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Notational Conventions
Notation Description

R real numbers

N natural numbers 1,2, . . .

Z integers

1A indicator function of the set A⊂ R
µ(A) Lebesgue measure of the set A⊂ R

supp A support of the set A

P probability measure

x(·) real valued function over R representing a signal

X(·) stochastic process with index set R
XT (·) stochastic process X(·) limited to the interval [−T/2,T/2]

Y [·] stochastic process with index set Z
Y[·] vector-valued stochastic process with index set Z
E [X ] expectation of the random variable X

σ2
X variance of stationary process X(·)

L1(A) Banach space of absolutely Lebesgue integrable functions over domain A

L2(A) Banach space of square Lebesgue integrable functions over domain A

‖x(·)‖ L2 norm of the function x(·)
CX (t,s) covariance function of the random process X(·)
SX ( f ) power spectral density (PSD) of the continuous-time stationary process X(·)

SY
(
e2πiφ

)
power spectral density of the discrete-time stationary process Y [·]

mmse(X |Y ) minimal mean squared error (MSE) in estimating X from Y

D distortion in MSE per unit time

R bitrate (bits per unit time)

fs sampling rate (samples per unit time)

R̄ = R/ fs average rate of coding in bits

KH(t,τ) bilinear kernel of a continuous linear operator between two spaces of signals

H( f ) frequency response of a linear time-invariant system

fNyq Nyquist rate (the minimal length of the interval containing the support of SX ( f )).

fLan Landau’s rate (the spectral occupancy µ(supp SX ))
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Preface

Analog-to-digital conversion is a fundamental operation in many electronic and communication systems.

The principles describing the information loss as a result of transforming from continuous-time, continuous-

amplitude signals to a sequence of bits lie at the intersection of sampling theory and quantization or lossy

source coding theory. Classic results in sampling theory established the Nyquist rate of a signal, or, more

precisely, its spectral occupancy, as the critical sampling rate above which the signal can be perfectly recon-

structed from its samples. However, these results do not incorporate the quantization precision of the samples.

Since it is impossible to obtain an exact digital representation of any continuous-amplitude sequence of sam-

ples, any digital representation of an analog signal will introduce some error, regardless of the sampling rate.

This raises the question as to when sampling at the Nyquist rate is necessary. In other words, is it possible

to achieve the same or better performance by sampling at a rate lower than Nyquist without any further

assumptions about the input signal other than a limited bitrate to describe the samples?

When only quantization or limited bitrate is considered, the minimal distortion in encoding a random

process subject to this bitrate limitation is described by Shannon’s distortion-rate function (DRF). However,

this DRF is given in terms of an optimization over a family of conditional probability distributions subject to

a mutual information constraint and does not explicitly incorporate sampling and other inaccuracies arising

from signal processing with a limited time-resolution. In fact, the standard achievability scheme in source

coding assumes that the encoder can access the realization of the analog process, or expand it with respect

to an analog basis function, without any restriction on the time resolution. Since this restriction often occurs

in practice, the following question arises: Given a finite number of samples per unit time from the analog

process, what is the minimal distortion in recovering it from a digital encoding of these samples subject to a

bitrate constraint ?

The goal of this thesis is to address the two questions posed above by characterizing the minimal distor-

tion that can be attained in recovering a random process using the most general form of quantization applied

to its samples. By explicitly incorporating sampling into the minimum distortion optimization, the charac-

terization of the minimal distortion bridges the missing theoretical gap between sampling theory and lossy

data compression theory. By taking into account signal sampling and the associated distortion, the resulting

distortion function generalizes and unifies sampling theory and source coding theory.
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Chapter 1

Introduction

1.1 Digital Representation of Analog Signals

Processing, storing, and communicating information that originates as an analog phenomenon involve the

conversion of this information to bits. This conversion can be described by the combined effect of sampling

and quantization, as illustrated in Figure 1.1. The digital representation in this procedure is achieved by first

sampling the analog signal so as to represent it by a set of discrete-time samples and then quantizing these

samples to a finite number of bits. Traditionally, these two operations are considered separately. The sampler

is designed to minimize information loss due to sampling based on prior assumptions on the continuous-time

input. The quantizer is designed to represent the samples as accurately as possible, subject to the constraint

on the number of bits that can be used in the representation. The goal of this thesis is to revisit this paradigm

by considering the joint effect of these two operations and to illuminate the dependency between them.

As motivation for exploring this dependency, consider the minimal information preserving sampling rate

that arises in classical sampling theory due to Whittaker, Kotelnikov, Shannon, (WKS) and Landau [1, 2, 3].

These works establish the Nyquist rate or the spectral occupancy of the signal as the sampling rate above

which a bandlimited signal can be perfectly reconstructed from its samples. This statement, however, focuses

only on the minimal sampling rate required to perfectly reconstruct a bandlimited signal from its discrete

     quantization
0100101001101010110101
1101001101001110111111
0010001011110010001010

sampling

Figure 1.1: Analog-to-digital conversion is achieved by combining sampling and quantization.

1



CHAPTER 1. INTRODUCTION 2

analog
(continuous-time)

analog
(discrete-time)

digital

X(t) sampler encoder

X̂(t) decoder

fs
[ smp

sec

]
R[ bits

sec ]

distortion

Figure 1.2: Analog-to-digital compression (ADX) and reconstruction setting. Our goal is to derive the
minimal distortion between the signal and its reconstruction from any encoding at bitrate R of the samples of
the signal taken at sampling rate fs.

samples; it does not incorporate the quantization precision of the samples and does not apply to signals that

are not bandlimited. It is in fact impossible to obtain an exact representation of any continuous-amplitude

sequence of samples by a digital sequence of numbers due to finite quantization precision, and therefore any

digital representation of an analog signal is prone to some amount of error. That is, no continuous amplitude

signal can be reconstructed from its quantized samples with zero distortion regardless of the sampling rate,

even when the signal is bandlimited. This limitation raises the following question: In converting a signal

to bits via sampling and quantization at a given bit precision, can the signal be reconstructed from these

samples with minimal distortion based on sub-Nyquist sampling? This thesis discusses this question by

extending classical sampling theory to account for quantization and for non-bandlimited inputs. Namely,

for an arbitrary random input signal and given a total budget of quantization bits, we consider the lowest

sampling rate required to sample the signal such that reconstruction of the signal from its quantized samples

results in minimal distortion.

1.2 Analog-to-Digital Compression (ADX)

The minimal distortion achievable in the presence of quantization depends on the particular way the signal

is quantized or, more generally, encoded, into a sequence of bits. Since we are interested in the fundamen-

tal distortion limit in recovering an analog signal from its digital representation, we consider all possible

encoding and reconstruction (decoding) techniques. As an example, in Figure 1.1 the smartphone display

may be viewed as a reconstruction of the real world painting Starry Night from its digital representation.

No matter how fine the smartphone screen, this recovery is not perfect since the digital representation of the

analog image does not contain all information – due to loss of information during the transformation from

analog to digital. Our goal is to analyze this loss as a function of limitations on the sampling mechanism

and the number of bits used in the encoding. It is convenient to normalize this number of bits by the signal’s
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free dimensions, that is, the dimensions along which new information is generated. For example, the free

dimensions of a visual signal are usually the width and height of the frame, and the free dimension of an

audio wave is time. For simplicity, we consider analog signals with a single free dimension, and we denote

this dimension as time. Therefore, our restriction of the digital representation is given in terms of the bitrate

and sampling rate – the number of bits per unit time and the number of samples per unit time, respectively.

The random analog signal is assumed to be generated by some underlying source. Therefore, this signal is

a continuous-time stochastic process and we refer to it as the source signal. The sampling and encoding

operations are deterministic and can be designed based on the statistics of the process that are assumed to be

known.

For an arbitrary continuous-time stochastic process with known statistics, the fundamental distortion limit

due to the encoding of the signal using a limited bitrate is given by its Shannon distortion-rate function (DRF)

[4, 5, 6], also referred to as the information DRF. This function provides the optimal tradeoff between the

bitrate of the signal’s digital representation and the distortion in recovering the original signal from this

representation. The information DRF is described only in terms of the distortion criterion, the probability

distribution on the continuous-time signal, and the maximal bitrate allowed in the digital representation.

Consequently, the optimal encoding scheme that achieves the information DRF is a general mapping from

continuous-time signal space to bits that does not consider any practical constraints in implementing such

a mapping. In most applications, the encoding of analog signals into bits requires sampling followed by a

digital mapping of these samples to bits. Therefore, in practice, the minimal distortion in recovering analog

signals from their mapping to bits considers the digital encoding of the signal samples, with a constraint on

both the sampling rate and the bitrate of the system. Here the sampling rate fs is defined as the number of

samples per unit time of the continuous-time signal; the bitrate R is the number of bits per unit time used in

the representation of these samples. The resulting system describing our problem is illustrated in Figure 1.2,

and is denoted as the analog-to-digital compression (ADX) setting.

The digital representation in this setting is obtained by transforming a continuous-time, continuous-

amplitude random signal X(·) through a concatenated operation of a sampler and an encoder, resulting in

a bit sequence. For instance, when the input signal X(·) is observed over a time interval of length T , then the

sampler produces b fsTc samples, and the decoder maps these samples to bT Rc bits. The decoder estimates

the original analog signal from this bit sequence. The distortion is defined to be the mean squared error

(MSE) between the input signal X(·) and its reconstruction X̂(·). Since we are interested in the fundamental

distortion limit subject to a sampling constraint, we allow optimization over the encoder, decoder, and the

time horizon T . In addition, we also explore the optimal sampling mechanism but limit ourselves to the class

of linear, continuous, and deterministic samplers.

The minimal distortion in ADX is bounded from below by two extreme cases of the sampling rate and the

bitrate, as illustrated in Figure 1.3: (1) when the bitrate R is unlimited, the minimal ADX distortion reduces

to the MSE in interpolating a signal from its samples at rate fs. (2) When the sampling rate fs is unlimited or

above the Nyquist rate of the signal, the ADX distortion reduces to the information DRF, or simply the DRF,



CHAPTER 1. INTRODUCTION 4

0 fs

Distortion

ADX distortion

? fNyq

unlimited
sampling rate unlimitedbitrate

Figure 1.3: While Nyquist rate sampling is required to attain zero distortion without quantization constraints,
the minimal sampling rate for attaining the minimal distortion achievable in the presence of quantization is
usually below the Nyquist rate.

of the signal. Indeed, in this situation the optimal encoder can recover the original continuous-time source

without distortion, and then encode this recovery in an optimal manner according to the optimal lossy source

coding scheme that attains the DRF. In particular, we are interested in the minimal sampling rate for which the

DRF, describing the minimal distortion subject to a bitrate constraint, is attained. As illustrated in Figure 1.3,

and as will be explained in detail in Chapter 5, this sampling rate is usually below the Nyquist rate of the

signal. We denote this minimal sampling rate as the critical sampling rate subject to a bitrate constraint, since

it describes the minimal sampling rate required to attain the optimal performance in systems operating under

quantization or bitrate restrictions. Therefore, the critical sampling rate extends the information-preserving

or distortion-free sampling rate of WKS and Landau. It is only as the bitrate goes to infinity that sampling at

the Nyquist rate or, equivalently, at the spectral occupancy, is necessary to attain zero distortion.

1.3 Applications

Figure 1.2 represents all systems that process information through sampling and are limited in the amount of

memory they use, the number of states they can assume, or the number of bits they can transmit per unit time.

These three sources of restrictions on system operations are explained in more detail below:

• Memory – Digital systems often operate under a constraint on their amount of memory or the states

they can assume. Under such a restriction, the bitrate is the normalized amount of memory used over

time (or dimension of the source signal). For example, consider a system of K states that analyzes

information obtained by observing an analog signal for T seconds. The maximal bitrate of the system

is R = log2(K)/T .

• Power – Emerging sensor network technologies, such as these for biomedical applications and “smart

cities”, use many low-cost sensors to collect data and transmit it to remote locations [7]. These sensors
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must operate under severe power restrictions, hence they are limited by the number of comparisons

in their analog-to-digital operation. These comparisons are typically the most energy consuming part

of the ADC unit, so that the overall power consumption in an ADC is proportional to their number

[8, Sec 2.1]. In general, the number of comparisons is proportional to the bitrate, since any output of

bitrate R is generated by at least R comparisons (although the exact number depends on the particular

implementation of the ADC and may even grow exponentially in the bitrate [9]). Therefore, power

restrictions lead to a bitrate constraint and to a non-zero MMSE distortion floor given by the DRF of

the analog input signal.

An important scenario of power-restricted ADCs arises in wireless communication using millimeter

waves [10]. Severe path-loss of electromagnetic waves in these frequencies is compensated by using a

large number of receiver antennas. Each antenna is associated with an RF chain that includes an ADC

unit. Due to the resulting large number of ADCs, power consumption is one of the major engineering

challenges in mm-wave communication.

• Communication – Low-power sensors may also be limited by rates of communication to send their

digital sensed information to a remote location. For example, consider a low-energy device collecting

medical signals and transmitting its measurements wirelessly to a central processor (e.g. a smartphone).

The communication rate from the sensor to the central processor depends on the capacity of the channel

between them, which is a function of the available power for communication. When the power is

limited, so is the capacity. As a result, the data rate associated with the digital representation of the

sensed information cannot exceed this capacity limit since, without additional processing, there is no

point in collecting more information than what can be communicated.

Specific examples for systems that operate under the above constraints are audio and video recorders, radio

receivers, and digital cameras. Moreover, these restrictions also apply to signal processing techniques that

use sampling and operate under bit-constraints, such as artificial neural networks [11], financial markets an-

alyzers [12], and techniques to accelerate operations over large datasets by sampling [13].

For any of the above examples, the ADX setting provides the theoretical limits on estimation from sam-

pled and quantized information. We note, however, that sampling and quantization restrictions may not only

be the result of engineering limitations, but can also be inherent in the system model and the estimation prob-

lem. As an example, consider the estimation of an analog signal describing the price of a financial asset.

Although we assume that the price follows some continuous-time behavior, the value of the asset is only

“observed” when a transaction is reported. This limitation on the observation can be described by a sampling

constraint. If transactions occur at intermittent times than this sampling is non-uniform. Moreover, it is often

assumed that the instantaneous change of the price is given by a deterministic signal representing the drift

plus an additive infinite bandwidth and stationary noise [12]. Therefore, the signal in question is of infinite

bandwidth and sampling thus occurs below its Nyquist rate. In addition to the sampling constraint, it may be

the case that the values of the transactions are hidden from us. The only information we receive is through
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sampling and estimation
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unrestricted
sampling rate
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Figure 1.4: Relation between the background chapters and the main contribution (Chapter 4).

a sequence of actions taken by the agent controlling this asset. Assuming that the set of possible actions is

finite, this last limitation corresponds to a quantization constraint. Therefore, the MMSE in estimating the

continuous-time price based on the sequence of actions is described by the minimal distortion in the ADX.

While in this case we have no control on the way the samples are encoded (into actions), the minimal distor-

tion in the ADX setting provides a lower bound on the distortion in estimating the continuous-time price. This

distortion can be expressed by an additional noise in a model that makes decisions based on the estimated

price.

1.4 Organization and Contributions of the Thesis

The problem of characterizing the minimal distortion in ADX combines two classical problems in sampling

theory and source coding theory. Hence, as preparation for studying this joint problem, we will consider

the sampling part and the quantization part separately in Chapters 2 and 3, respectively. As illustrated in

Figure 1.4, each of these problems corresponds to a special case of the ADX setting, obtained by relaxing

the bitrate constraint or the sampling rate constraint. The full ADX setting is considered in Chapter 4,

which comprises the main contribution of this thesis. The critical sampling rate under a bitrate constraint

follows from this characterization as discussed in Chapter 5. Finally, concluding remarks and future research

prospects are provided in Chapter 6. Detailed descriptions of the contribution of each chapter are given below.

1.4.1 Chapter 2

In Chapter 2 we focus on the sampling side of the ADX, as illustrated in Figure 1.4. We first provide a

theoretical framework for sampling of random signals which we denote as bounded linear sampling. There

are two main differences between our framework and standard frameworks in the sampling literature [14]:

(1) we do not assume that the signals are bandlimited, and (2) we consider sampling operations that can be

restricted to finite time horizons. The last property is required in order to consider the combined effect of
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sampling and encoding as in Figure 1.2, since encoding devices are usually restricted by their blocklength.

Next, we consider the problem of estimating a Gaussian and stationary signal from its noisy samples under

an MSE criterion. We focus in particular on the important class of linear time-invariant uniform samplers,

which consists of samplers involving linear time-invariant operations followed by pointwise evaluations.

The additional structure of samplers in this class allows us to derive closed-form expressions for this MSE.

Finally, we consider the optimization over the sampling structure to minimize this MSE expression. This

minimization is then used to recover classical results in sampling theory, showing that the conditions derived

by Shannon and Landau for distortion-free sampling are obtained as special cases from the ADX setting, as

indicated by the curved dashed line in Figure 1.3.

1.4.2 Chapter 3

In Chapter 3 we consider the general problem of encoding a random signal subject to a bitrate constraint. In

the classical setting of Shannon, the encoder has full access to the analog signal it is required to encode, and

the optimal tradeoff between bitrate and distortion is given by the DRF of the signal. In the ADX setting,

however, the encoder can only observe a sampled and possibly noisy version of the signal, hence the resulting

problem of encoding the samples with the goal of minimizing the MSE is denoted as indirect source coding.

In this chapter we review classical results in standard and indirect source coding. In particular, we show

that the indirect distortion-rate function under MSE distortion is given as a sum of two terms: (1) the minimal

MSE estimation error of the original source signal before encoding, and (2) the standard DRF of the optimal

MSE estimator. Moreover, the optimal encoding procedure can be separated into a minimal MSE estimate

followed by the encoding of this estimate. The aforementioned decomposition has been used before in various

settings [15, 16, 6]. Our main new contribution is proving a new version of it that holds under time-varying

operations that are commonly employed by sampling systems and, in particular, those defined in Chapter 2.

We also demonstrate the usefulness of this decomposition to characterize the minimal distortion in various

indirect source coding settings, as these characterizations will be used in subsequent chapters.

1.4.3 Chapter 4

In Chapter 4 we characterize the minimal MSE distortion in the ADX setting. This characterization is

achieved by the following two steps:

(i) Given the output of the sampler, derive the optimal way to encode these samples subject to the bitrate

R, so as to minimize the MSE distortion in reconstructing the original continuous-time signal.

(ii) Derive the optimal sampling scheme that minimizes the MSE in (i) subject to the sampling rate con-

straint.

In order to achieve (i), we formalize the ADX setting as a combined problem of sampling and source coding.

We first derive a solution to this problem for the special case of time-invariant uniform samplers. This
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derivation is achieved by exploiting the special asymptotic properties of signals sampled by these samplers, in

combination with the general decomposition of indirect DRFs derived in Chapter 3. Moreover, for this class

of samplers, the optimization over the sampling scheme in (ii) coincides with the analogous optimization

carried out in Chapter 2 without the bitrate constraint. The distortion function resulting from (i) and (ii)

provides an achievable lower bound for the distortion in the ADX with the class of time-invariant uniform

samplers. Finally, this lower bound is extended to the entire class of bounded linear samplers.

1.4.4 Chapter 5

In Chapter 5 we consider an interesting phenomenon that follows from our characterization of the minimal

distortion in ADX: for most signal models, the minimal distortion subject to a bitrate constraint, described

by the DRF of the signal, is attained by sampling at a rate lower than the Nyquist rate. Namely, for every

bitrate R, there exists a sampling rate fR that is usually smaller than the Nyquist rate, such that the optimal

performance subject to a bitrate constraint is attained by sampling at this rate. Moreover, the new critical

sampling rate fR is finite even if the bandwidth of the signal is not.

Next, we provide interpretations of this phenomenon both in sampling theory and source coding theory.

From a sampling theory perspective, the sampling rate fR extends the classical Nyquist criterion in two

aspects: (1) it describes the minimal sampling rate required to attain the minimal distortion subject to a bitrate

constraint and (2) is also valid for signals that are not bandlimited. From a source coding theory perspective,

the existence of a finite critical sampling rate for non-bandlimited signals provides conditions for encoding

these signals with vanishing distortions. That is, for these signals, vanishing distortion in encoding is attained

only in the asymptotic limit of infinite sampling rate and infinite bitrate. Since for each bitrate R the optimal

sampling rate is fR, the asymptotic ratio R/ fR provides the optimal number of bits per sample in this encoding.

1.5 Previously Published Material

Parts of this dissertation have appeared in the following publications:

• [17]: A. Kipnis, A. J. Goldsmith, Y. C. Eldar and T. Wiessman, “Distortion-Rate Function of Sub-

Nyquist Sampled Gaussian Sources”, IEEE Transactions on Information Theory, vol. 62, no. 1, pp.

401–429, Jan 2016. Shorter version [18] appeared in 51st Annual Allerton Conference on Communi-

cation, Control, and Computing (Allerton) IEEE, 2013, pp. 901-908.

• [19]: A. Kipnis, A. J. Goldsmith and Y. C. Eldar, “Rate-Distortion Function of Cyclostationary Gaus-

sian Processes”, available https://arxiv.org/abs/1505.05586, to appear in IEEE Transactions on Infor-

mation Theory. Shorter version [20] appeared in Proceedings of the IEEE International Symposium on

Information Theory, pp. 2834-2838, 2014.

• [21]: A. Kipnis, Y. C. Eldar and A. J. Goldsmith, “Fundamental Distortion Limits of Analog-to-Digital
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– [22]: –, “Gaussian Distortion-Rate Function under sub-Nyquist Nonuniform Sampling”, 52nd

Annual Allerton Conference on Communication, Control, and Computing (Allerton) IEEE, 2014,

pp. 874–880.

– [23]: –, “Sub-Nyquist Sampling Achieves Optimal Rate-Distortion”, Information Theory Work-

shop (ITW), IEEE, 2015, pp. 1-5

– [24]: –, “Optimal Trade-off Between Sampling Rate and Quantization Precision in A/D conver-

sion”, 54nd Annual Allerton Conference on Communication, Control, and Computing (Allerton)

IEEE, 2015, pp. 627-631.

• [25] A. Kipnis, A. J. Goldsmith and Y. C. Eldar, “The Distortion-Rate Function of Sampled Wiener

Processes”, available online, to appear in IEEE Transactions on Information Theory. Shorter version

appeared in:

– [26]: –“Information rates of sampled Wiener processes”, Proceedings of the IEEE International

Symposium on Information Theory, pp. 740-744, 2016.

http://arxiv.org/abs/1608.04679


Chapter 2

Sampling and Estimation of Random
Signals

In this chapter we focus on the sampling part in the ADX setting of Figure 1.2. The main problem we consider

is the estimation of a Gaussian stationary process from a discrete-time process representing the samples of

the analog signal. A common assumption in sampling theory is that the analog process is bandlimited. This

assumption is rooted in the celebrated Whittaker-Kotelnikov-Shannon (WKS) sampling theorem [27, 28, 2],

which asserts that a bandlimited signal can be precisely represented by its uniform samples, as long as the

sampling rate is larger than twice its bandwidth. Here the bandwidth is defined as the largest frequency in

the Fourier transform of the signal, and the critical sampling rate, which is twice this frequency, was named

the Nyquist rate by Shannon [29]. When the spectrum of the signal is a union of multiple disjoint intervals,

sampling at the Nyquist rate is sufficient but not necessary to distortion-free reconstruction of the signal

from its samples. An important extension of the WKS sampling theorem due to Landau [30, 3] asserts that

reconstruction of a signal with known spectral support from its pointwise sampling is possible if and only

if the sampling rate exceeds the signal’s spectral occupancy. Here the spectral occupancy is the Lebesgue

measure of the support of the spectrum of the signal, which is referred to as the Landau rate of the signal.

Since the spectrum of real signals is symmetric, their Landau and Nyquist rates coincide whenever their

spectrum is supported over a single interval 1. We note that although Landau’s result did not provide a

recipe for sampling at the Landau rate, such procedures were later developed for many classes of sampling

techniques, including bandpass sampling [31], multicoset sampling [32], and general nonuniform sampling

[33].

The Nyquist and the Landau rates are central notions in sampling theory since they lead to necessary

and sufficient conditions for optimal sampling, i.e., conditions for perfect representation of analog signals

using their discrete-time samples. In many applications, however, it is necessary to sample signals below
1For this reason Landau referred to the spectral occupancy as the Nyquist rate in [3], although the former is clearly a generalization

of the latter.

10
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their Nyquist or Landau rates. For example, this need arises in sampling signals whose spectral support is

larger than sampling rates of available hardware [34], when energy constraints preclude using Nyquist-rate

sampling, or when fluctuations in the signal occur in any time resolution, such as in financial markets [12]. In

these applications it is impossible to recover the original analog signal without error unless there exists some

prior knowledge on the signal (aside from a known spectral distribution), such as sparsity [35, 36] or sparse

(but otherwise unknown) spectral support [14]. It is important to stress that we will not pursue sampling under

such priors in this thesis, although the ADX setting with a sparse signal prior was recently considered in [37].

Therefore, since in absence of such prior information, sampling below the Nyquist/Landau rates introduces

non-zero reconstruction error, our goal in this chapter is to minimize this error and express it in a closed form.

In order to obtain a closed-form expression for the reconstruction distortion under sub Nyquist/Landau

sampling, a statistical model for the analog signal being reconstructed is needed. The model of a Gaussian

stationary process is chosen due to its usefulness in system theory [38], its maximal entropy and distortion

properties [6], and the ability to derive error expressions in this model under a mean square error (MSE)

criterion in closed forms. A review of the standard definitions for these processes is given in Section 2.1.

Roughly speaking, the classical sampling theory, including WKS and Landua results, can be extended to the

case of sampling Gaussian stationary signals using an isomorphism between two Hilbert spaces associated

with the spectrum of the signal [39]. This connection is stressed in Section 2.2, where a framework for sam-

pling stationary random signals under general conditions is developed. The most general form of sampling

we consider is characterized by a linear pre-sampling operation and a discrete sampling set, and is denoted as

bounded linear sampling. Later, in Section 2.3, we focus on a sub-class of bounded linear samplers in which

the pre-sampling operation is time-invariant and the sampling set is uniform. As is shown is Section 2.4, the

minimal MSE (MMSE) in recovering the original continuous-time analog signal from the output of samplers

in this sub-class can be derived in a closed form. In addition to sampling, the estimation problem in Sec-

tion 2.4 also assumes that the analog signal is corrupted by noise prior to sampling. Next, in Section 2.5, we

consider the optimization of the linear pre-sampling operation so as to minimize the MSE under sub-optimal

sampling. As we shall see, with enough uniform sampling branches, a particular choice of the pre-sampling

operations and zero noise, a Gaussian stationary signal can be recovered with zero MSE by sampling at its

Landau rate. For uniform sampling rates lower than the Landau rate and with non-zero noise, our characteri-

zation of the MSE in uniform sampling under an optimal pre-sampling operation leads to an achievable lower

bound. Evidently, since the ADX adds another layer of lossy compression, this lower bound also bounds

from below the distortion in our general ADX setting.

2.1 Notation

We now briefly describe the main notation involving continuous and discrete time random signals used

throughout the thesis.
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Throughout this thesis, the term analog signal refers to a continuous-time and continuous-amplitude

stochastic process. Such a process is a set X(·) = {X(t), t ∈ R} of real random variables indexed by the reals.

For a time interval I ⊂R, we denote by XI(·) the restriction of the process X(·) to the index set I. For either a

random variable X or a stochastic process X(·), we use the lower case letters x and x(·) to denote a particular

realization of the process. The lower case notation x(·) is also used to denote a deterministic analog signal.

The probability law, or simply the law, of the process X(·) is defined by the collection of all joint prob-

ability distribution functions of any finite number of elements from the process. Namely the law of X(·) is

defined by the collection of all functions of the form:

FX(t1),...,X(tn)(α1, . . . ,αn) = P(X(t1)≤ α1, . . . ,X(tn)≤ αn) ,

for t1, . . . , tn,α1, . . . ,αn ∈ R. We assume throughout that X(·) is zero mean in the sense that EX(t) = 0 for all

t ∈ R.

