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Abstract—Suppose that a sequence of tokens is generated by
one of two sequential generative models (information sources) G0

or G1, and the goal is to determine which one. When the models
themselves are inaccessible but past generations are available, a
common machine-learning approach is to construct a detector
based on the log-likelihood of the observed sequence under a
third, “open-source” language model P. We show that, under
mild regularity assumptions, the signal-to-noise ratio (SNR) of
such a detector is proportional to the difference in relative
entropies D(G1∥P) − D(G0∥ P). We then study the problem
of maximizing this difference over a class of probability models
subject to a relative-entropy ball constraint. This formulation
captures settings in which P is known a priori to be closer
to one of the sources, for instance due to shared architecture
or training methodology. We characterize the structure of the
optimal P, derive the resulting SNR, and analyze its sensitivity
to the constraint radius. Finally, we perform extensive numerical
experiments using real text and modern large language models.
The results support the theoretical predictions and reveal a
somewhat counterintuitive phenomenon: in scenarios where G1

is human and G0 is a language model, the choice P = G0 can be
advantageous. We explain this effect by modeling the language
model as a mixture of human sources, and show that P = G0 is
optimal under a local minimax analysis.

I. INTRODUCTION

A. Problem Setup

Let G0 and G1 be two probability distributions over a finite
alphabet X . We seek a probability distribution P so that the
statistic L(X; P) := log 1/P(X) has optimal properties for
testing the binary hypotheses

H0 : X ∼ G0 versus H1 : X ∼ G1. (1)

Specifically, we wish to minimize the error in (1) under a
choice of P subject to a constraint on the relative entropy
(Kullback-Leibler divergence) from H0:

P ∈ Pϵ(G0) := {P′ : D(G0∥P′) ≤ ϵ} (2)

This problem appears different from common binary hypothe-
sis testing setups arising frequently in information theory such
as [1, Ch. 11], [2], [3], [4]. It is motivated by the popularity
of the log-likelihood/perplexity test for identifying the source
of text generated by a language model, as we explain next.

The test statistic L(X; P) takes different names depending
on the context: logarithmic loss [5], log perplexity [6], negative
log-likelihood, and cross-entropy of P under the empirical
distribution [7]. We will use the term logarithmic loss due to
its prevalence in information theory.

B. Motivation: Language Model Authorship Detection

Consider the problem of deciding whether a sequence of
tokens t1:n = (t1, . . . , tn) such as a sentence or a document
was written (generated) by a prescribed language model G0, or
not. In many cases, the statistician can only sample from G0

without access to likelihood evaluations; consider OpenAI’s
family of language models as a typical example [8]. In [9],
[10], [11], [12], [13], [14], [15], [16], [17], [18], the test
statistic for this detection problem is chosen to be L(t1:n; P),
where P is an open-source language model whose token
probabilities can be evaluated. Henceforth, we denote P as
the detector model. The problem (1) corresponds to the case
where the alternative author is another generative model G1.
The constraint (2) arises when the detector model is known to
be relatively close to the generative model G0, a situation that
can arise due to similarities in language model architectures
and training processes. For example, [18] used the detector
models P = GPT2 and P = Phi2 to decide whether a given
sentence was written by G0=GPT3.5 or by a human. These
detectors and other open-source models are more similar to
GPT3.5 than to human in many aspects.

The problem of minimizing the risk in (1) under the con-
straint (2) closely matches this situation.

C. Contributions

We analyze the test’s Type II error subject to a Type I
constraint. Specifically, given a significance level α ∈ (0, 1),
and with the understanding that our test rejects for large values
of L(X; P), we define the test’s power by

1− β(P, α) := Pr (L(X; P) ≥ τα | X ∼ G1) ,

where τα is determined by

τα := argmin
τ

{τ : Pr (L(X; P) ≥ τ | X ∼ G0) ≤ α} . (3)



In Section II below, we tighten the authorship detection mo-
tivation by proving that, under some assumptions on the finite-
sample distribution of L(t1:n; P), the power of discriminating
H0 from H1 in (1) depends on

H(G1)−H(G0) + ∆(G1,G0; P), (4)

where H denotes entropy and

∆(G1,G0; P) := D(G1∥P)−D(G0∥P). (5)

Next, we consider P that maximizes ∆(G1,G0; P) under the
ball constraint (2). This maximizer P∗ is obtained by moving
from G0 linearly in a direction opposite to G1. In particular, the
solution is not a geometric scaling that often arises in optimal
hypothesis testing situations [1, ch. 11]. We derive the behavior
of ∆(G1,G0; P

∗) in G0 and G1 for small ϵ, an analysis that
can help measure the optimality of a candidate P in practice.

