

o) o C1(e) = Gola)

Go(l‘)
Pa(a) = Golr) ~ LD ZCE) (4 7Y (16)
and €(\) := D(Ggl|Py). Notice that
> Go(a)r(z) =0 (17)
reX
and
V =Dy (G1]|Go) = Y Gola)r?(x). (18)
reX

We work with the one-parameter family P in (16) and derive expansions for e(A) = D(Ggl||P,) and A(P,) as A — oo, then
eliminate A in favor of e.

By (16),
e(\) = D(Gol|Py) = ZGO )log ( L;”))
From log(1 — u) = —u — “72 + O(u®) as u — 0, we get
r(z)y  r(z)  r(z)? 1
~log (1-7507) =+ S+ 0(5s):

Using this, (17), and (18), leads to
1 1 1
= 5 2 Gola)r(@) + 555 Y Gola)r’(a) + O<F>

_T;HO(%)' (19)



We now expand A(Py) for small values of 1/X. Using Py(z) = Go(z)(1 — r(z)/A),
A(Py) = D(G1]|P) — (GOHP)

= ZGq(x)l

Go()
— 2 Gol#)log 3 o)

(z Py(x)
=2 Gil@) E ;«h( ) = Golw) log 2
= D(G1||Go) — Z (x)) log (1—%).

Using again log(1 —u) = —u — % + O(u®) with u = r(z)/), and noting that G(z) — Go(z) = Go(z)r(x), we get

A(Py) = D(G1]|Go) +ZG (2) {r(;) * rgf +O(Alf’>)]

D(G1]|Go) + AZGO +0( ;)

(G1||Go)+‘:+0()\2)

Thus, v
1
A(Py) = D(Gi]|Go) + + +0(55): (20)

Finally, from (19), we get €(\) = 3%z + O(A™?), hence

1 2e
X— V +O(6), as € — 0.

Plugging this into (20) gives

A(P.) = D(G1]|Go) +V <\/§+ O(e )) + O(€) = D(G1]|Go) 4+ V2V e + O(e).

B. Proof of Theorem 4
Let II; denote the set of priors 7 over G;. For a fixed P, by a standard identity (c.f. [24]),

inf A(G,Go;P) = inf Egr [A(G,Go;P)]

GegGy melly

= inf A(G, Go; P)dn(G).

melly G

Since the set of probability measures P, is convex and compact, and since II; is convex, we may apply the minimax theorem
to swap the order of optimization (c.f. [25]). This leads to

A*(G1,P) = inf sup Egor [A(G, Go; P)] (21)

welly pep,

We consider first the inner optimization in (21). Let J(P,7) := Eg~r [A(G, Go; P)]. We have:

J(P,m) = /g ID(G|[P) — D(Gy||P)] dr(C)

:/g D(G||C) +$;( ) log (1;3(( )) (G)
= Er [D(GlIG0)] + 3 (Go() — Gr(a)) log (;O((a:x))’ (22)
z€eEX

where G (z) = [ G(z



We now solve for the optimal P subject to the constraint D(Gg||P) < e. Let P(z) = Go(z)(1 + d(x)) where Eg, [d] = 0.
By log(1 + ) = o — 22/2 + o(2?),

1
D(Go|[P) = ZGO ? = 5l1611&, +ollolE,)-

zEX

Therefore, the constraint (2) implies
2
161G, < 2€(1+0(1)).

Using the approximation log(Go/P) = —log(1 + ) & —4, the variational term in (22) becomes a linear functional of 4:
~ Gr(z
5 (Gote) — Ga2)(-3(0)) = 3 Galo) (1= G ) (-5
zeX zEX Go(x)
G
= (== ~1,8)q,. 23
< GO ’ >G0 ( )

By the Cauchy-Schwarz inequality, the supremum of this inner product subject to I9]lco < v2€ is achieved when § aligns
with the vector v = G /G — 1. The maximum value is v/2¢ ||G/Go — 1||q,. Recognizing that this norm corresponds to the
Chi-square divergence, we have:

Go(z) =
(Go( )1 =1/2¢(1 1)) - Dy2 (G ||Go). 24
sup ;EX o (z))log () \/6( +0(1)) - Dy2(Grl|Go) (24)
Substituting this back into (21) yields,
A*(G1,P) = nf [EGW [D(G||Go)] + \/2(6 + 0(1)) .DXQ(GWGO)] . (25)

O
Proof of Theorem 5: By Theorem 3 and following similar arguments as in the proof of Theorem 4, for any prior 7 on Gy,

sup inf A(G,Go;P) < sup /A (G,Go; P)n(G)
pep. GEGL PEP.

— {Dﬂ + \/MJFO(U} ;

as € — 0. Thus, for 7 = 77 with Gy = C_v'ﬂ#, the chi-squared term vanishes and we get
A*<g1, Go) S Dﬂ.# + 0(1) (26)

For a specific alternative G; € Gy, we use (26) to write

D(G1]|Go) = Dr# + (D(G1]|Go) — Drx)
> A*(G1,Go) + (D(G1]|Go) — Dyt ) + (1)
> A*(G1,Go) — |D(G1]|Go) — Dyt | + of

It follows that

o(1) + D(G1[Go)7#(G) > A*(G1, Go) — sup G € supp(n™) | D(G1]|Go) — D«
(gla GO) — Tr#
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