The zero-mean process X(·) is said to be Gaussian if for any (t1, . . . , tn) ∈ Rn there exists a positive

semi-definite matrix Σ ∈ Rn×n such that for any n dimensional vector a = (a1, . . . ,an) ∈ Rn,

Eexp

{
i

n

∑
j=1

a jX j

}
= exp

{
−1

2
a∗Σa

}
, (2.1)

where ∗ denotes complex conjugation (or simply the transpose of a real vector). A zero mean process X(·) is

said to be (wide-sense) stationary if for any t,s ∈ R, the covariance function of X(·), defined as

CX (t,s)E [X(t)X(s)] ,

is only a function of |t− s|. For such a process, we set CX (τ) = CX (τ,0). Since we only consider Gaussian

random processes, stationarity in this wide sense implies stationarity in the strict sense of the joint law. The

Wiener-Khinchin theorem implies that there exists a measure dSX ( f ) on R, denoted as the spectral measure

of X(·), such that

CX (τ) =
∫

∞

−∞

e2πiτ f dF( f ).

In this thesis we assume that the spectral measure of X(·) is absolutely continuous with respect to the

Lebesgue measure, so that there exists a function SX ( f ) such that dSX ( f ) = SX ( f )d f . SX ( f ) is denoted

as the power spectral density of X(·).

An alternative way to describe a zero mean real Gaussian stationary process with absolutely continuous
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spectral measure is by defining its spectral properties first [40]. Specifically, we start with an L1(R) non-

negative symmetric function SX ( f ) which we call the PSD. We then define

CX (τ) =
∫

∞

−∞

e2πiτ f SX ( f )d f .

The law of X(·) is now determined by its finite dimensional joint distributions through (2.1).

The discrete-time counterpart of the above notation with respect to discrete-time process Y [·] = {Y [n], n ∈ Z}
in defined in the obvious way. For example, the PSD of a stationary discrete-time process Y [·] is a non-

negative function SY
(
e2πiφ

)
symmetric around zero, periodic with period 1 and integrable over any period.

This function defines a covariance function by

XY [k] = E [X(n+ k]X [n]] =
∫ 1

2

− 1
2

SY
(
e2πiφ)e2πinφ dφ .

2.2 Bounded Linear Sampling

Generally speaking, the sampling of a deterministic analog signal can be seen as a mapping from the space of

signals to a real sequence. In particular, each sample can be seen as a mapping of the signal to a real number,

and therefore defines a functional on the set of allowable signals. In addition, physical considerations of

realizable systems dictate that this functional should be linear and bounded. In other words, each sample is

obtained by an element of the dual space of the space of allowable signals. It is common to choose the space

of signals such that the pointwise evaluation functional, i.e., the Dirac distribution, is continuous. When only

bandlimited signals are considered, pointwise evaluations can be obtained, for example, by inner product in

L2 with respect to the sinc function [14]. In our setting, however, we do not wish to restrict ourselves only

to bandlimited signals. Instead, we assume that the space of signals X is a nuclear space of functions on

R with topological dual X ? [41]. Nuclear spaces are topological vector spaces with the additional property

that for any bounded linear operator H : X →X ? there exists a kernel KA on R×R such that [42, Ch. 1]

Hx(t) =
∫

∞

−∞

KA(τ, t)dt, t ∈ R. (2.2)

The pair X and X ? are usually referred to as spaces of test functions and distributions, respectively, where in

addition it is assumed that each element of any of these spaces has a well-defined Fourier transform. Hence,

the bilinear operation between x(·) ∈X and φ ∈X ? satisfies the Parseval identity:

〈x(·),φ〉=
∫

∞

−∞

x(t)φ ∗(t)dt =
∫

∞

−∞

F x( f )(Fφ)∗ ( f )d f , (2.3)

where F is the Fourier transform and complex conjugation is represented by ∗. In (2.3) and henceforth,

we use the integral notation to denote the bilinear operation between the set of signals and its dual space
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xT (·) KH(t,τ)
tn ∈ Λ

yT ∈ RN

Figure 2.1: General structure of a bounded linear sampler.

(although standard integration may not be well-defined in some cases). We moreover assume that the Fourier

transform of any x(·) ∈X is an L1(R) function, which is a sufficient and necessary condition for X ? to

include the Dirac distribution δ0.

For the aforementioned class of signals, a general bounded linear sampler is defined in terms of a bounded

linear operator H : X →X with kernel KH(t,s), and a discrete ordered set Λ ⊂ R of sampling points, as

illustrated in Figure 2.1. Note that here H is an operator from X to itself and not to its dual. Since X ⊂X ?,

H still has the kernel representation (2.2). The set Λ is assumed to be uniformly discrete in the sense that

there exists ε > 0 such that |tn− tk| > ε for any tk, tn ∈ Λ. For an input signal x(·) ∈X , the nth samples is

given by

y[n] = Hx(tn) =
∫

∞

−∞

KH(tn,s)x(s)ds. (2.4)

We denote a sampler of this form as S(H,Λ) and denote by y(x)[·] = S(H,Λ)(x) the discrete sequence defined

by (2.4). The set Λ is referred to as the sampling set, and the operator H is referred to as the pre-sampling

operation. The separation of the sampler into these two independent operations is in accordance with practi-

cal considerations in implementing sampling systems using linear components and sample-and-hold devices

[14].

2.2.1 Finite time horizon sampling

In order to consider the concatenation of sampling and encoding as in the ADX setting, it is required to

consider sampling over a finite time horizon T > 0. For this reason, for a sampler S(H,Λ), we define ΛT =

Λ∩ [−T/2,T/2] and

yT (x) = S(H,ΛT )(x)

as the finite vector of samples (yT is finite since Λ is uniformly discrete) the sampler produces at time T .

In addition to restricting the number of samples over the interval [−T/2,T/2], it is sometimes useful to

restrict the samples to be a function of inputs only over [−T/2,T/2]. In order to consider this restriction,

we denote by HT the restriction of H to the interval [−T/2,T/2] which is defined by the kernel KHT =

1[−T/2,T/2]KH(t,s), where 1A is the indicator function of a set A.

Example 1 The most widely used example for a bounded linear sampler is uniform sampling. For this
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sampler, the pre-sampling operation is given in terms of the kernel K(t,s) = δ (t− s), where δ is the Dirac

delta distribution at zero, and the sampling set Λ = Z/ fs. Consequently, the nth sample equals

y[n] =
∫

∞

−∞

δ (n/ fs− s)x(s)ds, = x(n/ fs), n ∈ Z.

The finite horizon version of this sampler produces the vector

yT = {x(n/ fs), n/ fs ∈ [−T/2,T/2]} .

2.2.2 Sampling stationary random signals

In most of this thesis we are interested in the case where the signal x(·) is a realization of a zero-mean

Gaussian stationary random process X(·). We assume that the part of the spectral measure of X(·) that is

singular with respect to the Lebesgue measure is zero, so that its distribution is fully characterized by its

power spectral density (PSD) function SX ( f ), defined by

E [X(t)X(s)] = E [X(t− s)X(0)] =
∫

∞

−∞

e2πi(t−s) f SX ( f )d f . (2.5)

Equation (2.5) defines an isomorphism X(t)↔ e2πi f t between the Hilbert space generated by the closed

linear span of the random process X(·) = {X(t), t ∈ R} with norm ‖X(t)‖2 = E[X2(t)] and the Hilbert space

L2(SX ) of complex valued functions generated by the closed linear span (CLS) of the exponentials E ={
e2πi f t , t ∈ R

}
with an L2 norm weighted by SX ( f ) [39]. This isomorphism allows us to define sampling

of the random signal X(·) by describing its operation on the exponentials E . Specifically, let S(H,Λ) be a

bounded linear sampler on the CLS of E and denote

φ̂n( f ) =
∫

∞

−∞

e2πi f sKH(tn,s)ds. (2.6)

The nth sample of the sampler is given by the inverse map of φ̂n under the isomorphism defined by (2.5). For

example, when KH(t,s) = δ0(t− s), then φ̂n = e2πi f (n/ fs), whose inverse image under (2.5) equals X(n/ fs).

We note that when X(·) is bandlimited in the sense that SX ( f ) is supported within an interval (− fB, fB),

then the CLS of the exponentials E with an L2 norm weighted by SX ( f ) is isomorphic, through the Fourier

transform operator on L2, to the Paley-Wiener space PW(− fB, fB) of L2 functions whose Fourier transform

is supported on (− fB, fB) [43]. Therefore, our definition of a bounded linear sampler for SX ( f ) reduces to the

standard setting of sampling in the Paley-Wiener space PW(− fB, fB) of L2 functions whose Fourier trans-

form is supported on (− fB, fB), as considered for example by Landau [30].

So far we defined a framework for bounded linear sampling of stationary random processes whose PSD

is any L1(R) function. In the next section we consider two specific sub-classes of bounded linear samplers.
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xT (·) H( f )
fs

yT

Figure 2.2: Single branch uniform sampler.

xT (·) H2( f )
fs/L

yT = (y1,T , . . . ,yL,T )
y2,T

HL( f )
fs/L yL,T

H1( f )
fs/L y1,T

Figure 2.3: Multi-branch uniform sampler.

2.3 Time-Invariant Uniform Sampling

In this section we focus on two sub-classes from the class of bounded linear samplers defined in Section 2.2.

The first sub-class consists of a sampler with a time-invariant pre-sampling operation and a uniform sampling

set Λ = Z/ fs, where fs is denoted the sampling rate. For simplicity, we refer to each sampler in this class

as a single-branch (SB) uniform sampler. The second class of samplers is called multi-branch (MB) uniform

samplers, where each sampler in this class consists of multiple SB samplers. Our focus on SB and MB

samplers is motivated by their simple structure, which leads to a relatively simple hardware implementation

[14]. In the following sections we describe the sampling structures in more detail.

2.3.1 Single-branch uniform sampling

The general structure of a SB uniform sampler is illustrated in Figure 2.2. The pre-sampling operation H is

a linear time-invariant system with frequency response H( f ) and impulse response h(t). Namely, KH(t,s) =

h(t− s) and H( f ) = Fh. The sampling set of this filter is the grid Z/ fs, so that the nth sample of the input

x(·) is given by

y[n] =
∫

∞

−∞

h(n/ fs− s)x(s)dt.

For example, the uniform sampler of Example 1 is a special case of this sampler with h(t) = δ (t), i.e., the

pre-sampling operator H is the identity.
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XT (·) +

ηT (·)

smp

X̂(·) Est

YT

Figure 2.4: System model for MMSE estimation from noisy samples.

2.3.2 Multi-branch uniform sampling

We now generalize the SB uniform sampler by considering an array of such samplers, resulting in the MB

uniform sampler illustrated in Figure 2.3. This sampler is characterized by a set of L linear time-invariant

systems H1, . . . ,HL and a single sampling rate fs, such that the output of each sampling branch is given by

yl [n] =
∫

∞

−∞

x(s)hl(nL/ fs− s)ds.

Note that the sampling rate of each branch is fs/L, so that the overall sampling rate of the system is fs.

We denote by yl [·] the discrete-time signal at the output of the lth sampling branch. Henceforth, we treat

the L discrete-time signals Y1[·], . . . ,YL[·] resulting from the L branches, respectively, as a single vector-valued

signal y[·], defined by

y[n] = (y1[n], . . . ,yL[n]) , n ∈ Z.

In order to show that a MB sampler is a special case of the bounded linear sampler illustrated in Figure 2.1,

we consider the sampling set Λ = Z/ fs and define the operator H by the kernel

KH(t,s) =
L

∑
l=1

hl(t− s)1[(l−1)/ fs,l/ fs)(t).

2.4 Optimal Estimation from Noisy Samples

In this section we consider the minimal MSE in estimating a continuous-time Gaussian stationary process

X(·) from its samples obtained using a bounded linear sampler. We focus in particular on the time-invariant

uniform samplers of Section 2.3, although we also comment on the conditions for zero MSE under any

bounded linear sampler. In addition, in order to incorporate the most general conditions that arise in real
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systems, we assume that the signal X(·) is corrupted by an additive Gaussian stationary noise process η(·)
prior to sampling, as illustrated in Figure 2.4. Special cases of this settings were considered in [44], [45,

Prop. 3], [46] and [47]. Our setting generalizes these works since we allow for finite time-horizon sampling

that is required in order to consider coding based on the samples in subsequent chapters.

In the setting of Figure 2.4, the noise η(·) and X(·) are independent and therefore their sum is a Gaus-

sian stationary process with PSD SX ( f )+ Sη( f ). Therefore, we sometimes abbreviate the notation by de-

noting SX+η( f ) = SX ( f )+ Sη( f ). For a finite time horizon T , a bounded linear sampler S = S(H,Λ) re-

ceives a realization of X(·) +η(·) over [−T/2,T/2] and produces the finite vector YT of dimension N =

|Λ∩ [−T/2,T/2]|. The estimator produces an estimate of XT (·), which, since we use the MSE criterion, can

be assumed to be the conditional expectation of XT (·) given YT . Namely, denote

X̃T (t) = E [X(t)|YT ] . (2.7)

The finite horizon MMSE is defined as

mmse(XT |YT ) =
1
T

∫ T/2

−T/2
E
(

X(t)− X̃(t)T

)2
dt. (2.8)

Consequently, the asymptotic non-causal MMSE of a the bounded linear sampler S is defined as

mmseS = liminf
T→∞

mmse(XT |YT ). (2.9)

Note that since X(·) and X(·) + η(·) are jointly Gaussian processes, for any bounded linear sampler

S(H,Λ) we have that

mmseS(H,Λ) ≥mmse(X |X +η),

where mmse(X |X +η) is the error in the Wiener filter for estimating X(·) from η(·) [48], given by

mmse(X |X +η) = σ
2
X −

∫
∞

−∞

S2
X ( f )

SX+η( f )
d f =

∫
∞

−∞

SX ( f )Sη( f )
SX+η( f )

d f . (2.10)

In addition, for any time horizon T and time instances t1, . . . , tn ∈ [− T/2,T/2], the vector of samples YT

concatenated with the vector X = (X(t1), . . . ,X(tn)) is Gaussian. As a result, the conditional distribution of

X given YT is Gaussian, and we have

X̃T (ti) = E [X(ti)Y ∗T ]Σ
−1
YT

YT , (2.11)

where ΣYT = E [YTY ∗T ] is the covariance matrix of the vector YT . If the covariance matrix of the vector(
X̃(t1), . . . , X̃(tn)

)
converges to a constant, then we say that the law of X̃T (·) converges to an asymptotic

Gaussian law. This asymptotic law defines a Gaussian process X̃(·) by the joint probability distribution of
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X̃(t1), . . . ,X(tn) for any t1, . . . , tn ∈ R.

In what follows we derive mmseS in closed form when S is a SB or a MB uniform sampler. In particular,

we will see that under these classes of samplers, the law of the estimator X̃T (·) converges to the law of a

Gaussian process X̃(·) with block-stationary or cyclostationary structure [49].

2.4.1 Single-branch uniform sampling

Consider the case where YT is the result of sampling the process X(·)+η(·) under the SB uniform sampler

of Figure 2.2 at time T . The covariance of X(t) and the nth sample YT [n] is given by

E [X(t)YT [n]] =
∫ T/2

−T/2
E [X(t)(X(s)+η(s))]h(n/ fs− s)ds =

∫ T/2

−T/2
CX (t− s)h(n/ fs− s)ds. (2.12)

From the Parseval identity (2.3) it follows that the limit as T → ∞ of (2.12) exists and is given by∫
∞

−∞

H∗( f )SX ( f )e2πi(t−n/ fs) f d f .

Similarly, the covariance of YT [n] and YT [k] is given by

E [YT [n]YT [k]] =
∫ T/2

−T/2

∫ T/2

−T/2
h(n/ fs− s)h∗(k/ fs− t)CX (s− t)dsdt.

By basic properties of uniform sampling of functions and their Fourier transform (see, e.g., [50]), the above

expression converges to

∫ fs/2

− fs/2
∑

m∈Z
SX ( f −m fs) |H( f − fsm)|2 e2πi(n−k) f/ fsφ =

∫ 1
2

− 1
2

fs ∑
m∈Z

SX ( fs(φ −m)) |H ( fs(φ −m))|2 e2πi(n−k)φ .

(2.13)

It follows from (2.11) that the law of X̃T (·) converges to an asymptotic law X̃(·). It also follows from (2.13)

that as T → ∞, the joint distribution of the vector YT defines a discrete-time process Y [·] with covariance

function (2.13). In particular, Y [·] is stationary and its PSD is given by

SY
(
e2πiφ)= fs ∑

m∈Z
SX ( fs(φ −m)) |H ( fs(φ −m))|2 .

The process X̃(·) can be seen as the asymptotic non-causal MMSE estimator of X(·) from Y [·]. Since

X(·) and Y [·] are jointly Gaussian, the process X̃(·) is a linear combination of Y [·]. However, due to the fact

that the estimation is from discrete-time to continuous-time, X̃(·) may not be stationary. To illustrate this last

fact, consider the case of a uniform sampler with no pre-sampling operation or noise. In this situation it can

be checked that Y [n] = X(n/ fs), for all n ∈ Z. Therefore, regardless of fs and the bandwidth of X(·), the

variance of X̃(t) for t = n/ fs is zero, while it is usually not zero for t /∈ Z/ fs. Nevertheless, since X(·) is

stationary, the instantaneous estimation error X(t)− X̃(t) is periodic and uniformly bounded in t. As a result,
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the limit in (2.9) exists and can be written as

mmseSB(H)( fs) = lim
T→∞

1
2T

∫ T

−T
E
[(

X(t)− X̃(t)
)2
]

dt

=
∫ 1

0
lim

N→∞

1
2N +1

N

∑
n=−N

E

[(
X
(

n+∆

fs

)
− X̃

(
n+∆

fs

))2
]

d∆

=
∫ 1

0
mmse(X∆|Y )d∆, (2.14)

where X∆[·] is a discrete-time process defined by

X∆[n], X
(

n+∆

fs

)
, n ∈ Z, (2.15)

and is known as the ∆-polyphase component of X(·) [51]. The function mmse(X∆|Y ) is given by

mmse(X∆|Y ), lim
N→∞

1
2N +1

N

∑
n=−N

E
(

X∆[n]− X̃∆[n]
)2

,

where

X̃∆[n], E [X∆[n]|Y [·]] , n ∈ Z

is the MMSE estimator of X∆[·] given Y [·]. Since X∆[·] and Y [·] are jointly Gaussian and stationary, mmseX∆|Y
can be evaluated using the non-causal Wiener filter. By deriving an expression for the MSE in this estimation

and integrating over ∆, we conclude the following:

Proposition 2.1 The MMSE in estimating X(·) from the output of a SB uniform sampler at sampling rate fs

and pre-sampling filter H( f ) is given by

mmseSB(H)( fs) = σ
2
X −

∫ fs
2

− fs
2

S̃X |Y ( f )d f , (2.16)

where σ2
X = E(X(t))2 and

S̃X |Y ( f ),
∑k∈Z S2

X ( f − fsk) |H( f − fsk)|2

∑k∈Z SX+η( f − fsk) |H( f − fsk)|2
. (2.17)

Remark 1 In (2.17) and henceforth, we interpret fractions of this form as zero whenever both numerator and

denominator are zero.

The proof of Proposition 2.1 is omitted since it follows as a special case of Proposition 2.2 in the next

subsection.
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We note that since the denominator in (2.17) is periodic in f with period fs, (2.16) can be written as

mmseSB(H)( fs) = σ
2
X −

∫
∞

−∞

S2
X ( f )|H( f )|2

∑k∈Z SX+η( f − fsk)|H( f − fsk)|2
d f

=
∫

∞

−∞

SX ( f )
(

1− SX ( f )|H( f )|2
∑k∈Z SX+η( f − fsk)|H( f − fsk)|2

)
d f . (2.18)

This shows that the expression for mmseSB(H)( fs) in Proposition 2.1 is equivalent to [44, Eq. 10]. The

alternate derivation of this expression given here using (2.14) provides a new interpretation of the function

S̃X |Y ( f ) as the average of spectral densities of estimators of the stationary polyphase components of X(·),
namely

S̃X |Y ( f ) =
∫ 1

0
fsSX∆|Y ( f/ fs)d∆. (2.19)

It is interesting to note that, although the estimator X̃(·) is not a stationary process (it is in fact a cyclosta-

tionary process with period f−1
s [52]), it still has a structure similar to the Wiener filter, namely

E [X(t)|Y [·]] = ∑
n∈Z

Y [n]w(t−n/ fs) , (2.20)

where the frequency response of the analog filter w(t) is given by [47, Eq. 1 and 2] and [44, Eq. 10]

W ( f ) =
SX ( f )H∗( f )

∑k∈Z (SX+η( f − fsk)) |H( f − fsk)|2
(2.21)

Consider the special case where fs > fNyq, i.e. the support of SX ( f ) is contained within (− f2/2, fs/2),

and where H( f ) does not block any part of this band. For this case, the denominator in (2.18) is non-zero

only for k = 0 and H( f ) can be eliminated. In this situation, the integral in the RHS of (2.18) is only over
S2

X ( f )
SX+η ( f ) , and the entire expression coincides with the error under non-causal Wiener filtering. Indeed, under

these conditions the estimator (2.21) coincides with the Wiener filter [53], and there is no loss of information

due to sampling. If, in addition, η equals zero, then the MMSE vanishes completely and the RHS of (2.20)

takes the form of sinc interpolation as in the stochastic version of the WKS sampling theorem [54, 55].

2.4.2 Multi-branch uniform sampling

We now consider the MMSE in estimating the Gaussian stationary process X(·) from a sampled version of its

noisy samples using the MB uniform sampler of Figure 2.3. The counterpart of Proposition 2.1 for the MB

uniform sampler is as follows:

Proposition 2.2 The MMSE in estimating X(·) from the process samples Y[·] at the output of a MB uniform
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sampler of rate fs with pre-sampling filters H1( f ), . . . ,HL( f ), is given by

mmseMB(H1,...,HL)( fs) = σ
2
X −

∫ fs
2

− fs
2

Tr
(

S̃X |Y( f )
)

d f . (2.22)

Here, S̃X |Y( f ) is the L×L matrix defined by

S̃X |Y( f ), S̃−
1
2 ∗

Y ( f )K( f )S̃−
1
2

Y ( f ), (2.23)

where the matrices S̃Y( f ),K( f ) ∈ CL×L are given by

(
S̃Y( f )

)
i, j = ∑

k∈Z
SX+η ( f − fsk)H∗i ( f − fsk)H j ( f − fsk)( f − fsk) ,

and

(K( f ))i, j = ∑
k∈Z

S2
X ( f − fsk)H∗i ( f − fsk)H j ( f − fsk) .

Proof We first write mmseMB(H1,...,HL)( fs) as in (2.14) where the output of the sampler is the vector valued

process Y[·]. As in the proof of Proposition 2.1, we derive (2.22) by first evaluating

mmse(X∆|Y) = σ
2
X −

∫ 1
2

− 1
2

SX∆|Y
(
e2πiφ)dφ (2.24)

and then computing the integral in (2.14). The joint PSD of X∆[·] and Y[·] is the 1×L matrix

SX∆Y
(
e2πiφ)= (SX∆Y1

(
e2πiφ) , . . . ,SX∆YL

(
e2πiφ)) .

Using the fact that Yl [n] = {H ? (X +η)}(n/ fs) and properties of multi-rate signal processing (e.g. [56]), we

have

SX∆Yl

(
e2πiφ)= ∑

m∈Z
E
[

X
(

n+m+∆

fs

)
Yl [n]

]
e−2πimφ = ∑

k∈Z
SX ( fs (φ − k))H∗l ( fs (φ − k))e2πik∆.

In addition, the (l, p)th entry of the L×L matrix SY
(
e2πiφ

)
is given by

{
SY
(
e2πiφ)}

l,p = ∑
k∈Z

{
SX+η H∗l Hp

}
( fs (φ − k)) ,

where we have used the shortened notation {S1S2}(x) , S1(x)S2(x) for two functions S1 and S2 with the

same domain. It follows that

SX∆|Y
(
e2πiφ)= {SX∆YS−1

Y S∗X∆Y
}(

e2πiφ)



CHAPTER 2. SAMPLING AND ESTIMATION OF RANDOM SIGNALS 23

can also be written as

SX∆|Y
(
e2πiφ)= Tr

{
S−

1
2 ∗

Y S∗X∆YSX∆YS−
1
2

Y

}(
e2πiφ) , (2.25)

where S−
1
2 ∗

Y
(
e2πiφ

)
is the L×L matrix satisfying S−

1
2 ∗

Y
(
e2πiφ

)
S−

1
2

Y
(
e2πiφ

)
= S−1

Y
(
e2πiφ

)
.

The (l, p)th entry of S∗X∆Y
(
e2πiφ

)
SX∆Y

(
e2πiφ

)
is given by

{
S∗X∆YSX∆Y

}
l,p

(
e2πiφ)= ∑

k∈Z
{SX H∗l }( fs(φ − k))e2πik∆

∑
m∈Z

{
SX Hp

}
( fs(φ −m))e−2πil∆

= ∑
k,m∈Z

[
{SX H∗l }( fs(φ − k)){SX Hl}( fs(φ −m))e2πi∆(k−m)

]
,

which leads to ∫ 1

0

{
S∗X∆YSX∆Y

}
l,p

(
e2πiφ)d∆ = ∑

k∈Z

{
S2

X H∗l Hp
}
( fs(φ − k)) .

By integrating (2.25) with respect to ∆ from 0 to 1 leads to

Tr
{

S−
1
2 ∗

Y K̄S−
1
2

Y

}(
e2πiφ) ,

where K̄ is the L×L matrix given by

K̄l,p
(
e2πiφ)= ∑

k∈Z

{
S2

X H∗l Hp
}
( fs(φ − k)) .

The proof is completed by changing the integration variable in (2.24) from φ to f = φ fs, so SY
(
e2πiφ

)
and

K̄
(
e2πiφ

)
are replaced by S̃Y( f ) and K( f ), respectively. �

2.4.3 Sufficient condition for optimal reconstruction under pointwise sampling

Let S(H,Λ) be any bounded linear sampler and assume that H is the identity operator I, so that the samples are

the pointwise evaluations of the process X(·)+η(·). In this subsection we derive conditions on the sampling

set Λ such that mmseS(I,Λ) equals zero. For this purpose, we introduce the following definition:

Definition 1 The lower Beurling density of the sampling set Λ is

d−(Λ), lim
T→∞

inf
r∈R
|Λ∩ [T,T + r]|

T
. (2.26)

Similarly, one can define the upper Beurling density by replacing in (2.26) the inf with sup. The set Λ is said

to have Beurling density d−(Λ) whenever the upper and lower Beurling densities coincide.

Using the above definition, we conclude the following:
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Proposition 2.3 Consider the MMSE estimation problem with sampler S(I,Λ) and zero noise η(·) = 0. Then

mmseS(I,Λ) = 0 only if

d+(Λ)≥ µ(supp SX ) = fLan. (2.27)

Proof The condition mmseS(I,Λ) = 0 is equivalent to the following: for any ε > 0 and T0, there exists T > T0

such that
1
T

∫ T/2

−T/2
E
(

X(t)− X̃T (t)
)2

dt < ε. (2.28)

Write

X̃T (t) = E [X(t)|YT ] =
N

∑
n=1

αn(t)YT [n],

with N = |Λ∩ [−T/2,T/2]|. Then from the isomorphism (2.5), (2.28) can be written as

1
T

∫ T/2

−T/2

∫
∞

−∞

∣∣∣∣∣e2πit f −
N

∑
n=1

αn(t)e2πitn f

∣∣∣∣∣
2

SX ( f )d f dt < ε. (2.29)

Condition (2.29) implies that the set E (Λ) =
{

e2πitn f , tn ∈ Λ
}

is a frame [57] in the Hilbert space H (E )

generated by the exponentials E (R) =
{

e2πit f , t ∈ R
}

with an L2 measure weighted by SX ( f ). Since the

measure SX ( f )d f and the Lebesgue measure d f with support in suppSX are mutually absolutely continuous,

E (Λ) is a Reisz basis in H (E )) if and only if it is a Reisz basis in the Paley-Wiener space PW(supp SX ) of

functions with Fourier transform supported in supp SX . The condition for E (Λ) to be a basis to PW(supp SX )

follows from Landau’s work [30], and implies that the upper Beurling density of Λ must exceed the spectral

occupancy µ(supp SX ), which is now denoted as the Landau rate fLan. �

We note that Proposition 2.3 holds even if the asymptotic law of the estimator X̃T (·) of (2.11) as well as

the limit of mmse(XT |YT ) do not exist. Indeed, general conditions for the existence of such an asymptotic

law for an arbitrary sampling set Λ seem hard to derive.