Our results show in particular that the choice P = G0 that is
motivated by empirical evaluations, is in general not optimal.
We show that optimality of P = G0, however, arises in a local
minimax analysis when G0 is an isotropic convex combination
of several models from the alternative.

Finally, we conduct extensive empirical evaluation using
several language models and real and generated text data.
These evaluations validate our theoretical assumptions for the
finite-sample distribution of L(t1:n; P) used in deriving our
main results.

D. Unconstrained Optimal Detector

As background to the problem, we comment briefly on
optimal detection when the constraint (2) is removed.

Any strictly monotone function of the log-likelihood ratio
statistic Λ(x) := log(G1(x)/G0(x)) is known to provide a test
of minimal risk for (1) [19]. Therefore, when P is not subject
to (2) and provided G0 is absolutely continuous with respect
to G1, we may take P to be a scaled version of G0(x)/G1(x),
which leads to

L(x; P) = log Λ(x)− c,

where c is the normalizing constant. Therefore, this choice of
P is optimal and yields a test of minimal risk across all tests for
(1). The same conclusion holds when there exists a monotone
function of 1/Λ(x) whose scaled and normalized version
diverges by ϵ or less from G0 in relative entropy. Therefore,
the results in this paper are of interest when this situation does
not hold, as is the typical case in high-dimensional distributions
like language modeling applications motivating this study.

E. Paper Structure

The rest of this paper is organized as follows. In Section II
we connect the power of a test based on L(·; P) to ∆(P).
In Section III, we derive our main theoretical results. In
Section IV we report empirical results. Concluding remarks
are in Section V. The proofs are provided in a longer version
of this paper, available at [20].

II. ASYMPTOTIC AND FINITE-SAMPLE DISTRIBUTIONS

A. Asymptotic Negative Log-Likelihood

Let Pa be a language model. Sampling a sentence t1:n =
(t1, . . . , tn) from Pa is achieved by conditioning the current
token probability on previous tokens and an initial context.
Namely,

ti ∼ Pa(· | t0, t1:i−1)Pa(t0), i = 1, . . . , n, (6)

for some initial state t0 that can represent the initial context.
Suppose that we evaluate L(t1:n; Pb) for a second language
model Pb. Under some conditions on the laws (Pa,Pb), the
limit of L(t1:n; P)/n as n → ∞ exists almost surely and obeys

lim
n→∞

L(t1:n; Pb)

n
= H(Pb; Pa) = H(Pa) + D̄(Pa∥Pb), (7)

where D̄(Pa∥Pb) is the relative entropy rate of Pb to Pa [21,
Ch. 7]. The term H(Pb; Pa) is denoted as the cross-entropy
rate of Pb under the law Pa.

B. Finite-Sample Distribution

Relation (7) suggests the following finite-sample distribution
assumption for X(n) := t1:n ∼ G:

L(X(n); P)/n
D
= H(G) +D(G∥G0) + σZ. (8)

Here D
= represents equality in distribution, Z is a zero-mean

unit-variance random variable, and σ > 0 vanishes as n → ∞.
The following assumptions posit that the distribution of Z is
unimodal and is unaffected by P.

Let F denote some scale-location family of unimodal con-
tinuous distributions and let X(n) := t1:n be a random
sequence. Consider the following assumptions.

(A1) Under H0 : X(n) ∼ G0, L(X(n); P) is a member of F
with mean H(P;G0) and scale σ

(n)
0 .

(A2) Under H1 : X(n) ∼ G1, L(X(n); P)/n is a member of
F with mean H(P;G1) and scale σ

(n)
1 .

(A3) The asymptotic scales σ0 and σ1 are independent of P.
We have the following result.

Theorem 1. Let G0 and G1 be two stationary ergodic sources.
Suppose that P is a set of stationary ergodic sources such
that for any P ∈ P , the relative entropy rates D(G1∥P) and
D(G0∥P) exist and are finite. Assume A1-A3. Suppose that

P∗ ∈ argmax
P∈P

∆(G1,G0; P),

and X ∼ G1. For any prescribed level α and P ∈ P ,

β(P∗, α) ≤ β(P, α).

Namely, the smallest asymptotic Type II error, and thus the
maximal power, is obtained when P maximizes ∆(G1,G0; P).

III. OPTIMAL DETECTOR

Following Theorem 1, we are now interested in maximizing
∆(G1,G0; P) over a set of available discriminating models P
satisfying the relative entropy ball constraint (2).



Fig. 1. Two probability distributions over 5 symbols and the detector
distributions P∗ maximizing the test’s power.

A. Optimal Detector against a Simple Alternative

Theorem 2. Let G0 and G1 be two probability models over
an alphabet X such that G1 ≪ G0. For ϵ > 0, let

P∗ ∈ arg max
P∈Pϵ

∆(G1,G0; P).

There exist γ > 0 such that

P∗(x) = G0(x)− γ [G1(x)−G0(x)] , (9)

where γ is determined by

D(G0∥P∗) = ϵ. (10)

Additionally,

∆(G1,G0; P
∗) = D(G1∥G0) +

1

γ
(D(P∗∥G0) + ϵ) . (11)

Remark 1. The condition D(G0∥P) ≤ ϵ also implies G0(x) ≥
γ [G1(x)−G0(x)], thus P∗(x) is well-defined. Indeed, if
G0(x) − γ [G1(x)−G0(x)] → 0 on the support of G0, then
D(G0∥P) → ∞.

Theorem 2 shows that the optimal detector effectively sub-
tracts mass from tokens in which G1 is dominant, so as to
increase the score − log P(x) for such tokens. Interestingly,
this subtraction is linear, rather than geometric as often arises in
optimization (c.f. [1, Ch. 11]). Figure 1 illustrates an example
of P∗ for two distributions over 5 elements.

B. Local Optimal Detector

The following results provides the small-ϵ expansion of
the optimal ∆(G1,G0; P) under the constraint (2). This ex-
pansion is provided in terms of the chi-squared divergence
Dχ2(G1∥G0) [22].

Theorem 3. Let G0 and G1 be probability distributions on a
countable alphabet X such that G1 ≪ G0 and set

Dχ2(G1∥G0) :=
∑
x∈X

(G1(x)−G0(x))
2

G0(x)
< ∞.

As ϵ → 0,

∆(G1,G0;P
∗) = D(G1∥G0) +

√
2ϵDχ2(G1∥G0) +O(ϵ),

and

P∗ = G0(x)

[
1 +

√
2ϵ(1 + o(1))

Dχ2(G1∥G0)

(
1− G1(x)

G0(x)

)]
Theorem 3 shows that for small ϵ, the optimal detector P∗ is

driven by the likelihood ratio (LR) of the two hypotheses, dis-
counting tokens with large LR values. Additionally, it follows
that allowing P to deviate from G0 by D(G0∥P) ≤ ϵ increases
∆(G1,G0; P) by ≈

√
2ϵDχ2(G1∥G0). This quantifies the sub-

optimality of using P = G0.

C. Locally Minimax Optimal Detector

We now explore the optimal solution under a composite
alternative, because in many cases we can think about the
alternative as a mixture of sources such as humans with
different writing style.

Let G1 be a family of alternative distributions with G ≪ G0

for all G ∈ G1. We define the maximin power at a prescribed
test level α > 0 as

sup
P∈Pϵ

inf
G∈G1

Pr (L(X; P) ≥ τα | X ∼ G) ,

where α is determined as in (3). It is immediate to deduce
from the arguments of Theorem 1 that the maximin power is
controlled by the analogous maximin objective ∆(G,G0; P).
Therefore, if G0 is a fixed null distribution we seek

∆∗(G1,G0) = sup
P∈Pϵ

inf
G∈G1

∆(G,G0; P). (12)

The following theorem provides ∆∗(G1,G0) and a least-
favorable prior π∗ on G1 for small values of ϵ.