2.5 Optimal Pre-Sampling Operations

So far we considered the pre-sampling operation in SB and MB uniform sampling as part of the MMSE

estimation problem. We now consider this pre-sampling operation as part of the system design and seek for

an operation that minimizes the MMSE. That is, we look for the pre-sampling filter H? that minimizes (2.16)

in SB uniform sampling and the set of filters, or filter-bank, H?
1 , . . . ,H

?
L , in MB uniform sampling.

For the case of SB sampling, we shall see below that the optimal pre-sampling filter is fully characterized

by the following two properties:

(i) Aliasing-free - the passband of H? is such that no aliasing is present in Y [·] by sampling at rate fs, i.e.,

all integer shifts of the support of the filtered signal by fs are disjoint.
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(ii) SNR maximization - the passband of S? is chosen to maximize the SNR at the output of the filter,

subject to the aliasing-free property (i).

In the case where SX ( f ) is unimodal and the noise spectrum Sη( f ) is flat, an ideal low-pass filter with cut-

off frequency fs/2 satisfies both the aliasing free and the SNR maximization properties, and is therefore

the optimal pre-sampling filter that minimizes DSB(H)( fs,R). In general, however, the set that maximizes

the SNR is not aliasing-free, so that the constraint in (i) implies that the optimal filter does not necessarily

maximize the SNR of the signal at its output. As will be explained in more detail below, increasing the

number of sampling branches as in MB uniform sampling allows for a relaxation the aliasing free constraint.

This in turn allows for retaining spectral bands of higher SNR, thus reducing the overall MMSE.

2.5.1 Optimal pre-sampling filter in single-branch uniform sampling

As is apparent from (2.16), the problem of minimizing (2.16) over H is equivalent to finding the filter that

maximizes S̃X |Y ( f ) for every frequency f ∈ (− fs/2, fs/2) independently. Thus, we are looking to determine

the filter H? that achieves the supremum in

S̃?X |Y ( f ), sup
H

S̃X |Y ( f )

= sup
H

∑k∈Z S2
X ( f − fsk) |H( f − fsk)|2

∑k∈Z SX+η( f − fsk) |H( f − fsk)|2
(2.30)

in the domain (− fs/2, fs/2). In what follows, we will describe H? by defining a set of frequencies F? of

minimal Lebesgue measure such that

∫
F?

S2
X ( f )

SX+η( f )
d f =

∫ 1
2

− 1
2

sup
k∈Z

S2
X ( f − fsk)

SX+η( f − fsk)
d f . (2.31)

Since the integrand in the RHS of (2.31) is periodic in f with period fs, excluding a set of Lebesgue measure

zero, the set F? does not contain two frequencies f1, f2 ∈ R that differ by an integer multiple of fs due to its

minimality. This property will be given the following name:

Definition 2 (aliasing-free set) A measurable set F ⊂ R is said to be aliasing-free with respect to the sam-

pling frequency fs if, for almost2 all pairs f1, f2 ∈ F, it holds that f1− f2 /∈ fsZ= { fsk, k ∈ Z}.

The aliasing-free property imposes the following restriction on the Lebesgue measure of a bounded set:

Proposition 2.4 Let F be an aliasing-free set with respect to fs. If F is bounded, then the Lebesgue measure

of F does not exceed fs.
2By almost all we mean for all but a set of Lebesgue measure zero.
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Proof By the aliasing-free property, for any n ∈ Z \ {0} the intersection of F and F + n fs is empty. It

follows that for all N ∈N, µ
(
∪N

n=1 {F + fsn}
)
= Nµ(F). Now assume F is bounded by the interval (−M,M)

for some M > 0. Then ∪N
n=1 {F + fsn} is bounded by the interval (−M,M+N fs). It follows that

µ(F)

fs
=

Nµ(F)

N fs
=

µ(∪N
n=1 {F +n fs})

N fs
≤ 2M+N fs

N fs
.

Letting N→ ∞ implies that µ(F)≤ fs. �

We denote by AF( fs) the collection of all bounded aliasing-free sets with respect to fs. Note that a

process with spectrum support in AF( fs) admits no aliasing when uniformly sampled at frequency fs, i.e.,

such a process can be reconstructed with probability one from its non-noisy uniform samples at frequency fs

[54]. As the following theorem shows, the optimal pre-sampling filter is characterized by an aliasing-free set

with an additional maximality property.

Theorem 2.5 For a fixed fs, the optimal pre-sampling filter H? that maximizes S̃X |Y ( f ), f ∈ (− fs/2, fs/2)

and minimizes mmseSB(H)( fs) is given by

H?( f ) =

1 f ∈ F?,

0 otherwise,
(2.32)

where F? ∈ AF( fs) satisfies

∫
F?

S2
X ( f )

SX+η( f )
d f = sup

F∈AF( fs)

∫
F

S2
X ( f )

SX+η( f )
d f . (2.33)

The optimal MMSE form sampling at rate fs is

mmse?SB( fs) = σ
2
X −

∫
F?

S2
X ( f )

SX+η( f )
d f . (2.34)

Proof Since S̃X |Y ( f ) ≥ 0, we can maximize the integral over S̃X |Y ( f ) by maximizing the latter for every

f in
(
− fs

2 ,
fs
2

)
. For a given f , denote hk = |H ( f − fsk)|2, xk = S2

X ( f − fsk) and yk = SX+η( f − fsk) =

SX ( f − fsk)+Sη ( f − fsk). We arrive at the following optimization problem

maximize
∑k∈Z xkhk

∑k∈Z ykhk

subject to hk ≥ 0, k ∈ Z.
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Because the objective function is homogeneous in h = (...,h−1,h0,h1, ...), the last problem is equivalent to

maximize ∑k∈Z xkhk

subject to hk ≥ 0, k ∈ Z, ∑k∈Z ykhk = 1.

The optimal value of this problem is maxk
xk
yk

, i.e. the maximal ratio over all pairs xk and yk. The optimal h is

the indicator for the optimal ratio:

h?k =

1 k ∈ argmaxk
xk
yk
,

0 otherwise.

If there is more than one k that maximizes xk
yk

, then we can arbitrarily decide on one of them. Going back to

our original problem formulation, we see that for almost every f ∈
(
− fs

2 ,
fs
2

)
, the optimal S̃X |Y ( f ) is given

by

S̃?X |Y ( f ) = max
k∈Z

S2
X ( f − fsk)

SX+η ( f − fsk)
,

and the optimal H ( f ) is such that |H ( f − fsk)|2 is non-zero for the particular k that achieves this maximum.

This last property also implies that F?, the support of H?, is an aliasing-free set that satisfies (2.33). �

Remarks

(i) The proof also shows that ∫
F?( fs)

S2
X ( f )

SX+η( f )
d f =

∫ fs
2

− fs
2

S̃?X |Y ( f )d f ,

where

S̃?X |Y ( f ), sup
k

S2
X ( f − fsk)

SX+η( f − fsk)
,

i.e.

mmse?SB( fs) = σ
2
X −

∫ fs
2

− fs
2

S̃?X |Y ( f )d f .

(ii) Since the SNR at each spectral line f cannot be changed by H( f ), the filter H? can be specified only in

terms of its support, i.e. in (2.32) we may replace 1 by any non-zero value, which may even vary with f .

Theorem 2.5 motivates the following definition:

Definition 3 For a given spectral density S( f ) and a sampling frequency fs, an aliasing free set F? ∈ AF( fs)
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Figure 2.5: Joint MMSE estimation from a linear combination.

that satisfies ∫
F?

S( f )d f = sup
F∈AF( fs)

∫
F

S( f )d f

is called a maximal aliasing-free set with respect to fs and the spectral density S( f ). Such a set will be

denoted by F? ( fs,S).

Roughly speaking, the maximal aliasing free set F? ( fs,S) can be constructed by going over all frequen-

cies f ∈ (− fs/2, fs/2), and including in F? ( fs,S) every frequency f ? ∈R such that S( f ?) is maximal among

{S( f ), f ∈ f ?− fsZ}. The intuition behind Theorem 2.5 and the maximal aliasing-free property in Defini-

tion 3 can be seen as an interplay between the collection of information on all spectral components of the

signal and elimination of interference between them, which is due to aliasing in sub-Nyquist sampling. It

follows from Theorem 2.5 that the optimal pre-sampling filter eliminates aliasing at the price of completely

suppressing information on weaker bands as these interfere with stronger ones. The following example pro-

vides an insight into this phenomena.

Example 2 (joint MMSE estimation) Figure 2.5 illustrates two independent Gaussian random variables

U1 and U2 with variances σ2
1 and σ2

2 respectively. We are interested in the MMSE estimate of the vector

U = (U1,U2) from a noisy linear combination of their sum: V = h1(U1 +ξ1)+h2(U2 +ξ2), where h1,h2 ∈R
and ξ1,ξ2 are another two Gaussian random variables with variances σ2

ξ1
and σ2

ξ2
respectively, representing

independent additive noise. The MMSE in this estimation is given by

mmse(U|V ) =
1
2
(mmse(U1|V )+mmse(U2|V )) (2.35)

=
1
2

(
σ

2
1 +σ

2
2 −

h2
1σ4

1 +h2
2σ4

2

h2
1(σ

2
1 +σ2

ξ1
)+h2

2(σ
2
2 +σ2

ξ2
)

)
.
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The optimal choice of the coefficients vector h = (h1,h2) that minimizes (2.35) is

h =


(c,0) σ4

1
σ2

1+σ2
ξ1

>
σ4

2
σ2

2+σ2
ξ2

(0,c) σ4
1

σ2
1+σ2

ξ1

<
σ4

2
σ2

2+σ2
ξ2

,

where c is any constant different from zero. If

σ4
1

σ2
1 +σ2

ξ1

=
σ4

2

σ2
2 +σ2

ξ2

,

then any non-trivial linear combination results in the same estimation error.

The above example is easily generalized to any countable number of random variables U = (U1,U2, . . .)

and a respective noise sequence ξ = (ξ1,ξ2, . . .), such that V = ∑
∞
i=1 hi(Ui + ξi) < ∞ with probability one.

The optimal coefficient vector h = (h1,h2, . . .) that minimizes mmse(U|V) is the indicator for the maximum

among {
σ4

i

σ2
i +σ2

ξi

, i = 1,2, . . .

}
.

Since each frequency f in the support of SX ( f ) can be seen as an independent component of the process

X(·) with an infinitely narrow band, the counterpart for the vector U in the MMSE estimation problem of X(·)
from Y [·] are the spectral components of the source process that corresponds to the frequencies f − fsZ. These

components are folded and summed together due to aliasing: each set of the form f − fsZ corresponds to a

linear combination of a countable number of independent Gaussian random variables attenuated by the coeffi-

cients {H( f − fsk), k ∈ Z}. The optimal choice of coefficients that minimizes the MMSE in joint estimation

of all source components are those that pass only the spectral component with maximal S2
X ( f ′)

SX+η ( f ′) among all

f ′ ∈ f − fsZ, and suppress the remaining. This means that under the MSE criterion, the optimal choice is to

eliminate aliasing at the price of losing all information contained in low-energy spectral components when

they interfere with high-energy component.

An example of a maximal aliasing-free set for a specific PSD appears in Fig. 2.6. The MMSE with the

optimal pre-sampling filter and with an all-pass filter is shown in Fig. 2.9. Interestingly, the two curves of

Figure 2.9 have a similar shape although they correspond to different pre-sampling filters. Detailed analysis

of this similarity is the subject of future work.

It also follows from Theorem 2.5 and Proposition 2.4 that a lower bound on mmse?SB( fs) can be obtained

by integrating over a set of Lebesgue measure fs with maximal S2
X ( f )

SX+η ( f ) (that is, this set is not limited by the

aliasing-free property), per the following corollary:

Corollary 2.6 Let

mmse( fs), σ
2
X − sup

µ(F)≤ fs

∫
F

S2
X ( f )

SX+η( f )
d f , (2.36)
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L = 1 L = 2 L = 3 L → ∞

L = 1 L = 2 L = 3 L → ∞

Figure 2.6: Maximal aliasing-free sets with respect to a multi-modal PSD and sampling frequencies
fs = fNyq/4 (top) and fs = fNyq/2 (bottom), for 1,2 and 3 sampling branches. The first, second and third
maximal aliasing-free sets are given by the frequencies below the blue, green, and red areas, respectively.
The Lebesgue measure of the colored area in each figure equals to fs. Assuming Sη( f ) ≡ 0, mmse?SB( fs)
equals to the area blocked by the filters, i.e., the white area bounded by the PSD. The ratio of this area to the
total area bounded by the PSD is specified in each case.
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M
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|H( f )| ≡ 1

H?( f )

Figure 2.7: The MMSE as a function of the sampling frequency fs in single branch sampling, with an optimal
pre-sampling filter and an all-pass filter. The function S2

X ( f )/SX+η( f ) is given in the small frame.
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H( f )

fs

SX ( f )

f

Figure 2.8: Unimodal PSD SΩ( f ) and its corresponding optimal pre-sampling filter.

where the supremum is taken over all measurable subsets of R with Lebesgue measure not exceeding fs. Then

mmse( fs)≤mmse?SB( fs)≤mmseSB(H)( fs)

for any SB uniform sampler.

When the noise process η(·) is taken to be zero we have

mmse( fs) = σ
2
X − sup

µ(F)≤ fs

∫
F

SX ( f )d f = inf
µ(F)≤ fs

∫
R\F

SX ( f )d f . (2.37)

The RHS of (2.37) is zero if and only if the measure of the support of SX ( f ) does no exceed fs. This last fact

is the well-known condition of Landau for a stable set of sampling in Paley-Wiener spaces [30, 3]. Therefore,

combined with the isomorphism defined by (2.5), Corollary 2.6 implies the necessity of sampling at the

spectral occupancy in order to attain zero error in uniform sampling.

A special case in which the bound (2.36) is achieved is described in the following example.

Example 3 (unimodal PSD) Consider the case where the function Ω( f ) = S2
X ( f )

SX+η ( f ) is unimodal in the sense

that it is non-increasing for f > 0, as illustrated in Figure 2.8. It can be seen that the F?(Ω, fs) is the interval

(− fs/2, fs/2), and the optimal pre-sampling filter is a lowpass filter with cutoff frequency fs/2. Theorem 2.5

then implies that

mmse?SB( fs) = σ
2
X −

∫ fs
2

− fs
2

S2
X ( f )

SX+η( f )
d f . (2.38)

Since SX ( f ) is symmetric and non-increasing for f > 0, mmse?SB( fs) in (2.14) achieves the bound (2.36).

In contrast to the case of a unimodal PSD described in Example 3, the bound in (2.36) cannot be achieved

by a single sampling branch in general. It can, however, be approached by increasing the number of sampling

branches, as will be discussed in the following two subsections.
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2.5.2 Optimal filter-bank in multi-branch sampling

We now extend Theorem 2.5 to the MB uniform sampler of Figure 2.3.

Theorem 2.7 (optimal filter-bank in MB uniform sampling) The optimal pre-sampling filters H?
1 ( f ), . . . ,H?

L( f )

that minimize mmseMB(H1,...,HL)( fs) of (2.22) are given by

H?
l ( f ) = 1F?

l
( f ),

1 f ∈ F?
l ,

0 f /∈ F?
l ,

, l = 1, . . . ,L, (2.39)

where the sets F?
1 , . . . ,F

?
L ⊂ R satisfy:

(i) F?
l ∈ AF( fs/L) for all l = 1, . . . ,L.

(ii) For l = 1, ∫
F?

1

S2
X ( f )

SX+η( f )
d f =

∫ fs
2

− fs
2

S̃?1( f )d f ,

where

S̃?1( f ), sup
k∈Z

S2
X ( f − k fs/L)

SX+η( f − k fs/L)
,

and for l = 2, . . . ,L, ∫
F?

l

S2
X ( f )

SX+η( f )
d f =

∫ fs
2

− fs
2

S̃?l ( f )d f ,

where

S̃?l ( f ), sup
k∈Z

S2
X ( f − k fs/L)

SX+η( f − k fs/L)
1R\{F?

1 ∪···∪F?
l−1}.

The resulting MMSE equals

mmse?MB(L)( fs), σ
2
X −

L

∑
l=1

∫
F?

l

S2
X ( f )

SX+η( f )
d f = σ

2
X −

L

∑
l=1

∫ fs
2

− fs
2

S̃?l ( f )d f .

Remarks:

(i) The proof implies an even stronger statement than Theorem 2.7: the filters H?
1 , . . . ,H

?
L yield a set of

eigenvalues of S̃X |Y( f ) that are uniformly maximal, in the sense that the ith eigenvalue of S̃X |Y( f ) is

always smaller than the ith eigenvalue of S̃?
X |Y( f ).

(ii) As in the single-branch case in Theorem 2.5, the filters H?
1 , . . . ,H

?
L are specified only in terms of their

support, and in (2.39) we can replace 1 by any non-zero value which may vary with l and f .

(iii) Condition (ii) for the sets F?
1 , . . . ,F

?
L can be relaxed in the following sense: if F?

1 , . . . ,F
?
L satisfy condi-

tion (i) and (ii), then mmse?MB(L)( fs) is achieved by any pre-sampling filters defined as the indicators
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of some sets F ′1, . . . ,F
′
L in AF( fs/L) that satisfy

L

∑
l=1

∫
F ′l

S2
X ( f )

SX+η( f )
d f =

L

∑
l=1

∫
F?

l

S2
X ( f )

SX+η( f )
d f .

In particular, the set of optimal pre-sampling filters is usually not (essentially) unique.

(iv) One possible construction for F?
1 , . . . ,F

?
L is as follows: For each− fs

2L ≤ f < fs
2L , denote by f ?1 ( f ), . . . , f ?L ( f )

the L frequencies that correspond to the largest values among
{

S2
X ( f− fsk)

SX+η ( f− fsk) , k ∈ Z
}

. Then assign each

f ?l ( f ) to F?
l . Under this construction, the set F?

l can be seen as the lth maximal aliasing free set with

respect to fs/L and S2
X ( f )

SX+η ( f ) . This is the construction that was used in Figure 2.6.

Proof Let H( f ) ∈ CZ×L be the matrix with infinite rows and L columns given by

H( f ) =



...
... · · ·

...

H1( f −2 fs) H2( f −2 fs) · · · HP( f −2 fs)

H1( f − fs) H2( f − fs) · · · HP( f − fs)

H1( f ) H2( f ) · · · HP( f )

H1( f + fs) H2( f + fs) · · · HP( f + fs)

H1( f +2 fs) H2( f +2 fs) · · · HP( f +2 fs)
...

... · · ·
...


.

In addition, denote by S( f ) ∈RZ×Z and Sn( f ) ∈RZ×Z the infinite diagonal matrices with diagonal elements

{SX ( f − fsk), k ∈ Z} and
{

SX+η( f − fsk), k ∈ Z
}

, respectively. The infinite dimensional matrix notation is

consistent with the theory of compact operators between Hilbert spaces [58]. For example, H( f ) represents

a compact operator between the Hilbert spaces CL and `2(C).
With the notation above, we can write

S̃X |Y ( f ) = (H∗SnH)−
1
2 ∗H∗S2H(H∗SnH)−

1
2 ,

where we suppressed the dependency on f in order to simplify notation. Denote by H?( f ) the matrix H( f )

that corresponds to the filters H?
1 ( f ), . . . ,H?

L( f ) that satisfy conditions (i) and (ii) in the theorem. From

the definition of the sets F?
1 , . . . ,F

?
L , the structure of H?( f ) can be described as follows: each column

has a single non-zero entry, such that the first column indicates the largest among
{

S2
X ( f− fsk)

SX+η ( f− fsk) , k ∈ Z
}

,

which is the diagonal of S( f )S−1
n ( f )S( f ). The second column corresponds to the second largest entry of{

S2
X ( f− fsk)

SX+η ( f− fsk) , k ∈ Z
}

, and so on for all L columns of H?( f ). It follows that S̃?
X |Y( f ) is an L×L diagonal ma-

trix whose non-zero entries are the L largest values among
{

S2
X ( f− fsk)

SX+η ( f− fsk) , k ∈ Z
}

, i.e, λl

(
S̃?

X |Y( f )
)
= J?l ( f ),

for all p = 1, . . . ,P.

It is left to establish the optimality of this choice of pre-sampling filters. Since the rank of S̃X |Y ( f ) is
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at most L, in order to complete the proof it is enough to show that for any H( f ), the L non-zeo eigenvalues

of the corresponding S̃X |Y( f ) are smaller than the L largest eigenvalues of S( f )S−1
n ( f )S( f ) compared by

their respective order. Since the matrix entries of the diagonal matrices S( f ) and Sn( f ) are positive, the

eigenvalues of S̃X |Y( f ) are identical to the L non-zero eigenvalues of the matrix

SH(H∗SnH)−1 H∗S.

It is enough to prove that the matrix

SS−1
n S−SH(H∗SnH)−1 H∗S,

is positive, in the sense that it defines a positive linear operator on the Hilbert space `2 (C). This last fact is

equivalent to

a∗SS−1
n Sa−a∗SH(H∗SnH)−1 H∗Sa∗ ≥ 0, (2.40)

for any sequence a ∈ `2 (C). By factoring out SS−
1
2

n from both sides, (2.40) reduces to

a∗a−a∗S
1
2
n H(H∗SnH)−1 H∗S

1
2
n a≥ 0. (2.41)

The Cauchy-Schwartz inequality implies that(
a∗S

1
2
n H(H∗SnH)−1 H∗S

1
2
n a
)2

≤ a∗a×a∗S
1
2
n H(H∗SnH)−1 H∗S

1
2
n S

1
2
n H(H∗SnH)−1 H∗S

1
2
n a

= a∗a
(

a∗S
1
2
n H(H∗SnH)−1 H∗S

1
2
n a
)
. (2.42)

Dividing (2.42) by
(

a∗S
1
2
n H(H∗SnH)−1 H∗S

1
2
n a
)

leads to (2.41). �

Figure 2.9 illustrates mmse?MB(L)( fs) as a function of fs for a specific PSD and L = 1,2 and 3. As this

figure shows, increasing the number of sampling branches does not necessarily decrease mmse?MB(L)( fs) and

may even increase it for some fs. This perhaps-counter intuitive phenomenon arises since for L2 and L1 co-

primes, any two MB sampling systems of orders L1 and L2 would lead to different samples at their output.

Nevertheless, we will see below that mmse?MB(L)( fs) converges to a fixed number as L increases.
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Figure 2.9: MMSE under multi-branch sampling and optimal pre-sampling filter-bank, for L = 1,2 and 3.
The dashed line corresponds to the bound (2.36), which by Theorem 2.8 is attained as L→∞. The dotted line
corresponds to L = 1 and an all-pass pre-sampling filter. The PSD SX ( f ) is given in the small frame, where
we assumed Sη( f )≡ 0.
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2.5.3 Asymptotically many sampling branches

The set F? defined in Theorem 2.5 to describe mmse?SB( fs) was obtained by imposing two constraints: (1)

a measure constraint µ(F?)≤ fs, associated only with the sampling frequency, and (2) an aliasing-free con-

straint, imposed by the sampling structure. Theorem 2.7 says that in the case of MB sampling, the aliasing-

free constraint can be relaxed to aliasing-free in each branch, but with respect to fs/L instead of fs. Therefore,

the overall passband of the system
⋃L

l=1 F?
l need not be aliasing-free, although its Lebesgue measure still does

not exceed fs since each F?
l is aliasing free. As a result, it follows that

mmse?MB(L)( fs)≥ σ
2
X − inf

µ(F)≤ fs

∫
F

S2
X ( f )

SX+η( f )
d f =mmse( fs).

In other words, the statement in Corollary 2.6 can be extended to include MB uniform sampling.

While increasing the number of sampling branches does not improve the bound (2.36), it allows a MB

sampler to approach it for any PSD (and not only for the unimodal PSD, where it is attained with a SB sam-

pler): as the following theorem shows, and as suggested by Figure 2.6, the set
⋃L

l=1 F?
l eventually converges

to some set F† that attains (2.36). The set F† corresponds to the frequencies below the gray area in the case

L→ ∞ in Figure 2.6.

Theorem 2.8 For any fs > 0 and ε > 0, there exists L ∈ N and a set of L filters H1, . . . ,HL with supports in

AF( fs/L), such that

mmse?MB(H1,...,HL)
( fs)− ε <mmse( fs).

Proof Since any interval of length at most fs/L is aliasing free for sampling at rate fs/L, it is enough to

show that any set F† of measure fs that satisfies

∫
F†

S2
X ( f )

SX+η( f )
d f = sup

µ(F)≤ fs

∫
F

S2
X ( f )

SX+η( f )
d f

can be approximated by L intervals of measure at most fs/L. Consider the measure µSX defined by

µS(A) =
∫

A

S2
X ( f )

SX+η( f )
d f

for a Lebesgue measurable set A. Since SX ( f ) is L1(R), we can choose a set G ⊂ F† such that SX ( f ) is

bounded on G and such that µS(G) > µS(F?)− ε/3. Denote by SM the maximal value of SX ( f ) on G and

note that S2
X ( f )/SX+η( f ) ≤ SM on G as well. The measure µS is absolutely continuous with respect to the

Lebesgue measure and hence is a regular measure [59]. Therefore, there exists M intervals I1, . . . , IM such

that ∪M
i=1Ii ⊂ G and µS(∪M

i=1Ii)> µS(G)− ε/3 > µS(F†)−2ε/3. We can assume that I1, . . . , IM are disjoint,

for otherwise we use I′1 = I1, I′2 = I2 \ I′1, I′3 = I3 \(I′1∪ I′2), and so forth. Therefore, ∑
M
i=1 µ(Ii)≤ fs. For δ > 0,

let Li = bMµ(Ii)/δc and L = ∑
M
i=1 Li. We now define L pre-sampling filters as follows: for each i = 1, . . . ,M,
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consider Li disjoint intervals Ii,1, . . . , Ii, j of length r = δ/M that are sub-intervals of Ii. Since µ(Ii)≥ Lir, such

Li intervals exist and we set Ai = Ii \∪ j=1Li Ii, j. That is, Ai is the part of the interval Ii that cannot be covered

by Li intervals of length r. In particular, µ(Ai)≤ r. Finally, set the support of each filter Hi, j to be Ii, j. Note

that

µ(∑
i, j

suppHi, j) =
M

∑
i=1

Lir ≤ r
M

∑
i=1

Mµ(Ii)/δ ≤ fs.

This way we have defined L = L1 + . . .+LM filters, each of passband of width r≤ fs/L. It is left to show that

∑
i, j

µS(suppHi, j) = ∑
i, j

∫
suppHi, j

S2
X ( f )

SX+η( f )
d f >

∫
F†

S2
X ( f )

SX+η( f )
d f − ε.

Let mS be the essential supremum of SX/SX+η on G. We have

µS(Ai) =
∫

Ai

S2
X ( f )

SX+η( f )
d f ≤ msµ(Ai)≤ msr.

It follows that

µS(∑
i, j

suppHi, j) =
M

∑
i=1

Li

∑
j=1

µS(Ii, j) =
M

∑
i=1

µS(Ii)−
M

∑
i=1

µS(Ai)

≥ µS(G)− ε/3−Mmsr ≥ µS(F†)−2ε/3−Mmsδ .

Taking δ = ε/(3Mms) leads to the desired result. �

An immediate conclusion from Theorem 2.8 is that mmse?MB(L)( fs) is guaranteed to converge to mmse( fs)

as the number of sampling branches L goes to infinity, as illustrated in Figure 2.9. In other words, with enough

sampling branches and a careful selection of the pre-sampling filters, MB uniform sampling attains the lower

bound (2.36). Recall that with zero noise, this lower bound vanishes if and only if fs exceeds the spectral

occupancy of X(·). Hence, MB uniform sampling can be used to attain zero MMSE for sampling rates at or

above the theoretical limit of Landau [30].