Theorem 4. Consider the minimization (12). There exists a
distribution π∗ on G1 such that, as ϵ → 0,

∆∗(G1,G0) = EG∼π∗ [D(G∥G0)]+
√

2ϵDχ2(Ḡπ∗∥G0)+o(1),

where

Ḡπ∗(x) = EG∼π∗ [G(x)] , (13)

and π∗ is the minimizer of

inf
π

[
EG∼π [D(G∥G0)] +

√
2ϵDχ2(Ḡπ∥G0)

]
. (14)

Theorem 4 says that, locally as ϵ → 0, the maximin
∆ is determined by a least-favorable convex combination
π∗. The situation described in Theorem 4, is analogous to
the well-known equivalence between minimax inference and
Bayesian inference [23]. If G1 is convex, then convexity
of the relative entropy implies that π∗ is a point mass at
argminG∈G1

D(G∥G0). The more interesting case arises when
G1 is non-convex, in which case π∗ is supported on elements
of G1 closest to G0. In what follows, we argue that for a non-
convex G1 that isotropically surrounds G0, the choice P = G0

is optimal.



D. Optimality of P = G0 under isotropic alternative set

Let Π1 be the set of priors π on G1. For a given prior π ∈ Π1,
define

D̄π := EG∼π [D(G∥G0)] ,

rπ := supG ∈ supp(π)
∣∣D(G∥G0)− D̄π

∣∣.
We think about rπ as a geometric anisotropy index of the prior
π around G0. Indeed, rπ = 0 if and only if all elements of
supp(π) are equidistant from G0 in relative entropy.

The following result establishes that if G0 lies in the convex
hull of G1 (represented by a mixture π#), then the sub-
optimality of the choice P = G0 can be bounded uniformly
using the anisotropy index rπ# of the least-favorable prior π#

on G1.

Theorem 5. Let π# ∈ Π1 such that G0 = Ḡπ# . For any
alternative G1 ∈ G1 we have

∆(G1,G0; G0) = D(G1∥G0) ≥ ∆∗(G1,G0)− rπ# + o(1).

We conclude:

Corollary 5.1. If there exists π# such that G0 = Ḡπ# with
rπ# = 0, then

inf
G∈G1

∆(G,G0; G0) = inf
G∈G1

D(G∥G0) = ∆∗(G1,G0) + o(1),

as ϵ → 0. Namely, the detector P = G0 is maximin optimal.

IV. EMPIRICAL RESULTS

We evaluate the theoretical predictions on sentence-level
authorship detection. The dataset consists of text from three
domains (Wikipedia articles, news articles, and scientific ab-
stracts) written by five authors: four LLMs (Llama-3.1-8B,
Falcon-7B, GPT-3.5, DeepSeek-R1) and humans. All authors
wrote about the same topics within each domain, ensuring that
detection reflects authorship rather than content differences. In
total, we analyze approximately 4,500 documents comprising
over 270,000 sentences (across all authors) after restricting to
lengths of 10–40 words to ensure sufficient tokens for reliable
negative log-likelihood estimation while maintaining adequate
sample sizes.

For each sentence X , we compute L(X; P)/n without
preceding context, as P varies across several open-source de-
tector models, some of which coincide with the LLM authors,
enabling self-detection analysis (P = G0). The cross-entropy
difference (4) is estimated as µ̂1(P) − µ̂0(P), where µ̂i(P)
denotes the sample mean of L(X; P) over sentences from
author Gi. For each pairwise author comparison, detection per-
formance is measured by the area under the receiver operating
characteristic curve (AUC).

A. Variance Insensitivity

Assumption A3 posits that the variance σ2 of L(X; P) is
not affected by the detector model P. Figure 2 displays the
empirical standard deviation σ(L(X; P)) for each detector,
stratified by sentence length. The max-to-min σ ratio across
detectors ranges from 1.2× to 1.5× depending on the dataset,
supporting the validity of A3.