2.6 Chapter Summary

This chapter presented a general sampling framework for random stationary processes that are not necessarily

bandlimited. We call this framework linear bounded sampling. Our framework also allows for sampling and

pre-sampling operations limited to a finite time horizon, a feature that is required in order to consider the

concatenation of sampling and source coding as in the ADX setting. In addition, we considered the problem

of estimating a Gaussian stationary process from its noisy samples obtained through a bounded linear sampler

under an MSE criterion. For the special case of time-invariant uniform sampling, we derived closed form
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expressions for this MSE as a function of the uniform sampling rate fs and the pre-sampling operation.

Further optimization over the pre-sampling operation yielded the function mmse( fs). This function provides

a lower bound for the MMSE in any time-invariant uniform sampling system, and depends only on the PSD

of the source, the noise, and the sampling rate. Moreover, we showed that mmse( fs) can be attained using

a multi-branch uniform sampler with a sufficiently large number of sampling branches. When the noise is

zero, the function mmse( fs) vanishes if and only if the sampling rate fs exceeds the Landau rate of X(·).
Therefore, mmse( fs) can be seen as the stochastic version of Landau’s characterization of stable sampling in

Paley Wiener spaces.

Since the ADX setting of Figure 1.2 includes, in addition to sampling, encoding of the samples with bitrate

R, the function mmse( fs) provides a lower bound on the distortion in ADX. Since the precise description of

any sample of a Gaussian process requires an infinite number of bits, this lower bound is attained in the ADX

setting only as the bitrate R goes to infinity.



Chapter 3

Minimal Distortion subject to a Bitrate
Constraint

In this chapter we consider the problem of representing a random signal under a constraint on the number

of bits per unit time available for this representation. The random signal can be seen as the realization of an

information source that generates information over time. The problem of encoding the signal subject to a bit

per time unit constraint is denoted as the source coding problem, as introduced and solved by Shannon in

[4]. The most simple source coding setting describes an encoder that maps the signal at its input to a finite

set and a decoder that recovers the original signal from this set. This setting follows from our general ADX

setting in Figure 1.2 if we ignore the sampling constraint, or otherwise assume that the encoder can recover

the original signal X(·) before encoding it. Therefore, the minimal distortion in this recovery, denoted as the

distortion-rate function (DRF), provides a lower bound for the distortion in ADX.

In general, however, sampling or noise may prevent the encoder from obtaining an exact description of

X(·). Therefore, the ADX setting gives rise to a variant of the source coding problem in which the encoder

has no direct access to the signal it is required to encode. This variant, first considered in [15], is known

as the remote, noisy, or indirect source coding problem. Consequently, the minimal distortion in recovering

the original signal is denoted as the indirect DRF. In this chapter we study general properties of the indirect

DRF. It is well known that under a quadratic distortion measure, the indirect DRF can be decomposed into

a minimal MSE term plus a standard source coding problem with respect to the optimal MSE estimator [16]

[Ch. 3.5][6]. In this chapter we generalize this decomposition to allow for the encoding of a realization of a

signal over a finite time interval T , where the stochastic relation between the observable signal and the original

one may vary with T . This generalization is required in order to consider the concatenation of sampling

and encoding as in the ADX setting. In addition, we demonstrate the usefulness of the aforementioned

decomposition in various scenarios involving Gaussian signals.

39
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XT{·} Enc Dec X̂T{·}
{

1, . . . ,2T R
}

Figure 3.1: The standard source coding problem: encoding with full source information.

3.1 Classical Source Coding

Since the ADX system of Figure 1.2 is subject to a bitrate constraint, a lower bound for the distortion in ADX

is given by the minimal distortion in the source coding problem of encoding an analog signal using a finite

number of bits per unit time. In this section we review classical results from source coding theory on the

characterization of this minimal distortion. In addition to providing a lower bound for the ADX distortion,

these results are useful as references as we consider their extensions in subsequent sections.

Figure 3.1 illustrates the classical source coding problem of Shannon [4]: the source signal is the stochas-

tic process X(·). The encoder observes a realization xT (·) of X(·) over the time interval [−T/2,T/2] and is

required to describe its observation to the decoder using a single index out of a set of 2T R possible indices.

The decoder is required to recover xT (·) by observing the index produced by the encoder. Since there are

only 2T R possible indices, each index i is associated with a single reconstruction waveform x̂T
i (·). We assume

that the set of reconstruction waveforms and index assignments is revealed beforehand to the encoder and

decoder.

Specialized to the case of a quadratic distortion measure, the operational distortion-rate function (DRF)

of the process X(·), or the optimal performance theoretically achievable (OPTA), is defined to be the minimal

expected L2 norm distance between XT (·) and its reconstruction X̂T , where the optimization is over all en-

coder and decoder mappings of T R bits and over the time-horizon T . Namely, the OPTA distortion function

is defined as

δX (R) = liminf
T→∞

inf
Enc−Dec

1
T

∫ T/2

−T/2
E
(

X(t)− X̂(t)
)2

dt. (3.1)

Shannon’s classical source coding theorem [4, 5] and its extensions to continuous alphabets [60, 61] imply

that, for a stationary and block-ergodic process X(·), the function δX (R) equals its information DRF, defined

as

DX (R), liminf
T→∞

inf
I(XT (·);X̂T (·))≤RT

1
T

∫ T/2

−T/2
E
(

X(t)− X̂(t)
)2

dt, (3.2)

where the infimum is over joint probability distributions PXT ,X̂T
whose mutual information is constrained to

RT bits, and their marginals over XT (·) agrees with the distribution of X(·).
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lossy compression distortion
preserved spectrum

θ

f

SX ( f )

Figure 3.2: Water-filling interpretation of (3.3): water is poured into the area bounded by the graph of SX ( f )
up to level θ . The bitrate R is tied to the water level θ through the preserved part of the spectrum (3.3b). The
distortion D is the error due to lossy compression given by (3.3a).

3.1.1 Gaussian stationary processes

For the special case of a Gaussian stationary process X(t) with PSD SX ( f ), Pinsker [62] showed that (3.2)

has the following parametric representation:

DX (Rθ ) =
∫

∞

−∞

min{SX ( f ),θ}d f (3.3a)

Rθ =
1
2

∫
∞

−∞

log+ [SX ( f )/θ ]d f . (3.3b)

Expression (3.3) has the water-filling interpretation given in Figure 3.2: the distortion in (3.3a) is the area

bounded by the PSD and the water-level parameter θ , where the latter is determined to satisfy (3.3b). The

joint probability distribution PX̂T (·),XT (·) which attains the infimum in the RHS of (3.2) converges, as T →∞, to

the joint distribution of two jointly Gaussian and stationary processes X(·) and X̂(·), defined by the Gaussian

channel

X(t) = X̂(t)+ ε(t), (3.4)

where X̂(·) and ε(·) are two Gaussian stationary processes independent of each other with PSDs given by the

preserved and the lossy compression distortion parts of the spectrum in Figure 3.2, respectively [6, 63].

The source coding theorem also implies that the asymptotic distribution (3.4) can be used to derive an

achievable coding scheme that attains DX (R). Roughly speaking, this scheme is described as follows [6]:

fix ε > 0 and T > 0; generate 2bT (R+ε)c waveforms
{

x̂i(·), i = 1, . . . ,2bT (R+ε)c
}

, where each waveform is

drawn randomly from the distribution of X̂(·) defined by (3.4). The encoder, upon observing a realization

x(·) of X(·) over [−T/2,T/2], sends the index i for which the L2 norm between x(·) and x̂i(·) is minimal.

The decoder uses x̂i(·) as its estimate for X(·).
Going back to our general ADX setting of Figure 1.2, the distortion-rate function of the continuous-time

Gaussian process X(·) describes the optimal trade-off between bitrate and distortion regardless of any other

parameters, and thus provides a lower bound for the minimal distortion in ADX. In the general ADX setting,
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XT{·} PYT {·},XT {·} Enc Dec X̂T{·}
{

1, . . . ,2T R
}

YT{·}

Figure 3.3: Generic indirect source coding setting with information source X and observation process Y .

however, the encoder is required to encode the source X(·) using R bits per unit time by observing only

samples of X(·), rather than X(·) itself. In what follows, we explore the general source coding setting in

which an encoder is required to describe an information source which it cannot observe directly.

3.2 Indirect Source Coding

An important extension to Shannon’s source coding problem arises when the encoder has no direct access to

the signal it tries to describe to the decoder. This extension is referred to as the indirect source coding prob-

lem. In this section we review general known properties of the indirect source coding setting. We then extend

many of these properties to the kind of processes that arise from sampling and estimation in bounded linear

sampling. Throughout this section the curly brackets notation {·} is used instead of (·) or [·] for expressions

that apply whenever each of the processes is indexed by either discrete or continuous time. Depending on the

index set, integration is either with respect to the Lebesgue measure or the counting measure.

The general indirect source coding problem setting is illustrated in Figure 3.3. In this problem, the en-

coder observes the signal YT{·} and is required to encode it so that the distortion between XT{·} and the

decoder output X̂T{·} is minimized. The relation between XT{·} and YT{·} is described by a family of joint

probability distributions
{

PYT {·},XT {·},T > 0
}

whose marginal distribution over XT{·} agrees with the distri-

bution of the process X(·). By working with joint distributions rather than conditional distributions, we avoid

many of the complications occurring in conditional distributions of continuous alphabets [64]. The OPTA or

the operational indirect DRF in this setting is denoted as δX |Y (R).

3.2.1 Indirect source coding theorem under quadratic distortion

Under the special case of a quadratic distortion measure d(x, x̂) = (x− x̂)2 the OPTA can be represented using

a simplified expression. This expression highlights conditions on the posterior distribution of XT{·} given

YT{·} that are necessary for the characterizations of the OPTA using an information expression.

Theorem 3.1 (i) For T > 0, let X{·} be a stochastic process such that

σ
2
X , lim

T→∞

1
T

∫ T/2

−T/2
E
[
X{t}2]dt
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exists and finite. Denote by XT{·} the restriction of X{·} to the interval [−T/2,T/2] and let YT{·}
be another process (on the same probability space). The OPTA in recovering X{·} from an encoded

version of YT{·} using T R bits satisfies

δX |Y (R) = liminf
T→∞

mmse(XT |YT )+ liminf
T→∞

δX̃T
(R), (3.5)

where δX̃T
(R) is the OPTA in encoding the process

X̃T{t}= E[X{t}|YT{·}] (3.6)

using T R bits.

(ii) Assume that the conditions in (i) hold, and that X̃T{·} has continuous amplitude and converges in law

to a continuous-time continuous-amplitude process X̃{·} that is asymptotic mean stationary [65] in the

following sense: for every α1, . . . ,αn, t1, . . . , tn ∈ R,

1
T

∫ T/2

−T/2
P(X̃T{t1 + τ} ≤ α1, . . . .X̃T{tn + τ} ≤ αn)dτ

T→∞−→ P(X̃{0} ≤ α1, . . . X̃{tn− t1} ≤ αn).

Then

δX |Y (R) =mmse(X |Y )+DX̃ (R), (3.7)

where

mmse(X |Y ) = σ
2
X − lim

T→∞

1
T

∫ T/2

−T/2
E
[
X̃2{t}

]
dt,

and DX̃ (R) is the information DRF of the process X̃{·} given by (3.2).

Proof From the orthogonality principle, it follows that for any estimator X̂{t} of X{t} based on an encoded

version of YT{·} we have

1
T

∫ T/2

−T/2
E
(

X{t}− X̃{t}
)2

dt +
1
T

∫ T/2

−T/2
E
(

X̃{t}− X̂{t}
)2

dt. (3.8)

Therefore, (i) follows from (3.8) and from the definition of the operational DRF (3.1). In order to prove (ii),

first note that

mmse(XT |YT ) =
1
T

∫ T/2

−T/2
E
(

X{t}− X̃T{t}
)2

dt = σ
2
X −

1
T

∫ T/2

−T/2
E
[
X̃2

T{t}
]

dt

= σ
2
X −

1
T

∫ T/2

−T/2
E
[
X̃2{t}

]
dt +

1
T

∫ T/2

−T/2
E
[
X̃2{t}− X̃T{t}

]
dt. (3.9)

Since X̃T{·} converges in law to X̃{·} and since the second moment of X̃T{t} is bounded by that of X{·}, the

second moment of X̃{·} is also bounded. As a result, the last term in the RHS of (3.9) goes to zero as T goes
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to infinity. In addition, asymptotic mean stationarity of X̃{·} ensures the existence of the limit

lim
T→∞

1
T

∫ T/2

−T/2
EX̃2{t}dt,

so that mmse(X |Y ) is well defined and mmse(XT |YT )→mmse(X |Y ). For the second term in (3.7), we write

1
T

∫ T/2

−T/2
E
(

X̃T{t}− X̂{t}
)2

dt =
1
T

∫ T/2

−T/2
E
(

X̃T{t}− X̃{t}+ X̃{t}− X̂{t}
)2

dt

=
1
T

∫ T/2

−T/2
E
(

X̃{t}− X̂{t}
)2

dt +
1
T

∫ T/2

−T/2
E
(

X̃T{t}− X̃{t}
)2

dt

+
1
T

∫ T/2

−T/2
E
(

X̃T{t}− X̃{t}
)(

X̃{t}− X̂{t}
)

dt.

Convergence in law of XT{·} to X̃(·) and bounded second moments of both implies that the last two terms

go to zero as T → ∞. Thus, it is enough to consider the encoding of the limiting process X̂{·}. Since the

latter is assumed to be asymptotic mean stationary, the convergence of the OPTA to an information DRF

representation analogous to (3.2) follows from [66, Ch. 11]. �

We note that the simplification in evaluating δX |Y (R) provided by Theorem 3.1 is twofold. First, it de-

composes the indirect source coding problem into a minimal MSE estimation problem and a standard source

coding problem. Second, it provides general conditions for the expression in the RHS of (3.5) to admit an

information DRF representation. In this last sense, Theorem 3.1 is an extension of [15] and [16]. In the next

section we consider various examples for using Theorem 3.1 where the processes X{·} and Y{·} are jointly

Gaussian.

3.3 Indirect DRF in Gaussian Settings

In this section we consider the indirect source coding setting of Figure 3.3 under various special cases in which

the distortion is quadratic and the processes X{·} and Y{·} are jointly Gaussian. In addition to demonstrating

the usefulness of Theorem 3.1, these examples are later used in characterizing the minimal distortion in our

general ADX setting of Figure 1.2.

3.3.1 Gaussian stationary source corrupted by noise

Consider the scenario where the source process X(·) is a Gaussian stationary process and the encoder observes

the process Y (t) = X(t) + η(t), where η(·) is a Gaussian stationary noise independent of X(·). In this

scenario, the MMSE estimator of X(·) from Y (·) is given by the Wiener filter, which is a stationary Gaussian
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Figure 3.4: Water-filling interpretation of (3.10). The distortion is the sum of the MMSE and the lossy
compression error.

process [53] with PSD

SX̃ ( f ) = SX |Y ( f ) =
S2

X ( f )
SX ( f )+Sη( f )

.

In particular, the asymptotic MMSE is given by

mmse(X |Y ) = σ
2
X −

∫
∞

−∞

SX |Y ( f )d f =
∫

∞

−∞

SX ( f )Sη( f )
SX ( f )+Sη( f )

d f ,

and the DRF of X̃(·) is obtained by (3.3). In the setting of Theorem 3.1, the asymptotic law of (3.6) converges

to the output of the Wiener filter, which is stationary Gaussian, and hence asymptotic mean stationary [65].

It therefore follows from (3.7) that the indirect DRF of X(·) given Y (·) is given by the following expression,

first derived in [15]:

DX |Y (Rθ ) =
∫

∞

−∞

SX |Y ( f )d f +
∫

∞

−∞

min
{

θ ,SX |Y ( f )
}

d f (3.10a)

= σ
2
X −

∫
∞

−∞

[
SX |Y ( f )−θ

]+ d f

Rθ =
∫

∞

−∞

log+
[
SX |Y ( f )/θ

]
d f , (3.10b)

where log+[x] = log(max{1,x}), and SX ( f ), Sη( f ) are the PSD of the processes X(·) and η(·), respectively.

A graphic interpretation of the expression (3.10) as the combination of a reverse water-filling term and an

MMSE term is illustrated in Figure 3.4.

3.3.2 Discrete-time jointly Gaussian vector processes

Consider a discrete-time and M-dimensional vector valued stationary process X[·] with PSD matrix SX
(
e2πiφ

)
.

The encoder observes the process Y [·], which is a discrete-time and P-dimensional vector valued stationary

process with PSD matrix SY
(
e2πiφ

)
. Assume moreover that X[·] and Y[·] are jointly Gaussian and stationary
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with cross PSD matrix SXY
(
e2πiφ

)
defined by

(
SXY

(
e2πiφ))

m,p , ∑
n∈Z

E [Xi[n]Yj[0]]e−2πiφn, m = 1, . . . ,M, p = 1, . . .P.

Then from linear estimation theory [53], it follows that the MMSE estimate of X[·] from Y[·] is given by the

discrete-time vector Wiener filter:

X̃[n] = ∑
k∈Z

G[n− k]Y[k],

where the Fourier transform of the process defining the M×P matrix G is given by

Ĝ
(
e2πiφ)= SXY

(
e2πiφ)S−1

Y
(
e2πiφ) .

Therefore, X̃ [·] is a discrete-time Gaussian stationary process with PSD matrix

SX|Y = SXY
(
e2πiφ)S−1

Y
(
e2πiφ)SYX

(
e2πiφ) ,

and the MMSE in Wiener filtering is given by

mmse(X|Y) =
1
M

∫ 1
2

− 1
2

Tr SX
(
e2πiφ)dφ − 1

M

∫ 1
2

− 1
2

Tr SX|Y
(
e2πiφ)dφ .

The DRF of the process X̃[·] is obtained by the counterpart of Pinsker’s expression (3.3) for Gaussian station-

ary vector sources as derived in [67, Eq. (20) and (21)]:

DX̃(R̄θ ) =
1
M

M

∑
i=1

∫ 1
2

− 1
2

min
{

λi
(
e2πiφ) ,θ}dφ (3.11a)

R̄θ =
M

∑
i=1

∫ 1
2

− 1
2

1
2

log+
[
λi
(
e2πiφ)/θ

]
dφ , (3.11b)

where λ1
(
e2πiφ

)
, ...,λM

(
e2πiφ

)
are the eigenvalues of the matrix SX|Y

(
e2πiφ

)
and where R̄ is measured in

bits per source symbol (unlike R, which denotes bits per unit time).

In the setting of Theorem 3.1, the law of the process X̃T [·] of (3.6) converges to the law of the stationary

Gaussian process X̃[·] at the output of the Wiener filter. Therefore, the indirect DRF of X[·] given Y[·] follows

from (3.7):

Theorem 3.2 Let X[·] be an M-dimensional, vector-valued Gaussian stationary process and let Y[·] be

another vector valued process, such that X[·] and Y[·] are jointly Gaussian and stationary. The indirect
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distortion-rate function of X[·] given Y[·] under quadratic distortion is given by

DX|Y(R̄θ ) =mmse(X|Y)+
1
M

M

∑
i=1

∫ 1
2

− 1
2

min
{

λi
(
e2πiφ) ,θ}dφ

=
1
M

∫ 1
2

− 1
2

Tr SX
(
e2πiφ)dφ − 1

M

M

∑
i=1

∫ 1
2

− 1
2

[
λi
(
e2πiφ)−θ

]+
dφ ,

R̄θ =
M

∑
i=1

∫ 1
2

− 1
2

1
2

log+
[
λi
(
e2πiφ)/θ

]
dφ ,

where λ1
(
e2πiφ

)
, ...,λM

(
e2πiφ

)
are the eigenvalues of the matrix SX|Y

(
e2πiφ

)
.

Proof Since the MMSE estimate of X(·) given YT (·) converges to mmse(X|Y), the theorem is an immedi-

ate consequence of (3.11) and (3.7). �

3.3.3 Jointly Gaussian i.i.d. vector sources

Another example for an indirect source coding problem involving a pair of Gaussian sources is as follows:

each symbol from the sources X{·} and Y{·} is an i.i.d. vector X and Y with covariance matrices ΣX , ΣY ,

respectively. The cross-covariance between X and Y is ΣXY . Although this example is relatively simple, it

provides intuition for the kind of optimization required in subsequent chapters to derive the optimal sampling

structure in the ADX. The indirect DRF in this scenario is obtained as a special case of Theorem 3.2 by

setting SX
(
e2πiφ

)
≡ ΣX , SY

(
e2πiφ

)
≡ ΣY , and ΣXY

(
e2πiφ

)
≡ ΣXY . The result is as follows:

DX|Y(R̄θ ) =
n

∑
i=1

(
λi (ΣX )−λi

(
ΣX |Y

))
+

n

∑
i=1

min
{

θ ,λi
(
ΣX |Y

)}
=

n

∑
i=1

λi (ΣX )−
n

∑
i=1

[
λi
(
ΣX |Y

)
−θ
]+

, (3.13a)

R̄θ =
1
2

n

∑
i=1

log+
[
λi
(
ΣX |Y

)
/θ
]
. (3.13b)

3.3.4 Minimizing a combined MMSE and water-filling expression

Before concluding this section, we consider the minimization of expressions of the form (3.10) and (3.13)

over the PSD or the eigenvalues of the covariance matrix of the estimator.
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Proposition 3.3 Fix R > 0 and consider the function D : Rn→ R defined by

D(x1, . . . ,xn) =−
n

∑
i=1

[xi−θ ]+

R =
1
2

n

∑
i=1

log+ [xi/θ ] .

Then D is non-increasing in any of its arguments.

Proof For any i such that xi > θ , the partial derivative of θ with respect to xi equals θ/xi < 1. Therefore,

the derivative of D with respect to xi equals −1+ θ/xi < 0. If Xi < θ then the partial derivative of D with

respect to xi is zero. �

When an expression of the form (3.10) is considered, Proposition 3.3 takes the following form:

Proposition 3.4 Fix R > 0 and set A⊂ R. For an integrable function f over A, define

D( f ) =−
∫

A
[ f (x)−θ ]+ dx

R =
1
2

∫
A

log+ [ f (x)/θ ]dx.

Let f and g be two integrable functions such that∫
A

f (x)dx≤
∫

A
g(x)dx.

Then D(g)≤ D( f ).

Proof Since f and g are integrable, we approximate their integrals by sums over a finite number of ele-

ments. Proposition 3.3 applied to this sum leads to the desired result. �

3.4 Chapter Summary

We considered the minimal MSE distortion in recovering a random process from an encoded version of

another process, statistically correlated with the first one. This problem is known as the indirect source coding

problem, for which the optimal tradeoff between code rate and distortion is characterized by the indirect DRF.

Under quadratic distortion, the indirect DRF can be decomposed into an estimation problem under a MSE

criterion and a standard source coding problem with respect to the estimator. In this chapter we provided new

conditions on the posterior law of the process given the observations such that the above decomposition leads

to a computable expression of the indirect DRF. These conditions permit the statistical relation between the
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source and the observations at the encoder to depend on the time horizon, as long as this relation converges

in law to an asymptotic mean stationary distribution. We used this decomposition to evaluate the indirect

DRF in closed form for recovering a Gaussian processes from jointly Gaussian observations that may be

noisy. Since the input signal in the ADX setting in Figure. 1.2 is stationary and Gaussian, this last derivation

provides a lower bound for the distortion in ADX when noise is added to the source signal before sampling.

In the following chapter we combine the source coding problem discussed in this chapter with the MMSE

problem of Chapter 2 to characterize the fundamental distortion limit in ADX.



Chapter 4

Combined Sampling and Source Coding

In this chapter we provide the fundamental distortion limit in ADX by combining the problem of estimating

signals from their noisy sampled version, considered in Chapter 2, with the source coding problem of encod-

ing signals subject to a bitrate constraint considered in Chapter 3.2. Specifically, in Section 4.1, we formalize

the ADX setting as a combined sampling and source coding problem with an additive noise. Therefore, the

minimal distortion in recovering the analog signal is due to the joint effect of sampling, lossy compression,

and independent noise. In Section 4.2, we solve this combined problem in the simple case of a single-branch

uniform sampler and explore properties of this solution through various examples. In Section 4.3, we then

generalize our solution to multi-branch sampling. We also consider an optimization over the pre-sampling

operations in both cases and derive an achievable lower bound on the distortion in ADX under time-invariant

uniform sampling. In Section 4.4 we show that this lower bound on the distortion in ADX holds even under

the most general case of an arbitrary bounded linear sampler.

4.1 Combined Sampling and Source Coding

In this section we formalize the ADX setting as a combined problem of sampling and source coding. Our

formalization combines the bounded linear sampling system of Chapter 2 with the indirect source coding

setting of Chapter 3.

4.1.1 Combined sampling and source coding setting

The combined sampling and source coding setting is described in Figure 4.1. The source signal X(·) is a zero-

mean Gaussian stationary process with an L1(R) PSD SX ( f ) and variance σ2
X . The process X(·) is corrupted

by a Gaussian stationary noise process η(·) with PSD Sη( f ). The sampler S = S(H,Λ) is a bounded linear

sampler with a pre-sampling operation H and a sampling set Λ, as defined in Section 2.2. The input to the

sampler is the process X(·)+η(·), and the output of this sampler at time T is an N dimensional vector YT ,

50
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XT (·) +

ηT (·)

Smp
S(H,Λ) Enc

X̂T (·) Dec

YT ∈ RN
{

1, . . . ,2bT Rc}

distortion

Figure 4.1: Combined sampling and source coding setting.

where N = |Λ∩ [−T/2,T/2]|. The encoder maps the vector YT to an index i in the set
{

1, . . . ,2bRTc}. The

decoder, upon receiving the index i, produces an estimate X̂ i
T (·) of XT (·). The distortion between the source

signal and its estimate is measured according to a MSE criterion. Namely, the distortion between a source

waveform xT (·) and a reconstruction waveform x̂T (·) is given by

1
T

∫ T/2

−T/2
(xT (t)− x̂T (t))

2 dt.

For the bounded linear sampler S limited to a time horizon T , our goal is to minimize the expected distortion

DT = inf
Enc−Dec

1
T

∫ T/2

−T/2
E
(

XT (t)− X̂T (t)
)2

dt,

where the infimum is with respect to all encoders and decoders operating to and from a set of 2bT Rc elements.

The minimal distortion in ADX associated with S is the indirect DRF of X(·) given the vector of samples YT ,

defined as

DS(R), liminf
T→∞

DT . (4.1)

4.1.2 Basic properties of DS(R)

Below is a list of various properties of the function DS(R) that follow from its definition:

Proposition 4.1 For any bitrate R and a bounded linear sampler S:

(i) DS(R)≤ σ2
X and DS(R)→ σ2

X as R→ 0.

(ii) DS(R)≥mmseS and DS(R)→mmseS as R→ ∞, where mmseS is defined in (2.9).

(iii) DS(R)≥ DX |X+η(R), where DX |X+η(R) is the indirect DRF of X(·) given X(·)+η(·) of (3.10).
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XT +

ηT

H( f )
fs

Enc

X̂T Dec

Y N R[ bits
sec ]

Figure 4.2: Combined sampling and source coding with a single-branch uniform sampler.

Proof (i) follows by taking X̂T (·) ≡ 0 in the definition of DS(R) in (4.1). As R→ 0, no information on

XT (·) is provided and the mean, which is assumed to be zero, is the best estimate for XT (·). (ii) As R→ ∞,

the encoder can encode the samples YT with arbitrarily small distortion, hence the problem is reduced to the

minimal MSE estimation problem of Section 2.4. (iii) follows since any optimal encoding of YT for describ-

ing X(·) is no better than the optimal encoding of X(·)+η(·) to describe X(·). �

For the special case of a SB sampler with sampling rate fs, the function DS(R) defines a manifold in the

three-dimensional space (D, fs,R). It follows from Proposition 4.1 that this manifold is bounded from above

by the plane D = σ2
X , and from below by the two cylinders D =mmseSB(H)( fs) and D = DX |X+η(R). Next,

we derive precise expressions for DS(R) for SB and MB uniform samplers.

4.2 Single Branch Uniform Sampling

We now consider the case where the sampler S is the SB uniform sampler of the form described in Figure 2.2

and in Section 2.3.1, leading to the combined sampling and source coding system illustrated in Figure 4.2.

For this special class of samplers, we denote the function DS(R) by DSB(H)( fs).

Consider the MMSE estimator X̃T (·) of XT (·) given YT (·). It was shown in Section 2.4.1 that the asymp-

totic law of this estimator converges to the law of the process X̃(·) given by (2.20). Since X̃(·) is a cyclo-

stationary process, it is also asymptotic mean stationary [65, Exc. 6.3.1]. Hence, the conditions of (ii) in

Theorem 3.1 hold and

DSB(H)( fs,R) =mmseSB(H)( fs)+DX̃ (R). (4.2)

A closed form expression for mmseSB(H)( fs) is given by Proposition 2.1 so it is only left to evaluate the second

term in (4.2), which is the DRF of the process X̃(·). Note that for fs > fNyq, as explained in Section 2.3.1, the

MMSE estimator of X(·) from Y [·] coincides with the estimator resulting from the Wiener filter for estimating

X(·) from the output of the filter H( f ). This last estimator is stationary with PSD S2
X ( f )

SX ( f )+Sη ( f ) . Therefore, we
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conclude that for fs > fNyq,

DSB(H)( fs,R) = DX |X+η(R),

where DX |X+η(R) is given by (3.10).

Next, we consider the DRF of X̃(·) when fs is below the Nyquist rate of X(·). In this case, X̃(·) is not a

stationary process but rather cyclostationary with a pulse-amplitude structure [52]. A general expression for

the DRF of Gaussian cyclostationary processes is given in Appendix A. For the special case of cyclostationary

processes with pulse-amplitude structure, the following theorem is obtained from the results of Appendix A:

Theorem 4.2 (DRF of PAM-modulated signals) Let XPAM(·) be defined by

XPAM(t) = ∑
n∈Z

U(n/ f0)p(t−n/ f0), t ∈ R, (4.3)

where U(·) is a Gaussian stationary process with PSD SU ( f ) and p(t) is an analog deterministic sig-

nal with
∫

∞

−∞
|p(t)|2 dt < ∞ and Fourier transform P( f ). Assume, moreover, that the covariance function

E [XPAM(t + τ)XPAM(t)] of XPAM(·) is Lipschitz continuous in τ . The distortion-rate function of XPAM(·) is

given by

D(θ) = f0

∫ f0
2

− f0
2

min
{

S̃( f ),θ
}

d f (4.4a)

R(θ) =
1
2

∫ f0
2

− f0
2

log+
[
S̃( f )/θ

]
d f , (4.4b)

where

S̃( f ), ∑
k∈Z
|P( f − k fs)|2 SU ( f − k fs). (4.5)

Proof See Appendix A. �

Using Theorem 4.2 we obtain the following:

Theorem 4.3 The minimal distortion in the combined sampling and source coding problem with a SB uni-

form sampler of sampling rate fs and pre-sampling operation H( f ) is given by

DSB(H)( fs,Rθ ) =mmseSB(H)( fs)+
∫ fs

2

− fs
2

min
{

S̃X |Y ( f ),θ
}

d f (4.6a)

= σ
2
X −

∫ fs
2

− fs
2

[
S̃X |Y ( f )−θ

]+
d f

Rθ =
1
2

∫ fs
2

− fs
2

log+
[
S̃X |Y ( f ),θ

]
d f , (4.6b)
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fs/2 fNyq/2

mmseSB( fs)

lossy compression distortion

preserved spectrum

θ

fS X
( f
)

S X
( f
+

f s)
S

X ( f −
fs )

S̃ X |Y
( f
)

∑ SX ( f − fs k)

Figure 4.3: Water-filling interpretation of (4.6) with an all pass pre-sampling filter (|H( f )| ≡ 1): The function
∑k∈Z SX ( f − fsk) is the aliased PSD that represents the full energy of the original signal within the discrete-
time spectrum interval (− fs/2, fs/2). The part of the energy recovered by the MMSE estimator of (2.20)
is S̃X |Y ( f ). The distortion due to lossy compression is obtained by reverse water-filling over the recovered
energy according to (4.6a). The overall distortion DSB(H)( fs,R) is the sum of the MMSE due to sampling and
the lossy compression distortion.

where

S̃X |Y ( f ) =
∑k∈Z SX ( f − fsk)2 |H( f − fsk)|2

∑n∈Z |H( f − fsn)|2 SX+η( f − fsn)
. (4.7)

Proof We use Theorem 4.2 with U(t) =
∫

∞

−∞
(X(τ)+η(τ))h(t − τ)dτ . The PSD of the process U(·) is

given by

SU ( f ) = (SX ( f )+Sη( f )) |H( f )|2 .

From Theorem 4.2 it follows that the DRF of X̃(·) of (2.20) is given by

Dθ =
∫ fs

2

− fs
2

min
{

S̃X |Y ( f ),θ
}

d f

Rθ =
1
2

∫ fs
2

− fs
2

log+
[
S̃X |Y ( f )/θ

]
d f ,

hence (4.6) follows from (4.2). �

4.2.1 Discussion

A graphical interpretation of (4.6) is given in Figure 4.3, under the assumption that η(·) equals zero and

the pre-sampling filter H( f ) does not block any part of the signal energy (for example, if H( f ) is an all

pass filter). The band (− fs/2, fs/2) represents the spectrum of the discrete-time process Y [·] in the analog

domain, and the entire signal’s energy σ2
X is obtained by integrating the aliased version of SX ( f ) in this
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band. Consequently, the function S̃X |Y ( f ) represents the part of the energy that is recovered by the MMSE

estimator X̃(·). The parameter θ is the water level that couples the distortion expression (4.6a) with the bitrate

expression (4.6b) in a similar manner as in Pinsker’s water-filling expression (3.3). Theorem 4.3 shows that

the function DSB(H)( fs,R) is given by the sum of two terms, both of which depend on S̃X |Y ( f ): (1) the MMSE

in this estimation, given by integrating the difference

∑
k∈Z

(
SX ( f − fsk)− S̃X |Y ( f − fsk)

)
= ∑

k∈Z
SX ( f − fsk)− S̃X |Y ( f )

over (− fs/2, fs/2), and (2) water-filling over S̃X |Y ( f ). By comparing (4.6) with (3.10), we conclude that

the function S̃X |Y ( f ) plays the role of the PSD of the MMSE estimator of X(t) from Y [·]. Recall, however,

that this estimator is not stationary in general, and therefore its PSD is not well-defined. In fact, as follows

from Section 2.4, the function S̃X |Y ( f ) can be seen as the average of the polyphase components of X̃(·). This

last interpretation for S̃X |Y ( f ) is explained in Appendix A and generalized to derive the DRF of an arbitrary

Gaussian cyclostationary process.

The function S̃X |Y ( f ) depends on the sampling rate, the pre-sampling filter H( f ), and the spectral densities

SX ( f ) and Sη( f ) – but is independent of R. By fixing R and considering a small change in S̃X |Y ( f ) such that

the overall estimated energy ∫ fs
2

− fs
2

S̃X |Y ( f )d f (4.8)

is increased, then it follows from (4.6b) that θ is also increased to maintain the same fixed source coding rate

R. On the other hand, the expression for DSB(H) ( fs,R) in (4.6a) exhibits a negative linear dependency on

(4.8). In this interplay between the two terms in (4.6), the negative linear dependency in S̃X |Y ( f ) is stronger

then a logarithmic dependency of θ in (4.8), and the distortion reduces with an increment in (4.8), as implied

by Proposition 3.4. We therefore conclude:

Corollary 4.4 For a fixed R≥ 0, minimizing DSB(H) ( fs,R) is equivalent to maximizing

∫ fs
2

− fs
2

S̃X |Y ( f )d f .

This last corollary will be useful in determining the pre-sampling filter that minimizes DSB(H)( fs,R) in Sec-

tion 4.2.3.
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4.2.2 Examples

As an example for using Theorem 4.3, consider the case where the the spectrum of X(·) equals

SX ( f ) = SΠ( f ) =


σ2

X
2W | f | ≤W,

0 otherwise,
(4.9)

for some W > 0. In addition, assume that the noise is constant over the band | f | ≤ W with intensity

σ2
η = γ−1σ2

X/(2W ), where γ > 0 is the signal-to-noise ratio (SNR) in this model. For all frequencies

f ∈ [− fs/2, fs/2], we have

S̃X |Y ( f ) =
∑k∈Z S2

X ( f − fsk)
∑k∈Z (SX ( f − fsk)+Sη ( f − fsk))

=
σ2

X
2W


γ

1+γ
| f |<W,

0 | f | ≥W.

For this case, (4.6) is given by

DSB(H) ( fs,Rθ ) = σ
2
X


[
1− fs

2W

]+
+ θ fs

σ2
X

θ

σ2
X
≤min

{
fsγ

2W (1+γ) ,1
}
,

1 otherwise,

and

Rθ =


fs
2 log

(
σ2

X γ

2Wθ(1+γ)

)
0≤ θ

σ2 (1+ γ−1)< fs
2W < 1,

W log
(

σ2
X γ

2Wθ(1+γ)

)
0≤ θ

σ2
X
(1+ γ−1)< 1≤ fs

2W ,

0 otherwise.

The parametric expressions above can be written in a single equation as

DSB(H) ( fs,R) = σ
2
X

1− fs
2W + fs

2W
γ

1+γ
2
−2R

fs fs
2W < 1,

1
1+γ

+ γ

1+γ
2−

R
W fs

2W ≥ 1.
(4.10)

Expression (4.10) has a very intuitive structure: for sampling rates below the Nyquist frequency of the

signal, the distortion as a function of the bitrate increases by a constant factor due to the error as a result

of non-optimal sampling. This factor completely vanishes for fs greater than the Nyquist frequency of the

signal, in which case DSB ( fs,R) equals the indirect DRF of the process X(·) given X(·)+η(·), which, by

(3.10), equals

DX |X+η(R) = σ
2
X

(
1

1+ γ
+

γ

1+ γ
2−R/W

)
.

Expression (4.10) is depicted in Figure 4.4 for γ = 5 and γ → ∞.
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fNyq

Figure 4.4: The function DSB(H)( fs,R) versus fs for the process with rectangular PSD of (4.10), bandwidth
0.5, and an all-pass filter |H( f )| ≡ 1. The lower curve corresponds to zero noise, and the upper curve
corresponds to signal-to-noise ration γ = 5. The dashed lines represent the indirect DRF of the source given
the noisy process before sampling and when this noise is zero. In this example, fNyq = fLan = 1.

As another example, consider the case where SX ( f ) has the band-pass structure

SX ( f ) =


σ2

X
2 1≤ | f | ≤ 2,

0 otherwise,
(4.11)

and zero noise, i.e. Sη( f )≡ 0. We also assume that the pre-sampling filter H( f ) does not block any spectral

line of SX ( f ). As in the example of the PSD (4.9), we obtain that for any f ∈ (− fs/2, fs/2), the function

S̃X |Y ( f ) either equals σ2

2 or 0. Thus, in order to find DSB(H) ( fs,R), we only need to know for which values

of f ∈ (− fs/2, fs/2) the function S̃X |Y ( f ) vanishes. This leads to

DSB(H) ( fs,R) = σ
2
X



2−R 4≤ fs,

1− fs−2
2

(
1−2−

2R
fs−2
)

3≤ fs < 4,

1− 4− fs
2

(
1−2−

2R
4− fs

)
2≤ fs < 3,

1− ( fs−1)
(

1−2−
R

fs−1
)

1.5≤ fs < 2,

1− (2− fs)
(

1−2−
R

2− fs

)
4/3≤ fs < 1.5,

1− fs
2

(
1−2−

2R
fs

)
0≤ fs < 4/3,

(4.12)

which is depicted in Figure 4.5 for two different values of R. It can be seen from Figure 4.5 that the function
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Figure 4.5: Illustration of (4.12): the function DSB(H)( fs,R) for the process with spectrum given in the small
frame and two values of the source coding rate R.

DSB(H)( fs,R) is not necessarily decreasing in the sampling rate fs. In fact, it follows from this figure that the

function DSB( fs,R) coincides with DX (R) for fs = 2, indicating that sampling at this particular sub-Nyquist

rate does not lead to additional distortion due to sampling compared to sampling at any super-Nyquist rate.

This reduction in sampling rate compared to the Nyquist rate is the result of the particular bandpass structure

of the process that allows sampling at the Landau rate with a uniform sampler. The technique to design sub-

Nyquist samplers for sampling bandpass signals is known as bandpass sampling [68]. Note that since the

Landau rate (i.e. the support of SX ( f )) in this example equals 2, Proposition 2.3 implies that it is impossible

to sample X(·) at a sampling rate smaller than 2 without introducing additional distortion.

In the two examples above with the PSDs (4.9) and (4.11), the pre-sampling filter H( f ) has no effect on

the function DSB(H)( fs,R) as long as the support of SX ( f ) is included in the support of H( f ). Intuitively, the

reason for this indifference to the pre-sampling filter is the uniform energy distribution of the signal over the

support of the PSD. This uniformity implies that all spectral lines of the signal contribute the same amount

to the overall distortion, and hence all lines are estimated with equal importance. In particular, there is no

benefit in attenuating or amplifying any part of the spectrum using a pre-sampling filter, since this does not

change the SNR. As it turns out, the picture is different when the energy distortion is not uniform over the

spectral support: for a general PSD SX ( f ) and each sampling rate fs, a particular choice of H( f ) minimizes

the function DSB(H)( fs,R).
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4.2.3 Optimal pre-sampling filter

We now consider the pre-sampling filter H( f ) that minimizes (4.6) subject to a fixed bitrate R and sampling

rate fs. It follows from Corollary 4.4 that this minimization is equivalent to maximizing S̃X |Y ( f ) for any f in

the interval (− fs/2, fs/2). In particular, since S̃X |Y ( f ) is independent of R, the optimal pre-sampling filter is

only a function of fs and the spectrum of the signal and the noise. Recall that the optimal pre-sampling filter

H?( f ) that maximizes S̃X |Y ( f ) was already given in Theorem 2.5 in terms of the maximal aliasing free set

associated with S2
X ( f )

SX ( f )+Sη ( f ) . This leads us to the following conclusion:

Theorem 4.5 Given fs > 0, the optimal pre-sampling filter H?( f ) that minimizes DSB(H)( fs,R), for all R≥ 0,

is given by

H? ( f ) =

1 f ∈ F?
1 ,

0 otherwise,

where F?
1 ∈ AF( fs) and satisfies

∫
F?

1

S2
X ( f )

SX+η( f )
d f =

∫ 1
2

− 1
2

sup
k

S2
X ( f − fsk)

SX+η( f − fsk)
d f .

Moreover, the minimal distortion obtained using H? is given by

D?
SB ( fs,Rθ ), DSB(H?) ( fs,Rθ )mmse?SB( fs)+

∫
F?

1

min
{

S2
X ( f )

SX+η( f )

}
d f (4.13a)

= σ
2
X −

∫
F?

1

[
S2

X ( f )
SX+η( f )

−θ

]+
d f

Rθ =
1
2

∫
F?

log+
[

S2
X ( f )

SX+η( f )
/θ

]
d f ,

where mmse?SB( fs) is given by (2.34).

Proof From Theorem 2.5 we conclude that the filter H?( f ) that maximizes S̃X |Y ( f ) is given by the indicator

function of the maximal aliasing free set F?
1 . Moreover, with this optimal filter, (4.6) reduces to (4.13). �

We emphasize that even in the absence of noise, the optimal pre-sampling filter H?( f ) plays a crucial

role in reducing distortion by preventing aliasing as described in Section 2.5. The effect of using the optimal

pre-sampling filter on the function DSB(H)( fs,R) is illustrated in Figure 4.6.
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Figure 4.6: The functions D?
SB( fs,R) and DSB(H)( fs,R), corresponding to using an optimal pre-sampling

filter H?( f ) and an all-pass filter (|H( f )| ≡ 1), respectively, at two fixed values of R. Here η(·) is zero,
and SX ( f ) is given in the small frame. The dashed lines represent the distortion-rate functions of the source
corresponding to direct encoding or sampling above the Nyquist rate.
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preserved spectrum

mmse( fs)

lossy compression dist.

θ

f
S X
( f
)

Figure 4.7: Water-filling interpretation of the function D( fs,R). The overall distortion is the sum of the
MMSE due to sampling and the lossy compression distortion. The set F? is the support of the preserved
spectrum.

4.2.4 The fundamental distortion limit

Analogous to the lower bound for the MMSE of (2.36), we now derive a lower bound on DSB(H)( fs,R) using

a set F? of Lebesgue measure fs that satisfies

∫
F ?

S2
X ( f )

SX+η( f )
d f = sup

µ(F)≤ fs

∫
F

S2
X ( f )

SX+η( f )
d f . (4.14)

Consider the function:

D( fs,Rθ ) =mmse( fs,R)+
∫

F?
min

{
S2

X ( f )
SX+η( f )

,θ

}
d f (4.15a)

= σ
2
X −

∫
F?

[
S2

X ( f )
SX+η( f )

−θ

]+
d f ,

Rθ =
1
2

∫
F?

log+
[

S2
X ( f )

SX+η

/θ

]
d f . (4.15b)

Since F? is not restricted to be aliasing free, it follows from Corollary 4.5 that for any fs, R, and H,

D( fs,Rθ )≤ D?
SB( fs,R)≤ DSB(H)( fs,R).

A water-filling interpretation of D( fs,Rθ ) is given in Figure 4.7. As in the case of the MMSE, the lower

bound D( fs,Rθ ) is attained with equality whenever the PSD is unimodal and the pre-sampling filter H is an

ideal low-pass filter with pass band (− fs/2, fs/2). In general, however, it is impossible to attain D( fs,Rθ )

with equality using a single branch. As we will see in the next section, this lower bound can be attained by

increasing the number of sampling branches.
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4.3 Multi-Branch Uniform Sampling

We now consider the minimal distortion in the combined sampling and source coding setting of Figure 4.1

where the sampler is a MB uniform sampler, as defined in Section 2.3. We denote the function DS(R) under

this sampler by DMB(H1,...,HL)( fs,R), where H1, . . . ,HL are the L LTI systems that comprise the pre-sampling

operation of the sampler. Clearly, the function DSB(H)( fs,R) of the previous section is obtained as a special

case of DMB(H1,...,HL)( fs,R) for L = 1.

In principle, the characterization of DMB(H1,...,HL)( fs,R) can be obtained using a similar technique to the

one that was used in Section 4.2 to derive DSB(H)( fs,R). Namely, first use the decomposition in (3.7) to

separate the distortion into an MMSE term and a standard information DRF with respect to the asymptotic

distribution X(·) of the estimator XT (·). While the MMSE term is readily available from Proposition 2.2, no

analytic expression is known for the DRF of the estimator of X(·) from the output of a MB filter in terms

of the PSD of X(·) and η(·). We therefore proceed along a different path to evaluate the indirect DRF in

the combined sampling and source coding problem under MB sampling: we first consider a discrete-time

version of this problem and derive a closed form expression for the indirect DRF in this case. We then

increase the time-resolution in the discrete-time problem and show that the indirect DRF there converges to

DMB(H1,...,HL)( fs,R) under mild conditions.

In addition to deriving the expression for DMB(H1,...,HL)( fs,R), we consider the counterpart of Corol-

lary 4.5, i.e., the optimal set of pre-sampling filters H?
1 , . . . ,H

?
L that minimizes DMB(H1,...,HL)( fs,R).

4.3.1 MB uniform sampling in the discrete-time setting

In this subsection we consider the discrete-time counterpart of the combined sampling and source coding

problem of Figure 4.1. While only the expression for the indirect DRF is required in order to evaluate the

continuous-time setting, we describe the full source coding setting since its characterization is interesting on

its own.

In this discrete-time counterpart, the source X̄ [·] is a Gaussian stationary discrete-time process with PSD

SX
(
e2πiφ

)
, and the noise η̄ [·] is another Gaussian stationary process with PSD Sη

(
e2πiφ

)
independent of X̄ [·].

The lth sampling branch consists of a discrete-time LTI pre-sampling operation followed by a factor M ∈ N
decimator, i.e., the nth sample is given by

Ȳl [n] =
∞

∑
k=−∞

h[Mn− k] (X̄ [k]+ η̄ [k]) .

The encoder receives the sequence Ȳ[·] = (Ȳ1[·], . . . ,ȲL[·]). After observing N ∈ N samples from Ȳ[·], the

encoder produces an index out of 2MNR̄ possible indices (the code-rate is the number of bits per symbol of

X̄ [·]). The decoder produces a reconstruction sequence X̂ [·], and the distortion is evaluated according to a
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MSE criterion

dN(x̄[·], x̂[·]) =
1

2N +1

N

∑
n=−N

(x̄[n]− x̂[n])2.

The minimal expected MSE limN→∞E
[
dN(X̄ [·], X̂ [·]

]
taken over all encoders and decoders limited to R̄ bits

per source symbol of X̄ [·] is denoted by D̄MB(H1,...,HL)(M, R̄). For this setting we have the following result:

Theorem 4.6 (discrete-time multi-branch sampling) Consider a discrete-time Gaussian stationary pro-

cess X̄(·) corrupted by a Gaussian stationary noise η̄ [·]. Let Ȳ[·] be the result of sampling X̄ [·] + η̄ [·] us-

ing L sampling branches, each with a pre-sampling filter H
(
e2πiφ

)
and decimation factor M. The indirect

distortion-rate function of X̄ [·] given Ȳ[·] is given by

D̄MB(H1,...,HL)(L,Rθ ) =mmseMB(H1,...,HL)(M)+
L

∑
l=1

∫ 1
2

− 1
2

min
{

λl
(
e2πiφ) ,θ}dφ (4.16a)

= σ
2
X̄ −

L

∑
l=1

∫ 1
2

− 1
2

[
λl
(
e2πiφ)−θ

]+
dφ

Rθ =
1
2

L

∑
l=1

∫ 1
2

− 1
2

log+
[
λl
(
e2πiφ)/θ

]
dφ (4.16b)

where

mmseMB(H1,...,HL)(M) = σ
2
X̄ −

L

∑
l=1

λl
(
e2πiφ)

is the MMSE in estimating X̄ [·] from Ȳ[·], and λ1
(
e2πiφ

)
= ...λL

(
e2πiφ

)
are the eigenvalues of the L× L

matrix

JM
(
e2πiφ), SȲ

− 1
2 ∗
(
e2πiφ)KM

(
e2πiφ)S−

1
2

Ȳ

(
e2πiφ) . (4.17)

Here SȲ
(
e2πiφ

)
is the PSD matrix of the process Ȳ[·] and is given by

(
SȲ
(
e2πiφ))

i, j ,
1

ML

ML−1

∑
r=0

{
SX̄+η̄ H∗i H j

}(
e2πi φ−r

ML

)
,

and S
1
2
Ȳ

(
e2πiφ

)
is such that SȲ

(
e2πiφ

)
= S

1
2
Ȳ

(
e2πiφ

)
S

1
2 ∗
Ȳ

(
e2πiφ

)
. The (i, j)th entry of the L× L matrix

KM
(
e2πiφ

)
is given by

(KM)i, j
(
e2πiφ), 1

(ML)2

ML−1

∑
r=0

{
S2

X H∗i H j
}(

e2πi φ−r
ML

)
.

Remark 2 The case where the matrix SȲ
(
e2πiφ

)
is not invertible for some φ ∈

(
− 1

2 ,
1
2

)
corresponds to a

linear dependency between the spectral components of the vector Ȳ[·] in this frequency. In this case we can

apply the theorem to the process that is obtained from Ȳ[·] by removing linearly dependent components.
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Proof By stacking the process X [·] into length LM blocks, we see that this indirect DRF coincides with the

indirect DRF of the vector-valued process XPM[·] defined by

XML[n] = (X̄ [LMn], X̄ [LMn+1], . . . X̄ [LMn+LM−1]) .

For a given M ∈ N, XML[·] is a stationary Gaussian process with PSD matrix

(SX)r,s
(
e2πiφ)= 1

ML

ML−1

∑
m=0

e2πi(r−s) φ−m
ML SX

(
e2πi φ−m

ML

)
.

For l = 1, . . . ,L, we defined the process Z̄l [·] as

Z̄l [n] = ∑
k∈Z

(X̄ [k]+ η̄ [k])hl [n− k],

so

SZ̄l

(
e2πiφ)= SX̄+η̄

(
e2πiφ)H∗

(
e2πiφ) .

The processes Y[·] and XML[·] are jointly Gaussian and stationary with a ML×L cross PSD whose (m+1, p)th

entry is given by

(SXMLȲ)m,p

(
e2πiφ)= SXML

m Ȳp

(
e2πiφ)= ∑

k∈Z
E [X̄ [MLk+m]Z̄p[0]]e−2πiφk

=
1

ML

ML−1

∑
r=0

e2πim φ−r
ML SX̄ Z̄p

(
e2πi φ−r

ML

)
,

where we denote by XML
m [·] the mth coordinate of XML[·]. The PSD of the MMSE estimator of XML[·] from

Ȳ[·] is given by

SXML|Ȳ
(
e2πiφ)= {SXMLȲS−1

Ȳ S∗XMLȲ

}(
e2πiφ) , (4.18)

Since only the non-zero eigenvalues of SXML|Ȳ
(
e2πiφ

)
contribute to the distortion in (4.16), we are interested

in the non-zero eigenvalues of (4.18). These eigenvalues are identical to the non-zero eigenvalues of{
S−

1
2 ∗

Ȳ S∗XMLȲSXMLYS−
1
2

Ȳ

}(
e2πiφ) , (4.19)
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where
{

S−
1
2 ∗

Ȳ S−
1
2

Ȳ

}(
e2πiφ

)
= S−1

Ȳ

(
e2πiφ

)
. The (p,q)th entry of the L×L matrix

{
S∗XPMȲSXMLȲ

}(
e2πiφ

)
is

given by

1
(ML)2

ML−1

∑
l=0

ML−1

∑
r=0

e−2πil φ−r
ML SX̄ Z̄p

(
e2πi φ−r

ML

)ML−1

∑
k=0

e2πil φ−k
ML SX̄ Z̄q

(
e2πi φ−k

ML

)
=

1
(ML)2

ML−1

∑
r=0

SX̄ Z̄p

(
e2πi φ−r

ML

)
SX̄ Z̄q

(
e2πi φ−r

ML

)
=

1
(ML)2

ML−1

∑
r=0

{
S2

X̄ H∗pHq
}(

e2πi φ−r
ML

)
,

which equals the entries of the matrix KM
(
e2πiφ

)
defined in the theorem. Applying Theorem 3.2 with the

eigenvalues of (4.19) completes the proof. �

In the next section we use Theorem 4.6 to evaluate the indirect DRF under MB uniform sampling in

continuous time.

4.3.2 Multi-branch uniform sampling in continuous-time

We now return to the continuous-time setting of the combined sampling and source coding problem with MB

uniform sampling. The following theorem provides a characterization of the function DMB(H1,...,HL)( fs,R),

describing the minimal distortion in this setting.

Theorem 4.7 Consider a Gaussian stationary process X(·) corrupted by a Gaussian stationary noise η(·).
Let the discrete-time vector valued process Y[·] be the result of sampling X(·) + η(·) using L sampling

branches, each with a pre-sampling filter H( f ) at sampling rate fs/L. The indirect distortion-rate function

of X(·) given Y[·] is given by

DMB(H1,...,HL)( fs,Rθ ) =mmseMB(H1,...,HL)( fs)+
L

∑
l=1

∫ fs
2

− fs
2

min
{

λl

(
S̃X |Y( f )

)
,θ
}

d f ,

= σ
2
X −

L

∑
l=1

∫ fs
2

− fs
2

[
λl

(
S̃X |Y( f )

)
−θ

]+
d f , (4.20a)

Rθ =
1
2

L

∑
l=1

∫ fs
2

− fs
2

log+
[
λl

(
S̃X |Y( f )

)
/θ

]
d f (4.20b)

where λ1

(
S̃X |Y( f )

)
= . . .= λL

(
S̃X |Y( f )

)
are the eigenvalues of the L×L matrix

S̃X |Y( f ) = S̃−
1
2 ∗

Y ( f )K( f )S̃−
1
2

Y ( f ),
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and the (i, j)th entry of the matrices S̃Y( f ),K( f ) ∈ CL×L are given by

(
S̃Y
)

i, j ( f ) = ∑
k∈Z

{
SX+η HiH∗j

}
( f − fsk) ,

and

Ki, j( f ) = ∑
k∈Z

{
S2

X HiH∗j
}
( f − fsk) .