Fig. 2. Weak dependence of the variance of the log-likelihood statistic
L(X; P) in P. Standard deviation σ(L(X; P)) of sentence-level negative
log-likelihood across three detector models (Llama-3.1-8B, Falcon-7B, Phi-2),
stratified by sentence length (10–20, 20–30, 30–40 words). The max-to-min
σ ratio across detectors is 1.2–1.5× per dataset, indicating that variance does
not strongly depend on the choice of P, supporting Assumption A3.

Fig. 3. Empirical AUC matches Gaussian prediction after nor-
malization. AUC versus the normalized cross-entropy difference estimator
|µ̂1(P) − µ̂0(P)|/σpooled for pairwise author comparisons across three
domains (sentences with 10–40 words). After normalization by the pooled
standard deviation, points from all length bins collapse onto the theoretical
Gaussian prediction AUC = Φ(x/

√
2) (dashed line, σ = 1), achieving

Pearson r = 0.99. This supports the modeling assumption that the log-
likelihood statistic L(X; P) is unimodal and variance-stable, as posited in
Assumptions A1–A2 of Theorem 1.

B. AUC versus ∆

Theorem 1 predicts that the power of a test based on the
statistic L(X; P) is governed by ∆(G1, G0; P). Under the
Gaussian model (8), AUC relates to the normalized sepa-
ration as AUC = Φ(|∆|/(σ

√
2)). Figure 3 plots empirical

AUC against |∆̂|/σ̂pooled for all pairwise comparisons, where
σ̂pooled is the pooled standard deviation of each pair. The tight
fit to the theoretical curve confirms that the Gaussian approx-
imation in Theorem 1 accurately describes the separation.

C. Human versus LLM Detection

Corollary 5.1 suggests that when the alternative G1 isotrop-
ically surrounds G0, the choice P = G0 is maximin optimal.
This situation may arise in human versus LLM detection
under the following model: human text is a mixture of diverse
sources centered around the LLM. Figure 4 reports AUC for
distinguishing human text from each LLM author using each
detector. The results show that the matched detector (P = G0,
where G0 is the LLM) consistently achieves the best or second-
best AUC, providing empirical support for the relevance of
Corollary 5.1 in this setting. Table I further quantifies this
advantage: detecting human text against an LLM using P = G0

yields mean AUC of 0.83, compared to 0.63 for LLM-versus-
LLM detection—a gap of +0.21.



Fig. 4. AUC for detecting human versus LLM-generated text. Each cell
shows the AUC for distinguishing human text from a specific LLM author
(rows) using detector P (columns), for sentences of 10–40 words. Bold values
indicate the best detector for each row. Self-detection (P = G0) achieves best
AUC in 4/9 cases and second-best in the remaining 5/9 (excluding GPT row,
which has no corresponding detector).

TABLE I
AUC when detector matches source (P = G0). EACH ROW SHOWS MEAN
AUC ± SAMPLE STD FOR TWO SCENARIOS: (1) DETECTING HUMAN TEXT

AGAINST AN LLM USING THE LLM’S OWN MODEL AS DETECTOR, AND
(2) DISTINGUISHING TWO LLMS USING ONE OF THEM AS DETECTOR. ∆ IS

THE DIFFERENCE BETWEEN COLUMNS. BASED ON THREE MATCHED
DETECTOR–AUTHOR PAIRS (LLAMA-3.1-8B, FALCON-7B, DEEPSEEK-R1)
WITH n=3 AND n=6 COMPARISONS, RESPECTIVELY. SENTENCES: 10–40

WORDS.

Dataset Human vs. G0 G0 vs. G1 ∆

Wiki 0.853± 0.006 0.659± 0.065 +0.194
News 0.854± 0.047 0.626± 0.094 +0.229
Abstracts 0.787± 0.018 0.592± 0.013 +0.195

Mean 0.831 0.626 +0.206

V. CONCLUSIONS

We considered a binary hypothesis test, and analyzed the
structure of a test based on the negative log-likelihood (aka.
log perplexity) with respect to a third probability model P.
After assuming that the test statistic belongs to a scale-location
family with variance independent of P, we derived the power-
maximizing P under a relative entropy ball constraint, both
under a simple and a minimax composite setup. We empirically
validated the relevance of the theoretical results to authorship
detection of language models.