Proof As explained in Section 2.4, the finite horizon MMSE estimator of X(·) from YT under time-invariant

uniform sampling converges to an asymptotic law with periodic covariance function. In particular, the asymp-

totic process is asymptotic mean stationary and therefore Theorem 3.1 holds. We do not fully utilize the de-

composition (3.7), but only use it to connect the indirect DRF for the MB sampler to an information expres-

sion as appears in (3.7). Indeed, we now evaluate both expressions in (3.7) simultaneously by approximating

the process X(·) by a discrete-time process and take the limit in this approximation. Specifically, for M ∈ N,

define XM[·] to be the processes obtained by uniformly sampling X (·) at rate fsM, i.e. XM[n] = X (n/( fsM)).

Similarly, for l = 1, . . . ,L, let ZM
l [·] be the process obtained by sampling the continuous-time process at the

output of the filter Hl at rate fsM. We have

SXM
(
e2πiφ)= M fs ∑

k∈Z
SX (M fs (φ − k))

and

SZM
l

(
e2πiφ)= M fs ∑

k∈Z

{
SX |Hl |2

}
(M fs (φ − k)) .

For l,r = 1, . . . ,L, ZM
l [·] and ZM

r [·] are jointly stationary with cross PSD

SZM
l ZM

r

(
e2πiφ)= M fs ∑

k∈Z
SZlZr (M fs (φ − k)) .

In addition, XM[·] and ZM
l [·] are jointly stationary processes with cross PSD

SXMZM
l

(
e2πiφ)= M fs ∑

k∈Z
SXZp (M fs (φ − k)) .

Since the sampling rate of each branch is fs/L, Yl [·] is a factor ML decimated version of ZM
l [·]. Therefore,

the indirect DRF of XM[·] given Y[·] is given by Theorem 4.6, where the (p,r)th entry of the PSD matrix
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SY
(
e2πiφ

)
is given by

(
SY
(
e2πiφ))

p,r =
1

ML

ML−1

∑
m=0

SZM
p ZM

r

(
e2πi φ−m

ML

)
= fs

ML−1

∑
m=0

∑
k∈Z

SZpZr ( fs (φ −m−MLk))

= fs ∑
n∈Z

SZpZr ( fs (φ −n))

= fs ∑
n∈Z

{
SX+η HpH∗r

}
( fsφ − fsn)

=
(
S̃Y
)

p,r (φ fs) fs, . (4.21)

Similarly, the matrix KM is given by

(KM)p,r =
1

(ML)2

ML−1

∑
m=0

{
S2

XM HpHr
}(

e2πi φ−m
ML

)
=

1
(ML)2

ML−1

∑
m=0

{
SXMZM

p
S∗XMZM

r

}(
e2πi φ−m

ML

)
= f 2

s

ML−1

∑
m=0

[
∑
k∈Z

SXZp ( fs (φ −m− kML)) (4.22)

×∑
l∈Z

S∗XZr ( fs (φ −m− lML))

]
. (4.23)

Since a version of the Gaussian stationary process X(·) with almost surely Riemann integrable paths exists

[69], the expected MSE between X(·) and any typical reconstruction of it from XM[·] (e.g. zero-order hold

interpolation) converges to zero as M→∞. In addition, given an estimate X̂M[·] of XM[·] attaining the indirect

DRF of XM[·] given Y[·], we can define X̂(·) to be an interpolated version of XM[·] such that the expected

MSE between X(·) and X̂(·) goes to zero. Therefore, the indirect DRF of XM[·] given Y[·] converges to the

indirect DRF of X(·) given Y[·].
We turn to evaluate (4.16) with (4.21) and (4.23). First note that we have σ2

XM = σ2
X , as can easily be

verified from properties of sampled signals. In addition, by a change of the integration variable from f to

φ = f/ fs, we can write (4.20):

DMB(H1,...,HL)( fs,Rθ ) = σ
2
X −

L

∑
l=1

∫ 1
2

− 1
2

[
λl
(
J̄
(
e2πiφ))−θ

]+
dφ , (4.24a)

Rθ =
fs

2

L

∑
l=1

∫ 1
2

− 1
2

log+
[
λl
(
J̄
(
e2πiφ))/θ

]
dφ (4.24b)
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where in φ ∈
(
− 1

2 ,
1
2

)
, the matrix J̄

(
e2πiφ

)
is given by

J̄
(
e2πiφ)= S−

1
2 ∗

Y
(
e2πiφ)K̄

(
e2πiφ)S−

1
2

Y
(
e2πiφ) ,

and K̄
(
e2πiφ

)
= f 2

s K( fsφ). It follows that in order to complete the proof, it is enough to show that the

eigenvalues of JM
(
e2πiφ

)
, considered as L1

(
− 1

2 ,
1
2

)
functions in φ , converge to the eigenvalues of J̄

(
e2πiφ

)
.

Since

‖SY
− 1

2 ∗KMSY
− 1

2 −SY
− 1

2 ∗K̄SY
− 1

2 ‖F ≤ ‖SY‖−1
F ‖ fsKM− K̄‖F ,

it is enough to prove convergence in L1
(
− 1

2 ,
1
2

)
for each entry, i.e. that

lim
M→∞

∫ 1
2

− 1
2

∣∣∣(KM)p,r
(
e2πiφ

)
−
(
K̄
)

p,r

(
e2πiφ

)∣∣∣
‖SY (e2πiφ )‖F

dφ = 0 (4.25)

for all p,r = 1, . . . ,L. We now use the following lemma:

Lemma 4.8 Let f1(ϕ) and f2(ϕ) be two complex valued bounded functions such that
∫

∞

−∞
| fi(ϕ)|2 dϕ < ∞,

i = 1,2. Then for any fixed fs > 0,

∫ 1
2

− 1
2

M−1

∑
m=0

∑
k∈Z

f1 (φ +m+ kM)∑
l∈Z

f2 (φ +m+ lM)dφ (4.26)

converges to ∫ 1
2

− 1
2

∑
n∈Z

f1 (φ −n) f2 (φ −n)dφ , (4.27)

as M goes to infinity.

Proof [of Lemma 4.8] Equation (4.26) can be written as

∫ 1
2

− 1
2

M−1

∑
m=0

∑
k∈Z

f1 (φ +m+ kM) f2 (φ +m+ kM)dφ (4.28)

+
∫ 1

2

− 1
2

M−1

∑
m=0

∑
k 6=l

f1 (φ +m+ kM) f2 (φ +m+ lM)dφ . (4.29)

Since the term (4.28) is identical to (4.27), we must show that (4.29) vanishes as M → ∞. Take M large

enough such that ∫
R\[−M+1

2 ,M+1
2 ]
| fi(φ)|2 dφ < ε

2, i = 1,2.
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Without loss of generality assume that this M is even. By a change of variables (4.29) can be written as

∑
k 6=l

∫ M+1
2

−M+1
2

f1

(
ϕ +

M
2
+ kM

)
f2

(
ϕ +

M
2
+ lM

)
dϕ. (4.30)

We split the indices in the last sum into three disjoint sets:

1. I = {k, l ∈ Z\{0,−1}, k 6= l},∣∣∣∣∣∑
I

∫ M+1
2

−M+1
2

f1

(
ϕ +

M
2
+ kM

)
f2

(
ϕ +

M
2
+ lM

)
dϕ

∣∣∣∣∣
a
≤∑

I

∫ M+1
2

−M+1
2

∣∣∣∣ f1

(
ϕ +

M
2
+ kM

)∣∣∣∣2 dϕ +∑
I

∫ M+1
2

−M+1
2

∣∣∣∣ f2

(
ϕ +

M
2
+ lM

)∣∣∣∣2 dϕ

≤
∫
R\[−M+1

2 ,M+1
2 ]
| f1(ϕ)|2 dϕ +

∫
R\[−M+1

2 ,M+1
2 ]
| f2(ϕ)|2 dϕ ≤ 2ε

2, (4.31)

where (a) is due to the triangle inequality and since for any two complex numbers a,b, |ab| ≤ |a|2+|b|22 ≤
|a|2 + |b|2.

2. k = 0, l =−1,

∫ M+1
2

−M+1
2

f1

(
ϕ +

M
2

)
f2

(
ϕ− M

2

)
dϕ

=
∫ 0

−M+1
2

f1

(
ϕ +

M
2

)
f2

(
ϕ− M

2

)
dϕ +

∫ M+1
2

0
f1

(
ϕ +

M
2

)
f2

(
ϕ− M

2

)
dϕ

a
≤
√∫ 0

−M+1
2

f 2
1

(
ϕ +

M
2

)
dϕ

√∫ 0

−M+1
2

f 2
2

(
ϕ− M

2

)
dϕ

+

√∫ M+1
2

0
f 2
1

(
ϕ +

M
2

)
dϕ

√∫ M+1
2

0
f 2
2

(
ϕ− M

2

)
dϕ

≤
√∫ 0

−M+1
2

f 2
1

(
ϕ +

M
2

)
dϕ

√∫
R\[−M+1

2 ,M+1
2 ]

f 2
2 (φ)dφ

+

√∫
R\[−M+1

2 ,M+1
2 ]

f 2
1 (φ)dφ

√∫ M+1
2

0
f 2
2

(
ϕ− M

2

)
dϕ (4.32)

≤ ε‖ f1‖2 + ε‖ f2‖2, (4.33)

where (a) follows from the Cauchy-Schwartz inequality.
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3. k =−1, l = 0, using the same arguments as in the previous case,

∫ M+1
2

−M+1
2

f1

(
ϕ +

M
2

)
f2

(
ϕ− M

2

)
dϕ ≤ ε (‖ f1‖2 +‖ f2‖2) . (4.34)

From (4.31), (4.33) and (4.34), the sum (4.30) can be bounded by

2ε (‖ f1‖2 +‖ f2‖2)+2ε
2,

which can be made as close to zero as required. �

In order to complete the proof of Theorem 4.7, we apply Lemma 4.8 to (4.25) with

f1(φ) =
SXZp ( fsφ)√
‖SY (e2πiφ )‖F

,

f2(φ) =
S∗XZr

( fsφ)√
‖SY (e2πiφ )‖F

.

and note that

(
K̄
)

p,r

(
e2πiφ)= f 2

s (K)p,r ( fsφ) = f 2
s ∑

k∈Z

{
S2

X HiH∗j
}
( fs(φ − k)) .

It follows from Lemma 4.8 that (4.25) converges to (4.20). �

4.3.3 Optimal Filter-Bank

A similar analysis to that we used for SB sampling will show that for a fixed R, the distortion is a non-

increasing function of the eigenvalues of S̃X |Y ( f ). This implies that the optimal pre-sampling filters H?
1 , . . . ,H

?
L

that minimize the function DMB(H1,...,HL)( fs,R), for a given R and fs, are the exact same filters that minimize

the MMSE of X(·) given Y[·] in Theorem 2.7. Therefore, the following result applies:

Theorem 4.9 The optimal pre-sampling filters H?
1 , . . . ,H

?
L that minimize DMB(H1,...,HL)( fs,R) are given by

H?
l ( f ) =

1 f ∈ F?
l ,

0 f /∈ F?
l ,

, l = 1, . . . ,L, (4.35)

where F?
l , . . . ,F

?
L satisfy conditions (i) and (ii) in Theorem 2.7. Moreover, with H?

1 , . . . ,H
?
L the indirect DRF
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of X(·) given Y[·] is given by

D?
MB(L)( fs,Rθ ), DH?

1 ,...,H
?
L
( fs,Rθ ) =mmse?MB( fs)+

L

∑
l=1

∫
F?

l

min
{

S2
X ( f )

SX+η( f )
,θ

}
d f ,

= σ
2
X −

L

∑
p=1

∫
F?

l

[
S2

X ( f )
SX+η( f )

−θ

]+
d f . (4.36a)

Rθ =
1
2

L

∑
l=1

∫
F?

l

log+
[

S2
X ( f )

SX+η( f )
/θ

]
d f (4.36b)

Proof The filters H?
1 , . . . ,H

?
L given by Theorem 2.7 maximize the eigenvalues of the matrix S̃X |Y( f ) of

(2.23) for every f ∈ (− fs/2, fs/2). The same filters also minimize DMB(H1,...,HL)( fs,R), since it is monotone

non-increasing in these eigenvalues. Finally, for this choice of filter, (4.20) reduces to (4.36). �

It follows from Corollary 4.4 that in the parametric reverse water-filling representation of the form (4.36),

an increment in ∫
⋃L

l=1 F ?
l

S2
X ( f )

SX+η( f )
d f

reduces the overall distortion regardless of the other terms. However, since µ
(⋃L

i=1 F?
l

)
≤ fs, we conclude

that the lower bound of (4.15) still holds under MB sampling:

Corollary 4.10 For any H1, . . . ,HL,

D( fs,R)≤ D?
MB(L)( fs,R)≤ DMB(H1,...,HL)( fs,R),

where D( fs,R) is defined in (4.15).

4.3.4 Asymptotically many sampling branches

We now consider the behavior of D?
MB(L)( fs,R) as the number of sampling branches L increases, which is the

counterpart of Section 2.5.3 for the indirect DRF of X(·) given the output Y[·] of a MB uniform sampler.

In Theorem 2.8 we have seen that as L increases, the pre-sampling filters H1, . . . ,HL can be chosen to

approximate the set F?. As a result, we obtain the following theorem:

Theorem 4.11 For any fs > 0 and ε > 0, there exists L ∈ N and a set of LTI filters H1, . . . ,HL such that

DMB(H1,...,HL)( fs,R)− ε < D( fs,R). (4.37a)
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Proof In Theorem 2.8, we found that for fs and ε > 0 there exists L large enough and a set of pre-sampling

filters H1, . . . ,HL, each with an aliasing-free support F1, . . . ,FL, respectively, such that

L

∑
l=1

∫
Fl

S2
X ( f )

SX ( f )+Sη( f )
d f +δ >

∫
F?

S2
X ( f )

SX+η( f )
d f .

Now, use Proposition 3.4 with A = F?∪F1∪ . . .∪FL,

f (x) = 1F?

(
S2

X (x)
SX+η(x)

)
,

and

g(x) = 1∪L
l=1Fl

(
S2

X (x)
SX+η(x)

+δ

)
.

Note that D( fs,R) is a water-filling expression of the form (4.15) over f (x) and A. Denote by Dδ the function

defined by a water-filling expression over g(x). Since g(x)≥ f (x), it follows from Proposition 3.4 that

Dδ ≤ D( fs,R).

Since Dδ is continuous in δ and since limδ→0 Dδ = DMB(H1,...,HL)( fs,R), for ε > 0 there exists L and δ such

that DMB(H1,...,HL)( fs,R)+ ε > Dδ ≥ D( fs,R). �

4.3.5 Discussion

An immediate conclusion from Theorem 4.11 is that D?
MB(L)( fs,R) converges to D( fs,R) as the number of

sampling branches L goes to infinity, as illustrated in Figure 4.8. In other words, with enough sampling

branches and a careful selection of the pre-sampling filters according to (4.9), MB uniform sampling attains

the distortion lower bound (4.15). It follows from its definition that the function D( fs,R) is monotone in

fs. This last fact is in contrast to DMB(H1,...,HL)( fs,R) and D?
MB(L)( fs,R), which, as Figure 4.8 shows, are not

guaranteed to be monotone in fs. Figure 4.8 also suggests that multi-branch sampling can significantly reduce

distortion for a given sampling frequency fs and source coding rate R over single-branch sampling. Figure 4.8

also raises the possibility of reducing the sampling frequency without significantly affecting performance,

as the function D?
MB(L)( fs,R) for L > 1 approximately achieves the asymptotic value of D?

MB(L)( fNyq,R) at

fs ≈ fNyq/3. In fact, as will be discussed in the next chapter, the minimal distortion subject to a bitrate con-

straint, described by the standard DRF of (3.3), is attained by sampling below the Nyquist rate of the source.

In the next section we show that the lower bound D( fs,R) of (4.15) holds under any bounded linear

sampler, and hence describes the fundamental distortion limit in ADX.
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Figure 4.8: Minimal distortion versus the sampling rate fs and a fixed value of R. (a) SB uniform sampler and
all-pass pre-sampling filter (same situation as in Figure 4.3 ). (b) SB uniform and an optimal pre-sampling
filter. The passband of the pre-sampling filter is given by shaded area over the PSD. (c) Two sampling
branches with optimal filter-bank. Support of the pre-sampling filters corresponds to the two shaded areas
over the PSD. (d) Five sampling branches achieves D( fs,R). (e) The standard DRF of (3.3). The measure of
each of the shaded areas in (b)-(d) equals fs.
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4.4 General Bounded Linear Sampling

So far we have shown that the function D( fs,R) of (4.15) provides an achievable lower bound for the distor-

tion in ADX under MB sampling. In this section we extend this claim and show that the distortion in ADX

under any bounded linear sampler is not smaller than D( fs,R), provided fs is replaced by the lower Beurling

density of the sampling set.

Theorem 4.12 Let S(H,Λ) be a bounded linear sampler. Then the minimal distortion in the ADX setting

with a Gaussian stationary input X(·) and a Gaussian stationary noise η(·) satisfies

DS(H,Λ)(R)≥ D
(
d−(Λ),R

)
,

where d−(Λ) is the lower Beurling density of Λ.

Proof We first prove Theorem 4.12 under the following simplifying assumptions:

(i) The sampling set Λ is periodic, meaning there exists T0 such that Λ = Λ+T0.

(ii) Denote g(t,τ) = KH(t, t− τ). Then the kernel g is T0-periodic in its first argument, namely, g(t,τ) =

g(t +T0,τ) for any t and τ .

For Λ T0-periodic, the number of points in Λ in any interval of length T0 is denoted by P. It is easy to see that

the Beurling density of Λ exists and equals d(Λ) = P/T0. Denote by t0, . . . , tP−1 the P members of Λ inside

the interval [0,T0), and continue to enumerate the members of Λ in the positive direction in a similar manner.

Similarly, enumerate the elements of Λ in the negative direction starting from t−1, t−2. By the periodicity of

Λ, tp+Pk = tp +T0k for all p = 0, . . . ,P−1 and k ∈ Z. For n = p+ kP and T > 0 we have,

Y [n] =
∫

∞

−∞

KH(tp+Pk,τ)(X(τ)+η(τ))dτ =
∫

∞

−∞

g(tp +T0k,τ− tp +T0k)(X(τ)+η(τ))dτ

=
∫

∞

−∞

g(tp, tp +T0k− τ)(X(τ)+η(τ))dτ.

We now down-sample the discrete-time index set by a factor P and replace the vector Y [·] by a vector valued

process that contains the P indices kP,kP+1, . . . ,kP+P−1, namely

Y[k] = (Y [Pk],Y [Pk+1], . . . ,Y [Pk+P−1])) .

For p = 0, . . . ,P−1 denote

gp(τ), g(tp,τ− tp), t ∈ R.
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It follows that for any p = 0, . . . ,P−1 and k ∈ Z we have

Yp[k] = Y [Pk+ p] =
∫

∞

−∞

g(tp, tp +T0k− τ)(X(τ)+η(τ))dτ =
∫

∞

−∞

gp(T0k− τ)(X(τ)+η(τ))dτ. (4.38)

Since hp(τ) defines an LTI system, it follows that sampling with the set Λ and the pre-processing system H

is equivalent to P uniform sampling branches each of sampling frequency 1/T and a pre-sampling filter

Hp( f ), e2πi f tpGp( f ),

where Gp( f ) is the Fourier transform of gp(t) with respect to t, for p = 0, . . . ,P−1. Denote by DΛ,g(R) the

indirect DRF of X(·) given the process YΛ,g[·]. If follows from Corollary 4.10 that

DS(H,Λ)(R)≥ D(T−1
0 ,R) = D(d(Λ),R).

We now remove assumptions (i) and (ii). For T > 0, define ΛT , [−T/2,T/2]∩Λ. Let δ > 0 and let T0

be such that for all T > T0(δ ) there exists uT ∈ R such that

|[uT ,T +uT ]∩Λ|
T

−δ < d−(Λ).

Let ε > 0 and let T = T (ε)> T0(δ ) be such that

DS(H,Λ)(R)+ ε ≥ DT =
1
T

∫ T/2

−T/2
E(X(t)−E [X(t)| f (YT )])

2 dt, (4.39)

where YT is the finite vector of samples obtained using ΛT = Λ∩ [−T/2,T/2] and f is an encoder of YT at

rate R. Consider the periodic extension Λ̃, ΛT +TZ of λT . Note that

d
(
Λ̃T
)
=
|[uT ,T +uT ]∩Λ|

T
< d−(Λ)+δ . (4.40)

We also extend g(t, t−τ) =KH(t,τ) periodically as g̃T (t,τ), g([t],τ), where here and henceforth [t] denotes

t modulo the grid uT +TZ (i.e. t = [t] + nT + uT where n ∈ Z and 0 ≤ [t] < T ). Recall from the first part

of the proof that periodic sampling is equivalent to MB uniform sampling; and hence the asymptotic law of

the samples and the estimator of X(·) from these samples exists. Denote by Y
Λ̃,g̃[·] the asymptotic law of

the process obtained by sampling with the periodic set Λ̃ and the periodic pre-processing system g̃(t,τ). For

tn ∈ Λ̃, we have

Y
Λ̃,g̃[n] =

∫
∞

−∞

g̃(tn, tn− τ)(X(τ)+η(τ))dτ

=


∫

∞

−∞
g(tn, tn− τ)(X(τ)+η(τ))dτ, tn ∈ ΛT ,∫

∞

−∞
g([tn], [tn]+nT +uT − τ)(X(τ)+η(τ))dτ, tn /∈ ΛT .

(4.41)
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It follows from (4.41) that YΛT ,g ⊂ Y
Λ̃,g̃, and this implies

1
T

∫ T/2

−T/2
E(X(t)−E [X(t)| f (YT )])

2 dt ≥ DS(g̃,Λ̃)(R). (4.42)

for any encoder f of rate R. Note that the process Y
Λ̃,g̃[·] is the result of sampling X(·) using the periodic

pre-processing g̃(t,τ) system and the periodic sampling set Λ̃, both of which have period T . By the first part

of the proof we have

DS(g̃,Λ̃)(R)≥ D
(
d(Λ̃),R

)
. (4.43)

From (4.39), (4.42) and (4.43) it follows that for any δ > 0, ε > 0 and T > T0(δ ) that satisfy (4.39), we have

DS(H,Λ)(R)+ ε ≥ 1
T

∫ T/2

−T/2
E(X(t)−E [X(t)| f (YT )])

2 dt ≥ DS(g̃,Λ̃)(R)

≥ D
(
d(Λ̃),R

)
≥ D

(
d−(Λ)+δ ,R

)
,

(4.44)

where the last inequality in (4.44) is due to the monotonicity of D( fs,R) in fs, as follows from its definition

in (4.15). It also follows from this definition that D( fs,R) is continuous in fs. Since ε and δ can be taken to

be arbitrarily small, we have shown that DS(H,Λ)(R)≥ D(d−(Λ),R). �

It is important to note that Theorem 4.12 holds even if a characterization of DS(H,Λ)( fs,R) in terms of an

optimization over joint probability distributions subject to a mutual information rate constraint is unknown.

Therefore, the function D( fs,R) provides a fundamental lower bound for the distortion in ADX.

4.5 Chapter Summary

In this chapter we considered the optimal tradeoff among distortion, bitrate and sampling rate in the ADX

setting under a bounded linear sampling. We showed that the distortion-rate function describing this tradeoff

is given in general as the sum of two terms: (1) the minimal MSE in recovering the source signal from the

output of the sampler, and (2) a water-filling expression over the part of the spectrum that is recovered by

the estimator that estimates the source signal from this output. In the special case of time-invariant sampling,

the minimal distortion in the ADX setting can be derived in a closed form in terms of the sampling rate fs,

the bitrate R, the pre-sampling filters H1, . . . ,HL, and the PSDs of the source and the noise. Increasing the

number of sampling branches with an optimization over their passband has led to a lower bound D( fs,R)

that, for a fixed R and fs, only depends on the PSDs of the noise and the source. Moreover, we showed

that D( fs,R) provides a lower bound on the distortion in ADX under any bounded linear sampler – not only

uniform time-invariant samplers.

The procedure for attaining the distortion level D( fs,R) follows from combining the optimal coding
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scheme deduced from Theorem 3.1 with the optimization over the sampling technique that minimizes the

MMSE as explored in Section 2.5. This procedure is summarized in the following steps:

(i) Given the bitrate constraint R+ ε and sampling rate fs, use a multi-branch uniform sampler with a

sufficient number of sampling branches L such that the effective passband of all branches is the set F?.

i.e., a set of Lebesgue measure fs with maximal SNR.

(ii) Estimate the signal X(·) under a MSE criterion. As the time interval goes to infinity, this estimate is

given by the process X̃(·) defined in (2.20).

(iii) Encode the estimate from (ii) in an optimal manner using T (R+ ε) bits as in standard source coding

[6]. Namely, generate T (R+ ε) i.i.d. reconstruction waveforms for X̂T (·) from the distribution of the

stationary process with PSD given by the preserved part of the spectrum in Figure 4.7. Use minimum

distance encoding with respect to these reconstruction waveforms.

In the next chapter we explore properties of the fundamental distortion limit in ADX derived in this

chapter and how these properties impact the joint optimization of sampling and lossy compression.



Chapter 5

Joint Optimization of Sampling and
Lossy Compression

The minimal distortion in ADX describes the fundamental performance limit of any system involving noise,

sampling, and quantization or limited bitrate operation. While the separate effect of each of these information

inhibiting phenomena is well understood, the ADX setting allows us to examine their combined effect. In

this chapter we explore the joint optimization of the sampling rate and the lossy compression scheme in the

ADX setting. We focus in particular on two interesting phenomena that arise from this optimization.

The first phenomenon concerns the minimal sampling rate required in order to attain the minimal distor-

tion in ADX. When the bitrate constraint R is relaxed and no noise is presence, as we saw in Chapter 2, this

sampling rate is the spectral occupancy of the signal, i.e. its Landau rate. In Section 5.1 below, we explain that

under a finite bitrate constraint R on the output of the encoder, the minimal distortion, described by the DRF

of the source signal, is attained by sampling at a rate smaller than the Landau rate. That is, for every bitrate

R, there exists a new critical sampling rate above which the minimal distortion in ADX is attained. This new

critical sampling rate converges to the Landau rate as R goes to infinity. In fact, even when the bandwidth

of the signal is unbounded (as in the case of a Markov process), for any finite bitrate the aforementioned

critical sampling rate is still finite. Namely, while it is impossible to sample a non-bandlimited signal without

additional distortion due to sampling, it is still possible to sample the signal and attain the minimal distortion

resulting from encoding it.

This last observation leads to the second theoretic phenomenon considered in this chapter: the asymp-

totic number of bits per sample required in order to describe a stationary Gaussian process with vanishing

distortion. For band-limited signals, any increase in the bitrate improves accuracy, while the distortion due

to sampling vanished for sampling beyond the Landau or Nyquist rates. Therefore, the number of bits per

sample may be unbounded in order to achieve vanishing distortion. In Section 5.2, we show that for some

non-bandlimited signals, the asymptotic number of bits per sample required to attain vanishing distortion

78
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Figure 5.1: Water-filling interpretation for Theorem 5.1 with a unimodal PSD and zero noise. The distortion
in each case is the sum of the MMSE and the lossy compression distortion. All figures correspond to the
same bitrate R and different sampling rates: (a) fs < fR, (b) fs ≥ fR and (c) fs > fNyq. The DRF of X(·) is
attained for all fs greater than fR < fNyq

converges to a finite value. This observation suggests that in encoding these signals, increasing bit-resolution

of the quantizer is futile unless accompanied by a proportional increase in sampling rate.

5.1 Optimal Sampling Rate subject to a Bitrate Constraint

Consider the expression DSB(H)( fs,R) of (4.6) for the unimodal PSD shown in Figure 5.1 with zero noise,

where the pre-sampling filter H is an ideal LPF with cutoff frequency fs/2. This LPF functions as an anti-

aliasing filter, and therefore the part of DSB(H)( fs,R) associated with the sampling distortion is only due to

those energy bands blocked by the filter. As a result, for this PSD, DSB(H)( fs,R) = D( fs,R) and it can be

described by the sum of the MMSE and the lossy compression parts in Figure 5.1(a). Figure 5.1(b) describes

the function DSB(H)( fs,R) under the same bitrate R and a higher sampling rate, while the cutoff frequency

of the low-pass filter is adjusted to this higher sampling rate. As can be seen from the figure, at this higher

sampling rate DSB(H)( fs,R) equals the DRF of X(·) in Figure 5.1(c), although this sampling rate is still below

the Nyquist rate of X(·). In fact, it follows from Figure 5.1 that the DRF of X(·) is attained at some critical

sampling rate fR that equals the Nyquist rate of the preserved part in the Pinsker water-filling expression (3.3).

The existence of this critical sampling rate can also be seen in Figure 5.2, which illustrates DSB(H)( fs,R) as a

function of fs with H( f ) a low-pass filter.

The phenomenon described above can be generalized to any Gaussian stationary source and noise in the

ADX setting, per the following theorem:

Theorem 5.1 Let X(·) be a Gaussian stationary process with PSD SX ( f ). For each point (R,D) ∈ [0,∞)×
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(0,σ2
X ) on the graph of the function DX |X+η(R) of (3.10) associated with a water-level θ , let

fR = µ ({ f : SX ( f )≤ θ}) .

Then for all fs ≥ fR,

DX |X+η(R) = D( fs,R),

where D( fs,R) is the fundamental distortion limit in ADX defined in (4.15).

We emphasize that the critical frequency fR depends only on the PSDs SX ( f ) and Sη( f ) and on the operating

point on the indirect distortion-rate curve. This operating point can be parametrized by either D, R, or the

water-level θ using (3.10).

Proof [of Theorem 5.1] Let (R,D) be a point on the graph of DX |X+η(R). Let SX |Y ( f ) = S2
X ( f )/SX+η( f )

be the PSD of the estimator E [X(·)|X(·)+η(·)]. For θ such that

R =
1
2

∫
∞

−∞

log+
[
SX |X+η( f )/θ

]
d f ,
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denote Fθ ,
{

f ∈ R : SX |X+η( f )> θ
}

, so that fR = µ(Fθ ),

R =
1
2

∫
Fθ

log
SX |X+η( f )

θ
d f ,

and

D = σ
2
X −

∫
Fθ

(
SX |X+η( f )−θ

)
d f .

Let F? ⊂ R be such that

D( fR,R) = σ
2
X −

∫
F?

[
SX |X+η( f )d f −θ

]+
,

and

R =
1
2

∫
F?

log+[SX |X+η( f )/θ ]d f .

From the definition of D( fs,R) in (4.15) it follows that∫
F?

SX |X+η( f )d f ≥
∫

Fθ

SX |X+η( f )d f .

Hence, Proposition 3.4 implies D( fR,R)≤DX |X+η(R). The reverse inequality follows from Proposition (4.1)-

(iii). �

From the definition of D( fs,R) in (4.15), it follows that D(θ) =mmse( fs)+ fsθ when fs < fR. This fact

implies that for D >mmse( fs), the inverse of D( fs,R) with respect to R can be written as

R( fs,D) =
1
2

∫ fs
2

− fs
2

log+
(

fsSX ( f )
D−mmse( fs)

)
d f . (5.1)

Together with Theorem 5.1, (5.1) implies the following representation for R as a function of the distortion D,

which we state as a theorem:

Theorem 5.2 (rate-distortion lower bound) The bitrate required to encode the samples of a Gaussian sta-

tionary process X(·) from the output of a bounded linear sampler of rate fs and recover X(·) with MSE at

most D, is lower bounded by

R( fs,D) =


1
2
∫ fs

2

− fs
2

log+
(

fsSX ( f )
D−mmse( fs)

)
d f , fs < fR,

RX (D), fs ≥ fR,
(5.2)

for D >mmse( fs), where RX |X+η(D) is the indirect rate-distortion function of X(·) (defined by the inverse of

the indirect distortion-rate function of (3.10)).
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5.1.1 Discussion

From the definition of the function D( fs,R) in (4.15), it immediately follows that D( fs,R) = DX |X+η(R) for

all sampling rates above the Landau rate fLan of X(·). Theorem 5.1 implies that this equality is extended to

sampling rates above fR, which is never larger than fLan. In fact, the inequality fR ≤ fLan is strict whenever

SX |X+η( f ) is not uniformly distributed over supp(SX ), as in the PSDs SΛ( f ), SΩ( f ), and Sω( f ) in Figures 5.3,

but not SΠ( f ) there. For such a non-uniformly distributed PSD, there exists a region of values of R for

which fR < fLan. As shown in Figure 5.1 for the case η(·) ≡ 0, within this region the MMSE as a result of

reduced-rate sampling can be exchanged with lossy compression distortion such that the overall distortion is

unaffected.

As R goes to infinity, D( fs,R) converges to mmse( fs), the water-level θ goes to zero, the set Fθ coincides

with the support of SX ( f ) and fR converges to fLan. Theorem 5.1 then implies that mmse( fs) = 0 for all

fs ≥ fLan, which agrees with Landau’s characterization of the condition for perfect recovery of signals in the

Paley-Wiener space under nonuniform samples discussed in Section 2.4.3.

As a summary of Theorems 3.1, 4.7 ,4.11, and 5.1, it follows that the procedure for attaining the DRF of

X(·) in the ADX setting is as follows:

(i) Fix a desired output bitrate R and a sampling rate fs ≥ fR.

(ii) For ε > 0, choose L large enough that D?
MB(L)( fs,R)−D( fR,R) < ε/3. Use a MB sampler with L

sampling branches and pre-sampling filters H1, . . . ,HL that attain D?
MB(L)( fs,R).

(iii) Choose a time horizon T large enough such that encoding the MMSE process X̃T (·) of (2.7) using T R

bits leads to a distortion not exceeding DX̃ (R)+ ε/3.

Theorem 5.1 implies that the average distortion in reconstructing X(·) under the scheme above does not ex-

ceed DX |X+η(R)+ ε (or DX (R)+ ε when η is zero).

An intriguing way to explain the critical sampling rate subject to a bitrate constraint arising from Theo-

rem 5.1, follows by considering the number of degrees of freedom in the representation of the analog signal

pre- and post- sampling and lossy compression. Specifically, for stationary Gaussian signals with zero sam-

pling noise, the degrees of freedom in the signal representation are those spectral bands in which the PSD is

non-zero. When the signal energy is not uniformly distributed over these bands (unlike the example of the

PSD (5.5)), the optimal lossy compression scheme described by Pinsker’s expression (3.3) calls for discarding

those bands with the lowest energy, i.e., the parts of the signal with the lowest uncertainty. The pre-sampling

operation “aligns” the signal prior to sampling and therefore allows for sampling at a rate adjusted to the

overall degrees of freedom in the lossy compressed signal representation.

The degree to which the new critical rate fR is smaller than the Nyquist rate depends on the energy dis-

tribution of X(·) along its spectral support. The more uniform it is, the fewer degrees of freedom are reduced
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Figure 5.3: Reduction in the critical sampling rate fR due to bitrate R constraint. For the bandlimited PSDs
SΠ( f ), SΛ( f ), and Sω( f ), the critical sampling rate is always below the Nyquist rate. The critical sampling
rate is finite for any R even for the non-bandlimited PSD SΩ( f ).

due to optimal lossy compression, and therefore the critical sampling rate fR is closer to the Nyquist rate.

As R increases, fewer spectral bands are discarded due to lossy compression, and fR approaches the Nyquist

rate, which, from Corollary 2.6, is the critical sampling rate that allows zero MSE. Figure 5.3 illustrates the

dependency of fR on R for various PSD functions and Sη( f ) = 0. Note that whenever the energy distribution

is not uniform and the signal is bandlimited, the critical rate fR converges to the spectral occupancy as R goes

to infinity and converges to zero as R goes to zero.

5.1.2 Examples

In the following examples, the exact dependency of fR on R and D is found for the various PSDs appearing

in Figure 5.3. In all cases it is assumed that the sampling noise η(·) equals zero.

Example 4 (triangle PSD) Consider a Gaussian stationary source with PSD

SΛ( f ) =
σ2

X
fB

[1−| f/ fB|]+ . (5.3)

Let (R,D) ∈ [0,∞)× [0,1] be a point on the distortion-rate curve of X(·). It can be shown that Fθ =

fB [−1+ fBθ ,1− fBθ ] and fR = 2 fB(1− fBθ/σ2
X ) for 0 < θ ≤ σ2

X/ fB. The exact relation between R and
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fR is given by

R =
1
2

∫ fR
2

− fR
2

log

(
1−| f/ fB|

1− fR
2 fB

)
d f

= fB log
1

1− fR
2ln2

− fR

2ln2
, 0≤ fR ≤ 2 fB. (5.4)

Expressing fR as a function of D leads to fR = 2 fB

√
1−D/σ2

X .

Example 5 (rectangular PSD) In the case where the PSD of X(·) is of the form

SΠ( f ) =
σ2

X
2 fB

1, | f | ≤ fB,

0, | f |> fB,
(5.5)

we have that Fθ = [− fB, fB] for all fs. This implies that fR = 2 fB. Therefore, in this example, D( fs,R) =

DX (R) = σ2
X 2−R/ fB only for fs larger than the Nyquist rate. The expression for D( fs,R) for fs < fNyq = 2 fB

is given by (4.10).

As shown in Figure 5.3, PSD SΩ( f ) is non-unimodal PSD for which D( fs,R) is attained by MB sampling

with a large enough number of sampling branches. The PSD SΩ( f ) corresponds to the Gauss-Markov process

whose bandwidth is infinite. The relation between R and fR for this process illustrates another interesting

phenomenon that is explored in more detail in the next section.

5.2 Sampling Infinite Bandwidth Signals

A common practice in signal processing is to restrict attention to signals that are bandlimited since these can

be perfectly represented by their discrete-time samples. Nevertheless, there are many important cases where

this assumption does not hold, including Markov processes, autoregressive processes, the Wiener process (or

other semi-martingales), and all processes that are used in prediction and filtering theory [48]. In this section

we argue that an important contribution of the ADX theory is in describing the optimal tradeoff among

distortion, sampling rate, and bitrate, even if the source signal is not non-bandlimited. This tradeoff is best

explained by an example.

5.2.1 Example: sampling a Gauss-Markov process

Let XΩ(t) be a Gaussian stationary process with PSD

SΩ( f ) =
1/ f0

(π f/ f0)2 +1
, f0 > 0. (5.6)
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The signal XΩ(t) is also a Markov process, and it is in fact the unique Gaussian stationary process that is also

Markovian (a.k.a Ornstein-Uhlenbeck process). The relation between R and fR for XΩ(·) can be found in a

similar way to Examples 4 and 5 and is given by

R =
1

ln2

(
fR− f0

arctan(π fR/ f0)

π/2

)
. (5.7)

The relation between fR to R defined by (5.7) is illustrated in Figure 5.3. The interesting phenomenon

illustrated by this figure is that although the Nyquist rate of XΩ(·) is infinite, for any finite R there exists a

critical sampling frequency fR, satisfying (5.7), such that the DRF of XΩ(t) can be attained by sampling at or

above fR. Namely, when the non-bandlimited signal XΩ(·) is considered under a bitrate constraint R, there

exists a sampling scheme at rate fs such that the overall distortion in the system equals the minimal distortion

subject only to the bitrate constraint.

Since the distortion in ADX is bounded from below by both the DRF of XΩ(·) and the MMSE (as follows

from Proposition 4.1), both fs and R must be taken to infinity in order to describe a realization of XΩ(·) with

vanishing distortion. In this asymptotic regime, it follows from (5.7) that the relation between the critical

sampling rate fR and R is R = fs/ ln2+o(1/ fR). Therefore, for R sufficiently large, the digital representation

of the samples of XΩ(·) must allocate R/ fs = 1/ ln2 ≈ 1.45 bits per sample in order to attain the DRF of

XΩ(·). If the number of bits per sample goes below this value, then, as R and the sampling rate increase,

the distortion is dominated by the lossy compression distortion as there are not enough bits to represent the

information acquired by the sampler. Consequently, as illustrated in Figure 5.4, the ratio between D( fs,R)

and DX (R) goes to one in this case. If the number of bits per sample is above 1/ ln2, then the distortion

is dominated by the sampling distortion, and the ratio between D( fs,R) and DX (R) converges to a constant

bigger than one as illustrated in Figure 5.4.

5.2.2 Classification of infinite bandwidth signals

The asymptotic value of bits per sample R/ fR distinguishes between two classes of signals:

• (C1) signals for which R/ fR→ ∞ as R→ ∞

• (C2) signals for which R/ fR is bounded as R→ ∞

The class (C1) includes all bandlimited signals, since for these signals fR is bounded by fLan. In addition,

(C1) also includes non-bandlimited signals whose PSD vanishes quickly. For example consider the PSD

Sλ ( f ) = e−0.5| f |. For this PSD, the relation between fR and R is given by

R =
1
2

(
1− e− fR/2

)
+

f 2
R
4
, (5.8)

which implies that R/ fR is unbounded as R goes to infinity.
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Figure 5.4: The ratio between the minimal distortion in ADX and the DRF for the Gauss-Markov process
XΩ(·) with a constant number of bits per samples R/ fs. The ADX distortion vanishes at the same rate as the
DRF whenever the number of bits per sample R̄ = R/ fs is smaller than 1/ ln2.

For signals in (C1), there exists a critical sampling rate above which the DRF is attained for any R. There-

fore, in order to encode a signal in (C1) with vanishing distortion it is enough to use a finite rate sampler, but

the quantizer’s bit-resolution must approaches infinity. In other words, the main challenge in encoding these

signals with vanishing distortion is the design of quantizers with increasing bit-resolution.

The class (C2) contains only non-bandlimited signals such as the Gauss-Markov process XΩ(·). For sig-

nals in this class, the ratio D( fs,R)/DX (R) goes either to one or to a constant bigger than one, depending

whether the number of bits per sample R/ fs exceeds the asymptotic ratio R/ fR or not, respectively. Hence,

this asymptotic ratio is the minimal number of bits one is required to provide per sample to ensure that the

distortion in ADX is not dominated by the lossy compression error. The main challenge in encoding sampling

in this class is the requirement to constantly increase the sampling rate side by side with the bitrate in order to

improve accuracy of sampled representations. We emphasize that the ADX distortion D( fs,R) always goes

to zero whenever both R and fs goes to infinity.
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5.3 Chapter Summary

In this chapter we considered the joint effect of a sampling constraint and a bitrate constraint on the ability

to represent an analog signal under the ADX setting. We first showed that for a fixed bitrate R, the minimal

distortion in ADX gives rise to a critical sampling rate fR such that sampling at or above fR attains the

minimal distortion in encoding an analog signal at bitrate R. This rate extends the Landau and Nyquist rates

that provide the necessary rates for sampling with distortion-free recovery in classical sampling theory under

an infinite precision representation of the samples. When these samples are encoded or compressed in a lossy

manner, the minimal distortion is described by the DRF or, if system noise is present, by the indirect DRF of

the signal given its noisy version. These functions, however, can be attained by sampling at the rate fR that is

smaller than the Landau rate for signals with non-uniform spectral distribution.

In addition, we considered the asymptotic ratio between bitrate and sampling rate required to attain van-

ishing distortion under the ADX setting. For signals for which this ratio is finite, this ratio represents the

number of bits per sample required to make the MMSE distortion and the lossy compression distortion van-

ish at the same rate.



Chapter 6

Conclusions and Future Directions

Processing, digital communication, and digital storage of an analog signal is achieved by first representing it

as a bit sequence. The restriction on the bitrate of this sequence is the result of restrictions on power, memory,

communication, and computation. In addition to bitrate restrictions, hardware and modeling constraints in

processing analog information imply that the digital representation is obtained by first sampling the analog

signal and then quantizing its samples in a lossy manner. That is, the transformation of an analog signal to

bits involves the combination of sampling and lossy compression operations.

In order to account for the joint effect of sampling and bitrate constraints, we presented the analog-to-

digital compression (ADX) setting. The ADX setting considers any encoding scheme of the samples at rate

R bits per unit time in which these samples are obtained by a bounded linear sampler that produces no more

than fs samples per unit time on average. The class of bounded linear samplers covers most of the sampling

systems encountered in practice, including linear time-invariant sampling and nonuniform sampling. There-

fore, the minimal distortion in the ADX provides the fundamental performance limit of most of the real world

systems that convert analog information to a bit sequence.

This thesis provided a full characterization of the minimal ADX distortion for the important case of a

Gaussian stationary input signal corrupted by Gaussian stationary noise. Specifically, for a given bitrate

constraint R and a sampling rate constraint fs, we provided an achievable lower bound on the distortion under

any bounded linear sampling system of sampling rate fs and encoding scheme of bitrate R. This lower bound

is given only in terms of the spectral properties of the source signal and the noise. By relaxing the bitrate

constraint or the sampling rate constraint, this lower bound recovers the distortion under optimal estimation

through linear filtering or optimal lossy compression, respectively. Hence, our characterization of the minimal

distortion in ADX unified and generalized classical results in sampling theory and lossy source coding theory

in various aspects.

The characterization of the minimal ADX was achieved by first considering the MMSE subject only to

the sampling constraint and the noise. Next, we considered the indirect source coding problem of estimating

88
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an analog signal from an encoded version of its observations, and ignored the sampling constraint. The

MMSE estimation problem and the indirect source coding problem were then combined to a single setting

providing the minimal MSE distortion due to the joint effect of sampling and lossy compression. Finally, an

optimization over the sampling structure to minimize the distortion was performed, leading to the minimal

MSE distortion in ADX.

Our characterization of the minimal distortion in ADX has important theoretical and practical implica-

tions in signal processing and information theory. Specifically, the minimal ADX distortion provides an

extension of the classical sampling theory of Whittaker-Kotelnikov-Shannon-Landau by describing the min-

imal sampling rate required for minimizing the distortion in sampling an analog signal. The ADX distortion

also leads to a theory of representing signals of infinite bandwidth. Namely, it provides the exact number of

bits required to represent each sample of the analog waveform as the number of bits and samples per unit

time goes to infinity in order to decrease the distortion to zero. In addition, we concluded that sampling at the

Nyquist rate is not necessary for minimizing distortion when working under a bitrate constraint. Arguably,

almost any system that processes information is subject to such a constraint due to power, cost or memory

limitations of hardware. Moreover, sampling at the critical sampling rate results in the most compact digital

representation of the analog signal and provides a mechanism to remove redundancy at the sensing stage.

We conclude this thesis by discussing various extensions of its main setting and results. First in Sec-

tion 6.1, we consider two specific research directions that follow from the ADX setting. More general exten-

sions are discussed in Section 6.2.

6.1 Extensions

We now present two interesting research directions related to the ADX setting that provide specific examples

for the way the results of this thesis can be extended.

6.1.1 Sampling sparse signals subject to a bitrate constraint

The pioneering work of [36] and [35] initiated much work in compressed sensing (CS), in which sparse vector

is recovered from its noisy random linear projections. The main principle in CS is that a relatively small

number of random linear projections is enough to represent the source, provided it has only few non-zero

entries in some basis. The fact that sparse sources possess such a low-dimensional representation justifies

the “compressed” part of CS. Nevertheless, reducing dimensions does not yet provide compression in the

information theoretic sense, since it is still required to quantize this low-dimensional representation, i.e., to

map it to a finite alphabet set. Therefore, the compressibility of a sparse signal can be studied using the ADX

framework adapted to a CS setting, as was recently considered in [37].

An interesting open question that arises in the ADX setting under a sparse source signal assumption

concerns the effect of the bit restriction on the sampling ratio required for optimal reconstruction. Specifically,
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let Xn be an n-dimensional i.i.d. vector in which each entry is standard normal with probability p, or 0 with

probability 1− p. It is well-known that with m random linear samples of infinite bit precision, perfect recovery

of Xn in the noiseless case, or bounded noise sensitivity in the noisy case [70], is possible only if p > m/n

[71]. Therefore, p represents the number of degrees of freedom in representing a sparse signal from its

random linear projections, and hence can be seen as the compressed sensing counterpart of the Landau rate.

However, under an overall bit budget of nR bits to represent the samples, reconstruction is only possible to a

distortion level equal to the DRF of Xn, obtained by an encoder that observes it directly.

An interesting open question is whether, subject to a bit per source symbol constraint, the DRF can be

attained using fewer then np samples. If the optimal direct encoding scheme of Xn that attains its DRF

reduces the degrees of freedom in the signal representation (in analogy to Pinsker’s formula (3.3)), then its

optimal lossy compressed version may have np̂ < np non-zeros. As a result, its compressed version can be

perfectly represented using a bit more than np̂ measurements, and no additional distortion is introduced due

to sampling at p̂ < p. If, on the other hand, the number of degrees of freedom after optimal lossy compression

of Xn is equivalent to np, then no reduction in sampling rate of the aforementioned kind is possible.

As a result, its lossy compressed version may have fewer than np non-zeros and, thus, can be perfectly

represented using fewer than np measurements. On the other hand, a negative answer would imply that all

degrees of freedom are used under direct encoding

6.1.2 Compress-and-Estimate – source coding with oblivious encoding

The characterization of the minimal ADX distortion implies that, in order to attain it, the encoder first esti-

mates the analog signal from its samples and then encodes this estimate. This estimation prior to encoding,

however, seems infeasible in many important scenarios. First, this estimate depends on the source’s PSD, the

sampling rate, and the noise intensity. In the absence of information about any of these factors, an optimal

source estimate cannot be obtained. For example, this scenario occurs in statistical analysis and machine

learning, since the underlying signal characterization is unknown at the time the data is collected. Moreover,

the estimation of the source may require expensive resources that are unavailable to the encoder, due to power

constraints for example.

In lieu of estimating the signal prior to encoding, the encoder may simply use an optimal source code

adapted to its raw samples. The decoder, aware of the full source’s statistics and not limited by resources,

would try to estimate the source from this sub-optimal encoding. That is, as opposed to the optimal “estimate-

and-compress” strategy in indirect source coding, the encoder and the estimator apply a “compress-and-

estimate” (CE) strategy.

As shown in [72] for simple indirect settings, source coding under a CE strategy can lead to highly sub-

optimal performance compared to the indirect distortion-rate function. Hence, it is suggested that the tradeoff

among distortion, bitrate, and sampling rate in the ADX setting under a CE strategy would yield different

conclusions than the ones reported here for the optimal strategy. As an example, consider the case in which

a noisy source is sampled above its Nyquist rate. As shown in this thesis, the ADX distortion is fixed for any
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super-Nyquist sampling rate since the decoder estimates the original signal from the samples. On the other

hand, under the CE scenario, the source encoder cannot separate the original analog signal from noise prior

to encoding. Therefore, a higher sampling rate would introduce more noise into the system and may increase

the overall distortion.

6.2 General Extensions

In addition to the two specific research directions presented above, the results of this thesis can be extended by

generalizing the ADX framework. Several such extensions and the motivation for them are briefly discussed

below.

6.2.1 Statistical inference under sampling and bitrate constraints

The ADX setting focuses on the estimation of analog signals under an MSE criterion. A more general setting

explores the performance of any inference problem or decision that is based on a lossy compressed version

of the samples of an analog signal. As an example, we may consider the tradeoff between probability of

error, sampling rate and distortion in hypothesis testing based on the lossy compressed samples. In another

example, we assume that the distribution of the analog signal depends on some vector of parameters and

consider the MSE as a function of the sampling rate and bitrate in estimating this vector.

6.2.2 Optimal tradeoff between bit precision and sampling rate under non-ideal en-
coding

The minimal distortion in the ADX setting is achieved by using an ideal encoder. That is, given the noisy

samples of the analog signal, the encoder provides the optimal description of the original signal to the decoder

subject only to the bitrate constraints. In practice, analog-to-digital implementations may impose other re-

strictions such as limited memory at the encoder and causality. In order to understand the performance limits

of such systems, it would be beneficial to extend our model to incorporate such restrictions. In particular, it is

interesting to understand which restrictions lead to a non-trivial tradeoff between the average number of bits

per second used to represent the process and the sampling rate of the system.

6.2.3 Multiterminal sampling and lossy compression

Another natural extension of the ADX setting is obtained by assuming that noisy samples of the analog signal

are observed and encoded in more than one location. This scenario arises, for example, in sensor networks,

where different noisy versions of the same underlying analog signal are observed by multiple sensors, where

each sensor transmits information to a central estimation unit independently of the other sensors. The goal

is to design a distributed encoding and sampling strategy for the sensors in order to minimize the distortion
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in estimating the underlying analog signal at the central estimator. This setting can be seen as a combined

problem of sampling and the indirect multiterminal source coding setting of [73].



Appendix A

The Distortion-Rate Function of
Cyclostationary Processes

The proof of Theorem 4.3 is based on an expression for the DRF of a pulse-amplitude modulated (PAM)

process given in terms of the PSD of the baseband signal and the Fourier transform of the modulating pulse.

This expression is a special case of a more general result that characterizes the DRF of any Gaussian cyclo-

stationary process (CSP) in term its spectral properties. This general result and its application for the DRF of

a PAM processes are dervied in this appendix. The content of this appendix first appeared in [19].

Definitions and Notations

Cyclostationary Processes

Throughout this appendix, we consider zero mean Gaussian processes in both discrete and continuous time.

We use round brackets to denote a continuous time index and square brackets for a discrete time index.

The statistics of a zero mean Gaussian process X(·) is specified in terms of its autocorrelation function

RX (t,τ), E [X(t + τ)X(t)] .

We note that in [52] and in other references, the symmetric auto-correlation function

R̃X (t,τ), E [X(t + τ/2)X(t− τ/2)] = RX (t− τ/2,τ),

the corresponding CPSD ˆ̃Sn
X ( f ) and TPSD S̃ t

X ( f ), are used. The conversion between Ŝn( f ) and the symmetric

CPSD is given by ˆ̃Sn
X ( f ) = Ŝn

X ( f −n/(2T0)). If in addition the autocorrelation function is periodic in t with a

93
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fundamental period T0,

RX (t +T0,τ) = RX (t,τ),

then we say that X(·) is a CSP [49, 52]. We also assume that RX (t,τ) is bounded and Riemann integrable on

[0,T0]×R, and therefore

σ
2
X = lim

T→∞

1
2T

∫ T

−T
EX(t)2dt =

1
T0

∫ T0

0
RX (t,0)dt

is finite.

Suppose that RX (t,τ) has a convergent Fourier series representation in t for almost any τ ∈ R. Then the

statistics of X(·) are uniquely determined by the cyclic autocorrelation (CA) function:

R̂n
X (τ),

1
T0

∫ T0/2

−T0/2
RX (t,τ)e−2πint/T0dt, n ∈ Z. (A.1)

The Fourier transform of R̂n
X (τ) with respect to τ is denoted as the cyclic power spectral density (CPSD)

function:

Ŝn
X ( f ) =

∫
∞

−∞

R̂n
X (τ)e

−2πiτ f dτ, −∞≤ f ≤ ∞. (A.2)

If Ŝn
X ( f ) is identically zero for all n 6= 0, then RX (t,τ) = RX (0,τ) for all 0 ≤ t ≤ T and the process X(·)

is stationary. In such a case SX ( f ) , Ŝ0
X ( f ) is the power spectral density (PSD) function of X(·). The time-

varying power spectral density (TPSD) function [52, Sec. 3.3] of X(·) is defined by the Fourier transform of

RX (t,τ) with respect to τ , i.e.