Our evaluations propose the following model for large
language models in the context of authorship discrimination:
such models are isotropic convex combinations of various
human text sources.
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APPENDIX

This Appendix contains the proofs of Theorems 1, 2, 3, 4, 5, and Corollary 5.1.

Proof of Theorem 1

Let F0 ∈ F have zero mean and unit variance. Denote by Z the random variable with distribution Pr (Z ≤ x) = F0(x).
Denote by F̄0(x) = 1− F0(x) the corresponding survival function. By A1, we have

p(x) := Pr
X∼G0

[L(X; P) ≥ x]

= Pr
X∼G0

[
L(X; P)−H(P;G0)

σ0
≥ x−H(P;G0)

σ0

]
= F̄0

(
x−H(P;G0)

σ0

)
.

For a prescribed significance level α ∈ (0, 1), the test rejects if p(X) ≤ α. By A2, we have under X ∼ G1 the equality in
distribution:

L(X; P)
D
= H(P;G1) + σ1Z,

Therefore, the test’s power is given by

1− β = Pr
X∼G1

[p(X) ≤ α]

= Pr

(
F̄0

(
H(P;G1)−H(P;G0)

σ0
+

σ1

σ0
Z

)
≤ α

)
.

By the unimodality assumption, the last expression is a monotonic non-decreasing function of

H(P;G1)−H(P;G0) = H(G1)−H(G0) + ∆(G1,G0; P).

The claim follows because only the last term depends on P.

Proof of Theorem 2

We need to maximize ∆(P ; G1,G0) over P with constraints D(G0∥P) ≤ ϵ and
∑

x∈X P(x) = 1. The Lagrangian is

L(P, λ, µ) := D(G1∥P)−D(G0∥P) + λ (ϵ−D(G0∥P)) + µ

(
1−

∑
x∈X

P(x)

)
.

Differentiating with respect to P gives

∂L
∂P

= −G1

P
+ (1 + λ)

G0

P
− µ.

For any x with P(x) > 0, the stationary point P∗ satisfies

P(x) =
(1 + λ)G0(x)−G1(x)

µ
. (15)

Because P is a probability distribution, we must have (1 + λ)G0(x) ≥ G1(x) and
∑

x∈X P(x) = 1. Both conditions are
satisfied with µ = λ provided

1 + λ ≥ sup
x∈X

G1(x)

G0(x)
,

which in turn can be satisfied since X is finite and G1 ≪ G0 implies that the likelihood ratio G1/G0 is bounded.
In the next lemma we show that the constraint D(G0∥P) ≤ ϵ is binding, thus condition (10) must hold. The proof of this

lemma is provided at the end of the proof of Theorem 2.

Lemma 5.1. Assume G1 ̸= G0 and ε > 0. Consider

sup
P

∆(P) := D(G1∥P)−D(G0∥P) s.t. D(G0∥P) ≤ ε.

Then any maximizer P⋆ satisfies D(G0∥P⋆) = ε.

As an intuition for the statement in Lemma 5.1, notice ∆(P) strictly increases when moving P away from G0 in the
directions that separate G1 from G0.



It is left to evaluate ∆∗(G1,G0). Substituting P∗ to ∆(P) := ∆(G1,G0; P) and using that G0(x) − G1(x) =
1
γ (P∗(x)−G0(x)), we get

∆(P∗)−∆(G0) =
∑
x

(G0(x)−G1(x)) log
P∗(x)

G0(x)

=
1

γ

∑
x

(P∗(x)−G0(x)) log
P∗(x)

G0(x)

=
1

γ
[D(P∗∥G0) +D(G0∥P∗)]

=
1

γ
[D(P∗∥G0) + ϵ] .

Proof of Lemma 5.1: Suppose by contradiction that there exists an optimal P⋆ with D(G0∥P⋆) < ϵ. Since G1 ̸= G0, there
exists a measurable set A such that G1(A) > G0(A). For 0 < δ < 1 define

Pδ := (1− δ)P⋆ + δR, R := G0(· | Ac).

Then Pδ is a valid distribution and, by continuity of P → D(G0∥P), we have D(G0∥Pδ) ≤ ε for all sufficiently small δ > 0.
Since R puts zero mass on A, we have Pδ(x) = (1−δ)P⋆(x) for x ∈ A, hence log Pδ(x) = log P⋆(x)+log(1−δ) < log P⋆(x)
on A. Therefore,

∆(G1,G0; P) = const −
∑
x∈X

(G1(x)−G0(x)) log P(x)

> const −
∑
x∈X

(G1(x)−G0(x)) log P
⋆(x)

= ∆(G1,G0; P
⋆)

contradicting optimality of P⋆.

A. Proof of Theorem 3
Set V := Dχ2(G1∥G0). For λ > 0 large enough so that Pλ(x) ≥ 0 for all x, define

r(x) :=
G1(x)−G0(x)

G0(x)
,

Pλ(x) := G0(x)−
G1(x)−G0(x)

λ
= G0(x)

(
1− r(x)

λ

)
, (16)

and ϵ(λ) := D(G0∥Pλ). Notice that ∑
x∈X

G0(x)r(x) = 0 (17)

and

V = Dχ2(G1∥G0) =
∑
x∈X

G0(x)r
2(x). (18)

We work with the one-parameter family Pλ in (16) and derive expansions for ϵ(λ) = D(G0∥Pλ) and ∆(Pλ) as λ → ∞, then
eliminate λ in favor of ϵ.

By (16),

ϵ(λ) = D(G0∥Pλ) = −
∑
x

G0(x) log
(
1− r(x)

λ

)
.

From log(1− u) = −u− u2

2 +O(u3) as u → 0, we get

− log
(
1− r(x)

λ

)
=

r(x)

λ
+

r(x)2

2λ2
+O

( 1

λ3

)
.

Using this, (17), and (18), leads to

ϵ(λ) =
1

λ

∑
x

G0(x)r(x) +
1

2λ2

∑
x

G0(x)r
2(x) +O

( 1

λ3

)
=

1

2λ2
V +O

( 1

λ3

)
. (19)



We now expand ∆(Pλ) for small values of 1/λ. Using Pλ(x) = G0(x)
(
1− r(x)/λ

)
,

∆(Pλ) = D(G1∥P)−D(G0∥P)

=
∑
x

G1(x) log
G1(x)

Pλ(x)
−
∑
x

G0(x) log
G0(x)

Pλ(x)

=
∑
x

G1(x) log
G1(x)

G0(x)
−
∑
x

(G1(x)−G0(x)) log
Pλ(x)

G0(x)

= D(G1∥G0)−
∑
x

(G1(x)−G0(x)) log
(
1− r(x)

λ

)
.

Using again log(1− u) = −u− u2

2 +O(u3) with u = r(x)/λ, and noting that G1(x)−G0(x) = G0(x)r(x), we get

∆(Pλ) = D(G1∥G0) +
∑
x

G0(x)r(x)

[
r(x)

λ
+

r(x)2

2λ2
+O

( 1

λ3

)]
= D(G1∥G0) +

1

λ

∑
x

G0(x)r(x)
2 +O

( 1

λ2

)
= D(G1∥G0) +

V

λ
+O

( 1

λ2

)
.

Thus,

∆(Pλ) = D(G1∥G0) +
V

λ
+O

( 1

λ2

)
. (20)

Finally, from (19), we get ϵ(λ) = V
2λ2 +O(λ−3), hence

1

λ
=

√
2ϵ

V
+ O(ϵ), as ϵ → 0.

Plugging this into (20) gives

∆(Pϵ) = D(G1∥G0) + V

(√
2ϵ

V
+O(ϵ)

)
+O(ϵ) = D(G1∥G0) +

√
2V ϵ+O(ϵ).