S t
X ( f ),

∫
∞

−∞

RX (t,τ)e−2πi f τ dτ. (A.3)

The Fourier series representation implies that

S t
X ( f ) = ∑

n∈Z
Ŝn

X ( f )e2πint/T0 . (A.4)

Associated with every CSP X(·) with period T0 is a set of stationary discrete time processes X t [·], 0≤ t ≤
T0, defined by

X t [n] = X (T0n+ t) , n ∈ Z. (A.5)

These processes are called the polyphase components (PC) of the CSP X(·). The cross-correlation function

of X t1 [·] and X t2 [·] is given by

RX t1 X t2 [n,k] = E [X [T0(n+ k)+ t1]X [T0n+ t2]]

= RX (T0n+ t2,T0k+ t1− t2)

= RX (t2,T0k+ t1− t2) . (A.6)
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Since RX t1 X t2 [n,k] depends only on k, this implies that X t1 [·] and X t2 [·] are jointly stationary. The PSD of X t [·]
is given by

SX t
(
e2πiφ),∑

k∈Z
RX t X t [0,k]e−2πiφk

= ∑
k∈Z

RX (t,T0k)e−2πiφk, −1
2
≤ φ ≤ 1

2
. (A.7)

Using the spectral properties of sampled processes, we can use (A.7) and (A.4) to connect the functions

SX t
(
e2πiφ

)
and the CPSD of X(·) as follows:

SX t
(
e2πiφ)= 1

T0
∑
k∈Z

S t
X

(
φ − k

T0

)
=

1
T0

∑
k∈Z

∑
n∈Z

Ŝn
X

(
φ − k

T0

)
e2πint/T0 .

More generally, for t1, t2 ∈ [0,T0] we have

SX t1 X t2

(
e2πiφ)= ∑

k∈Z
RX t1 X t2 [0,k]e−2πikφ (A.8)

=
1
T0

∑
k∈Z

S t2
X

(
φ − k

T0

)
e2πi(t1−t2)

φ−k
T0

=
1
T0

∑
k∈Z

∑
m∈Z

Ŝm
X

(
φ − k

T0

)
e2πi

(
m t2

T0
+

t1−t2
T0

(φ−k)
)
.

We now turn to briefly describe the discrete-time counterpart of the CA, CPSD, TPSD and the polyphase

components defined in (A.1), (A.2), (A.3) and (A.5), respectively.

A discrete time zero mean Gaussian process X [·] is said to be a CSP with period M ∈ N if its covariance

function

RX [n,k] = E [X [n+ k]X [n]]

is periodic in k with period M. For m = 0, . . . ,M−1, the mth cyclic autocorrelation (CA) function of X [·] is

defined as

R̂m
X [k],

M−1

∑
n=0

RX [n,k]e−2πinm/M.

The mth CPSD function is then given by

Ŝm
X
(
e2πiφ),∑

k∈Z
R̂m

X [k]e
−2πiφk,

and the discrete TPSD function is

Sn
X
(
e2πiφ), ∑

k∈Z
RX [n,k]e−2πiφk.



APPENDIX A. THE DISTORTION-RATE FUNCTION OF CYCLOSTATIONARY PROCESSES 96

Finally, we have the discrete time Fourier transform relation

Sn
X
(
e2πiφ)= 1

M

M−1

∑
m=0

Ŝm
X
(
e2πiφ)e2πiφnm/M.

The m-th stationary component X̄m[·], 0≤ m≤M−1 of X [·] is defined by

Xm[n], X [Mn+m], n ∈ Z. (A.9)

For 0≤ m,r,n≤M−1 and k ∈ Z we have

RXmXr [n,k] = E [Xm[n+ k]X r[n]]

= E [X [Mn+Mk+m]X [Mn+ r]]

= RX [Mn+ r,Mk+m− r]

= RX [r,Mk+m− r]. (A.10)

Using properties of multi-rate signal processing:

SXmXr
(
e2πiφ)= ∑

k∈Z
RX [r,Mk+m− r]e−2πikφ =

1
M

M−1

∑
n=0

Sr
X

(
e2πi φ−n

M

)
e2πi(m−r) φ−n

M . (A.11)

The discrete-time counterpart of (A.8) is then

SXmXr
(
e2πiφ)= 1

M

M−1

∑
k=0

M−1

∑
n=0

Ŝn
X

(
e2πi φ−k

M

)
e2πi nr+(m−r)(φ−k)

M . (A.12)

The functions SXmXr
(
e2πiφ

)
, 0≤ m,r ≤M−1 define an M×M matrix SX

(
e2πiφ

)
with (m+1,r+1)th entry

SXmXr
(
e2πiφ

)
. This matrix completely determines the statistics of X [·], and can be seen as the PSD matrix

associated with the stationary vector valued process XM[n] defined by the stationary components of X [·]:

XM[n],
(
X0[n], . . . ,XM−1[n]

)
, n ∈ Z. (A.13)

We denote the autocorrelation matrix of XM[·] as the PSD-PC matrix. Note that the (r+1,m+1)th entry of

the PSD-PC matrix is given by (A.10).

Example 6 (pulse-amplitude modulation (PAM)) Consider a Gaussian stationary process U(·) modulated

by a deterministic signal p(t) as follows:

XPAM(t) = ∑
n∈N

U(nT0)p(t−nT0). (A.14)
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This process is cyclostationary with period T0 and CPSD [74, Eq. 49]

Ŝn
PAM( f ) =

1
T0

P( f )P∗
(

f − n
T0

)
SU ( f ) , n ∈ Z, (A.15)

where P( f ) is the Fourier transform of p(t) and P∗( f ) is its complex conjugate. If T0 is small enough such

that the support of P( f ) is contained within the interval
(
− 1

2T0
, 1

2T0

)
, then Ŝn

PAM( f ) = 0 for all n 6= 0, which

implies that XPAM(·) is stationary.

The distortion-rate function

For a fixed T > 0, let XT be the reduction of X(·) to the interval [−T,T ]. Define the distortion between two

waveforms x(·) and y(·) over the interval [−T,T ] by

dT (x(·),y(·)),
1

2T

∫ T

−T
(x(t)− y(t))2 dt. (A.16)

We expand XT by a Karhunen-Loève (KL) expansion [75, Ch 9.7] as

XT (t) =
∞

∑
k=1

Xk fk(t), −T ≤ t ≤ T, (A.17)

where { fk} is a set of orthogonal functions over [−T,T ] satisfying the Fredholm integral equation

λk fk(t) =
1

2T

∫ T

−T
KX (t,s) fk(s)ds, t ∈ [−T,T ], (A.18)

with corresponding eigenvalues {λk}, and where

KX (t,s), EX(t)X(s) = RX (s, t− s).

Assuming a similar expansion as (A.17) to an arbitrary random waveform YT , we have

EdT (XT ,YT ) =
1

2T

∫ T

−T
E(X(t)−Y (t))2 dt = ∑

n∈Z
E(Xn−Yn)

2 .

The mutual information between X(·) and Y (·) on the interval [−T,T ] is defined by

IT (X(·),Y (·)), 1
2T

lim
N→∞

I
(
XN
−N ;YN

−N
)
,

where XN
−N = (X−N , . . . ,XN), YN

−N = (Y−N , . . . ,YN) and the Xns and Yns are the coefficients in the KL expan-

sion of X(·) and Y (·), respectively.

Denote by PT the set of joint probability distributions PX ,X̂ over the waveforms
(
X(·), X̂(·)

)
, such that

the marginal of X(·) agrees with the original distribution, and the average distortion EdT
(
X(·), X̂(·)

)
does
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not exceed D. The rate-distortion function (RDF) of X(·) is defined by

R(D) = lim
T→∞

RT (D),

where

RT (D) = inf IT
(
X(·); X̂(·)

)
,

and the infimum is over the set PT . It is well known that R(D) and RT (D) are non-increasing convex

functions of D, and therefore continuous in D over any open interval [6]. We define their inverse function as

the distortion-rate functions D(R) and DT (R), respectively. We note that by its definition, D(R) is bounded

from above by the average power of X(·) over a single period:

σ
2
X , lim

T→∞

1
2T

∫ T

−T
EX2(t)dt = lim

T→∞

1
2T

∫ T

−T
RX (t,0)dt

=
1
T0

∫ T0

0
RX (t,0)dt = R̂0

X (0).

For Gaussian processes, we have the following parametric representation for RT (D) or DT (R) [75, Eq.

9.7.41]

DT (θ) =
∞

∑
k=1

min{θ ,λk} (A.19a)

RT (θ) =
1
2

∞

∑
k=1

log+ (λk/θ) , (A.19b)

where log+ x,max{logx,0}.
In the discrete-time case the DRF is defined in a similar way as in the continuous-time setting described

above by replacing the continuous-time index in (A.16), (A.17) and (A.18), and by changing integration to

summation. Since the KL transform preserves norm and mutual information, this definition of the DRF in

the discrete-time case is consistent with standard expressions for the DRF of a discrete-time source with

memory as in [6, Ch. 4.5.2]. Note that with these definitions, the continuous-time distortion is measured in

MSE per time unit while the discrete-time distortion is measured in MSE per source symbol. Similarly, in

continuous-time, R represents bitrate, i.e., the number of bits per time unit. In the discrete-time setting we

use the notation R̄ to denote bits per source symbol.

Since the distribution of a zero-mean Gaussian CSP with period T0 is determined by its second moment

RX (t,τ), we observe form [65, Exc. 6.3.1] these processes are asymptotic mean stationary as defined in [Ch.

1.7][66]. A source coding theorem for this class of processes in discrete-time can be found in [Ch. 9][66]. Its

extension to continuous-time follows immediately as long as the flow defined by the process, i.e. the mapping

from the time index set [−T,T ] to the probability space, is measurable. This last condition is implicit in our

definition of a continuous-time stationary process in terms of its finite dimensional probability distributions



APPENDIX A. THE DISTORTION-RATE FUNCTION OF CYCLOSTATIONARY PROCESSES 99

[69].

Evaluating the DRF of a CSP

In the special case in which X(·) is stationary, it is possible to obtain D(R) without explicitly solving the

Fredholm equation (A.18) or evaluating the KL eigenvalues: in this case, the density of these eigenvalues

converges to the PSD SX ( f ) of X(·). This leads to the celebrated reverse water-filling expression for the DRF

of a stationary Gaussian process, originally derived by Pinsker [62]:

R(θ) =
1
2

∫
∞

−∞

log+ [SX ( f )/θ ]d f . (A.20a)

D(θ) =
∫

∞

−∞

min{SX ( f ) ,θ}dφ . (A.20b)

The discrete-time version of (A.20) is given by

R̄(θ) =
1
2

∫ 1
2

− 1
2

log+
[
SX
(
e2πiφ)/θ

]
dφ . (A.21a)

D(θ) =
∫ 1

2

− 1
2

min
{

SX
(
e2πiφ) ,θ}dφ . (A.21b)

Equations (A.20) and (A.21) define the distortion as a function of the rate through a joint dependency on the

water level parameter θ .

We note that stationarity is not a necessary condition for the existence of a density function for the eigen-

values in the KL expansion. For example, such a density function is known for the Wiener process [76] which

is a non-stationary process.

When X(·) is a general Gaussian CSP, its DRF can be evaluated, in principle, by the following procedure:

compute the KL eigenvalues in (A.18) for each T , use (A.19) to obtain DT (R), and finally take the limit as

T goes to infinity. For general CSPs, however, an easy way to describe the density of the KL eigenvalues is

in general unknown. As a result, the evaluation of the DRF directly by the KL eigenvalues usually does not

lead to a closed-form solution. We therefore turn to an alternative representation for the function D(R) which

is based on an approximation of the kernel KX (t,s) used in (A.18).

A Spectral Representation of the DRF

Our first observation is that in the discrete-time case, the DRF of a Gaussian CSP can be obtained by an

expression for the DRF of a vector Gaussian stationary source. This expression is an extension of (A.21),
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which was derived in [67, Eq. (20) and (21)] and is given as follows:

DX (θ) =
1
M

M

∑
m=1

∫ 1
2

− 1
2

min
{

λm
(
e2πiφ) ,θ}dφ (A.22a)

R(θ) =
1
M

M

∑
m=1

∫ 1
2

− 1
2

1
2

log+
[
λm
(
e2πiφ)/θ

]
dφ , (A.22b)

where λ1
(
e2πiφ

)
, ...,λM

(
e2πiφ

)
are the eigenvalues of the PSD matrix SX

(
e2πiφ

)
at frequency φ . We have

the following result:

Theorem A.1 Let X [·] be a discrete-time Gaussian CSP with period M ∈ N. The distortion rate function of

X [·] is given by

D(θ) =
1
M

M

∑
m=1

∫ 1
2

− 1
2

min
{

λm
(
e2πiφ) ,θ}dφ (A.23a)

R̄(θ) =
1

2M

M

∑
m=1

∫ 1
2

− 1
2

log+
[
λm
(
e2πiφ)/θ

]
dφ , (A.23b)

where λ1
(
e2πiφ

)
≤ . . . ≤ λM

(
e2πiφ

)
are the eigenvalues of the PSD-PC matrix with (m+1,r+1)th entry

given by

SXmXr
(
e2πiφ)= 1

M

M−1

∑
n=0

Sr
X

(
e2πi φ−n

M

)
e2πi(m−r) φ−n

M . (A.24)

Proof Consider the vector valued process XM[·] defined in (A.13). The rate-distortion function of XM[·] is

given by (A.22):

D(θ) =
1
M

M

∑
m=1

∫
∞

−∞

min
{

λm
(
e2πiφ) ,θ}dφ , (A.25a)

R(θ) =
1
2

M

∑
m=1

∫
∞

−∞

log+
[
λm
(
e2πiφ)/θ

]
dφ , (A.25b)

where 0 ≤ λ1
(
e2πiφ

)
≤ . . . ≤ λM

(
e2πiφ

)
are the eigenvalues of the spectral density matrix SXM

(
e2πiφ

)
ob-

tained by taking the Fourier transform of covariance matrix RX[k] = E
[
XM[n+ k](XM[n])T

]
entry-wise. The

(m,r)th entry of SXM
(
e2πiφ

)
is given by (A.11):

(
SXM

(
e2πiφ))

m,r = Sm,r
X

(
e2πiφ)= 1

M

M−1

∑
k=0

Sr
X

(
e2πi φ−k

M

)
e2πi(m−r) φ−k

M . (A.26)

It is left to show that the DRF of XM[·] coincides with the DRF of X [·]. By the source coding theorem

for AMS processes [66, Thm. 11.4.1] it is enough to show that the operational block coding distortion-rate

function ([66, Ch. 11.2]) of both processes is identical. Indeed, any N block codebook for XM[·] is an MN
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φλ3 (e
2πiφ )

λ2 (e
2πiφ )

λ1 (e
2πiφ )

lossy compression dist.
preserved spectrum

Figure A.1: water-filling interpretation of (A.23) for M = 3. The lossy compression distortion and the
preserved spectrum are associated with equations (A.23a) and (A.23b), respectively.

block codebook for X [·] which achieves the same quadratic distortion averaged over the block. However,

since XM[·] is stationary, by [66, Lemma. 11.2.3] we know that any distortion above the DRF of XM[·] is

attained for large enough N. This implies that the same is true for X [·]. �

Equation (A.23) has the water-filling interpretation illustrated in Figure A.1: the DRF is obtained by

setting a single water-level over all eigenvalues of (A.24). These eigenvalues can be seen as the PSD of M

independent processes obtained by the orthogonalization of the PC of X [·]. The overall area below the water-

level is the spectral density of the noise term in the test channel that attains the information expression of the

DRF, while the area above this level is associated with the reconstructed signal in this channel [6]. Compared

to the limit in the discrete-time version of the KL expansion, expression (A.23) exploits the cyclostationary

structure of the process by using its spectral properties. These spectral properties capture information on the

entire time-horizon and not only over a finite blocklength as in the KL expansion.

The following theorem explains how to extend the above evaluation to the continuous-time case.

Theorem A.2 Let X(·) be a Gaussian CSP with period T0 and correlation function RX (t,τ) Lipschitz con-

tinuous in its second argument. For a given M ∈ N, denote

DM(θM) =
1
M

M

∑
m=1

∫ 1
2

− 1
2

min
{

λm
(
e2πiφ) ,θM

}
dφ (A.27a)

R(θM) =
1

2T0

M

∑
m=1

∫ 1
2

− 1
2

log+
[
λm
(
e2πiφ)/θM

]
dφ , (A.27b)

where λ1
(
e2πiφ

)
≤ . . .≤ λM

(
e2πiφ

)
are the eigenvalues of the matrix SX

(
e2πiφ

)
with its (m+1,r+1)th entry
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given by

1
T0

∑
k∈Z

SrT0/M
X

(
φ − k

T0

)
e2πi(m−r) φ−k

M (A.28)

=
1
T0

∑
k∈Z

∑
n∈Z

Ŝn
X

(
φ − k

T0

)
e2πi nr+(m−r)(φ−k)

M .

Then the limit of DM in M exists and the distortion-rate function of X(·) is given by

D(R) = lim
M→∞

DM (θM(R)) . (A.29)

Proof Given a Gaussian CSP X(·) with period T0 > 0, we define the discrete-time process X̄ [·] obtained by

uniformly sampling X(·) at intervals T0/M, i.e.

X̄ [n] = X(nT0/M), n ∈ Z. (A.30)

The autocorrelation function of X̄ [·] satisfies

RX̄ [n+M,k] = E [X̄ [n+M+ k]X̄ [n+M]]

= E [X(nT0/M+T0 + kT0/M)X(nT0/M+T0)]

= RX (nT0/M+T0,kT0/M+T0)

= RX (nT0/M,kT0/M)

= RX̄ [n,k],

which means that X̄ [·] is a discrete-time Gaussian CSP with period M. The TPSD of X̄ [·] is given by

Sm
X̄ (e

2πiφ ) =
M
T0

∑
k∈Z

SmT0/M
X

(
M
T0

(φ − k)
)
.

This means that the PSD of the mth PC of X̄ [·] is

Sm
X̄

(
e2πiφ)= 1

M

M−1

∑
n=0

Sm
X̄

(
e2πi φ−n

M

)
=

1
T0

M−1

∑
n=0

∑
k∈Z

SmT0/M
X

(
φ −Mk−n

T0

)
=

1
T0

∑
l∈Z

SmT0/M
X

(
φ − l

T0

)
.
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By applying Theorem A.1 to X̄ [·], we obtain an expression for the DRF of X̄ [·] as a function of M:

DM(θM) =
1
M

M

∑
m=1

∫ 1
2

− 1
2

min
{

λm
(
e2πiφ) ,θM

}
dφ (A.31a)

R̄(θM) =
1

2M

M

∑
m=1

∫ 1
2

− 1
2

log+
[
λm
(
e2πiφ)/θM

]
dφ , (A.31b)

where λ1
(
e2πiφ

)
≤ . . .≤ λM

(
e2πiφ

)
are the eigenvalues of the matrix with (m+1,r+1)th entry

SX̄mX̄r
(
e2πiφ)= 1

M

M−1

∑
n=0

Sr
X̄

(
e2πi φ−n

M

)
e2πi(m−r) φ−n

M (A.32)

=
1
T0

M−1

∑
n=0

∑
k∈Z

SrT0/M
X

(
φ −n− kM

T0

)
e2πi(m−r) φ−n

M ,

=
1
T0

∑
l∈Z

SrT0/M
X

(
φ − l

T0

)
e2πi(m−r) φ−l

M .

In order to express the code-rate in bits per time unit, we multiply the number of bits per sample R̄ by the

sampling rate M/T0. This shows that the DRF of X̄ [·], as measured in bits per unit time R, is given by (A.27).

In order to complete the proof we rely on the following lemma:

Lemma A.3 Let X(·) be as in Theorem A.2 and let X̄ [·] be its uniformly sampled version at rate M/T0 as in

(A.30). Denote the DRF at rate R bits per time unit of the two processes by D(R) and D̄(R), respectively.

Then

lim
M→∞

D̄(R) = D(R).

The proof of Lemma A.3 is given as follows: let K(t,s) = RX (s, t− s) and K̄[n,k] = RX̄ [n,k−n]. For M ∈ N,

define

K̃(t,s) = K (btM/T0cT0/M,bsM/T0cT0/M) .

For any fixed T > 0, the kernel K̃(t,s) defines a Hermitian positive compact operator [77] on the space of

square integrable functions over [−T,T ]. The eigenvalues of this operator are given by the Fredholm integral

equation

λ̃l f̃l(t) =
1

2T

∫ T

−T
K̃(t,s) f̃l(s)ds, −T ≤ t ≤ T, (A.33)

where it can be shown that there are at most MT/T0 non-zero eigenvalues {λ̃l} that satisfy (A.33). We define
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the function D̃T (R) by the following parametric expression:

D̃T (θ) =
∞

∑
l=1

min
{

λ̃l ,θ
}

R(θ) =
1
2

∞

∑
l=1

log+
(

λ̃l

θ

) (A.34)

(the eigenvalues in (A.34) are implicitly depend on T ). Note that

∞

∑
l=1

λ̃l =
1

2T

∫ T

−T
K̃(t, t)dt =

1
2T

N

∑
n=−N

K(nT0/M,nT0/M), (A.35)

where N = MT/T0. Expression (A.35) converges to

1
2T

∫ T

−T
K(t, t)dt ≤ σ

2
X

as M goes to infinity due to our assumption that R(t,τ) is Riemann integrable and therefore so is K(t,s).

Since we are interested in the asymptotic of large M, we can assume that (A.35) is bounded. This implies

that D̃T (R) is bounded.

In order to claim that the eigenvalues {λ̃l} approximate the eigenvalues {λl}, we use the following lemma:

Lemma A.4 Let {λl} and {λ̃l} be the eigenvalues in the Fredholm integral equation of K(t,s) and K̃(t,s),

respectively. Assume that these eigenvalues are numbered in a descending order. Then∣∣∣λl− λ̃l

∣∣∣≤ 4CT0/M, l = 1,2, . . . . (A.36)

Proof of Lemma A.4

Approximations of the kind (A.36) can be obtained by Weyl’s inequalities for singular values of operators

defined by self-adjoint kernels [78]. In our case it suffices to use the following result [79, Cor. 1”]:∣∣∣λl− λ̃l

∣∣∣≤ 2 sup
t,s∈[−T,T ]

∣∣∣K(t,s)− K̃(t,s)
∣∣∣ , l = 1,2, . . . . (A.37)

The assumption that RX (t,τ) is Lipschitz continuous in τ implies that there exists a constant C > 0 such that

for any t1, t2,s ∈ R,

|K(t1,s)−K(t2,s)|= |RX (s, t1− s)−RX (s, t2− s)| ≤C |t1− t2| .
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We therefore conclude that KX (t,s) is Lipschitz continuous in both of its arguments from symmetry. Lipschitz

continuity of K(t,s) implies

|K(t1,s1)−K(t2,s2)|

≤ |K(t1,s1)−K(t1,s2)|+
∣∣∣K(t1,s2)− K̃(t2,s2)

∣∣∣
≤C |s1− s2|+C |t1− t2| .

As a result, (A.37) leads to∣∣∣λl− λ̃l

∣∣∣≤ 2sup
t,s

∣∣∣K(t,s)− K̃(t,s)
∣∣∣

= 2 sup
t,s∈[−T,T ]

|K(t,s)−K (btM/T0cT0/M,bsM/T0cT0/M)|

≤ 2C (|t−btM/T0cT0/M|+ |t−bsM/T0cT0/M|)
≤ 4CT0/M,

which proves Lemma A.4.

The significance of Lemma A.4 is in the fact that the eigenvalues of the kernel K(t,s) used in the expres-

sion for the DRF of X(·) can be approximated by the eigenvalues of K̃(t,s), where the error in each of these

approximations converge, uniformly in T , to zero as M increases. Since only a finite number of eigenvalues

participate in (A.19) and since both DT (R) and D̃T (R) are bounded continuous functions of their eigenvalues,

we conclude that D̃T (R) converges to DT (R) uniformly in T .

Now let ε > 0 and fix M0 large enough such that for all M > M0 and for all T ,

∣∣DT (R)− D̃T (R)
∣∣≤ ε. (A.38)

Recall that in addition to (A.21), the DRF of X̄ [·], denoted here as D̄(R̄), can also be obtained as the limit in

N of the expression

D̄N(θ) =
∞

∑
l=1

min
{

λ̄l ,θ
}

R̄(θ) =
1
2

∞

∑
l=1

log+
(
λ̄l/θ

)
,

where λ̄1, λ̄2, . . . are the eigenvalues in the KL expansion of X̄ over n =−N, . . . ,N:

λ̄l fl [n] =
1

2N +1

N

∑
k=−N

KX̄ [n,k] fl [k], l = 1, . . . ,N, (A.39)
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(there are actually at most 2N + 1 distinct non-zero eigenvalues that satisfies (A.39)). Letting TN = T0M/N

and f̃l(t) = fl (bt/T0cM) (A.39) can also be written as

λ̄l fl [n] =
∫ TN

−TN

K̃X (nT0/M,s) fl [bs/T0cM]ds, l = 1,2, . . . ,

λ̄l f̃l(t) =
∫ TN

−Tn

K̃(t,s) f̃l(s)ds, −TN < t < TN .

From the uniqueness of the KL expansion, we obtain that for any N, the eigenvalues of K̃(t,s) over

TN = T0M/N are given by the eigenvalues of K̄[n,k] over −N, . . . ,N. We conclude that

D̄N(R̄) = D̃TN (R), (A.40)

where R = R̄T0/M. Now take N large enough such that

|D̄N(R)− D̄(R)|< ε,

and

|DTN (R)−D(R)|< ε.

For all M ≥M0 we have

|D(R)− D̄(R)|=
∣∣D(R)−DTN (R)+DTN (R)+ D̃TN (R)

− D̃TN (R) +D̄N(R)− D̄N(R)− D̄(R)|
≤ |D(R)−DTN (R)| (A.41)

+
∣∣DTN (R)− D̃TN (R)

∣∣ (A.42)

+
∣∣D̃TN (R)− D̄N(R)

∣∣ (A.43)

+ |D̄N(R)− D̄(R)| ≤ 3ε, (A.44)

where the last transition is because: (A.41) and (A.44) are smaller than ε by the choice of N, (A.42) is smaller

than ε from (A.38). and (A.43) equals zero from (A.40). �

DRF of PAM-modulated signals

Proposition A.5 Let XPAM(·) be defined by

XPAM(t) = ∑
n∈Z

U(nT0)p(t−nT0), t ∈ R, (A.45)
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where U(·) is a Gaussian stationary process with (Although we only use the value of U(t) at t ∈ ZT0, it is

convenient to treat U(·) as continuous-time source so that the expressions emerging have only continuous-

time spectrum) PSD SU ( f ) and p(t) is an analog deterministic signal with
∫

∞

−∞
|p(t)|2 dt < ∞ and Fourier

transform P( f ). Assume moreover, that the covariance function RXPAM
(t,τ) of XPAM(·) is Lipschitz continuous

in its second argument. The distortion-rate function of XPAM(·) is given by

D(θ) =
1
T0

∫ 1
2T0

− 1
2T0

min
{

S̃( f ),θ
}

d f (A.46a)

R(θ) =
1
2

∫ 1
2T0

− 1
2T0

log+
[
S̃( f )/θ

]
d f , (A.46b)

where

S̃( f ), ∑
k∈Z
|P( f − k/T0)|2 SU ( f − k/T0). (A.47)

Proof The entries of the matrix S
(
e2πiφ

)
in Theorem A.2 are obtained by using the CPSD of the PAM

process (A.15) in (A.28). For all M ∈ N, this leads to

Sm+1,r+1
(
e2πiφ)=

1
T 2

0
∑
k∈Z

[
P
(

φ − k
T0

)
SU

(
φ − k

T0

)
e2πi(φ−k)m−r

M ∑
n∈Z

P∗
(

φ −n− k
T0

)
e2πi nr

M

]
(A.48)

=
1

T 2
0

∑
k∈Z

P
(

φ − k
T0

)
SU

(
φ − k

T0

)
e2πi(φ−k) m

M ∑
l∈Z

P∗
(

φ − l
T0

)
e−2πi(φ−l) r

M . (A.49)

The expression (A.49) consists of the product of a term depending only on m and a term depending only on

r. We conclude that the matrix S
(
e2πiφ

)
can be written as the outer product of two M dimensional vectors,

and thus it is of rank one. The single non-zero eigenvalue λM
(
e2πiφ

)
of S

(
e2πiφ

)
is given by the trace of the

matrix, which, by the orthogonality of the functions e2πi nr
M in (A.48), is evaluated as

λM
(
e2πiφ)= M

T 2
0

∑
k∈Z

∣∣∣∣P(φ − k
T0

)∣∣∣∣2 SU

(
φ − k

T0

)
. (A.50)

We now use (A.50) in (A.27). In order to obtain (A.46), we change the integration variable from φ to f = φ/T0

and the water-level parameter θ to T0θ/M. Note that the final expression is independent of M, so the limit in

(A.29) is already given by this expression. �
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