B. Proof of Theorem 4

Let Π1 denote the set of priors π over G1. For a fixed P, by a standard identity (c.f. [24]),

inf
G∈G1

∆(G,G0; P) = inf
π∈Π1

EG∼π [∆(G,G0; P)]

= inf
π∈Π1

∫
G1

∆(G,G0; P)dπ(G).

Since the set of probability measures Pϵ is convex and compact, and since Π1 is convex, we may apply the minimax theorem
to swap the order of optimization (c.f. [25]). This leads to

∆∗(G1,P) = inf
π∈Π1

sup
P∈Pϵ

EG∼π [∆(G,G0; P)] (21)

We consider first the inner optimization in (21). Let J(P, π) := EG∼π [∆(G,G0; P)]. We have:

J(P, π) =

∫
G1

[D(G∥P)−D(G0∥P)] dπ(G)

=

∫
G1

[
D(G∥G0) +

∑
x∈X

(G(x)−G0(x)) log
G0(x)

P(x)

]
dπ(G)

= EG∼π [D(G∥G0)] +
∑
x∈X

(
G0(x)− Ḡπ(x)

)
log

G0(x)

P(x)
, (22)

where Ḡπ(x) :=
∫
G(x)dπ(G).



We now solve for the optimal P subject to the constraint D(G0∥P) ≤ ϵ. Let P(x) = G0(x)(1 + δ(x)) where EG0 [δ] = 0.
By log(1 + x) = x− x2/2 + o(x2),

D(G0∥P) =
1

2

∑
x∈X

G0(x)δ(x)
2 =

1

2
∥δ∥2G0

+ o(∥δ∥2G0
).

Therefore, the constraint (2) implies
∥δ∥2G0

≤ 2ϵ(1 + o(1)).

Using the approximation log(G0/P) = − log(1 + δ) ≈ −δ, the variational term in (22) becomes a linear functional of δ:∑
x∈X

(G0(x)− Ḡπ(x))(−δ(x)) =
∑
x∈X

G0(x)

(
1− Ḡπ(x)

G0(x)

)
(−δ(x))

= ⟨ Ḡπ

G0
− 1, δ⟩G0

. (23)

By the Cauchy-Schwarz inequality, the supremum of this inner product subject to ∥δ∥G0
≤

√
2ϵ is achieved when δ aligns

with the vector v = Ḡπ/G0 − 1. The maximum value is
√
2ϵ ∥Ḡπ/G0 − 1∥G0 . Recognizing that this norm corresponds to the

Chi-square divergence, we have:

sup
P∈Pϵ

∑
x∈X

(G0(x)− Ḡπ(x)) log
G0(x)

P(x)
=
√
2ϵ(1 + o(1)) ·Dχ2(Ḡπ∥G0). (24)

Substituting this back into (21) yields,

∆∗(G1,P) = inf
π∈Π1

[
EG∼π [D(G∥G0)] +

√
2(ϵ+ o(1)) ·Dχ2(Ḡπ∥G0)

]
. (25)

Proof of Theorem 5: By Theorem 3 and following similar arguments as in the proof of Theorem 4, for any prior π on G1,

sup
P∈Pϵ

inf
G∈G1

∆(G,G0; P) ≤ sup
P∈Pϵ

∫
G
∆(G,G0; P)π(G)

=

[
D̄π +

√
2ϵDχ2(Ḡπ∥G0) + o(1)

]
,

as ϵ → 0. Thus, for π = π# with G0 = Ḡπ# , the chi-squared term vanishes and we get

∆∗(G1,G0) ≤ D̄π# + o(1) (26)

For a specific alternative G1 ∈ G1, we use (26) to write

D(G1∥G0) = D̄π# +
(
D(G1∥G0)− D̄π#

)
≥ ∆∗(G1,G0) +

(
D(G1∥G0)− D̄π#

)
+ o(1)

≥ ∆∗(G1,G0)−
∣∣D(G1∥G0)− D̄π#

∣∣+ o(1).

It follows that

o(1) +D(G1∥G0)π
#(G) ≥ ∆∗(G1,G0)− supG ∈ supp(π#)

∣∣D(G1∥G0)− D̄π#

∣∣
= ∆∗(G1,G0)− rπ# .
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